[llvm] [DA][NFC] clang-format DependenceAnalysis (PR #151505)

Ryotaro Kasuga via llvm-commits llvm-commits at lists.llvm.org
Wed Aug 6 06:12:09 PDT 2025


================
@@ -47,994 +47,910 @@
 #include "llvm/Support/Compiler.h"
 
 namespace llvm {
-  class AAResults;
-  template <typename T> class ArrayRef;
-  class Loop;
-  class LoopInfo;
-  class SCEVConstant;
-  class raw_ostream;
-
-  /// Dependence - This class represents a dependence between two memory
-  /// memory references in a function. It contains minimal information and
-  /// is used in the very common situation where the compiler is unable to
-  /// determine anything beyond the existence of a dependence; that is, it
-  /// represents a confused dependence (see also FullDependence). In most
-  /// cases (for output, flow, and anti dependences), the dependence implies
-  /// an ordering, where the source must precede the destination; in contrast,
-  /// input dependences are unordered.
-  ///
-  /// When a dependence graph is built, each Dependence will be a member of
-  /// the set of predecessor edges for its destination instruction and a set
-  /// if successor edges for its source instruction. These sets are represented
-  /// as singly-linked lists, with the "next" fields stored in the dependence
-  /// itelf.
-  class LLVM_ABI Dependence {
-  protected:
-    Dependence(Dependence &&) = default;
-    Dependence &operator=(Dependence &&) = default;
-
-  public:
-    Dependence(Instruction *Source, Instruction *Destination,
-               const SCEVUnionPredicate &A)
-        : Src(Source), Dst(Destination), Assumptions(A) {}
-    virtual ~Dependence() = default;
-
-    /// Dependence::DVEntry - Each level in the distance/direction vector
-    /// has a direction (or perhaps a union of several directions), and
-    /// perhaps a distance.
-    struct DVEntry {
-      enum : unsigned char {
-        NONE = 0,
-        LT = 1,
-        EQ = 2,
-        LE = 3,
-        GT = 4,
-        NE = 5,
-        GE = 6,
-        ALL = 7
-      };
-      unsigned char Direction : 3; // Init to ALL, then refine.
-      bool Scalar    : 1; // Init to true.
-      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
-      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
-      bool Splitable : 1; // Splitting the loop will break dependence.
-      const SCEV *Distance = nullptr; // NULL implies no distance available.
-      DVEntry()
-          : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
-            Splitable(false) {}
+class AAResults;
+template <typename T> class ArrayRef;
+class Loop;
+class LoopInfo;
+class SCEVConstant;
+class raw_ostream;
+
+/// Dependence - This class represents a dependence between two memory
+/// memory references in a function. It contains minimal information and
+/// is used in the very common situation where the compiler is unable to
+/// determine anything beyond the existence of a dependence; that is, it
+/// represents a confused dependence (see also FullDependence). In most
+/// cases (for output, flow, and anti dependences), the dependence implies
+/// an ordering, where the source must precede the destination; in contrast,
+/// input dependences are unordered.
+///
+/// When a dependence graph is built, each Dependence will be a member of
+/// the set of predecessor edges for its destination instruction and a set
+/// if successor edges for its source instruction. These sets are represented
+/// as singly-linked lists, with the "next" fields stored in the dependence
+/// itelf.
+class LLVM_ABI Dependence {
+protected:
+  Dependence(Dependence &&) = default;
+  Dependence &operator=(Dependence &&) = default;
+
+public:
+  Dependence(Instruction *Source, Instruction *Destination,
+             const SCEVUnionPredicate &A)
+      : Src(Source), Dst(Destination), Assumptions(A) {}
+  virtual ~Dependence() = default;
+
+  /// Dependence::DVEntry - Each level in the distance/direction vector
+  /// has a direction (or perhaps a union of several directions), and
+  /// perhaps a distance.
+  struct DVEntry {
+    enum : unsigned char {
+      NONE = 0,
+      LT = 1,
+      EQ = 2,
+      LE = 3,
+      GT = 4,
+      NE = 5,
+      GE = 6,
+      ALL = 7
     };
+    unsigned char Direction : 3; // Init to ALL, then refine.
+    bool Scalar : 1;             // Init to true.
+    bool PeelFirst : 1; // Peeling the first iteration will break dependence.
+    bool PeelLast : 1;  // Peeling the last iteration will break the dependence.
+    bool Splitable : 1; // Splitting the loop will break dependence.
+    const SCEV *Distance = nullptr; // NULL implies no distance available.
+    DVEntry()
+        : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
+          Splitable(false) {}
+  };
 
-    /// getSrc - Returns the source instruction for this dependence.
-    ///
-    Instruction *getSrc() const { return Src; }
-
-    /// getDst - Returns the destination instruction for this dependence.
-    ///
-    Instruction *getDst() const { return Dst; }
-
-    /// isInput - Returns true if this is an input dependence.
-    ///
-    bool isInput() const;
+  /// getSrc - Returns the source instruction for this dependence.
+  Instruction *getSrc() const { return Src; }
 
-    /// isOutput - Returns true if this is an output dependence.
-    ///
-    bool isOutput() const;
+  /// getDst - Returns the destination instruction for this dependence.
+  Instruction *getDst() const { return Dst; }
 
-    /// isFlow - Returns true if this is a flow (aka true) dependence.
-    ///
-    bool isFlow() const;
+  /// isInput - Returns true if this is an input dependence.
+  bool isInput() const;
 
-    /// isAnti - Returns true if this is an anti dependence.
-    ///
-    bool isAnti() const;
+  /// isOutput - Returns true if this is an output dependence.
+  bool isOutput() const;
 
-    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
-    ///
-    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
+  /// isFlow - Returns true if this is a flow (aka true) dependence.
+  bool isFlow() const;
 
-    /// isUnordered - Returns true if dependence is Input
-    ///
-    bool isUnordered() const { return isInput(); }
+  /// isAnti - Returns true if this is an anti dependence.
+  bool isAnti() const;
 
-    /// isLoopIndependent - Returns true if this is a loop-independent
-    /// dependence.
-    virtual bool isLoopIndependent() const { return true; }
+  /// isOrdered - Returns true if dependence is Output, Flow, or Anti
+  bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
 
-    /// isConfused - Returns true if this dependence is confused
-    /// (the compiler understands nothing and makes worst-case
-    /// assumptions).
-    virtual bool isConfused() const { return true; }
+  /// isUnordered - Returns true if dependence is Input
+  bool isUnordered() const { return isInput(); }
 
-    /// isConsistent - Returns true if this dependence is consistent
-    /// (occurs every time the source and destination are executed).
-    virtual bool isConsistent() const { return false; }
+  /// isLoopIndependent - Returns true if this is a loop-independent
+  /// dependence.
+  virtual bool isLoopIndependent() const { return true; }
 
-    /// getLevels - Returns the number of common loops surrounding the
-    /// source and destination of the dependence.
-    virtual unsigned getLevels() const { return 0; }
+  /// isConfused - Returns true if this dependence is confused
+  /// (the compiler understands nothing and makes worst-case assumptions).
+  virtual bool isConfused() const { return true; }
 
-    /// getDirection - Returns the direction associated with a particular
-    /// level.
-    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
+  /// isConsistent - Returns true if this dependence is consistent
+  /// (occurs every time the source and destination are executed).
+  virtual bool isConsistent() const { return false; }
 
-    /// getDistance - Returns the distance (or NULL) associated with a
-    /// particular level.
-    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
+  /// getLevels - Returns the number of common loops surrounding the
+  /// source and destination of the dependence.
+  virtual unsigned getLevels() const { return 0; }
 
-    /// Check if the direction vector is negative. A negative direction
-    /// vector means Src and Dst are reversed in the actual program.
-    virtual bool isDirectionNegative() const { return false; }
+  /// getDirection - Returns the direction associated with a particular level.
+  virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
 
-    /// If the direction vector is negative, normalize the direction
-    /// vector to make it non-negative. Normalization is done by reversing
-    /// Src and Dst, plus reversing the dependence directions and distances
-    /// in the vector.
-    virtual bool normalize(ScalarEvolution *SE) { return false; }
+  /// getDistance - Returns the distance (or NULL) associated with a particular
+  /// level.
+  virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
 
-    /// isPeelFirst - Returns true if peeling the first iteration from
-    /// this loop will break this dependence.
-    virtual bool isPeelFirst(unsigned Level) const { return false; }
+  /// Check if the direction vector is negative. A negative direction
+  /// vector means Src and Dst are reversed in the actual program.
+  virtual bool isDirectionNegative() const { return false; }
+
+  /// If the direction vector is negative, normalize the direction
+  /// vector to make it non-negative. Normalization is done by reversing
+  /// Src and Dst, plus reversing the dependence directions and distances
+  /// in the vector.
+  virtual bool normalize(ScalarEvolution *SE) { return false; }
 
-    /// isPeelLast - Returns true if peeling the last iteration from
-    /// this loop will break this dependence.
-    virtual bool isPeelLast(unsigned Level) const { return false; }
+  /// isPeelFirst - Returns true if peeling the first iteration from
+  /// this loop will break this dependence.
+  virtual bool isPeelFirst(unsigned Level) const { return false; }
 
-    /// isSplitable - Returns true if splitting this loop will break
-    /// the dependence.
-    virtual bool isSplitable(unsigned Level) const { return false; }
+  /// isPeelLast - Returns true if peeling the last iteration from
+  /// this loop will break this dependence.
+  virtual bool isPeelLast(unsigned Level) const { return false; }
 
-    /// isScalar - Returns true if a particular level is scalar; that is,
-    /// if no subscript in the source or destination mention the induction
-    /// variable associated with the loop at this level.
-    virtual bool isScalar(unsigned Level) const;
+  /// isSplitable - Returns true if splitting this loop will break the
+  /// dependence.
+  virtual bool isSplitable(unsigned Level) const { return false; }
 
-    /// getNextPredecessor - Returns the value of the NextPredecessor
-    /// field.
-    const Dependence *getNextPredecessor() const { return NextPredecessor; }
+  /// isScalar - Returns true if a particular level is scalar; that is,
+  /// if no subscript in the source or destination mention the induction
+  /// variable associated with the loop at this level.
+  virtual bool isScalar(unsigned Level) const;
+
+  /// getNextPredecessor - Returns the value of the NextPredecessor field.
+  const Dependence *getNextPredecessor() const { return NextPredecessor; }
+
+  /// getNextSuccessor - Returns the value of the NextSuccessor field.
+  const Dependence *getNextSuccessor() const { return NextSuccessor; }
+
+  /// setNextPredecessor - Sets the value of the NextPredecessor
+  /// field.
+  void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
+
+  /// setNextSuccessor - Sets the value of the NextSuccessor field.
+  void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
+
+  /// getRuntimeAssumptions - Returns the runtime assumptions under which this
+  /// Dependence relation is valid.
+  SCEVUnionPredicate getRuntimeAssumptions() const { return Assumptions; }
+
+  /// dump - For debugging purposes, dumps a dependence to OS.
+  void dump(raw_ostream &OS) const;
+
+protected:
+  Instruction *Src, *Dst;
+
+private:
+  SCEVUnionPredicate Assumptions;
+  const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
+  friend class DependenceInfo;
+};
+
+/// FullDependence - This class represents a dependence between two memory
+/// references in a function. It contains detailed information about the
+/// dependence (direction vectors, etc.) and is used when the compiler is
+/// able to accurately analyze the interaction of the references; that is,
+/// it is not a confused dependence (see Dependence). In most cases
+/// (for output, flow, and anti dependences), the dependence implies an
+/// ordering, where the source must precede the destination; in contrast,
+/// input dependences are unordered.
+class LLVM_ABI FullDependence final : public Dependence {
+public:
+  FullDependence(Instruction *Source, Instruction *Destination,
+                 const SCEVUnionPredicate &Assumes,
+                 bool PossiblyLoopIndependent, unsigned Levels);
+
+  /// isLoopIndependent - Returns true if this is a loop-independent
+  /// dependence.
+  bool isLoopIndependent() const override { return LoopIndependent; }
+
+  /// isConfused - Returns true if this dependence is confused
+  /// (the compiler understands nothing and makes worst-case
+  /// assumptions).
+  bool isConfused() const override { return false; }
+
+  /// isConsistent - Returns true if this dependence is consistent
+  /// (occurs every time the source and destination are executed).
+  bool isConsistent() const override { return Consistent; }
+
+  /// getLevels - Returns the number of common loops surrounding the
+  /// source and destination of the dependence.
+  unsigned getLevels() const override { return Levels; }
+
+  /// getDirection - Returns the direction associated with a particular
+  /// level.
+  unsigned getDirection(unsigned Level) const override;
+
+  /// getDistance - Returns the distance (or NULL) associated with a
+  /// particular level.
+  const SCEV *getDistance(unsigned Level) const override;
+
+  /// Check if the direction vector is negative. A negative direction
+  /// vector means Src and Dst are reversed in the actual program.
+  bool isDirectionNegative() const override;
+
+  /// If the direction vector is negative, normalize the direction
+  /// vector to make it non-negative. Normalization is done by reversing
+  /// Src and Dst, plus reversing the dependence directions and distances
+  /// in the vector.
+  bool normalize(ScalarEvolution *SE) override;
+
+  /// isPeelFirst - Returns true if peeling the first iteration from
+  /// this loop will break this dependence.
+  bool isPeelFirst(unsigned Level) const override;
+
+  /// isPeelLast - Returns true if peeling the last iteration from
+  /// this loop will break this dependence.
+  bool isPeelLast(unsigned Level) const override;
+
+  /// isSplitable - Returns true if splitting the loop will break
+  /// the dependence.
+  bool isSplitable(unsigned Level) const override;
+
+  /// isScalar - Returns true if a particular level is scalar; that is,
+  /// if no subscript in the source or destination mention the induction
+  /// variable associated with the loop at this level.
+  bool isScalar(unsigned Level) const override;
+
+private:
+  unsigned short Levels;
+  bool LoopIndependent;
+  bool Consistent; // Init to true, then refine.
+  std::unique_ptr<DVEntry[]> DV;
+  friend class DependenceInfo;
+};
+
+/// DependenceInfo - This class is the main dependence-analysis driver.
+class DependenceInfo {
+public:
+  DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE, LoopInfo *LI)
+      : AA(AA), SE(SE), LI(LI), F(F) {}
+
+  /// Handle transitive invalidation when the cached analysis results go away.
+  LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA,
+                           FunctionAnalysisManager::Invalidator &Inv);
+
+  /// depends - Tests for a dependence between the Src and Dst instructions.
+  /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
+  /// FullDependence) with as much information as can be gleaned. By default,
+  /// the dependence test collects a set of runtime assumptions that cannot be
+  /// solved at compilation time. By default UnderRuntimeAssumptions is false
+  /// for a safe approximation of the dependence relation that does not
+  /// require runtime checks.
+  LLVM_ABI std::unique_ptr<Dependence>
+  depends(Instruction *Src, Instruction *Dst,
+          bool UnderRuntimeAssumptions = false);
+
+  /// getSplitIteration - Give a dependence that's splittable at some
+  /// particular level, return the iteration that should be used to split
+  /// the loop.
+  ///
+  /// Generally, the dependence analyzer will be used to build
+  /// a dependence graph for a function (basically a map from instructions
+  /// to dependences). Looking for cycles in the graph shows us loops
+  /// that cannot be trivially vectorized/parallelized.
+  ///
+  /// We can try to improve the situation by examining all the dependences
+  /// that make up the cycle, looking for ones we can break.
+  /// Sometimes, peeling the first or last iteration of a loop will break
+  /// dependences, and there are flags for those possibilities.
+  /// Sometimes, splitting a loop at some other iteration will do the trick,
+  /// and we've got a flag for that case. Rather than waste the space to
+  /// record the exact iteration (since we rarely know), we provide
+  /// a method that calculates the iteration. It's a drag that it must work
+  /// from scratch, but wonderful in that it's possible.
+  ///
+  /// Here's an example:
+  ///
+  ///    for (i = 0; i < 10; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///
+  /// There's a loop-carried flow dependence from the store to the load,
+  /// found by the weak-crossing SIV test. The dependence will have a flag,
+  /// indicating that the dependence can be broken by splitting the loop.
+  /// Calling getSplitIteration will return 5.
+  /// Splitting the loop breaks the dependence, like so:
+  ///
+  ///    for (i = 0; i <= 5; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///    for (i = 6; i < 10; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///
+  /// breaks the dependence and allows us to vectorize/parallelize
+  /// both loops.
+  LLVM_ABI const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
+
+  Function *getFunction() const { return F; }
+
+  /// getRuntimeAssumptions - Returns all the runtime assumptions under which
+  /// the dependence test is valid.
+  LLVM_ABI SCEVUnionPredicate getRuntimeAssumptions() const;
+
+private:
+  AAResults *AA;
+  ScalarEvolution *SE;
+  LoopInfo *LI;
+  Function *F;
+  SmallVector<const SCEVPredicate *, 4> Assumptions;
+
+  /// Subscript - This private struct represents a pair of subscripts from
+  /// a pair of potentially multi-dimensional array references. We use a
+  /// vector of them to guide subscript partitioning.
+  struct Subscript {
+    const SCEV *Src;
+    const SCEV *Dst;
+    enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
+    SmallBitVector Loops;
+    SmallBitVector GroupLoops;
+    SmallBitVector Group;
+  };
 
-    /// getNextSuccessor - Returns the value of the NextSuccessor
-    /// field.
-    const Dependence *getNextSuccessor() const { return NextSuccessor; }
+  struct CoefficientInfo {
+    const SCEV *Coeff;
+    const SCEV *PosPart;
+    const SCEV *NegPart;
+    const SCEV *Iterations;
+  };
 
-    /// setNextPredecessor - Sets the value of the NextPredecessor
-    /// field.
-    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
+  struct BoundInfo {
+    const SCEV *Iterations;
+    const SCEV *Upper[8];
+    const SCEV *Lower[8];
+    unsigned char Direction;
+    unsigned char DirSet;
+  };
 
-    /// setNextSuccessor - Sets the value of the NextSuccessor
-    /// field.
-    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
+  /// Constraint - This private class represents a constraint, as defined
+  /// in the paper
+  ///
+  ///           Practical Dependence Testing
+  ///           Goff, Kennedy, Tseng
+  ///           PLDI 1991
+  ///
+  /// There are 5 kinds of constraint, in a hierarchy.
+  ///   1) Any - indicates no constraint, any dependence is possible.
+  ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
+  ///             representing the dependence equation.
+  ///   3) Distance - The value d of the dependence distance;
+  ///   4) Point - A point <x, y> representing the dependence from
+  ///              iteration x to iteration y.
+  ///   5) Empty - No dependence is possible.
+  class Constraint {
+  private:
+    enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
+    ScalarEvolution *SE;
+    const SCEV *A;
+    const SCEV *B;
+    const SCEV *C;
+    const Loop *AssociatedLoop;
 
-    /// getRuntimeAssumptions - Returns the runtime assumptions under which this
-    /// Dependence relation is valid.
-    SCEVUnionPredicate getRuntimeAssumptions() const { return Assumptions; }
+  public:
+    /// isEmpty - Return true if the constraint is of kind Empty.
+    bool isEmpty() const { return Kind == Empty; }
 
-    /// dump - For debugging purposes, dumps a dependence to OS.
-    ///
-    void dump(raw_ostream &OS) const;
+    /// isPoint - Return true if the constraint is of kind Point.
+    bool isPoint() const { return Kind == Point; }
 
-  protected:
-    Instruction *Src, *Dst;
+    /// isDistance - Return true if the constraint is of kind Distance.
+    bool isDistance() const { return Kind == Distance; }
 
-  private:
-    SCEVUnionPredicate Assumptions;
-    const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
-    friend class DependenceInfo;
-  };
+    /// isLine - Return true if the constraint is of kind Line.
+    /// Since Distance's can also be represented as Lines, we also return
+    /// true if the constraint is of kind Distance.
+    bool isLine() const { return Kind == Line || Kind == Distance; }
 
-  /// FullDependence - This class represents a dependence between two memory
-  /// references in a function. It contains detailed information about the
-  /// dependence (direction vectors, etc.) and is used when the compiler is
-  /// able to accurately analyze the interaction of the references; that is,
-  /// it is not a confused dependence (see Dependence). In most cases
-  /// (for output, flow, and anti dependences), the dependence implies an
-  /// ordering, where the source must precede the destination; in contrast,
-  /// input dependences are unordered.
-  class LLVM_ABI FullDependence final : public Dependence {
-  public:
-    FullDependence(Instruction *Source, Instruction *Destination,
-                   const SCEVUnionPredicate &Assumes,
-                   bool PossiblyLoopIndependent, unsigned Levels);
-
-    /// isLoopIndependent - Returns true if this is a loop-independent
-    /// dependence.
-    bool isLoopIndependent() const override { return LoopIndependent; }
-
-    /// isConfused - Returns true if this dependence is confused
-    /// (the compiler understands nothing and makes worst-case
-    /// assumptions).
-    bool isConfused() const override { return false; }
-
-    /// isConsistent - Returns true if this dependence is consistent
-    /// (occurs every time the source and destination are executed).
-    bool isConsistent() const override { return Consistent; }
-
-    /// getLevels - Returns the number of common loops surrounding the
-    /// source and destination of the dependence.
-    unsigned getLevels() const override { return Levels; }
-
-    /// getDirection - Returns the direction associated with a particular
-    /// level.
-    unsigned getDirection(unsigned Level) const override;
-
-    /// getDistance - Returns the distance (or NULL) associated with a
-    /// particular level.
-    const SCEV *getDistance(unsigned Level) const override;
-
-    /// Check if the direction vector is negative. A negative direction
-    /// vector means Src and Dst are reversed in the actual program.
-    bool isDirectionNegative() const override;
-
-    /// If the direction vector is negative, normalize the direction
-    /// vector to make it non-negative. Normalization is done by reversing
-    /// Src and Dst, plus reversing the dependence directions and distances
-    /// in the vector.
-    bool normalize(ScalarEvolution *SE) override;
-
-    /// isPeelFirst - Returns true if peeling the first iteration from
-    /// this loop will break this dependence.
-    bool isPeelFirst(unsigned Level) const override;
-
-    /// isPeelLast - Returns true if peeling the last iteration from
-    /// this loop will break this dependence.
-    bool isPeelLast(unsigned Level) const override;
-
-    /// isSplitable - Returns true if splitting the loop will break
-    /// the dependence.
-    bool isSplitable(unsigned Level) const override;
-
-    /// isScalar - Returns true if a particular level is scalar; that is,
-    /// if no subscript in the source or destination mention the induction
-    /// variable associated with the loop at this level.
-    bool isScalar(unsigned Level) const override;
+    /// isAny - Return true if the constraint is of kind Any;
+    bool isAny() const { return Kind == Any; }
 
-  private:
-    unsigned short Levels;
-    bool LoopIndependent;
-    bool Consistent; // Init to true, then refine.
-    std::unique_ptr<DVEntry[]> DV;
-    friend class DependenceInfo;
-  };
+    /// getX - If constraint is a point <X, Y>, returns X.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getX() const;
 
-  /// DependenceInfo - This class is the main dependence-analysis driver.
-  ///
-  class DependenceInfo {
-  public:
-    DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
-                   LoopInfo *LI)
-        : AA(AA), SE(SE), LI(LI), F(F) {}
-
-    /// Handle transitive invalidation when the cached analysis results go away.
-    LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA,
-                             FunctionAnalysisManager::Invalidator &Inv);
-
-    /// depends - Tests for a dependence between the Src and Dst instructions.
-    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
-    /// FullDependence) with as much information as can be gleaned. By default,
-    /// the dependence test collects a set of runtime assumptions that cannot be
-    /// solved at compilation time. By default UnderRuntimeAssumptions is false
-    /// for a safe approximation of the dependence relation that does not
-    /// require runtime checks.
-    LLVM_ABI std::unique_ptr<Dependence>
-    depends(Instruction *Src, Instruction *Dst,
-            bool UnderRuntimeAssumptions = false);
-
-    /// getSplitIteration - Give a dependence that's splittable at some
-    /// particular level, return the iteration that should be used to split
-    /// the loop.
-    ///
-    /// Generally, the dependence analyzer will be used to build
-    /// a dependence graph for a function (basically a map from instructions
-    /// to dependences). Looking for cycles in the graph shows us loops
-    /// that cannot be trivially vectorized/parallelized.
-    ///
-    /// We can try to improve the situation by examining all the dependences
-    /// that make up the cycle, looking for ones we can break.
-    /// Sometimes, peeling the first or last iteration of a loop will break
-    /// dependences, and there are flags for those possibilities.
-    /// Sometimes, splitting a loop at some other iteration will do the trick,
-    /// and we've got a flag for that case. Rather than waste the space to
-    /// record the exact iteration (since we rarely know), we provide
-    /// a method that calculates the iteration. It's a drag that it must work
-    /// from scratch, but wonderful in that it's possible.
-    ///
-    /// Here's an example:
-    ///
-    ///    for (i = 0; i < 10; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///
-    /// There's a loop-carried flow dependence from the store to the load,
-    /// found by the weak-crossing SIV test. The dependence will have a flag,
-    /// indicating that the dependence can be broken by splitting the loop.
-    /// Calling getSplitIteration will return 5.
-    /// Splitting the loop breaks the dependence, like so:
-    ///
-    ///    for (i = 0; i <= 5; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///    for (i = 6; i < 10; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///
-    /// breaks the dependence and allows us to vectorize/parallelize
-    /// both loops.
-    LLVM_ABI const SCEV *getSplitIteration(const Dependence &Dep,
-                                           unsigned Level);
-
-    Function *getFunction() const { return F; }
-
-    /// getRuntimeAssumptions - Returns all the runtime assumptions under which
-    /// the dependence test is valid.
-    LLVM_ABI SCEVUnionPredicate getRuntimeAssumptions() const;
+    /// getY - If constraint is a point <X, Y>, returns Y.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getY() const;
 
-  private:
-    AAResults *AA;
-    ScalarEvolution *SE;
-    LoopInfo *LI;
-    Function *F;
-    SmallVector<const SCEVPredicate *, 4> Assumptions;
-
-    /// Subscript - This private struct represents a pair of subscripts from
-    /// a pair of potentially multi-dimensional array references. We use a
-    /// vector of them to guide subscript partitioning.
-    struct Subscript {
-      const SCEV *Src;
-      const SCEV *Dst;
-      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
-      SmallBitVector Loops;
-      SmallBitVector GroupLoops;
-      SmallBitVector Group;
-    };
+    /// getA - If constraint is a line AX + BY = C, returns A.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getA() const;
 
-    struct CoefficientInfo {
-      const SCEV *Coeff;
-      const SCEV *PosPart;
-      const SCEV *NegPart;
-      const SCEV *Iterations;
-    };
+    /// getB - If constraint is a line AX + BY = C, returns B.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getB() const;
 
-    struct BoundInfo {
-      const SCEV *Iterations;
-      const SCEV *Upper[8];
-      const SCEV *Lower[8];
-      unsigned char Direction;
-      unsigned char DirSet;
-    };
+    /// getC - If constraint is a line AX + BY = C, returns C.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getC() const;
 
-    /// Constraint - This private class represents a constraint, as defined
-    /// in the paper
-    ///
-    ///           Practical Dependence Testing
-    ///           Goff, Kennedy, Tseng
-    ///           PLDI 1991
-    ///
-    /// There are 5 kinds of constraint, in a hierarchy.
-    ///   1) Any - indicates no constraint, any dependence is possible.
-    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
-    ///             representing the dependence equation.
-    ///   3) Distance - The value d of the dependence distance;
-    ///   4) Point - A point <x, y> representing the dependence from
-    ///              iteration x to iteration y.
-    ///   5) Empty - No dependence is possible.
-    class Constraint {
-    private:
-      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
-      ScalarEvolution *SE;
-      const SCEV *A;
-      const SCEV *B;
-      const SCEV *C;
-      const Loop *AssociatedLoop;
-
-    public:
-      /// isEmpty - Return true if the constraint is of kind Empty.
-      bool isEmpty() const { return Kind == Empty; }
-
-      /// isPoint - Return true if the constraint is of kind Point.
-      bool isPoint() const { return Kind == Point; }
-
-      /// isDistance - Return true if the constraint is of kind Distance.
-      bool isDistance() const { return Kind == Distance; }
-
-      /// isLine - Return true if the constraint is of kind Line.
-      /// Since Distance's can also be represented as Lines, we also return
-      /// true if the constraint is of kind Distance.
-      bool isLine() const { return Kind == Line || Kind == Distance; }
-
-      /// isAny - Return true if the constraint is of kind Any;
-      bool isAny() const { return Kind == Any; }
-
-      /// getX - If constraint is a point <X, Y>, returns X.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getX() const;
-
-      /// getY - If constraint is a point <X, Y>, returns Y.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getY() const;
-
-      /// getA - If constraint is a line AX + BY = C, returns A.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getA() const;
-
-      /// getB - If constraint is a line AX + BY = C, returns B.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getB() const;
-
-      /// getC - If constraint is a line AX + BY = C, returns C.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getC() const;
-
-      /// getD - If constraint is a distance, returns D.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getD() const;
-
-      /// getAssociatedLoop - Returns the loop associated with this constraint.
-      LLVM_ABI const Loop *getAssociatedLoop() const;
-
-      /// setPoint - Change a constraint to Point.
-      LLVM_ABI void setPoint(const SCEV *X, const SCEV *Y,
-                             const Loop *CurrentLoop);
-
-      /// setLine - Change a constraint to Line.
-      LLVM_ABI void setLine(const SCEV *A, const SCEV *B, const SCEV *C,
-                            const Loop *CurrentLoop);
-
-      /// setDistance - Change a constraint to Distance.
-      LLVM_ABI void setDistance(const SCEV *D, const Loop *CurrentLoop);
-
-      /// setEmpty - Change a constraint to Empty.
-      LLVM_ABI void setEmpty();
-
-      /// setAny - Change a constraint to Any.
-      LLVM_ABI void setAny(ScalarEvolution *SE);
-
-      /// dump - For debugging purposes. Dumps the constraint
-      /// out to OS.
-      LLVM_ABI void dump(raw_ostream &OS) const;
-    };
+    /// getD - If constraint is a distance, returns D.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getD() const;
 
-    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
-    /// instructions and establishes their shared loops. Sets the variables
-    /// CommonLevels, SrcLevels, and MaxLevels.
-    /// The source and destination instructions needn't be contained in the same
-    /// loop. The routine establishNestingLevels finds the level of most deeply
-    /// nested loop that contains them both, CommonLevels. An instruction that's
-    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
-    /// of the source plus the level of the destination, minus CommonLevels.
-    /// This lets us allocate vectors MaxLevels in length, with room for every
-    /// distinct loop referenced in both the source and destination subscripts.
-    /// The variable SrcLevels is the nesting depth of the source instruction.
-    /// It's used to help calculate distinct loops referenced by the destination.
-    /// Here's the map from loops to levels:
-    ///            0 - unused
-    ///            1 - outermost common loop
-    ///          ... - other common loops
-    /// CommonLevels - innermost common loop
-    ///          ... - loops containing Src but not Dst
-    ///    SrcLevels - innermost loop containing Src but not Dst
-    ///          ... - loops containing Dst but not Src
-    ///    MaxLevels - innermost loop containing Dst but not Src
-    /// Consider the follow code fragment:
-    ///    for (a = ...) {
-    ///      for (b = ...) {
-    ///        for (c = ...) {
-    ///          for (d = ...) {
-    ///            A[] = ...;
-    ///          }
-    ///        }
-    ///        for (e = ...) {
-    ///          for (f = ...) {
-    ///            for (g = ...) {
-    ///              ... = A[];
-    ///            }
-    ///          }
-    ///        }
-    ///      }
-    ///    }
-    /// If we're looking at the possibility of a dependence between the store
-    /// to A (the Src) and the load from A (the Dst), we'll note that they
-    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
-    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
-    /// A map from loop names to level indices would look like
-    ///     a - 1
-    ///     b - 2 = CommonLevels
-    ///     c - 3
-    ///     d - 4 = SrcLevels
-    ///     e - 5
-    ///     f - 6
-    ///     g - 7 = MaxLevels
-    void establishNestingLevels(const Instruction *Src,
-                                const Instruction *Dst);
-
-    unsigned CommonLevels, SrcLevels, MaxLevels;
-
-    /// mapSrcLoop - Given one of the loops containing the source, return
-    /// its level index in our numbering scheme.
-    unsigned mapSrcLoop(const Loop *SrcLoop) const;
-
-    /// mapDstLoop - Given one of the loops containing the destination,
-    /// return its level index in our numbering scheme.
-    unsigned mapDstLoop(const Loop *DstLoop) const;
-
-    /// isLoopInvariant - Returns true if Expression is loop invariant
-    /// in LoopNest.
-    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
-
-    /// Makes sure all subscript pairs share the same integer type by
-    /// sign-extending as necessary.
-    /// Sign-extending a subscript is safe because getelementptr assumes the
-    /// array subscripts are signed.
-    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
-
-    /// removeMatchingExtensions - Examines a subscript pair.
-    /// If the source and destination are identically sign (or zero)
-    /// extended, it strips off the extension in an effort to
-    /// simplify the actual analysis.
-    void removeMatchingExtensions(Subscript *Pair);
-
-    /// collectCommonLoops - Finds the set of loops from the LoopNest that
-    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
-    void collectCommonLoops(const SCEV *Expression,
-                            const Loop *LoopNest,
-                            SmallBitVector &Loops) const;
-
-    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
-    /// linear. Collect the set of loops mentioned by Src.
-    bool checkSrcSubscript(const SCEV *Src,
-                           const Loop *LoopNest,
-                           SmallBitVector &Loops);
-
-    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
-    /// linear. Collect the set of loops mentioned by Dst.
-    bool checkDstSubscript(const SCEV *Dst,
-                           const Loop *LoopNest,
-                           SmallBitVector &Loops);
-
-    /// isKnownPredicate - Compare X and Y using the predicate Pred.
-    /// Basically a wrapper for SCEV::isKnownPredicate,
-    /// but tries harder, especially in the presence of sign and zero
-    /// extensions and symbolics.
-    bool isKnownPredicate(ICmpInst::Predicate Pred,
-                          const SCEV *X,
-                          const SCEV *Y) const;
-
-    /// isKnownLessThan - Compare to see if S is less than Size
-    /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
-    /// checking if S is an AddRec and we can prove lessthan using the loop
-    /// bounds.
-    bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
-
-    /// isKnownNonNegative - Compare to see if S is known not to be negative
-    /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
-    /// Proving there is no wrapping going on.
-    bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
-
-    /// collectUpperBound - All subscripts are the same type (on my machine,
-    /// an i64). The loop bound may be a smaller type. collectUpperBound
-    /// find the bound, if available, and zero extends it to the Type T.
-    /// (I zero extend since the bound should always be >= 0.)
-    /// If no upper bound is available, return NULL.
-    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
-
-    /// collectConstantUpperBound - Calls collectUpperBound(), then
-    /// attempts to cast it to SCEVConstant. If the cast fails,
-    /// returns NULL.
-    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
-
-    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
-    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
-    /// Collects the associated loops in a set.
-    Subscript::ClassificationKind classifyPair(const SCEV *Src,
-                                           const Loop *SrcLoopNest,
-                                           const SCEV *Dst,
-                                           const Loop *DstLoopNest,
-                                           SmallBitVector &Loops);
-
-    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// If the dependence isn't proven to exist,
-    /// marks the Result as inconsistent.
-    bool testZIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 FullDependence &Result) const;
-
-    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
-    /// i and j are induction variables, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction vector entry and, when possible,
-    /// the distance vector entry.
-    /// If the dependence isn't proven to exist,
-    /// marks the Result as inconsistent.
-    bool testSIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 unsigned &Level,
-                 FullDependence &Result,
-                 Constraint &NewConstraint,
-                 const SCEV *&SplitIter) const;
-
-    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
-    /// where i and j are induction variables, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// With minor algebra, this test can also be used for things like
-    /// [c1 + a1*i + a2*j][c2].
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Marks the Result as inconsistent.
-    bool testRDIV(const SCEV *Src,
-                  const SCEV *Dst,
-                  FullDependence &Result) const;
+    /// getAssociatedLoop - Returns the loop associated with this constraint.
+    LLVM_ABI const Loop *getAssociatedLoop() const;
 
-    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
-    /// Returns true if dependence disproved.
-    /// Can sometimes refine direction vectors.
-    bool testMIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 const SmallBitVector &Loops,
-                 FullDependence &Result) const;
-
-    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
-    /// for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction and distance.
-    bool strongSIVtest(const SCEV *Coeff,
-                       const SCEV *SrcConst,
-                       const SCEV *DstConst,
-                       const Loop *CurrentLoop,
-                       unsigned Level,
-                       FullDependence &Result,
-                       Constraint &NewConstraint) const;
-
-    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a*i] and [c2 - a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// Marks the dependence as splitable.
-    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
-                             const SCEV *SrcConst,
-                             const SCEV *DstConst,
-                             const Loop *CurrentLoop,
-                             unsigned Level,
-                             FullDependence &Result,
-                             Constraint &NewConstraint,
-                             const SCEV *&SplitIter) const;
-
-    /// ExactSIVtest - Tests the SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    bool exactSIVtest(const SCEV *SrcCoeff,
-                      const SCEV *DstCoeff,
-                      const SCEV *SrcConst,
-                      const SCEV *DstConst,
-                      const Loop *CurrentLoop,
-                      unsigned Level,
-                      FullDependence &Result,
-                      Constraint &NewConstraint) const;
-
-    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1] and [c2 + a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant. See also weakZeroDstSIVtest.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// If loop peeling will break the dependence, mark appropriately.
-    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
-                            const SCEV *SrcConst,
-                            const SCEV *DstConst,
-                            const Loop *CurrentLoop,
-                            unsigned Level,
-                            FullDependence &Result,
-                            Constraint &NewConstraint) const;
-
-    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a*i] and [c2],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant. See also weakZeroSrcSIVtest.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// If loop peeling will break the dependence, mark appropriately.
-    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
-                            const SCEV *SrcConst,
-                            const SCEV *DstConst,
-                            const Loop *CurrentLoop,
-                            unsigned Level,
-                            FullDependence &Result,
-                            Constraint &NewConstraint) const;
-
-    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + b*j],
-    /// where i and j are induction variable, c1 and c2 are loop invariant,
-    /// and a and b are constants.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Works in some cases that symbolicRDIVtest doesn't,
-    /// and vice versa.
-    bool exactRDIVtest(const SCEV *SrcCoeff,
-                       const SCEV *DstCoeff,
-                       const SCEV *SrcConst,
-                       const SCEV *DstConst,
-                       const Loop *SrcLoop,
-                       const Loop *DstLoop,
-                       FullDependence &Result) const;
+    /// setPoint - Change a constraint to Point.
+    LLVM_ABI void setPoint(const SCEV *X, const SCEV *Y,
+                           const Loop *CurrentLoop);
 
-    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + b*j],
-    /// where i and j are induction variable, c1 and c2 are loop invariant,
-    /// and a and b are constants.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Works in some cases that exactRDIVtest doesn't,
-    /// and vice versa. Can also be used as a backup for
-    /// ordinary SIV tests.
-    bool symbolicRDIVtest(const SCEV *SrcCoeff,
-                          const SCEV *DstCoeff,
-                          const SCEV *SrcConst,
-                          const SCEV *DstConst,
-                          const Loop *SrcLoop,
-                          const Loop *DstLoop) const;
-
-    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Can sometimes disprove the equal direction for 1 or more loops.
-    //  Can handle some symbolics that even the SIV tests don't get,
-    /// so we use it as a backup for everything.
-    bool gcdMIVtest(const SCEV *Src,
-                    const SCEV *Dst,
-                    FullDependence &Result) const;
-
-    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Computes directions.
-    bool banerjeeMIVtest(const SCEV *Src,
-                         const SCEV *Dst,
-                         const SmallBitVector &Loops,
-                         FullDependence &Result) const;
-
-    /// collectCoefficientInfo - Walks through the subscript,
-    /// collecting each coefficient, the associated loop bounds,
-    /// and recording its positive and negative parts for later use.
-    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
-                                      bool SrcFlag,
-                                      const SCEV *&Constant) const;
-
-    /// getPositivePart - X^+ = max(X, 0).
-    ///
-    const SCEV *getPositivePart(const SCEV *X) const;
-
-    /// getNegativePart - X^- = min(X, 0).
-    ///
-    const SCEV *getNegativePart(const SCEV *X) const;
-
-    /// getLowerBound - Looks through all the bounds info and
-    /// computes the lower bound given the current direction settings
-    /// at each level.
-    const SCEV *getLowerBound(BoundInfo *Bound) const;
-
-    /// getUpperBound - Looks through all the bounds info and
-    /// computes the upper bound given the current direction settings
-    /// at each level.
-    const SCEV *getUpperBound(BoundInfo *Bound) const;
-
-    /// exploreDirections - Hierarchically expands the direction vector
-    /// search space, combining the directions of discovered dependences
-    /// in the DirSet field of Bound. Returns the number of distinct
-    /// dependences discovered. If the dependence is disproved,
-    /// it will return 0.
-    unsigned exploreDirections(unsigned Level,
-                               CoefficientInfo *A,
-                               CoefficientInfo *B,
-                               BoundInfo *Bound,
-                               const SmallBitVector &Loops,
-                               unsigned &DepthExpanded,
-                               const SCEV *Delta) const;
-
-    /// testBounds - Returns true iff the current bounds are plausible.
-    bool testBounds(unsigned char DirKind,
-                    unsigned Level,
-                    BoundInfo *Bound,
-                    const SCEV *Delta) const;
-
-    /// findBoundsALL - Computes the upper and lower bounds for level K
-    /// using the * direction. Records them in Bound.
-    void findBoundsALL(CoefficientInfo *A,
-                       CoefficientInfo *B,
-                       BoundInfo *Bound,
-                       unsigned K) const;
-
-    /// findBoundsLT - Computes the upper and lower bounds for level K
-    /// using the < direction. Records them in Bound.
-    void findBoundsLT(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// findBoundsGT - Computes the upper and lower bounds for level K
-    /// using the > direction. Records them in Bound.
-    void findBoundsGT(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// findBoundsEQ - Computes the upper and lower bounds for level K
-    /// using the = direction. Records them in Bound.
-    void findBoundsEQ(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// intersectConstraints - Updates X with the intersection
-    /// of the Constraints X and Y. Returns true if X has changed.
-    bool intersectConstraints(Constraint *X,
-                              const Constraint *Y);
-
-    /// propagate - Review the constraints, looking for opportunities
-    /// to simplify a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagate(const SCEV *&Src,
-                   const SCEV *&Dst,
-                   SmallBitVector &Loops,
-                   SmallVectorImpl<Constraint> &Constraints,
-                   bool &Consistent);
-
-    /// propagateDistance - Attempt to propagate a distance
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagateDistance(const SCEV *&Src,
-                           const SCEV *&Dst,
-                           Constraint &CurConstraint,
-                           bool &Consistent);
-
-    /// propagatePoint - Attempt to propagate a point
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    bool propagatePoint(const SCEV *&Src,
-                        const SCEV *&Dst,
-                        Constraint &CurConstraint);
-
-    /// propagateLine - Attempt to propagate a line
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagateLine(const SCEV *&Src,
-                       const SCEV *&Dst,
-                       Constraint &CurConstraint,
-                       bool &Consistent);
-
-    /// findCoefficient - Given a linear SCEV,
-    /// return the coefficient corresponding to specified loop.
-    /// If there isn't one, return the SCEV constant 0.
-    /// For example, given a*i + b*j + c*k, returning the coefficient
-    /// corresponding to the j loop would yield b.
-    const SCEV *findCoefficient(const SCEV *Expr,
-                                const Loop *TargetLoop) const;
-
-    /// zeroCoefficient - Given a linear SCEV,
-    /// return the SCEV given by zeroing out the coefficient
-    /// corresponding to the specified loop.
-    /// For example, given a*i + b*j + c*k, zeroing the coefficient
-    /// corresponding to the j loop would yield a*i + c*k.
-    const SCEV *zeroCoefficient(const SCEV *Expr,
-                                const Loop *TargetLoop) const;
-
-    /// addToCoefficient - Given a linear SCEV Expr,
-    /// return the SCEV given by adding some Value to the
-    /// coefficient corresponding to the specified TargetLoop.
-    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
-    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
-    const SCEV *addToCoefficient(const SCEV *Expr,
-                                 const Loop *TargetLoop,
-                                 const SCEV *Value)  const;
-
-    /// updateDirection - Update direction vector entry
-    /// based on the current constraint.
-    void updateDirection(Dependence::DVEntry &Level,
-                         const Constraint &CurConstraint) const;
-
-    /// Given a linear access function, tries to recover subscripts
-    /// for each dimension of the array element access.
-    bool tryDelinearize(Instruction *Src, Instruction *Dst,
-                        SmallVectorImpl<Subscript> &Pair);
-
-    /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
-    /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
-    /// delinearize \p Src and \p Dst separately,
-    bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
-                                 const SCEV *SrcAccessFn,
-                                 const SCEV *DstAccessFn,
-                                 SmallVectorImpl<const SCEV *> &SrcSubscripts,
-                                 SmallVectorImpl<const SCEV *> &DstSubscripts);
-
-    /// Tries to delinearize access function for a multi-dimensional array with
-    /// symbolic runtime sizes.
-    /// Returns true upon success and false otherwise.
-    bool tryDelinearizeParametricSize(
-        Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
-        const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
-        SmallVectorImpl<const SCEV *> &DstSubscripts);
-
-    /// checkSubscript - Helper function for checkSrcSubscript and
-    /// checkDstSubscript to avoid duplicate code
-    bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
-                        SmallBitVector &Loops, bool IsSrc);
-  }; // class DependenceInfo
-
-  /// AnalysisPass to compute dependence information in a function
-  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
-  public:
-    typedef DependenceInfo Result;
-    LLVM_ABI Result run(Function &F, FunctionAnalysisManager &FAM);
+    /// setLine - Change a constraint to Line.
+    LLVM_ABI void setLine(const SCEV *A, const SCEV *B, const SCEV *C,
+                          const Loop *CurrentLoop);
 
-  private:
-    LLVM_ABI static AnalysisKey Key;
-    friend struct AnalysisInfoMixin<DependenceAnalysis>;
-  }; // class DependenceAnalysis
+    /// setDistance - Change a constraint to Distance.
+    LLVM_ABI void setDistance(const SCEV *D, const Loop *CurrentLoop);
 
-  /// Printer pass to dump DA results.
-  struct DependenceAnalysisPrinterPass
-      : public PassInfoMixin<DependenceAnalysisPrinterPass> {
-    DependenceAnalysisPrinterPass(raw_ostream &OS,
-                                  bool NormalizeResults = false)
-        : OS(OS), NormalizeResults(NormalizeResults) {}
+    /// setEmpty - Change a constraint to Empty.
+    LLVM_ABI void setEmpty();
 
-    LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
+    /// setAny - Change a constraint to Any.
+    LLVM_ABI void setAny(ScalarEvolution *SE);
 
-    static bool isRequired() { return true; }
+    /// dump - For debugging purposes. Dumps the constraint
+    /// out to OS.
+    LLVM_ABI void dump(raw_ostream &OS) const;
+  };
 
-  private:
-    raw_ostream &OS;
-    bool NormalizeResults;
-  }; // class DependenceAnalysisPrinterPass
+  /// establishNestingLevels - Examines the loop nesting of the Src and Dst
+  /// instructions and establishes their shared loops. Sets the variables
+  /// CommonLevels, SrcLevels, and MaxLevels.
+  /// The source and destination instructions needn't be contained in the same
+  /// loop. The routine establishNestingLevels finds the level of most deeply
+  /// nested loop that contains them both, CommonLevels. An instruction that's
+  /// not contained in a loop is at level = 0. MaxLevels is equal to the level
+  /// of the source plus the level of the destination, minus CommonLevels.
+  /// This lets us allocate vectors MaxLevels in length, with room for every
+  /// distinct loop referenced in both the source and destination subscripts.
+  /// The variable SrcLevels is the nesting depth of the source instruction.
+  /// It's used to help calculate distinct loops referenced by the destination.
+  /// Here's the map from loops to levels:
+  ///            0 - unused
+  ///            1 - outermost common loop
+  ///          ... - other common loops
+  /// CommonLevels - innermost common loop
+  ///          ... - loops containing Src but not Dst
+  ///    SrcLevels - innermost loop containing Src but not Dst
+  ///          ... - loops containing Dst but not Src
+  ///    MaxLevels - innermost loop containing Dst but not Src
+  /// Consider the follow code fragment:
+  ///    for (a = ...) {
+  ///      for (b = ...) {
+  ///        for (c = ...) {
+  ///          for (d = ...) {
+  ///            A[] = ...;
+  ///          }
+  ///        }
+  ///        for (e = ...) {
+  ///          for (f = ...) {
+  ///            for (g = ...) {
+  ///              ... = A[];
+  ///            }
+  ///          }
+  ///        }
+  ///      }
+  ///    }
+  /// If we're looking at the possibility of a dependence between the store
+  /// to A (the Src) and the load from A (the Dst), we'll note that they
+  /// have 2 loops in common, so CommonLevels will equal 2 and the direction
+  /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
+  /// A map from loop names to level indices would look like
+  ///     a - 1
+  ///     b - 2 = CommonLevels
+  ///     c - 3
+  ///     d - 4 = SrcLevels
+  ///     e - 5
+  ///     f - 6
+  ///     g - 7 = MaxLevels
+  void establishNestingLevels(const Instruction *Src, const Instruction *Dst);
+
+  unsigned CommonLevels, SrcLevels, MaxLevels;
+
+  /// mapSrcLoop - Given one of the loops containing the source, return
+  /// its level index in our numbering scheme.
+  unsigned mapSrcLoop(const Loop *SrcLoop) const;
+
+  /// mapDstLoop - Given one of the loops containing the destination,
+  /// return its level index in our numbering scheme.
+  unsigned mapDstLoop(const Loop *DstLoop) const;
+
+  /// isLoopInvariant - Returns true if Expression is loop invariant
+  /// in LoopNest.
+  bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
+
+  /// Makes sure all subscript pairs share the same integer type by
+  /// sign-extending as necessary.
+  /// Sign-extending a subscript is safe because getelementptr assumes the
+  /// array subscripts are signed.
+  void unifySubscriptType(ArrayRef<Subscript *> Pairs);
+
+  /// removeMatchingExtensions - Examines a subscript pair.
+  /// If the source and destination are identically sign (or zero)
+  /// extended, it strips off the extension in an effort to
+  /// simplify the actual analysis.
+  void removeMatchingExtensions(Subscript *Pair);
+
+  /// collectCommonLoops - Finds the set of loops from the LoopNest that
+  /// have a level <= CommonLevels and are referred to by the SCEV Expression.
+  void collectCommonLoops(const SCEV *Expression, const Loop *LoopNest,
+                          SmallBitVector &Loops) const;
+
+  /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
+  /// linear. Collect the set of loops mentioned by Src.
+  bool checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
+                         SmallBitVector &Loops);
+
+  /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
+  /// linear. Collect the set of loops mentioned by Dst.
+  bool checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
+                         SmallBitVector &Loops);
+
+  /// isKnownPredicate - Compare X and Y using the predicate Pred.
+  /// Basically a wrapper for SCEV::isKnownPredicate,
+  /// but tries harder, especially in the presence of sign and zero
+  /// extensions and symbolics.
+  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
+                        const SCEV *Y) const;
+
+  /// isKnownLessThan - Compare to see if S is less than Size
+  /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
+  /// checking if S is an AddRec and we can prove lessthan using the loop
+  /// bounds.
+  bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
+
+  /// isKnownNonNegative - Compare to see if S is known not to be negative
+  /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
+  /// Proving there is no wrapping going on.
+  bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
+
+  /// collectUpperBound - All subscripts are the same type (on my machine,
+  /// an i64). The loop bound may be a smaller type. collectUpperBound
+  /// find the bound, if available, and zero extends it to the Type T.
+  /// (I zero extend since the bound should always be >= 0.)
+  /// If no upper bound is available, return NULL.
+  const SCEV *collectUpperBound(const Loop *l, Type *T) const;
+
+  /// collectConstantUpperBound - Calls collectUpperBound(), then
+  /// attempts to cast it to SCEVConstant. If the cast fails,
+  /// returns NULL.
+  const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
+
+  /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
+  /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
+  /// Collects the associated loops in a set.
+  Subscript::ClassificationKind
+  classifyPair(const SCEV *Src, const Loop *SrcLoopNest, const SCEV *Dst,
+               const Loop *DstLoopNest, SmallBitVector &Loops);
+
+  /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// If the dependence isn't proven to exist,
+  /// marks the Result as inconsistent.
+  bool testZIV(const SCEV *Src, const SCEV *Dst, FullDependence &Result) const;
+
+  /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
+  /// i and j are induction variables, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction vector entry and, when possible,
+  /// the distance vector entry.
+  /// If the dependence isn't proven to exist,
+  /// marks the Result as inconsistent.
+  bool testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
+               FullDependence &Result, Constraint &NewConstraint,
+               const SCEV *&SplitIter) const;
+
+  /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*j]
+  /// where i and j are induction variables, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// With minor algebra, this test can also be used for things like
+  /// [c1 + a1*i + a2*j][c2].
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Marks the Result as inconsistent.
+  bool testRDIV(const SCEV *Src, const SCEV *Dst, FullDependence &Result) const;
+
+  /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
+  /// Returns true if dependence disproved.
+  /// Can sometimes refine direction vectors.
+  bool testMIV(const SCEV *Src, const SCEV *Dst, const SmallBitVector &Loops,
+               FullDependence &Result) const;
+
+  /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
+  /// for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction and distance.
+  bool strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
+                     const SCEV *DstConst, const Loop *CurrentLoop,
+                     unsigned Level, FullDependence &Result,
+                     Constraint &NewConstraint) const;
+
+  /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a*i] and [c2 - a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// Marks the dependence as splitable.
+  bool weakCrossingSIVtest(const SCEV *SrcCoeff, const SCEV *SrcConst,
+                           const SCEV *DstConst, const Loop *CurrentLoop,
+                           unsigned Level, FullDependence &Result,
+                           Constraint &NewConstraint,
+                           const SCEV *&SplitIter) const;
+
+  /// ExactSIVtest - Tests the SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  bool exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                    const SCEV *SrcConst, const SCEV *DstConst,
+                    const Loop *CurrentLoop, unsigned Level,
+                    FullDependence &Result, Constraint &NewConstraint) const;
+
+  /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1] and [c2 + a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant. See also weakZeroDstSIVtest.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// If loop peeling will break the dependence, mark appropriately.
+  bool weakZeroSrcSIVtest(const SCEV *DstCoeff, const SCEV *SrcConst,
+                          const SCEV *DstConst, const Loop *CurrentLoop,
+                          unsigned Level, FullDependence &Result,
+                          Constraint &NewConstraint) const;
+
+  /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a*i] and [c2],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant. See also weakZeroSrcSIVtest.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// If loop peeling will break the dependence, mark appropriately.
+  bool weakZeroDstSIVtest(const SCEV *SrcCoeff, const SCEV *SrcConst,
+                          const SCEV *DstConst, const Loop *CurrentLoop,
+                          unsigned Level, FullDependence &Result,
+                          Constraint &NewConstraint) const;
+
+  /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + b*j],
+  /// where i and j are induction variable, c1 and c2 are loop invariant,
+  /// and a and b are constants.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Works in some cases that symbolicRDIVtest doesn't,
+  /// and vice versa.
+  bool exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                     const SCEV *SrcConst, const SCEV *DstConst,
+                     const Loop *SrcLoop, const Loop *DstLoop,
+                     FullDependence &Result) const;
+
+  /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + b*j],
+  /// where i and j are induction variable, c1 and c2 are loop invariant,
+  /// and a and b are constants.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Works in some cases that exactRDIVtest doesn't,
+  /// and vice versa. Can also be used as a backup for
+  /// ordinary SIV tests.
+  bool symbolicRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                        const SCEV *SrcConst, const SCEV *DstConst,
+                        const Loop *SrcLoop, const Loop *DstLoop) const;
+
+  /// gcdMIVtest - Tests an MIV subscript pair for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Can sometimes disprove the equal direction for 1 or more loops.
+  //  Can handle some symbolics that even the SIV tests don't get,
+  /// so we use it as a backup for everything.
+  bool gcdMIVtest(const SCEV *Src, const SCEV *Dst,
+                  FullDependence &Result) const;
 
-  /// Legacy pass manager pass to access dependence information
-  class LLVM_ABI DependenceAnalysisWrapperPass : public FunctionPass {
-  public:
-    static char ID; // Class identification, replacement for typeinfo
-    DependenceAnalysisWrapperPass();
+  /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Computes directions.
+  bool banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
+                       const SmallBitVector &Loops,
+                       FullDependence &Result) const;
 
-    bool runOnFunction(Function &F) override;
-    void releaseMemory() override;
-    void getAnalysisUsage(AnalysisUsage &) const override;
-    void print(raw_ostream &, const Module * = nullptr) const override;
-    DependenceInfo &getDI() const;
+  /// collectCoefficientInfo - Walks through the subscript,
+  /// collecting each coefficient, the associated loop bounds,
+  /// and recording its positive and negative parts for later use.
+  CoefficientInfo *collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
+                                    const SCEV *&Constant) const;
 
-  private:
-    std::unique_ptr<DependenceInfo> info;
-  }; // class DependenceAnalysisWrapperPass
+  /// getPositivePart - X^+ = max(X, 0).
+  ///
----------------
kasuga-fj wrote:

Can we remove this line as well?

https://github.com/llvm/llvm-project/pull/151505


More information about the llvm-commits mailing list