[clang] [llvm] Add metadata for const C/C++ scalar types to track initial values of escaped alloca (PR #157676)
Vladislav Belov via llvm-commits
llvm-commits at lists.llvm.org
Tue Sep 9 17:56:17 PDT 2025
vbe-sc wrote:
> Consider:
>
> ```
> void f(int*);
> void g() {
> for (int i = 0; i < 10; ++i) {
> const int j = i;
> f(&j);
> }
> }
> ```
>
> There's "one store"... but consider what happens if the loop is unrolled.
To be honest, I still don't quite understand your arguments regarding the potential problems associated with this optimization. Let's consider your example (slightly modified):
```c
void f(int*);
int g() {
int k = 0;
for (int i = 0; i < 4; ++i) {
const int j = i;
f(&j);
k += j;
}
return k;
}
```
Let's assume there was no unrolling before applying the SROA optimization: then everything is obviously fine, we simply propagate the induction variable into the sum instead of loading the value from the alloca.
IR before SROA:
```
define dso_local i32 @g() #0 {
entry:
%k = alloca i32, align 4
%i = alloca i32, align 4
%j = alloca i32, align 4, !immutable !5
call void @llvm.lifetime.start.p0(ptr %k) #3
store i32 0, ptr %k, align 4, !tbaa !6
call void @llvm.lifetime.start.p0(ptr %i) #3
store i32 0, ptr %i, align 4, !tbaa !6
br label %for.cond
for.cond: ; preds = %for.body, %entry
%0 = load i32, ptr %i, align 4, !tbaa !6
%cmp = icmp slt i32 %0, 4
br i1 %cmp, label %for.body, label %for.cond.cleanup
for.cond.cleanup: ; preds = %for.cond
call void @llvm.lifetime.end.p0(ptr %i) #3
%1 = load i32, ptr %k, align 4, !tbaa !6
call void @llvm.lifetime.end.p0(ptr %k) #3
ret i32 %1
for.body: ; preds = %for.cond
call void @llvm.lifetime.start.p0(ptr %j) #3
%2 = load i32, ptr %i, align 4, !tbaa !6
store i32 %2, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef %j)
%3 = load i32, ptr %j, align 4, !tbaa !6
%4 = load i32, ptr %k, align 4, !tbaa !6
%add = add nsw i32 %4, %3
store i32 %add, ptr %k, align 4, !tbaa !6
call void @llvm.lifetime.end.p0(ptr %j) #3
%5 = load i32, ptr %i, align 4, !tbaa !6
%inc = add nsw i32 %5, 1
store i32 %inc, ptr %i, align 4, !tbaa !6
br label %for.cond, !llvm.loop !10
}
```
IR after:
```
define dso_local i32 @g() #0 {
entry:
%j = alloca i32, align 4, !immutable !5
br label %for.cond
for.cond: ; preds = %for.body, %entry
%k.0 = phi i32 [ 0, %entry ], [ %add, %for.body ]
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%cmp = icmp slt i32 %i.0, 4
br i1 %cmp, label %for.body, label %for.cond.cleanup
for.cond.cleanup: ; preds = %for.cond
ret i32 %k.0
for.body: ; preds = %for.cond
call void @llvm.lifetime.start.p0(ptr %j) #3
store i32 %i.0, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef %j)
%0 = load i32, ptr %j, align 4, !tbaa !6
%add = add nsw i32 %k.0, %i.0
call void @llvm.lifetime.end.p0(ptr %j) #3
%inc = add nsw i32 %i.0, 1
br label %for.cond, !llvm.loop !10
}
```
We simply propagated `%i.0` into `%add = add nsw i32 %k.0, %i.0`, and `%3 = load i32, ptr %j, align 4, !tbaa !6` now becomes dead code.
The result is a much more optimized IR, since the compiler now folds the return value into 6. And instead of:
```
define dso_local i32 @g() local_unnamed_addr #0 {
entry:
%j = alloca i32, align 4, !immutable !5
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 0, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%0 = load i32, ptr %j, align 4, !tbaa !6
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 1, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%1 = load i32, ptr %j, align 4, !tbaa !6
%add.1 = add nsw i32 %1, %0
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 2, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%2 = load i32, ptr %j, align 4, !tbaa !6
%add.2 = add nsw i32 %2, %add.1
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 3, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%3 = load i32, ptr %j, align 4, !tbaa !6
%add.3 = add nsw i32 %3, %add.2
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
ret i32 %add.3
}
```
only this remains:
```
define dso_local noundef i32 @g() local_unnamed_addr #0 {
entry:
%j = alloca i32, align 4, !immutable !5
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 0, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 1, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 2, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 3, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
ret i32 6
```
And now let's assume that for some reason this transformation was not performed before the FullUnrollPass. Then we would have the following IR. As **it's not legal** to has an alloca in the middle of function, it would not be dupicated
```
define dso_local i32 @g() local_unnamed_addr #0 {
entry:
%j = alloca i32, align 4, !immutable !5
br label %for.body
for.body: ; preds = %entry
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 0, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%0 = load i32, ptr %j, align 4, !tbaa !6
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 1, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%1 = load i32, ptr %j, align 4, !tbaa !6
%add.1 = add nsw i32 %1, %0
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 2, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%2 = load i32, ptr %j, align 4, !tbaa !6
%add.2 = add nsw i32 %2, %add.1
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
call void @llvm.lifetime.start.p0(ptr nonnull %j) #3
store i32 3, ptr %j, align 4, !tbaa !6
call void @f(ptr noundef nonnull %j) #3
%3 = load i32, ptr %j, align 4, !tbaa !6
%add.3 = add nsw i32 %3, %add.2
call void @llvm.lifetime.end.p0(ptr nonnull %j) #3
ret i32 %add.3
}
```
Since there are multiple `store` operations to `immutable` alloca here, the optimization will conservatively not be performed at all.
> There's also more subtle issues; we don't guarantee "one store" actually remains a single store instruction.
Unfortunately, I find it difficult to imagine such a case for trivial scalar types in C and C++ languages. However, even if that were the case, the IR would simply remain as it is, rather than being transformed into something incorrect.
https://github.com/llvm/llvm-project/pull/157676
More information about the llvm-commits
mailing list