[llvm] [DA][NFC] clang-format DependenceAnalysis (PR #151505)

Michael Kruse via llvm-commits llvm-commits at lists.llvm.org
Thu Jul 31 05:29:27 PDT 2025


https://github.com/Meinersbur updated https://github.com/llvm/llvm-project/pull/151505

>From 78c857a6e08c2d4d4bf3776672b2224b7bee6b67 Mon Sep 17 00:00:00 2001
From: Michael Kruse <llvm-project at meinersbur.de>
Date: Thu, 31 Jul 2025 14:20:36 +0200
Subject: [PATCH] clang-format DependenceAnalysis

---
 .../llvm/Analysis/DependenceAnalysis.h        | 1800 ++++++++---------
 llvm/lib/Analysis/DependenceAnalysis.cpp      |  484 ++---
 2 files changed, 1047 insertions(+), 1237 deletions(-)

diff --git a/llvm/include/llvm/Analysis/DependenceAnalysis.h b/llvm/include/llvm/Analysis/DependenceAnalysis.h
index f98bd684149f9..84b9f0464966b 100644
--- a/llvm/include/llvm/Analysis/DependenceAnalysis.h
+++ b/llvm/include/llvm/Analysis/DependenceAnalysis.h
@@ -47,994 +47,910 @@
 #include "llvm/Support/Compiler.h"
 
 namespace llvm {
-  class AAResults;
-  template <typename T> class ArrayRef;
-  class Loop;
-  class LoopInfo;
-  class SCEVConstant;
-  class raw_ostream;
-
-  /// Dependence - This class represents a dependence between two memory
-  /// memory references in a function. It contains minimal information and
-  /// is used in the very common situation where the compiler is unable to
-  /// determine anything beyond the existence of a dependence; that is, it
-  /// represents a confused dependence (see also FullDependence). In most
-  /// cases (for output, flow, and anti dependences), the dependence implies
-  /// an ordering, where the source must precede the destination; in contrast,
-  /// input dependences are unordered.
-  ///
-  /// When a dependence graph is built, each Dependence will be a member of
-  /// the set of predecessor edges for its destination instruction and a set
-  /// if successor edges for its source instruction. These sets are represented
-  /// as singly-linked lists, with the "next" fields stored in the dependence
-  /// itelf.
-  class LLVM_ABI Dependence {
-  protected:
-    Dependence(Dependence &&) = default;
-    Dependence &operator=(Dependence &&) = default;
-
-  public:
-    Dependence(Instruction *Source, Instruction *Destination,
-               const SCEVUnionPredicate &A)
-        : Src(Source), Dst(Destination), Assumptions(A) {}
-    virtual ~Dependence() = default;
-
-    /// Dependence::DVEntry - Each level in the distance/direction vector
-    /// has a direction (or perhaps a union of several directions), and
-    /// perhaps a distance.
-    struct DVEntry {
-      enum : unsigned char {
-        NONE = 0,
-        LT = 1,
-        EQ = 2,
-        LE = 3,
-        GT = 4,
-        NE = 5,
-        GE = 6,
-        ALL = 7
-      };
-      unsigned char Direction : 3; // Init to ALL, then refine.
-      bool Scalar    : 1; // Init to true.
-      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
-      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
-      bool Splitable : 1; // Splitting the loop will break dependence.
-      const SCEV *Distance = nullptr; // NULL implies no distance available.
-      DVEntry()
-          : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
-            Splitable(false) {}
+class AAResults;
+template <typename T> class ArrayRef;
+class Loop;
+class LoopInfo;
+class SCEVConstant;
+class raw_ostream;
+
+/// Dependence - This class represents a dependence between two memory
+/// memory references in a function. It contains minimal information and
+/// is used in the very common situation where the compiler is unable to
+/// determine anything beyond the existence of a dependence; that is, it
+/// represents a confused dependence (see also FullDependence). In most
+/// cases (for output, flow, and anti dependences), the dependence implies
+/// an ordering, where the source must precede the destination; in contrast,
+/// input dependences are unordered.
+///
+/// When a dependence graph is built, each Dependence will be a member of
+/// the set of predecessor edges for its destination instruction and a set
+/// if successor edges for its source instruction. These sets are represented
+/// as singly-linked lists, with the "next" fields stored in the dependence
+/// itelf.
+class LLVM_ABI Dependence {
+protected:
+  Dependence(Dependence &&) = default;
+  Dependence &operator=(Dependence &&) = default;
+
+public:
+  Dependence(Instruction *Source, Instruction *Destination,
+             const SCEVUnionPredicate &A)
+      : Src(Source), Dst(Destination), Assumptions(A) {}
+  virtual ~Dependence() = default;
+
+  /// Dependence::DVEntry - Each level in the distance/direction vector
+  /// has a direction (or perhaps a union of several directions), and
+  /// perhaps a distance.
+  struct DVEntry {
+    enum : unsigned char {
+      NONE = 0,
+      LT = 1,
+      EQ = 2,
+      LE = 3,
+      GT = 4,
+      NE = 5,
+      GE = 6,
+      ALL = 7
     };
+    unsigned char Direction : 3; // Init to ALL, then refine.
+    bool Scalar : 1;             // Init to true.
+    bool PeelFirst : 1; // Peeling the first iteration will break dependence.
+    bool PeelLast : 1;  // Peeling the last iteration will break the dependence.
+    bool Splitable : 1; // Splitting the loop will break dependence.
+    const SCEV *Distance = nullptr; // NULL implies no distance available.
+    DVEntry()
+        : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
+          Splitable(false) {}
+  };
 
-    /// getSrc - Returns the source instruction for this dependence.
-    ///
-    Instruction *getSrc() const { return Src; }
-
-    /// getDst - Returns the destination instruction for this dependence.
-    ///
-    Instruction *getDst() const { return Dst; }
-
-    /// isInput - Returns true if this is an input dependence.
-    ///
-    bool isInput() const;
+  /// getSrc - Returns the source instruction for this dependence.
+  Instruction *getSrc() const { return Src; }
 
-    /// isOutput - Returns true if this is an output dependence.
-    ///
-    bool isOutput() const;
+  /// getDst - Returns the destination instruction for this dependence.
+  Instruction *getDst() const { return Dst; }
 
-    /// isFlow - Returns true if this is a flow (aka true) dependence.
-    ///
-    bool isFlow() const;
+  /// isInput - Returns true if this is an input dependence.
+  bool isInput() const;
 
-    /// isAnti - Returns true if this is an anti dependence.
-    ///
-    bool isAnti() const;
+  /// isOutput - Returns true if this is an output dependence.
+  bool isOutput() const;
 
-    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
-    ///
-    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
+  /// isFlow - Returns true if this is a flow (aka true) dependence.
+  bool isFlow() const;
 
-    /// isUnordered - Returns true if dependence is Input
-    ///
-    bool isUnordered() const { return isInput(); }
+  /// isAnti - Returns true if this is an anti dependence.
+  bool isAnti() const;
 
-    /// isLoopIndependent - Returns true if this is a loop-independent
-    /// dependence.
-    virtual bool isLoopIndependent() const { return true; }
+  /// isOrdered - Returns true if dependence is Output, Flow, or Anti
+  bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
 
-    /// isConfused - Returns true if this dependence is confused
-    /// (the compiler understands nothing and makes worst-case
-    /// assumptions).
-    virtual bool isConfused() const { return true; }
+  /// isUnordered - Returns true if dependence is Input
+  bool isUnordered() const { return isInput(); }
 
-    /// isConsistent - Returns true if this dependence is consistent
-    /// (occurs every time the source and destination are executed).
-    virtual bool isConsistent() const { return false; }
+  /// isLoopIndependent - Returns true if this is a loop-independent
+  /// dependence.
+  virtual bool isLoopIndependent() const { return true; }
 
-    /// getLevels - Returns the number of common loops surrounding the
-    /// source and destination of the dependence.
-    virtual unsigned getLevels() const { return 0; }
+  /// isConfused - Returns true if this dependence is confused
+  /// (the compiler understands nothing and makes worst-case assumptions).
+  virtual bool isConfused() const { return true; }
 
-    /// getDirection - Returns the direction associated with a particular
-    /// level.
-    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
+  /// isConsistent - Returns true if this dependence is consistent
+  /// (occurs every time the source and destination are executed).
+  virtual bool isConsistent() const { return false; }
 
-    /// getDistance - Returns the distance (or NULL) associated with a
-    /// particular level.
-    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
+  /// getLevels - Returns the number of common loops surrounding the
+  /// source and destination of the dependence.
+  virtual unsigned getLevels() const { return 0; }
 
-    /// Check if the direction vector is negative. A negative direction
-    /// vector means Src and Dst are reversed in the actual program.
-    virtual bool isDirectionNegative() const { return false; }
+  /// getDirection - Returns the direction associated with a particular level.
+  virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
 
-    /// If the direction vector is negative, normalize the direction
-    /// vector to make it non-negative. Normalization is done by reversing
-    /// Src and Dst, plus reversing the dependence directions and distances
-    /// in the vector.
-    virtual bool normalize(ScalarEvolution *SE) { return false; }
+  /// getDistance - Returns the distance (or NULL) associated with a particular
+  /// level.
+  virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
 
-    /// isPeelFirst - Returns true if peeling the first iteration from
-    /// this loop will break this dependence.
-    virtual bool isPeelFirst(unsigned Level) const { return false; }
+  /// Check if the direction vector is negative. A negative direction
+  /// vector means Src and Dst are reversed in the actual program.
+  virtual bool isDirectionNegative() const { return false; }
+
+  /// If the direction vector is negative, normalize the direction
+  /// vector to make it non-negative. Normalization is done by reversing
+  /// Src and Dst, plus reversing the dependence directions and distances
+  /// in the vector.
+  virtual bool normalize(ScalarEvolution *SE) { return false; }
 
-    /// isPeelLast - Returns true if peeling the last iteration from
-    /// this loop will break this dependence.
-    virtual bool isPeelLast(unsigned Level) const { return false; }
+  /// isPeelFirst - Returns true if peeling the first iteration from
+  /// this loop will break this dependence.
+  virtual bool isPeelFirst(unsigned Level) const { return false; }
 
-    /// isSplitable - Returns true if splitting this loop will break
-    /// the dependence.
-    virtual bool isSplitable(unsigned Level) const { return false; }
+  /// isPeelLast - Returns true if peeling the last iteration from
+  /// this loop will break this dependence.
+  virtual bool isPeelLast(unsigned Level) const { return false; }
 
-    /// isScalar - Returns true if a particular level is scalar; that is,
-    /// if no subscript in the source or destination mention the induction
-    /// variable associated with the loop at this level.
-    virtual bool isScalar(unsigned Level) const;
+  /// isSplitable - Returns true if splitting this loop will break the
+  /// dependence.
+  virtual bool isSplitable(unsigned Level) const { return false; }
 
-    /// getNextPredecessor - Returns the value of the NextPredecessor
-    /// field.
-    const Dependence *getNextPredecessor() const { return NextPredecessor; }
+  /// isScalar - Returns true if a particular level is scalar; that is,
+  /// if no subscript in the source or destination mention the induction
+  /// variable associated with the loop at this level.
+  virtual bool isScalar(unsigned Level) const;
+
+  /// getNextPredecessor - Returns the value of the NextPredecessor field.
+  const Dependence *getNextPredecessor() const { return NextPredecessor; }
+
+  /// getNextSuccessor - Returns the value of the NextSuccessor field.
+  const Dependence *getNextSuccessor() const { return NextSuccessor; }
+
+  /// setNextPredecessor - Sets the value of the NextPredecessor
+  /// field.
+  void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
+
+  /// setNextSuccessor - Sets the value of the NextSuccessor field.
+  void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
+
+  /// getRuntimeAssumptions - Returns the runtime assumptions under which this
+  /// Dependence relation is valid.
+  SCEVUnionPredicate getRuntimeAssumptions() const { return Assumptions; }
+
+  /// dump - For debugging purposes, dumps a dependence to OS.
+  void dump(raw_ostream &OS) const;
+
+protected:
+  Instruction *Src, *Dst;
+
+private:
+  SCEVUnionPredicate Assumptions;
+  const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
+  friend class DependenceInfo;
+};
+
+/// FullDependence - This class represents a dependence between two memory
+/// references in a function. It contains detailed information about the
+/// dependence (direction vectors, etc.) and is used when the compiler is
+/// able to accurately analyze the interaction of the references; that is,
+/// it is not a confused dependence (see Dependence). In most cases
+/// (for output, flow, and anti dependences), the dependence implies an
+/// ordering, where the source must precede the destination; in contrast,
+/// input dependences are unordered.
+class LLVM_ABI FullDependence final : public Dependence {
+public:
+  FullDependence(Instruction *Source, Instruction *Destination,
+                 const SCEVUnionPredicate &Assumes,
+                 bool PossiblyLoopIndependent, unsigned Levels);
+
+  /// isLoopIndependent - Returns true if this is a loop-independent
+  /// dependence.
+  bool isLoopIndependent() const override { return LoopIndependent; }
+
+  /// isConfused - Returns true if this dependence is confused
+  /// (the compiler understands nothing and makes worst-case
+  /// assumptions).
+  bool isConfused() const override { return false; }
+
+  /// isConsistent - Returns true if this dependence is consistent
+  /// (occurs every time the source and destination are executed).
+  bool isConsistent() const override { return Consistent; }
+
+  /// getLevels - Returns the number of common loops surrounding the
+  /// source and destination of the dependence.
+  unsigned getLevels() const override { return Levels; }
+
+  /// getDirection - Returns the direction associated with a particular
+  /// level.
+  unsigned getDirection(unsigned Level) const override;
+
+  /// getDistance - Returns the distance (or NULL) associated with a
+  /// particular level.
+  const SCEV *getDistance(unsigned Level) const override;
+
+  /// Check if the direction vector is negative. A negative direction
+  /// vector means Src and Dst are reversed in the actual program.
+  bool isDirectionNegative() const override;
+
+  /// If the direction vector is negative, normalize the direction
+  /// vector to make it non-negative. Normalization is done by reversing
+  /// Src and Dst, plus reversing the dependence directions and distances
+  /// in the vector.
+  bool normalize(ScalarEvolution *SE) override;
+
+  /// isPeelFirst - Returns true if peeling the first iteration from
+  /// this loop will break this dependence.
+  bool isPeelFirst(unsigned Level) const override;
+
+  /// isPeelLast - Returns true if peeling the last iteration from
+  /// this loop will break this dependence.
+  bool isPeelLast(unsigned Level) const override;
+
+  /// isSplitable - Returns true if splitting the loop will break
+  /// the dependence.
+  bool isSplitable(unsigned Level) const override;
+
+  /// isScalar - Returns true if a particular level is scalar; that is,
+  /// if no subscript in the source or destination mention the induction
+  /// variable associated with the loop at this level.
+  bool isScalar(unsigned Level) const override;
+
+private:
+  unsigned short Levels;
+  bool LoopIndependent;
+  bool Consistent; // Init to true, then refine.
+  std::unique_ptr<DVEntry[]> DV;
+  friend class DependenceInfo;
+};
+
+/// DependenceInfo - This class is the main dependence-analysis driver.
+class DependenceInfo {
+public:
+  DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE, LoopInfo *LI)
+      : AA(AA), SE(SE), LI(LI), F(F) {}
+
+  /// Handle transitive invalidation when the cached analysis results go away.
+  LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA,
+                           FunctionAnalysisManager::Invalidator &Inv);
+
+  /// depends - Tests for a dependence between the Src and Dst instructions.
+  /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
+  /// FullDependence) with as much information as can be gleaned. By default,
+  /// the dependence test collects a set of runtime assumptions that cannot be
+  /// solved at compilation time. By default UnderRuntimeAssumptions is false
+  /// for a safe approximation of the dependence relation that does not
+  /// require runtime checks.
+  LLVM_ABI std::unique_ptr<Dependence>
+  depends(Instruction *Src, Instruction *Dst,
+          bool UnderRuntimeAssumptions = false);
+
+  /// getSplitIteration - Give a dependence that's splittable at some
+  /// particular level, return the iteration that should be used to split
+  /// the loop.
+  ///
+  /// Generally, the dependence analyzer will be used to build
+  /// a dependence graph for a function (basically a map from instructions
+  /// to dependences). Looking for cycles in the graph shows us loops
+  /// that cannot be trivially vectorized/parallelized.
+  ///
+  /// We can try to improve the situation by examining all the dependences
+  /// that make up the cycle, looking for ones we can break.
+  /// Sometimes, peeling the first or last iteration of a loop will break
+  /// dependences, and there are flags for those possibilities.
+  /// Sometimes, splitting a loop at some other iteration will do the trick,
+  /// and we've got a flag for that case. Rather than waste the space to
+  /// record the exact iteration (since we rarely know), we provide
+  /// a method that calculates the iteration. It's a drag that it must work
+  /// from scratch, but wonderful in that it's possible.
+  ///
+  /// Here's an example:
+  ///
+  ///    for (i = 0; i < 10; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///
+  /// There's a loop-carried flow dependence from the store to the load,
+  /// found by the weak-crossing SIV test. The dependence will have a flag,
+  /// indicating that the dependence can be broken by splitting the loop.
+  /// Calling getSplitIteration will return 5.
+  /// Splitting the loop breaks the dependence, like so:
+  ///
+  ///    for (i = 0; i <= 5; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///    for (i = 6; i < 10; i++)
+  ///        A[i] = ...
+  ///        ... = A[11 - i]
+  ///
+  /// breaks the dependence and allows us to vectorize/parallelize
+  /// both loops.
+  LLVM_ABI const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
+
+  Function *getFunction() const { return F; }
+
+  /// getRuntimeAssumptions - Returns all the runtime assumptions under which
+  /// the dependence test is valid.
+  LLVM_ABI SCEVUnionPredicate getRuntimeAssumptions() const;
+
+private:
+  AAResults *AA;
+  ScalarEvolution *SE;
+  LoopInfo *LI;
+  Function *F;
+  SmallVector<const SCEVPredicate *, 4> Assumptions;
+
+  /// Subscript - This private struct represents a pair of subscripts from
+  /// a pair of potentially multi-dimensional array references. We use a
+  /// vector of them to guide subscript partitioning.
+  struct Subscript {
+    const SCEV *Src;
+    const SCEV *Dst;
+    enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
+    SmallBitVector Loops;
+    SmallBitVector GroupLoops;
+    SmallBitVector Group;
+  };
 
-    /// getNextSuccessor - Returns the value of the NextSuccessor
-    /// field.
-    const Dependence *getNextSuccessor() const { return NextSuccessor; }
+  struct CoefficientInfo {
+    const SCEV *Coeff;
+    const SCEV *PosPart;
+    const SCEV *NegPart;
+    const SCEV *Iterations;
+  };
 
-    /// setNextPredecessor - Sets the value of the NextPredecessor
-    /// field.
-    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
+  struct BoundInfo {
+    const SCEV *Iterations;
+    const SCEV *Upper[8];
+    const SCEV *Lower[8];
+    unsigned char Direction;
+    unsigned char DirSet;
+  };
 
-    /// setNextSuccessor - Sets the value of the NextSuccessor
-    /// field.
-    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
+  /// Constraint - This private class represents a constraint, as defined
+  /// in the paper
+  ///
+  ///           Practical Dependence Testing
+  ///           Goff, Kennedy, Tseng
+  ///           PLDI 1991
+  ///
+  /// There are 5 kinds of constraint, in a hierarchy.
+  ///   1) Any - indicates no constraint, any dependence is possible.
+  ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
+  ///             representing the dependence equation.
+  ///   3) Distance - The value d of the dependence distance;
+  ///   4) Point - A point <x, y> representing the dependence from
+  ///              iteration x to iteration y.
+  ///   5) Empty - No dependence is possible.
+  class Constraint {
+  private:
+    enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
+    ScalarEvolution *SE;
+    const SCEV *A;
+    const SCEV *B;
+    const SCEV *C;
+    const Loop *AssociatedLoop;
 
-    /// getRuntimeAssumptions - Returns the runtime assumptions under which this
-    /// Dependence relation is valid.
-    SCEVUnionPredicate getRuntimeAssumptions() const { return Assumptions; }
+  public:
+    /// isEmpty - Return true if the constraint is of kind Empty.
+    bool isEmpty() const { return Kind == Empty; }
 
-    /// dump - For debugging purposes, dumps a dependence to OS.
-    ///
-    void dump(raw_ostream &OS) const;
+    /// isPoint - Return true if the constraint is of kind Point.
+    bool isPoint() const { return Kind == Point; }
 
-  protected:
-    Instruction *Src, *Dst;
+    /// isDistance - Return true if the constraint is of kind Distance.
+    bool isDistance() const { return Kind == Distance; }
 
-  private:
-    SCEVUnionPredicate Assumptions;
-    const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
-    friend class DependenceInfo;
-  };
+    /// isLine - Return true if the constraint is of kind Line.
+    /// Since Distance's can also be represented as Lines, we also return
+    /// true if the constraint is of kind Distance.
+    bool isLine() const { return Kind == Line || Kind == Distance; }
 
-  /// FullDependence - This class represents a dependence between two memory
-  /// references in a function. It contains detailed information about the
-  /// dependence (direction vectors, etc.) and is used when the compiler is
-  /// able to accurately analyze the interaction of the references; that is,
-  /// it is not a confused dependence (see Dependence). In most cases
-  /// (for output, flow, and anti dependences), the dependence implies an
-  /// ordering, where the source must precede the destination; in contrast,
-  /// input dependences are unordered.
-  class LLVM_ABI FullDependence final : public Dependence {
-  public:
-    FullDependence(Instruction *Source, Instruction *Destination,
-                   const SCEVUnionPredicate &Assumes,
-                   bool PossiblyLoopIndependent, unsigned Levels);
-
-    /// isLoopIndependent - Returns true if this is a loop-independent
-    /// dependence.
-    bool isLoopIndependent() const override { return LoopIndependent; }
-
-    /// isConfused - Returns true if this dependence is confused
-    /// (the compiler understands nothing and makes worst-case
-    /// assumptions).
-    bool isConfused() const override { return false; }
-
-    /// isConsistent - Returns true if this dependence is consistent
-    /// (occurs every time the source and destination are executed).
-    bool isConsistent() const override { return Consistent; }
-
-    /// getLevels - Returns the number of common loops surrounding the
-    /// source and destination of the dependence.
-    unsigned getLevels() const override { return Levels; }
-
-    /// getDirection - Returns the direction associated with a particular
-    /// level.
-    unsigned getDirection(unsigned Level) const override;
-
-    /// getDistance - Returns the distance (or NULL) associated with a
-    /// particular level.
-    const SCEV *getDistance(unsigned Level) const override;
-
-    /// Check if the direction vector is negative. A negative direction
-    /// vector means Src and Dst are reversed in the actual program.
-    bool isDirectionNegative() const override;
-
-    /// If the direction vector is negative, normalize the direction
-    /// vector to make it non-negative. Normalization is done by reversing
-    /// Src and Dst, plus reversing the dependence directions and distances
-    /// in the vector.
-    bool normalize(ScalarEvolution *SE) override;
-
-    /// isPeelFirst - Returns true if peeling the first iteration from
-    /// this loop will break this dependence.
-    bool isPeelFirst(unsigned Level) const override;
-
-    /// isPeelLast - Returns true if peeling the last iteration from
-    /// this loop will break this dependence.
-    bool isPeelLast(unsigned Level) const override;
-
-    /// isSplitable - Returns true if splitting the loop will break
-    /// the dependence.
-    bool isSplitable(unsigned Level) const override;
-
-    /// isScalar - Returns true if a particular level is scalar; that is,
-    /// if no subscript in the source or destination mention the induction
-    /// variable associated with the loop at this level.
-    bool isScalar(unsigned Level) const override;
+    /// isAny - Return true if the constraint is of kind Any;
+    bool isAny() const { return Kind == Any; }
 
-  private:
-    unsigned short Levels;
-    bool LoopIndependent;
-    bool Consistent; // Init to true, then refine.
-    std::unique_ptr<DVEntry[]> DV;
-    friend class DependenceInfo;
-  };
+    /// getX - If constraint is a point <X, Y>, returns X.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getX() const;
 
-  /// DependenceInfo - This class is the main dependence-analysis driver.
-  ///
-  class DependenceInfo {
-  public:
-    DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
-                   LoopInfo *LI)
-        : AA(AA), SE(SE), LI(LI), F(F) {}
-
-    /// Handle transitive invalidation when the cached analysis results go away.
-    LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA,
-                             FunctionAnalysisManager::Invalidator &Inv);
-
-    /// depends - Tests for a dependence between the Src and Dst instructions.
-    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
-    /// FullDependence) with as much information as can be gleaned. By default,
-    /// the dependence test collects a set of runtime assumptions that cannot be
-    /// solved at compilation time. By default UnderRuntimeAssumptions is false
-    /// for a safe approximation of the dependence relation that does not
-    /// require runtime checks.
-    LLVM_ABI std::unique_ptr<Dependence>
-    depends(Instruction *Src, Instruction *Dst,
-            bool UnderRuntimeAssumptions = false);
-
-    /// getSplitIteration - Give a dependence that's splittable at some
-    /// particular level, return the iteration that should be used to split
-    /// the loop.
-    ///
-    /// Generally, the dependence analyzer will be used to build
-    /// a dependence graph for a function (basically a map from instructions
-    /// to dependences). Looking for cycles in the graph shows us loops
-    /// that cannot be trivially vectorized/parallelized.
-    ///
-    /// We can try to improve the situation by examining all the dependences
-    /// that make up the cycle, looking for ones we can break.
-    /// Sometimes, peeling the first or last iteration of a loop will break
-    /// dependences, and there are flags for those possibilities.
-    /// Sometimes, splitting a loop at some other iteration will do the trick,
-    /// and we've got a flag for that case. Rather than waste the space to
-    /// record the exact iteration (since we rarely know), we provide
-    /// a method that calculates the iteration. It's a drag that it must work
-    /// from scratch, but wonderful in that it's possible.
-    ///
-    /// Here's an example:
-    ///
-    ///    for (i = 0; i < 10; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///
-    /// There's a loop-carried flow dependence from the store to the load,
-    /// found by the weak-crossing SIV test. The dependence will have a flag,
-    /// indicating that the dependence can be broken by splitting the loop.
-    /// Calling getSplitIteration will return 5.
-    /// Splitting the loop breaks the dependence, like so:
-    ///
-    ///    for (i = 0; i <= 5; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///    for (i = 6; i < 10; i++)
-    ///        A[i] = ...
-    ///        ... = A[11 - i]
-    ///
-    /// breaks the dependence and allows us to vectorize/parallelize
-    /// both loops.
-    LLVM_ABI const SCEV *getSplitIteration(const Dependence &Dep,
-                                           unsigned Level);
-
-    Function *getFunction() const { return F; }
-
-    /// getRuntimeAssumptions - Returns all the runtime assumptions under which
-    /// the dependence test is valid.
-    LLVM_ABI SCEVUnionPredicate getRuntimeAssumptions() const;
+    /// getY - If constraint is a point <X, Y>, returns Y.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getY() const;
 
-  private:
-    AAResults *AA;
-    ScalarEvolution *SE;
-    LoopInfo *LI;
-    Function *F;
-    SmallVector<const SCEVPredicate *, 4> Assumptions;
-
-    /// Subscript - This private struct represents a pair of subscripts from
-    /// a pair of potentially multi-dimensional array references. We use a
-    /// vector of them to guide subscript partitioning.
-    struct Subscript {
-      const SCEV *Src;
-      const SCEV *Dst;
-      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
-      SmallBitVector Loops;
-      SmallBitVector GroupLoops;
-      SmallBitVector Group;
-    };
+    /// getA - If constraint is a line AX + BY = C, returns A.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getA() const;
 
-    struct CoefficientInfo {
-      const SCEV *Coeff;
-      const SCEV *PosPart;
-      const SCEV *NegPart;
-      const SCEV *Iterations;
-    };
+    /// getB - If constraint is a line AX + BY = C, returns B.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getB() const;
 
-    struct BoundInfo {
-      const SCEV *Iterations;
-      const SCEV *Upper[8];
-      const SCEV *Lower[8];
-      unsigned char Direction;
-      unsigned char DirSet;
-    };
+    /// getC - If constraint is a line AX + BY = C, returns C.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getC() const;
 
-    /// Constraint - This private class represents a constraint, as defined
-    /// in the paper
-    ///
-    ///           Practical Dependence Testing
-    ///           Goff, Kennedy, Tseng
-    ///           PLDI 1991
-    ///
-    /// There are 5 kinds of constraint, in a hierarchy.
-    ///   1) Any - indicates no constraint, any dependence is possible.
-    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
-    ///             representing the dependence equation.
-    ///   3) Distance - The value d of the dependence distance;
-    ///   4) Point - A point <x, y> representing the dependence from
-    ///              iteration x to iteration y.
-    ///   5) Empty - No dependence is possible.
-    class Constraint {
-    private:
-      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
-      ScalarEvolution *SE;
-      const SCEV *A;
-      const SCEV *B;
-      const SCEV *C;
-      const Loop *AssociatedLoop;
-
-    public:
-      /// isEmpty - Return true if the constraint is of kind Empty.
-      bool isEmpty() const { return Kind == Empty; }
-
-      /// isPoint - Return true if the constraint is of kind Point.
-      bool isPoint() const { return Kind == Point; }
-
-      /// isDistance - Return true if the constraint is of kind Distance.
-      bool isDistance() const { return Kind == Distance; }
-
-      /// isLine - Return true if the constraint is of kind Line.
-      /// Since Distance's can also be represented as Lines, we also return
-      /// true if the constraint is of kind Distance.
-      bool isLine() const { return Kind == Line || Kind == Distance; }
-
-      /// isAny - Return true if the constraint is of kind Any;
-      bool isAny() const { return Kind == Any; }
-
-      /// getX - If constraint is a point <X, Y>, returns X.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getX() const;
-
-      /// getY - If constraint is a point <X, Y>, returns Y.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getY() const;
-
-      /// getA - If constraint is a line AX + BY = C, returns A.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getA() const;
-
-      /// getB - If constraint is a line AX + BY = C, returns B.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getB() const;
-
-      /// getC - If constraint is a line AX + BY = C, returns C.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getC() const;
-
-      /// getD - If constraint is a distance, returns D.
-      /// Otherwise assert.
-      LLVM_ABI const SCEV *getD() const;
-
-      /// getAssociatedLoop - Returns the loop associated with this constraint.
-      LLVM_ABI const Loop *getAssociatedLoop() const;
-
-      /// setPoint - Change a constraint to Point.
-      LLVM_ABI void setPoint(const SCEV *X, const SCEV *Y,
-                             const Loop *CurrentLoop);
-
-      /// setLine - Change a constraint to Line.
-      LLVM_ABI void setLine(const SCEV *A, const SCEV *B, const SCEV *C,
-                            const Loop *CurrentLoop);
-
-      /// setDistance - Change a constraint to Distance.
-      LLVM_ABI void setDistance(const SCEV *D, const Loop *CurrentLoop);
-
-      /// setEmpty - Change a constraint to Empty.
-      LLVM_ABI void setEmpty();
-
-      /// setAny - Change a constraint to Any.
-      LLVM_ABI void setAny(ScalarEvolution *SE);
-
-      /// dump - For debugging purposes. Dumps the constraint
-      /// out to OS.
-      LLVM_ABI void dump(raw_ostream &OS) const;
-    };
+    /// getD - If constraint is a distance, returns D.
+    /// Otherwise assert.
+    LLVM_ABI const SCEV *getD() const;
 
-    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
-    /// instructions and establishes their shared loops. Sets the variables
-    /// CommonLevels, SrcLevels, and MaxLevels.
-    /// The source and destination instructions needn't be contained in the same
-    /// loop. The routine establishNestingLevels finds the level of most deeply
-    /// nested loop that contains them both, CommonLevels. An instruction that's
-    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
-    /// of the source plus the level of the destination, minus CommonLevels.
-    /// This lets us allocate vectors MaxLevels in length, with room for every
-    /// distinct loop referenced in both the source and destination subscripts.
-    /// The variable SrcLevels is the nesting depth of the source instruction.
-    /// It's used to help calculate distinct loops referenced by the destination.
-    /// Here's the map from loops to levels:
-    ///            0 - unused
-    ///            1 - outermost common loop
-    ///          ... - other common loops
-    /// CommonLevels - innermost common loop
-    ///          ... - loops containing Src but not Dst
-    ///    SrcLevels - innermost loop containing Src but not Dst
-    ///          ... - loops containing Dst but not Src
-    ///    MaxLevels - innermost loop containing Dst but not Src
-    /// Consider the follow code fragment:
-    ///    for (a = ...) {
-    ///      for (b = ...) {
-    ///        for (c = ...) {
-    ///          for (d = ...) {
-    ///            A[] = ...;
-    ///          }
-    ///        }
-    ///        for (e = ...) {
-    ///          for (f = ...) {
-    ///            for (g = ...) {
-    ///              ... = A[];
-    ///            }
-    ///          }
-    ///        }
-    ///      }
-    ///    }
-    /// If we're looking at the possibility of a dependence between the store
-    /// to A (the Src) and the load from A (the Dst), we'll note that they
-    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
-    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
-    /// A map from loop names to level indices would look like
-    ///     a - 1
-    ///     b - 2 = CommonLevels
-    ///     c - 3
-    ///     d - 4 = SrcLevels
-    ///     e - 5
-    ///     f - 6
-    ///     g - 7 = MaxLevels
-    void establishNestingLevels(const Instruction *Src,
-                                const Instruction *Dst);
-
-    unsigned CommonLevels, SrcLevels, MaxLevels;
-
-    /// mapSrcLoop - Given one of the loops containing the source, return
-    /// its level index in our numbering scheme.
-    unsigned mapSrcLoop(const Loop *SrcLoop) const;
-
-    /// mapDstLoop - Given one of the loops containing the destination,
-    /// return its level index in our numbering scheme.
-    unsigned mapDstLoop(const Loop *DstLoop) const;
-
-    /// isLoopInvariant - Returns true if Expression is loop invariant
-    /// in LoopNest.
-    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
-
-    /// Makes sure all subscript pairs share the same integer type by
-    /// sign-extending as necessary.
-    /// Sign-extending a subscript is safe because getelementptr assumes the
-    /// array subscripts are signed.
-    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
-
-    /// removeMatchingExtensions - Examines a subscript pair.
-    /// If the source and destination are identically sign (or zero)
-    /// extended, it strips off the extension in an effort to
-    /// simplify the actual analysis.
-    void removeMatchingExtensions(Subscript *Pair);
-
-    /// collectCommonLoops - Finds the set of loops from the LoopNest that
-    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
-    void collectCommonLoops(const SCEV *Expression,
-                            const Loop *LoopNest,
-                            SmallBitVector &Loops) const;
-
-    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
-    /// linear. Collect the set of loops mentioned by Src.
-    bool checkSrcSubscript(const SCEV *Src,
-                           const Loop *LoopNest,
-                           SmallBitVector &Loops);
-
-    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
-    /// linear. Collect the set of loops mentioned by Dst.
-    bool checkDstSubscript(const SCEV *Dst,
-                           const Loop *LoopNest,
-                           SmallBitVector &Loops);
-
-    /// isKnownPredicate - Compare X and Y using the predicate Pred.
-    /// Basically a wrapper for SCEV::isKnownPredicate,
-    /// but tries harder, especially in the presence of sign and zero
-    /// extensions and symbolics.
-    bool isKnownPredicate(ICmpInst::Predicate Pred,
-                          const SCEV *X,
-                          const SCEV *Y) const;
-
-    /// isKnownLessThan - Compare to see if S is less than Size
-    /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
-    /// checking if S is an AddRec and we can prove lessthan using the loop
-    /// bounds.
-    bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
-
-    /// isKnownNonNegative - Compare to see if S is known not to be negative
-    /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
-    /// Proving there is no wrapping going on.
-    bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
-
-    /// collectUpperBound - All subscripts are the same type (on my machine,
-    /// an i64). The loop bound may be a smaller type. collectUpperBound
-    /// find the bound, if available, and zero extends it to the Type T.
-    /// (I zero extend since the bound should always be >= 0.)
-    /// If no upper bound is available, return NULL.
-    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
-
-    /// collectConstantUpperBound - Calls collectUpperBound(), then
-    /// attempts to cast it to SCEVConstant. If the cast fails,
-    /// returns NULL.
-    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
-
-    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
-    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
-    /// Collects the associated loops in a set.
-    Subscript::ClassificationKind classifyPair(const SCEV *Src,
-                                           const Loop *SrcLoopNest,
-                                           const SCEV *Dst,
-                                           const Loop *DstLoopNest,
-                                           SmallBitVector &Loops);
-
-    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// If the dependence isn't proven to exist,
-    /// marks the Result as inconsistent.
-    bool testZIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 FullDependence &Result) const;
-
-    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
-    /// i and j are induction variables, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction vector entry and, when possible,
-    /// the distance vector entry.
-    /// If the dependence isn't proven to exist,
-    /// marks the Result as inconsistent.
-    bool testSIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 unsigned &Level,
-                 FullDependence &Result,
-                 Constraint &NewConstraint,
-                 const SCEV *&SplitIter) const;
-
-    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
-    /// where i and j are induction variables, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// With minor algebra, this test can also be used for things like
-    /// [c1 + a1*i + a2*j][c2].
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Marks the Result as inconsistent.
-    bool testRDIV(const SCEV *Src,
-                  const SCEV *Dst,
-                  FullDependence &Result) const;
+    /// getAssociatedLoop - Returns the loop associated with this constraint.
+    LLVM_ABI const Loop *getAssociatedLoop() const;
 
-    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
-    /// Returns true if dependence disproved.
-    /// Can sometimes refine direction vectors.
-    bool testMIV(const SCEV *Src,
-                 const SCEV *Dst,
-                 const SmallBitVector &Loops,
-                 FullDependence &Result) const;
-
-    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
-    /// for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction and distance.
-    bool strongSIVtest(const SCEV *Coeff,
-                       const SCEV *SrcConst,
-                       const SCEV *DstConst,
-                       const Loop *CurrentLoop,
-                       unsigned Level,
-                       FullDependence &Result,
-                       Constraint &NewConstraint) const;
-
-    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a*i] and [c2 - a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// Marks the dependence as splitable.
-    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
-                             const SCEV *SrcConst,
-                             const SCEV *DstConst,
-                             const Loop *CurrentLoop,
-                             unsigned Level,
-                             FullDependence &Result,
-                             Constraint &NewConstraint,
-                             const SCEV *&SplitIter) const;
-
-    /// ExactSIVtest - Tests the SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a1 and a2 are constant.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    bool exactSIVtest(const SCEV *SrcCoeff,
-                      const SCEV *DstCoeff,
-                      const SCEV *SrcConst,
-                      const SCEV *DstConst,
-                      const Loop *CurrentLoop,
-                      unsigned Level,
-                      FullDependence &Result,
-                      Constraint &NewConstraint) const;
-
-    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1] and [c2 + a*i],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant. See also weakZeroDstSIVtest.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// If loop peeling will break the dependence, mark appropriately.
-    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
-                            const SCEV *SrcConst,
-                            const SCEV *DstConst,
-                            const Loop *CurrentLoop,
-                            unsigned Level,
-                            FullDependence &Result,
-                            Constraint &NewConstraint) const;
-
-    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
-    /// (Src and Dst) for dependence.
-    /// Things of the form [c1 + a*i] and [c2],
-    /// where i is an induction variable, c1 and c2 are loop invariant,
-    /// and a is a constant. See also weakZeroSrcSIVtest.
-    /// Returns true if any possible dependence is disproved.
-    /// If there might be a dependence, returns false.
-    /// Sets appropriate direction entry.
-    /// Set consistent to false.
-    /// If loop peeling will break the dependence, mark appropriately.
-    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
-                            const SCEV *SrcConst,
-                            const SCEV *DstConst,
-                            const Loop *CurrentLoop,
-                            unsigned Level,
-                            FullDependence &Result,
-                            Constraint &NewConstraint) const;
-
-    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + b*j],
-    /// where i and j are induction variable, c1 and c2 are loop invariant,
-    /// and a and b are constants.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Works in some cases that symbolicRDIVtest doesn't,
-    /// and vice versa.
-    bool exactRDIVtest(const SCEV *SrcCoeff,
-                       const SCEV *DstCoeff,
-                       const SCEV *SrcConst,
-                       const SCEV *DstConst,
-                       const Loop *SrcLoop,
-                       const Loop *DstLoop,
-                       FullDependence &Result) const;
+    /// setPoint - Change a constraint to Point.
+    LLVM_ABI void setPoint(const SCEV *X, const SCEV *Y,
+                           const Loop *CurrentLoop);
 
-    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
-    /// Things of the form [c1 + a*i] and [c2 + b*j],
-    /// where i and j are induction variable, c1 and c2 are loop invariant,
-    /// and a and b are constants.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Works in some cases that exactRDIVtest doesn't,
-    /// and vice versa. Can also be used as a backup for
-    /// ordinary SIV tests.
-    bool symbolicRDIVtest(const SCEV *SrcCoeff,
-                          const SCEV *DstCoeff,
-                          const SCEV *SrcConst,
-                          const SCEV *DstConst,
-                          const Loop *SrcLoop,
-                          const Loop *DstLoop) const;
-
-    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Can sometimes disprove the equal direction for 1 or more loops.
-    //  Can handle some symbolics that even the SIV tests don't get,
-    /// so we use it as a backup for everything.
-    bool gcdMIVtest(const SCEV *Src,
-                    const SCEV *Dst,
-                    FullDependence &Result) const;
-
-    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
-    /// Returns true if any possible dependence is disproved.
-    /// Marks the result as inconsistent.
-    /// Computes directions.
-    bool banerjeeMIVtest(const SCEV *Src,
-                         const SCEV *Dst,
-                         const SmallBitVector &Loops,
-                         FullDependence &Result) const;
-
-    /// collectCoefficientInfo - Walks through the subscript,
-    /// collecting each coefficient, the associated loop bounds,
-    /// and recording its positive and negative parts for later use.
-    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
-                                      bool SrcFlag,
-                                      const SCEV *&Constant) const;
-
-    /// getPositivePart - X^+ = max(X, 0).
-    ///
-    const SCEV *getPositivePart(const SCEV *X) const;
-
-    /// getNegativePart - X^- = min(X, 0).
-    ///
-    const SCEV *getNegativePart(const SCEV *X) const;
-
-    /// getLowerBound - Looks through all the bounds info and
-    /// computes the lower bound given the current direction settings
-    /// at each level.
-    const SCEV *getLowerBound(BoundInfo *Bound) const;
-
-    /// getUpperBound - Looks through all the bounds info and
-    /// computes the upper bound given the current direction settings
-    /// at each level.
-    const SCEV *getUpperBound(BoundInfo *Bound) const;
-
-    /// exploreDirections - Hierarchically expands the direction vector
-    /// search space, combining the directions of discovered dependences
-    /// in the DirSet field of Bound. Returns the number of distinct
-    /// dependences discovered. If the dependence is disproved,
-    /// it will return 0.
-    unsigned exploreDirections(unsigned Level,
-                               CoefficientInfo *A,
-                               CoefficientInfo *B,
-                               BoundInfo *Bound,
-                               const SmallBitVector &Loops,
-                               unsigned &DepthExpanded,
-                               const SCEV *Delta) const;
-
-    /// testBounds - Returns true iff the current bounds are plausible.
-    bool testBounds(unsigned char DirKind,
-                    unsigned Level,
-                    BoundInfo *Bound,
-                    const SCEV *Delta) const;
-
-    /// findBoundsALL - Computes the upper and lower bounds for level K
-    /// using the * direction. Records them in Bound.
-    void findBoundsALL(CoefficientInfo *A,
-                       CoefficientInfo *B,
-                       BoundInfo *Bound,
-                       unsigned K) const;
-
-    /// findBoundsLT - Computes the upper and lower bounds for level K
-    /// using the < direction. Records them in Bound.
-    void findBoundsLT(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// findBoundsGT - Computes the upper and lower bounds for level K
-    /// using the > direction. Records them in Bound.
-    void findBoundsGT(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// findBoundsEQ - Computes the upper and lower bounds for level K
-    /// using the = direction. Records them in Bound.
-    void findBoundsEQ(CoefficientInfo *A,
-                      CoefficientInfo *B,
-                      BoundInfo *Bound,
-                      unsigned K) const;
-
-    /// intersectConstraints - Updates X with the intersection
-    /// of the Constraints X and Y. Returns true if X has changed.
-    bool intersectConstraints(Constraint *X,
-                              const Constraint *Y);
-
-    /// propagate - Review the constraints, looking for opportunities
-    /// to simplify a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagate(const SCEV *&Src,
-                   const SCEV *&Dst,
-                   SmallBitVector &Loops,
-                   SmallVectorImpl<Constraint> &Constraints,
-                   bool &Consistent);
-
-    /// propagateDistance - Attempt to propagate a distance
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagateDistance(const SCEV *&Src,
-                           const SCEV *&Dst,
-                           Constraint &CurConstraint,
-                           bool &Consistent);
-
-    /// propagatePoint - Attempt to propagate a point
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    bool propagatePoint(const SCEV *&Src,
-                        const SCEV *&Dst,
-                        Constraint &CurConstraint);
-
-    /// propagateLine - Attempt to propagate a line
-    /// constraint into a subscript pair (Src and Dst).
-    /// Return true if some simplification occurs.
-    /// If the simplification isn't exact (that is, if it is conservative
-    /// in terms of dependence), set consistent to false.
-    bool propagateLine(const SCEV *&Src,
-                       const SCEV *&Dst,
-                       Constraint &CurConstraint,
-                       bool &Consistent);
-
-    /// findCoefficient - Given a linear SCEV,
-    /// return the coefficient corresponding to specified loop.
-    /// If there isn't one, return the SCEV constant 0.
-    /// For example, given a*i + b*j + c*k, returning the coefficient
-    /// corresponding to the j loop would yield b.
-    const SCEV *findCoefficient(const SCEV *Expr,
-                                const Loop *TargetLoop) const;
-
-    /// zeroCoefficient - Given a linear SCEV,
-    /// return the SCEV given by zeroing out the coefficient
-    /// corresponding to the specified loop.
-    /// For example, given a*i + b*j + c*k, zeroing the coefficient
-    /// corresponding to the j loop would yield a*i + c*k.
-    const SCEV *zeroCoefficient(const SCEV *Expr,
-                                const Loop *TargetLoop) const;
-
-    /// addToCoefficient - Given a linear SCEV Expr,
-    /// return the SCEV given by adding some Value to the
-    /// coefficient corresponding to the specified TargetLoop.
-    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
-    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
-    const SCEV *addToCoefficient(const SCEV *Expr,
-                                 const Loop *TargetLoop,
-                                 const SCEV *Value)  const;
-
-    /// updateDirection - Update direction vector entry
-    /// based on the current constraint.
-    void updateDirection(Dependence::DVEntry &Level,
-                         const Constraint &CurConstraint) const;
-
-    /// Given a linear access function, tries to recover subscripts
-    /// for each dimension of the array element access.
-    bool tryDelinearize(Instruction *Src, Instruction *Dst,
-                        SmallVectorImpl<Subscript> &Pair);
-
-    /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
-    /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
-    /// delinearize \p Src and \p Dst separately,
-    bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
-                                 const SCEV *SrcAccessFn,
-                                 const SCEV *DstAccessFn,
-                                 SmallVectorImpl<const SCEV *> &SrcSubscripts,
-                                 SmallVectorImpl<const SCEV *> &DstSubscripts);
-
-    /// Tries to delinearize access function for a multi-dimensional array with
-    /// symbolic runtime sizes.
-    /// Returns true upon success and false otherwise.
-    bool tryDelinearizeParametricSize(
-        Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
-        const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
-        SmallVectorImpl<const SCEV *> &DstSubscripts);
-
-    /// checkSubscript - Helper function for checkSrcSubscript and
-    /// checkDstSubscript to avoid duplicate code
-    bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
-                        SmallBitVector &Loops, bool IsSrc);
-  }; // class DependenceInfo
-
-  /// AnalysisPass to compute dependence information in a function
-  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
-  public:
-    typedef DependenceInfo Result;
-    LLVM_ABI Result run(Function &F, FunctionAnalysisManager &FAM);
+    /// setLine - Change a constraint to Line.
+    LLVM_ABI void setLine(const SCEV *A, const SCEV *B, const SCEV *C,
+                          const Loop *CurrentLoop);
 
-  private:
-    LLVM_ABI static AnalysisKey Key;
-    friend struct AnalysisInfoMixin<DependenceAnalysis>;
-  }; // class DependenceAnalysis
+    /// setDistance - Change a constraint to Distance.
+    LLVM_ABI void setDistance(const SCEV *D, const Loop *CurrentLoop);
 
-  /// Printer pass to dump DA results.
-  struct DependenceAnalysisPrinterPass
-      : public PassInfoMixin<DependenceAnalysisPrinterPass> {
-    DependenceAnalysisPrinterPass(raw_ostream &OS,
-                                  bool NormalizeResults = false)
-        : OS(OS), NormalizeResults(NormalizeResults) {}
+    /// setEmpty - Change a constraint to Empty.
+    LLVM_ABI void setEmpty();
 
-    LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
+    /// setAny - Change a constraint to Any.
+    LLVM_ABI void setAny(ScalarEvolution *SE);
 
-    static bool isRequired() { return true; }
+    /// dump - For debugging purposes. Dumps the constraint
+    /// out to OS.
+    LLVM_ABI void dump(raw_ostream &OS) const;
+  };
 
-  private:
-    raw_ostream &OS;
-    bool NormalizeResults;
-  }; // class DependenceAnalysisPrinterPass
+  /// establishNestingLevels - Examines the loop nesting of the Src and Dst
+  /// instructions and establishes their shared loops. Sets the variables
+  /// CommonLevels, SrcLevels, and MaxLevels.
+  /// The source and destination instructions needn't be contained in the same
+  /// loop. The routine establishNestingLevels finds the level of most deeply
+  /// nested loop that contains them both, CommonLevels. An instruction that's
+  /// not contained in a loop is at level = 0. MaxLevels is equal to the level
+  /// of the source plus the level of the destination, minus CommonLevels.
+  /// This lets us allocate vectors MaxLevels in length, with room for every
+  /// distinct loop referenced in both the source and destination subscripts.
+  /// The variable SrcLevels is the nesting depth of the source instruction.
+  /// It's used to help calculate distinct loops referenced by the destination.
+  /// Here's the map from loops to levels:
+  ///            0 - unused
+  ///            1 - outermost common loop
+  ///          ... - other common loops
+  /// CommonLevels - innermost common loop
+  ///          ... - loops containing Src but not Dst
+  ///    SrcLevels - innermost loop containing Src but not Dst
+  ///          ... - loops containing Dst but not Src
+  ///    MaxLevels - innermost loop containing Dst but not Src
+  /// Consider the follow code fragment:
+  ///    for (a = ...) {
+  ///      for (b = ...) {
+  ///        for (c = ...) {
+  ///          for (d = ...) {
+  ///            A[] = ...;
+  ///          }
+  ///        }
+  ///        for (e = ...) {
+  ///          for (f = ...) {
+  ///            for (g = ...) {
+  ///              ... = A[];
+  ///            }
+  ///          }
+  ///        }
+  ///      }
+  ///    }
+  /// If we're looking at the possibility of a dependence between the store
+  /// to A (the Src) and the load from A (the Dst), we'll note that they
+  /// have 2 loops in common, so CommonLevels will equal 2 and the direction
+  /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
+  /// A map from loop names to level indices would look like
+  ///     a - 1
+  ///     b - 2 = CommonLevels
+  ///     c - 3
+  ///     d - 4 = SrcLevels
+  ///     e - 5
+  ///     f - 6
+  ///     g - 7 = MaxLevels
+  void establishNestingLevels(const Instruction *Src, const Instruction *Dst);
+
+  unsigned CommonLevels, SrcLevels, MaxLevels;
+
+  /// mapSrcLoop - Given one of the loops containing the source, return
+  /// its level index in our numbering scheme.
+  unsigned mapSrcLoop(const Loop *SrcLoop) const;
+
+  /// mapDstLoop - Given one of the loops containing the destination,
+  /// return its level index in our numbering scheme.
+  unsigned mapDstLoop(const Loop *DstLoop) const;
+
+  /// isLoopInvariant - Returns true if Expression is loop invariant
+  /// in LoopNest.
+  bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
+
+  /// Makes sure all subscript pairs share the same integer type by
+  /// sign-extending as necessary.
+  /// Sign-extending a subscript is safe because getelementptr assumes the
+  /// array subscripts are signed.
+  void unifySubscriptType(ArrayRef<Subscript *> Pairs);
+
+  /// removeMatchingExtensions - Examines a subscript pair.
+  /// If the source and destination are identically sign (or zero)
+  /// extended, it strips off the extension in an effort to
+  /// simplify the actual analysis.
+  void removeMatchingExtensions(Subscript *Pair);
+
+  /// collectCommonLoops - Finds the set of loops from the LoopNest that
+  /// have a level <= CommonLevels and are referred to by the SCEV Expression.
+  void collectCommonLoops(const SCEV *Expression, const Loop *LoopNest,
+                          SmallBitVector &Loops) const;
+
+  /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
+  /// linear. Collect the set of loops mentioned by Src.
+  bool checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
+                         SmallBitVector &Loops);
+
+  /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
+  /// linear. Collect the set of loops mentioned by Dst.
+  bool checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
+                         SmallBitVector &Loops);
+
+  /// isKnownPredicate - Compare X and Y using the predicate Pred.
+  /// Basically a wrapper for SCEV::isKnownPredicate,
+  /// but tries harder, especially in the presence of sign and zero
+  /// extensions and symbolics.
+  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
+                        const SCEV *Y) const;
+
+  /// isKnownLessThan - Compare to see if S is less than Size
+  /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
+  /// checking if S is an AddRec and we can prove lessthan using the loop
+  /// bounds.
+  bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
+
+  /// isKnownNonNegative - Compare to see if S is known not to be negative
+  /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
+  /// Proving there is no wrapping going on.
+  bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
+
+  /// collectUpperBound - All subscripts are the same type (on my machine,
+  /// an i64). The loop bound may be a smaller type. collectUpperBound
+  /// find the bound, if available, and zero extends it to the Type T.
+  /// (I zero extend since the bound should always be >= 0.)
+  /// If no upper bound is available, return NULL.
+  const SCEV *collectUpperBound(const Loop *l, Type *T) const;
+
+  /// collectConstantUpperBound - Calls collectUpperBound(), then
+  /// attempts to cast it to SCEVConstant. If the cast fails,
+  /// returns NULL.
+  const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
+
+  /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
+  /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
+  /// Collects the associated loops in a set.
+  Subscript::ClassificationKind
+  classifyPair(const SCEV *Src, const Loop *SrcLoopNest, const SCEV *Dst,
+               const Loop *DstLoopNest, SmallBitVector &Loops);
+
+  /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// If the dependence isn't proven to exist,
+  /// marks the Result as inconsistent.
+  bool testZIV(const SCEV *Src, const SCEV *Dst, FullDependence &Result) const;
+
+  /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
+  /// i and j are induction variables, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction vector entry and, when possible,
+  /// the distance vector entry.
+  /// If the dependence isn't proven to exist,
+  /// marks the Result as inconsistent.
+  bool testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
+               FullDependence &Result, Constraint &NewConstraint,
+               const SCEV *&SplitIter) const;
+
+  /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*j]
+  /// where i and j are induction variables, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// With minor algebra, this test can also be used for things like
+  /// [c1 + a1*i + a2*j][c2].
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Marks the Result as inconsistent.
+  bool testRDIV(const SCEV *Src, const SCEV *Dst, FullDependence &Result) const;
+
+  /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
+  /// Returns true if dependence disproved.
+  /// Can sometimes refine direction vectors.
+  bool testMIV(const SCEV *Src, const SCEV *Dst, const SmallBitVector &Loops,
+               FullDependence &Result) const;
+
+  /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
+  /// for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction and distance.
+  bool strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
+                     const SCEV *DstConst, const Loop *CurrentLoop,
+                     unsigned Level, FullDependence &Result,
+                     Constraint &NewConstraint) const;
+
+  /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a*i] and [c2 - a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// Marks the dependence as splitable.
+  bool weakCrossingSIVtest(const SCEV *SrcCoeff, const SCEV *SrcConst,
+                           const SCEV *DstConst, const Loop *CurrentLoop,
+                           unsigned Level, FullDependence &Result,
+                           Constraint &NewConstraint,
+                           const SCEV *&SplitIter) const;
+
+  /// ExactSIVtest - Tests the SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a1*i] and [c2 + a2*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a1 and a2 are constant.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  bool exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                    const SCEV *SrcConst, const SCEV *DstConst,
+                    const Loop *CurrentLoop, unsigned Level,
+                    FullDependence &Result, Constraint &NewConstraint) const;
+
+  /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1] and [c2 + a*i],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant. See also weakZeroDstSIVtest.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// If loop peeling will break the dependence, mark appropriately.
+  bool weakZeroSrcSIVtest(const SCEV *DstCoeff, const SCEV *SrcConst,
+                          const SCEV *DstConst, const Loop *CurrentLoop,
+                          unsigned Level, FullDependence &Result,
+                          Constraint &NewConstraint) const;
+
+  /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
+  /// (Src and Dst) for dependence.
+  /// Things of the form [c1 + a*i] and [c2],
+  /// where i is an induction variable, c1 and c2 are loop invariant,
+  /// and a is a constant. See also weakZeroSrcSIVtest.
+  /// Returns true if any possible dependence is disproved.
+  /// If there might be a dependence, returns false.
+  /// Sets appropriate direction entry.
+  /// Set consistent to false.
+  /// If loop peeling will break the dependence, mark appropriately.
+  bool weakZeroDstSIVtest(const SCEV *SrcCoeff, const SCEV *SrcConst,
+                          const SCEV *DstConst, const Loop *CurrentLoop,
+                          unsigned Level, FullDependence &Result,
+                          Constraint &NewConstraint) const;
+
+  /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + b*j],
+  /// where i and j are induction variable, c1 and c2 are loop invariant,
+  /// and a and b are constants.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Works in some cases that symbolicRDIVtest doesn't,
+  /// and vice versa.
+  bool exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                     const SCEV *SrcConst, const SCEV *DstConst,
+                     const Loop *SrcLoop, const Loop *DstLoop,
+                     FullDependence &Result) const;
+
+  /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
+  /// Things of the form [c1 + a*i] and [c2 + b*j],
+  /// where i and j are induction variable, c1 and c2 are loop invariant,
+  /// and a and b are constants.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Works in some cases that exactRDIVtest doesn't,
+  /// and vice versa. Can also be used as a backup for
+  /// ordinary SIV tests.
+  bool symbolicRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
+                        const SCEV *SrcConst, const SCEV *DstConst,
+                        const Loop *SrcLoop, const Loop *DstLoop) const;
+
+  /// gcdMIVtest - Tests an MIV subscript pair for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Can sometimes disprove the equal direction for 1 or more loops.
+  //  Can handle some symbolics that even the SIV tests don't get,
+  /// so we use it as a backup for everything.
+  bool gcdMIVtest(const SCEV *Src, const SCEV *Dst,
+                  FullDependence &Result) const;
 
-  /// Legacy pass manager pass to access dependence information
-  class LLVM_ABI DependenceAnalysisWrapperPass : public FunctionPass {
-  public:
-    static char ID; // Class identification, replacement for typeinfo
-    DependenceAnalysisWrapperPass();
+  /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
+  /// Returns true if any possible dependence is disproved.
+  /// Marks the result as inconsistent.
+  /// Computes directions.
+  bool banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
+                       const SmallBitVector &Loops,
+                       FullDependence &Result) const;
 
-    bool runOnFunction(Function &F) override;
-    void releaseMemory() override;
-    void getAnalysisUsage(AnalysisUsage &) const override;
-    void print(raw_ostream &, const Module * = nullptr) const override;
-    DependenceInfo &getDI() const;
+  /// collectCoefficientInfo - Walks through the subscript,
+  /// collecting each coefficient, the associated loop bounds,
+  /// and recording its positive and negative parts for later use.
+  CoefficientInfo *collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
+                                    const SCEV *&Constant) const;
 
-  private:
-    std::unique_ptr<DependenceInfo> info;
-  }; // class DependenceAnalysisWrapperPass
+  /// getPositivePart - X^+ = max(X, 0).
+  ///
+  const SCEV *getPositivePart(const SCEV *X) const;
 
-  /// createDependenceAnalysisPass - This creates an instance of the
-  /// DependenceAnalysis wrapper pass.
-  LLVM_ABI FunctionPass *createDependenceAnalysisWrapperPass();
+  /// getNegativePart - X^- = min(X, 0).
+  ///
+  const SCEV *getNegativePart(const SCEV *X) const;
+
+  /// getLowerBound - Looks through all the bounds info and
+  /// computes the lower bound given the current direction settings
+  /// at each level.
+  const SCEV *getLowerBound(BoundInfo *Bound) const;
+
+  /// getUpperBound - Looks through all the bounds info and
+  /// computes the upper bound given the current direction settings
+  /// at each level.
+  const SCEV *getUpperBound(BoundInfo *Bound) const;
+
+  /// exploreDirections - Hierarchically expands the direction vector
+  /// search space, combining the directions of discovered dependences
+  /// in the DirSet field of Bound. Returns the number of distinct
+  /// dependences discovered. If the dependence is disproved,
+  /// it will return 0.
+  unsigned exploreDirections(unsigned Level, CoefficientInfo *A,
+                             CoefficientInfo *B, BoundInfo *Bound,
+                             const SmallBitVector &Loops,
+                             unsigned &DepthExpanded, const SCEV *Delta) const;
+
+  /// testBounds - Returns true iff the current bounds are plausible.
+  bool testBounds(unsigned char DirKind, unsigned Level, BoundInfo *Bound,
+                  const SCEV *Delta) const;
+
+  /// findBoundsALL - Computes the upper and lower bounds for level K
+  /// using the * direction. Records them in Bound.
+  void findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, BoundInfo *Bound,
+                     unsigned K) const;
+
+  /// findBoundsLT - Computes the upper and lower bounds for level K
+  /// using the < direction. Records them in Bound.
+  void findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, BoundInfo *Bound,
+                    unsigned K) const;
+
+  /// findBoundsGT - Computes the upper and lower bounds for level K
+  /// using the > direction. Records them in Bound.
+  void findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, BoundInfo *Bound,
+                    unsigned K) const;
+
+  /// findBoundsEQ - Computes the upper and lower bounds for level K
+  /// using the = direction. Records them in Bound.
+  void findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, BoundInfo *Bound,
+                    unsigned K) const;
+
+  /// intersectConstraints - Updates X with the intersection
+  /// of the Constraints X and Y. Returns true if X has changed.
+  bool intersectConstraints(Constraint *X, const Constraint *Y);
+
+  /// propagate - Review the constraints, looking for opportunities
+  /// to simplify a subscript pair (Src and Dst).
+  /// Return true if some simplification occurs.
+  /// If the simplification isn't exact (that is, if it is conservative
+  /// in terms of dependence), set consistent to false.
+  bool propagate(const SCEV *&Src, const SCEV *&Dst, SmallBitVector &Loops,
+                 SmallVectorImpl<Constraint> &Constraints, bool &Consistent);
+
+  /// propagateDistance - Attempt to propagate a distance
+  /// constraint into a subscript pair (Src and Dst).
+  /// Return true if some simplification occurs.
+  /// If the simplification isn't exact (that is, if it is conservative
+  /// in terms of dependence), set consistent to false.
+  bool propagateDistance(const SCEV *&Src, const SCEV *&Dst,
+                         Constraint &CurConstraint, bool &Consistent);
+
+  /// propagatePoint - Attempt to propagate a point
+  /// constraint into a subscript pair (Src and Dst).
+  /// Return true if some simplification occurs.
+  bool propagatePoint(const SCEV *&Src, const SCEV *&Dst,
+                      Constraint &CurConstraint);
+
+  /// propagateLine - Attempt to propagate a line
+  /// constraint into a subscript pair (Src and Dst).
+  /// Return true if some simplification occurs.
+  /// If the simplification isn't exact (that is, if it is conservative
+  /// in terms of dependence), set consistent to false.
+  bool propagateLine(const SCEV *&Src, const SCEV *&Dst,
+                     Constraint &CurConstraint, bool &Consistent);
+
+  /// findCoefficient - Given a linear SCEV,
+  /// return the coefficient corresponding to specified loop.
+  /// If there isn't one, return the SCEV constant 0.
+  /// For example, given a*i + b*j + c*k, returning the coefficient
+  /// corresponding to the j loop would yield b.
+  const SCEV *findCoefficient(const SCEV *Expr, const Loop *TargetLoop) const;
+
+  /// zeroCoefficient - Given a linear SCEV,
+  /// return the SCEV given by zeroing out the coefficient
+  /// corresponding to the specified loop.
+  /// For example, given a*i + b*j + c*k, zeroing the coefficient
+  /// corresponding to the j loop would yield a*i + c*k.
+  const SCEV *zeroCoefficient(const SCEV *Expr, const Loop *TargetLoop) const;
+
+  /// addToCoefficient - Given a linear SCEV Expr,
+  /// return the SCEV given by adding some Value to the
+  /// coefficient corresponding to the specified TargetLoop.
+  /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
+  /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
+  const SCEV *addToCoefficient(const SCEV *Expr, const Loop *TargetLoop,
+                               const SCEV *Value) const;
+
+  /// updateDirection - Update direction vector entry
+  /// based on the current constraint.
+  void updateDirection(Dependence::DVEntry &Level,
+                       const Constraint &CurConstraint) const;
+
+  /// Given a linear access function, tries to recover subscripts
+  /// for each dimension of the array element access.
+  bool tryDelinearize(Instruction *Src, Instruction *Dst,
+                      SmallVectorImpl<Subscript> &Pair);
+
+  /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
+  /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
+  /// delinearize \p Src and \p Dst separately,
+  bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
+                               const SCEV *SrcAccessFn, const SCEV *DstAccessFn,
+                               SmallVectorImpl<const SCEV *> &SrcSubscripts,
+                               SmallVectorImpl<const SCEV *> &DstSubscripts);
+
+  /// Tries to delinearize access function for a multi-dimensional array with
+  /// symbolic runtime sizes.
+  /// Returns true upon success and false otherwise.
+  bool
+  tryDelinearizeParametricSize(Instruction *Src, Instruction *Dst,
+                               const SCEV *SrcAccessFn, const SCEV *DstAccessFn,
+                               SmallVectorImpl<const SCEV *> &SrcSubscripts,
+                               SmallVectorImpl<const SCEV *> &DstSubscripts);
+
+  /// checkSubscript - Helper function for checkSrcSubscript and
+  /// checkDstSubscript to avoid duplicate code
+  bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
+                      SmallBitVector &Loops, bool IsSrc);
+}; // class DependenceInfo
+
+/// AnalysisPass to compute dependence information in a function
+class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
+public:
+  typedef DependenceInfo Result;
+  LLVM_ABI Result run(Function &F, FunctionAnalysisManager &FAM);
+
+private:
+  LLVM_ABI static AnalysisKey Key;
+  friend struct AnalysisInfoMixin<DependenceAnalysis>;
+}; // class DependenceAnalysis
+
+/// Printer pass to dump DA results.
+struct DependenceAnalysisPrinterPass
+    : public PassInfoMixin<DependenceAnalysisPrinterPass> {
+  DependenceAnalysisPrinterPass(raw_ostream &OS, bool NormalizeResults = false)
+      : OS(OS), NormalizeResults(NormalizeResults) {}
+
+  LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
+
+  static bool isRequired() { return true; }
+
+private:
+  raw_ostream &OS;
+  bool NormalizeResults;
+}; // class DependenceAnalysisPrinterPass
+
+/// Legacy pass manager pass to access dependence information
+class LLVM_ABI DependenceAnalysisWrapperPass : public FunctionPass {
+public:
+  static char ID; // Class identification, replacement for typeinfo
+  DependenceAnalysisWrapperPass();
+
+  bool runOnFunction(Function &F) override;
+  void releaseMemory() override;
+  void getAnalysisUsage(AnalysisUsage &) const override;
+  void print(raw_ostream &, const Module * = nullptr) const override;
+  DependenceInfo &getDI() const;
+
+private:
+  std::unique_ptr<DependenceInfo> info;
+}; // class DependenceAnalysisWrapperPass
+
+/// createDependenceAnalysisPass - This creates an instance of the
+/// DependenceAnalysis wrapper pass.
+LLVM_ABI FunctionPass *createDependenceAnalysisWrapperPass();
 
 } // namespace llvm
 
diff --git a/llvm/lib/Analysis/DependenceAnalysis.cpp b/llvm/lib/Analysis/DependenceAnalysis.cpp
index f1473b2694ca4..e96cb93f8fb15 100644
--- a/llvm/lib/Analysis/DependenceAnalysis.cpp
+++ b/llvm/lib/Analysis/DependenceAnalysis.cpp
@@ -180,8 +180,8 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
        ++SrcI) {
     if (SrcI->mayReadOrWriteMemory()) {
-      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
-           DstI != DstE; ++DstI) {
+      for (inst_iterator DstI = SrcI, DstE = inst_end(F); DstI != DstE;
+           ++DstI) {
         if (DstI->mayReadOrWriteMemory()) {
           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
           OS << "  da analyze - ";
@@ -203,7 +203,7 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
 
             // Normalize negative direction vectors if required by clients.
             if (NormalizeResults && D->normalize(&SE))
-                OS << "normalized - ";
+              OS << "normalized - ";
             D->dump(OS);
             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
               if (D->isSplitable(Level)) {
@@ -227,8 +227,8 @@ static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
 
 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
                                           const Module *) const {
-  dumpExampleDependence(OS, info.get(),
-                        getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
+  dumpExampleDependence(
+      OS, info.get(), getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
 }
 
 PreservedAnalyses
@@ -249,33 +249,26 @@ bool Dependence::isInput() const {
   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
 }
 
-
 // Returns true if this is an output dependence.
 bool Dependence::isOutput() const {
   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
 }
 
-
 // Returns true if this is an flow (aka true)  dependence.
 bool Dependence::isFlow() const {
   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
 }
 
-
 // Returns true if this is an anti dependence.
 bool Dependence::isAnti() const {
   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
 }
 
-
 // Returns true if a particular level is scalar; that is,
 // if no subscript in the source or destination mention the induction
 // variable associated with the loop at this level.
 // Leave this out of line, so it will serve as a virtual method anchor
-bool Dependence::isScalar(unsigned level) const {
-  return false;
-}
-
+bool Dependence::isScalar(unsigned level) const { return false; }
 
 //===----------------------------------------------------------------------===//
 // FullDependence methods
@@ -338,8 +331,7 @@ bool FullDependence::normalize(ScalarEvolution *SE) {
     DV[Level - 1].Direction = RevDirection;
     // Reverse the dependence distance as well.
     if (DV[Level - 1].Distance != nullptr)
-      DV[Level - 1].Distance =
-          SE->getNegativeSCEV(DV[Level - 1].Distance);
+      DV[Level - 1].Distance = SE->getNegativeSCEV(DV[Level - 1].Distance);
   }
 
   LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
@@ -355,14 +347,12 @@ unsigned FullDependence::getDirection(unsigned Level) const {
   return DV[Level - 1].Direction;
 }
 
-
 // Returns the distance (or NULL) associated with a particular level.
 const SCEV *FullDependence::getDistance(unsigned Level) const {
   assert(0 < Level && Level <= Levels && "Level out of range");
   return DV[Level - 1].Distance;
 }
 
-
 // Returns true if a particular level is scalar; that is,
 // if no subscript in the source or destination mention the induction
 // variable associated with the loop at this level.
@@ -371,7 +361,6 @@ bool FullDependence::isScalar(unsigned Level) const {
   return DV[Level - 1].Scalar;
 }
 
-
 // Returns true if peeling the first iteration from this loop
 // will break this dependence.
 bool FullDependence::isPeelFirst(unsigned Level) const {
@@ -379,7 +368,6 @@ bool FullDependence::isPeelFirst(unsigned Level) const {
   return DV[Level - 1].PeelFirst;
 }
 
-
 // Returns true if peeling the last iteration from this loop
 // will break this dependence.
 bool FullDependence::isPeelLast(unsigned Level) const {
@@ -387,14 +375,12 @@ bool FullDependence::isPeelLast(unsigned Level) const {
   return DV[Level - 1].PeelLast;
 }
 
-
 // Returns true if splitting this loop will break the dependence.
 bool FullDependence::isSplitable(unsigned Level) const {
   assert(0 < Level && Level <= Levels && "Level out of range");
   return DV[Level - 1].Splitable;
 }
 
-
 //===----------------------------------------------------------------------===//
 // DependenceInfo::Constraint methods
 
@@ -405,7 +391,6 @@ const SCEV *DependenceInfo::Constraint::getX() const {
   return A;
 }
 
-
 // If constraint is a point <X, Y>, returns Y.
 // Otherwise assert.
 const SCEV *DependenceInfo::Constraint::getY() const {
@@ -413,7 +398,6 @@ const SCEV *DependenceInfo::Constraint::getY() const {
   return B;
 }
 
-
 // If constraint is a line AX + BY = C, returns A.
 // Otherwise assert.
 const SCEV *DependenceInfo::Constraint::getA() const {
@@ -422,7 +406,6 @@ const SCEV *DependenceInfo::Constraint::getA() const {
   return A;
 }
 
-
 // If constraint is a line AX + BY = C, returns B.
 // Otherwise assert.
 const SCEV *DependenceInfo::Constraint::getB() const {
@@ -431,7 +414,6 @@ const SCEV *DependenceInfo::Constraint::getB() const {
   return B;
 }
 
-
 // If constraint is a line AX + BY = C, returns C.
 // Otherwise assert.
 const SCEV *DependenceInfo::Constraint::getC() const {
@@ -440,7 +422,6 @@ const SCEV *DependenceInfo::Constraint::getC() const {
   return C;
 }
 
-
 // If constraint is a distance, returns D.
 // Otherwise assert.
 const SCEV *DependenceInfo::Constraint::getD() const {
@@ -448,7 +429,6 @@ const SCEV *DependenceInfo::Constraint::getD() const {
   return SE->getNegativeSCEV(C);
 }
 
-
 // Returns the loop associated with this constraint.
 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
   assert((Kind == Distance || Kind == Line || Kind == Point) &&
@@ -499,17 +479,16 @@ LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
   else if (isPoint())
     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
   else if (isDistance())
-    OS << " Distance is " << *getD() <<
-      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
+    OS << " Distance is " << *getD() << " (" << *getA() << "*X + " << *getB()
+       << "*Y = " << *getC() << ")\n";
   else if (isLine())
-    OS << " Line is " << *getA() << "*X + " <<
-      *getB() << "*Y = " << *getC() << "\n";
+    OS << " Line is " << *getA() << "*X + " << *getB() << "*Y = " << *getC()
+       << "\n";
   else
     llvm_unreachable("unknown constraint type in Constraint::dump");
 }
 #endif
 
-
 // Updates X with the intersection
 // of the Constraints X and Y. Returns true if X has changed.
 // Corresponds to Figure 4 from the paper
@@ -591,15 +570,14 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
       const SCEVConstant *C1A2_C2A1 =
-        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
+          dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
       const SCEVConstant *C1B2_C2B1 =
-        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
+          dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
       const SCEVConstant *A1B2_A2B1 =
-        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
+          dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
       const SCEVConstant *A2B1_A1B2 =
-        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
-      if (!C1B2_C2B1 || !C1A2_C2A1 ||
-          !A1B2_A2B1 || !A2B1_A1B2)
+          dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
+      if (!C1B2_C2B1 || !C1A2_C2A1 || !A1B2_A2B1 || !A2B1_A1B2)
         return false;
       APInt Xtop = C1B2_C2B1->getAPInt();
       APInt Xbot = A1B2_A2B1->getAPInt();
@@ -626,8 +604,8 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
         ++DeltaSuccesses;
         return true;
       }
-      if (const SCEVConstant *CUB =
-          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
+      if (const SCEVConstant *CUB = collectConstantUpperBound(
+              X->getAssociatedLoop(), Prod1->getType())) {
         const APInt &UpperBound = CUB->getAPInt();
         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
@@ -636,8 +614,7 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
           return true;
         }
       }
-      X->setPoint(SE->getConstant(Xq),
-                  SE->getConstant(Yq),
+      X->setPoint(SE->getConstant(Xq), SE->getConstant(Yq),
                   X->getAssociatedLoop());
       ++DeltaSuccesses;
       return true;
@@ -667,7 +644,6 @@ bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
   return false;
 }
 
-
 //===----------------------------------------------------------------------===//
 // DependenceInfo methods
 
@@ -737,8 +713,7 @@ void Dependence::dump(raw_ostream &OS) const {
 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
 // Otherwise the underlying objects are checked to see if they point to
 // different identifiable objects.
-static AliasResult underlyingObjectsAlias(AAResults *AA,
-                                          const DataLayout &DL,
+static AliasResult underlyingObjectsAlias(AAResults *AA, const DataLayout &DL,
                                           const MemoryLocation &LocA,
                                           const MemoryLocation &LocB) {
   // Check the original locations (minus size) for noalias, which can happen for
@@ -773,8 +748,7 @@ static AliasResult underlyingObjectsAlias(AAResults *AA,
 
 // Returns true if the load or store can be analyzed. Atomic and volatile
 // operations have properties which this analysis does not understand.
-static
-bool isLoadOrStore(const Instruction *I) {
+static bool isLoadOrStore(const Instruction *I) {
   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
     return LI->isUnordered();
   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
@@ -782,7 +756,6 @@ bool isLoadOrStore(const Instruction *I) {
   return false;
 }
 
-
 // Examines the loop nesting of the Src and Dst
 // instructions and establishes their shared loops. Sets the variables
 // CommonLevels, SrcLevels, and MaxLevels.
@@ -860,14 +833,12 @@ void DependenceInfo::establishNestingLevels(const Instruction *Src,
   MaxLevels -= CommonLevels;
 }
 
-
 // Given one of the loops containing the source, return
 // its level index in our numbering scheme.
 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
   return SrcLoop->getLoopDepth();
 }
 
-
 // Given one of the loops containing the destination,
 // return its level index in our numbering scheme.
 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
@@ -880,7 +851,6 @@ unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
     return D;
 }
 
-
 // Returns true if Expression is loop invariant in LoopNest.
 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
                                      const Loop *LoopNest) const {
@@ -896,8 +866,6 @@ bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
   return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
 }
 
-
-
 // Finds the set of loops from the LoopNest that
 // have a level <= CommonLevels and are referred to by the SCEV Expression.
 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
@@ -924,9 +892,9 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
     if (SrcTy == nullptr || DstTy == nullptr) {
-      assert(SrcTy == DstTy && "This function only unify integer types and "
-             "expect Src and Dst share the same type "
-             "otherwise.");
+      assert(SrcTy == DstTy &&
+             "This function only unify integer types and "
+             "expect Src and Dst share the same type otherwise.");
       continue;
     }
     if (SrcTy->getBitWidth() > widestWidthSeen) {
@@ -939,7 +907,6 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
     }
   }
 
-
   assert(widestWidthSeen > 0);
 
   // Now extend each pair to the widest seen.
@@ -949,9 +916,9 @@ void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
     if (SrcTy == nullptr || DstTy == nullptr) {
-      assert(SrcTy == DstTy && "This function only unify integer types and "
-             "expect Src and Dst share the same type "
-             "otherwise.");
+      assert(SrcTy == DstTy &&
+             "This function only unify integer types and "
+             "expect Src and Dst share the same type otherwise.");
       continue;
     }
     if (SrcTy->getBitWidth() < widestWidthSeen)
@@ -1028,7 +995,6 @@ bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
   return checkSubscript(Dst, LoopNest, Loops, false);
 }
 
-
 // Examines the subscript pair (the Src and Dst SCEVs)
 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
 // Collects the associated loops in a set.
@@ -1049,14 +1015,12 @@ DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
     return Subscript::ZIV;
   if (N == 1)
     return Subscript::SIV;
-  if (N == 2 && (SrcLoops.count() == 0 ||
-                 DstLoops.count() == 0 ||
+  if (N == 2 && (SrcLoops.count() == 0 || DstLoops.count() == 0 ||
                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
     return Subscript::RDIV;
   return Subscript::MIV;
 }
 
-
 // A wrapper around SCEV::isKnownPredicate.
 // Looks for cases where we're interested in comparing for equality.
 // If both X and Y have been identically sign or zero extended,
@@ -1069,12 +1033,9 @@ DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
 // involving symbolics.
 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
                                       const SCEV *Y) const {
-  if (Pred == CmpInst::ICMP_EQ ||
-      Pred == CmpInst::ICMP_NE) {
-    if ((isa<SCEVSignExtendExpr>(X) &&
-         isa<SCEVSignExtendExpr>(Y)) ||
-        (isa<SCEVZeroExtendExpr>(X) &&
-         isa<SCEVZeroExtendExpr>(Y))) {
+  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+    if ((isa<SCEVSignExtendExpr>(X) && isa<SCEVSignExtendExpr>(Y)) ||
+        (isa<SCEVZeroExtendExpr>(X) && isa<SCEVZeroExtendExpr>(Y))) {
       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
       const SCEV *Xop = CX->getOperand();
@@ -1111,7 +1072,10 @@ bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
   }
 }
 
-/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
+/// Compare to see if S is less than Size, using
+///
+///    isKnownNegative(S - max(Size, 1))
+///
 /// with some extra checking if S is an AddRec and we can prove less-than using
 /// the loop bounds.
 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
@@ -1178,7 +1142,6 @@ const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
   return nullptr;
 }
 
-
 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
 // If the cast fails, returns NULL.
 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
@@ -1188,7 +1151,6 @@ const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
   return nullptr;
 }
 
-
 // testZIV -
 // When we have a pair of subscripts of the form [c1] and [c2],
 // where c1 and c2 are both loop invariant, we attack it using
@@ -1218,7 +1180,6 @@ bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
   return false; // possibly dependent
 }
 
-
 // strongSIVtest -
 // From the paper, Practical Dependence Testing, Section 4.2.1
 //
@@ -1270,9 +1231,9 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
     const SCEV *AbsDelta =
-      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
+        SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
     const SCEV *AbsCoeff =
-      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
+        SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
       // Distance greater than trip count - no dependence
@@ -1286,7 +1247,7 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
-    APInt Distance  = ConstDelta; // these need to be initialized
+    APInt Distance = ConstDelta; // these need to be initialized
     APInt Remainder = ConstDelta;
     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
@@ -1307,29 +1268,25 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
     else
       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
     ++StrongSIVsuccesses;
-  }
-  else if (Delta->isZero()) {
+  } else if (Delta->isZero()) {
     // since 0/X == 0
     Result.DV[Level].Distance = Delta;
     NewConstraint.setDistance(Delta, CurLoop);
     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
     ++StrongSIVsuccesses;
-  }
-  else {
+  } else {
     if (Coeff->isOne()) {
       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
       Result.DV[Level].Distance = Delta; // since X/1 == X
       NewConstraint.setDistance(Delta, CurLoop);
-    }
-    else {
+    } else {
       Result.Consistent = false;
-      NewConstraint.setLine(Coeff,
-                            SE->getNegativeSCEV(Coeff),
+      NewConstraint.setLine(Coeff, SE->getNegativeSCEV(Coeff),
                             SE->getNegativeSCEV(Delta), CurLoop);
     }
 
     // maybe we can get a useful direction
-    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
+    bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
@@ -1353,7 +1310,6 @@ bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
   return false;
 }
 
-
 // weakCrossingSIVtest -
 // From the paper, Practical Dependence Testing, Section 4.2.2
 //
@@ -1447,8 +1403,8 @@ bool DependenceInfo::weakCrossingSIVtest(
   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
-    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
-                                    ConstantTwo);
+    const SCEV *ML =
+        SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), ConstantTwo);
     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
       // Delta too big, no dependence
@@ -1498,7 +1454,6 @@ bool DependenceInfo::weakCrossingSIVtest(
   return false;
 }
 
-
 // Kirch's algorithm, from
 //
 //        Optimizing Supercompilers for Supercomputers
@@ -1519,9 +1474,14 @@ static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
   APInt R = G0;
   APInt::sdivrem(G0, G1, Q, R);
   while (R != 0) {
-    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
-    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
-    G0 = G1; G1 = R;
+    APInt A2 = A0 - Q * A1;
+    A0 = A1;
+    A1 = A2;
+    APInt B2 = B0 - Q * B1;
+    B0 = B1;
+    B1 = B2;
+    G0 = G1;
+    G1 = R;
     APInt::sdivrem(G0, G1, Q, R);
   }
   G = G1;
@@ -1543,8 +1503,7 @@ static APInt floorOfQuotient(const APInt &A, const APInt &B) {
   APInt::sdivrem(A, B, Q, R);
   if (R == 0)
     return Q;
-  if ((A.sgt(0) && B.sgt(0)) ||
-      (A.slt(0) && B.slt(0)))
+  if ((A.sgt(0) && B.sgt(0)) || (A.slt(0) && B.slt(0)))
     return Q;
   else
     return Q - 1;
@@ -1556,8 +1515,7 @@ static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
   APInt::sdivrem(A, B, Q, R);
   if (R == 0)
     return Q;
-  if ((A.sgt(0) && B.sgt(0)) ||
-      (A.slt(0) && B.slt(0)))
+  if ((A.sgt(0) && B.sgt(0)) || (A.slt(0) && B.slt(0)))
     return Q + 1;
   else
     return Q;
@@ -1733,17 +1691,14 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
 }
 
-
 // Return true if the divisor evenly divides the dividend.
-static
-bool isRemainderZero(const SCEVConstant *Dividend,
-                     const SCEVConstant *Divisor) {
+static bool isRemainderZero(const SCEVConstant *Dividend,
+                            const SCEVConstant *Divisor) {
   const APInt &ConstDividend = Dividend->getAPInt();
   const APInt &ConstDivisor = Divisor->getAPInt();
   return ConstDividend.srem(ConstDivisor) == 0;
 }
 
-
 // weakZeroSrcSIVtest -
 // From the paper, Practical Dependence Testing, Section 4.2.2
 //
@@ -1807,11 +1762,11 @@ bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   if (!ConstCoeff)
     return false;
-  const SCEV *AbsCoeff =
-    SE->isKnownNegative(ConstCoeff) ?
-    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
+  const SCEV *AbsCoeff = SE->isKnownNegative(ConstCoeff)
+                             ? SE->getNegativeSCEV(ConstCoeff)
+                             : ConstCoeff;
   const SCEV *NewDelta =
-    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
+      SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 
   // check that Delta/SrcCoeff < iteration count
   // really check NewDelta < count*AbsCoeff
@@ -1853,7 +1808,6 @@ bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   return false;
 }
 
-
 // weakZeroDstSIVtest -
 // From the paper, Practical Dependence Testing, Section 4.2.2
 //
@@ -1916,11 +1870,11 @@ bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   if (!ConstCoeff)
     return false;
-  const SCEV *AbsCoeff =
-    SE->isKnownNegative(ConstCoeff) ?
-    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
+  const SCEV *AbsCoeff = SE->isKnownNegative(ConstCoeff)
+                             ? SE->getNegativeSCEV(ConstCoeff)
+                             : ConstCoeff;
   const SCEV *NewDelta =
-    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
+      SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 
   // check that Delta/SrcCoeff < iteration count
   // really check NewDelta < count*AbsCoeff
@@ -1962,7 +1916,6 @@ bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   return false;
 }
 
-
 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
 // Things of the form [c1 + a*i] and [c2 + b*j],
 // where i and j are induction variable, c1 and c2 are loop invariant,
@@ -2084,7 +2037,6 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   return TL.sgt(TU);
 }
 
-
 // symbolicRDIVtest -
 // In Section 4.5 of the Practical Dependence Testing paper,the authors
 // introduce a special case of Banerjee's Inequalities (also called the
@@ -2167,8 +2119,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
           return true;
         }
       }
-    }
-    else if (SE->isKnownNonPositive(A2)) {
+    } else if (SE->isKnownNonPositive(A2)) {
       // a1 >= 0 && a2 <= 0
       if (N1 && N2) {
         // make sure that c2 - c1 <= a1*N1 - a2*N2
@@ -2187,8 +2138,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
         return true;
       }
     }
-  }
-  else if (SE->isKnownNonPositive(A1)) {
+  } else if (SE->isKnownNonPositive(A1)) {
     if (SE->isKnownNonNegative(A2)) {
       // a1 <= 0 && a2 >= 0
       if (N1 && N2) {
@@ -2207,8 +2157,7 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
         ++SymbolicRDIVindependence;
         return true;
       }
-    }
-    else if (SE->isKnownNonPositive(A2)) {
+    } else if (SE->isKnownNonPositive(A2)) {
       // a1 <= 0 && a2 <= 0
       if (N1) {
         // make sure that a1*N1 <= c2 - c1
@@ -2233,7 +2182,6 @@ bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
   return false;
 }
 
-
 // testSIV -
 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
@@ -2260,17 +2208,17 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
     Level = mapSrcLoop(CurLoop);
     bool disproven;
     if (SrcCoeff == DstCoeff)
-      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
-                                Level, Result, NewConstraint);
+      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, Level,
+                                Result, NewConstraint);
     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                                       Level, Result, NewConstraint, SplitIter);
     else
       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
                                Level, Result, NewConstraint);
-    return disproven ||
-      gcdMIVtest(Src, Dst, Result) ||
-      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
+    return disproven || gcdMIVtest(Src, Dst, Result) ||
+           symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
+                            CurLoop);
   }
   if (SrcAddRec) {
     const SCEV *SrcConst = SrcAddRec->getStart();
@@ -2278,9 +2226,9 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
     const SCEV *DstConst = Dst;
     const Loop *CurLoop = SrcAddRec->getLoop();
     Level = mapSrcLoop(CurLoop);
-    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
-                              Level, Result, NewConstraint) ||
-      gcdMIVtest(Src, Dst, Result);
+    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, Level,
+                              Result, NewConstraint) ||
+           gcdMIVtest(Src, Dst, Result);
   }
   if (DstAddRec) {
     const SCEV *DstConst = DstAddRec->getStart();
@@ -2288,15 +2236,14 @@ bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
     const SCEV *SrcConst = Src;
     const Loop *CurLoop = DstAddRec->getLoop();
     Level = mapDstLoop(CurLoop);
-    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
-                              CurLoop, Level, Result, NewConstraint) ||
-      gcdMIVtest(Src, Dst, Result);
+    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, CurLoop, Level,
+                              Result, NewConstraint) ||
+           gcdMIVtest(Src, Dst, Result);
   }
   llvm_unreachable("SIV test expected at least one AddRec");
   return false;
 }
 
-
 // testRDIV -
 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
 // where i and j are induction variables, c1 and c2 are loop invariant,
@@ -2333,46 +2280,37 @@ bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
     DstConst = DstAddRec->getStart();
     DstCoeff = DstAddRec->getStepRecurrence(*SE);
     DstLoop = DstAddRec->getLoop();
-  }
-  else if (SrcAddRec) {
+  } else if (SrcAddRec) {
     if (const SCEVAddRecExpr *tmpAddRec =
-        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
+            dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
       SrcConst = tmpAddRec->getStart();
       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
       SrcLoop = tmpAddRec->getLoop();
       DstConst = Dst;
       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
       DstLoop = SrcAddRec->getLoop();
-    }
-    else
+    } else
       llvm_unreachable("RDIV reached by surprising SCEVs");
-  }
-  else if (DstAddRec) {
+  } else if (DstAddRec) {
     if (const SCEVAddRecExpr *tmpAddRec =
-        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
+            dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
       DstConst = tmpAddRec->getStart();
       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
       DstLoop = tmpAddRec->getLoop();
       SrcConst = Src;
       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
       SrcLoop = DstAddRec->getLoop();
-    }
-    else
+    } else
       llvm_unreachable("RDIV reached by surprising SCEVs");
-  }
-  else
+  } else
     llvm_unreachable("RDIV expected at least one AddRec");
-  return exactRDIVtest(SrcCoeff, DstCoeff,
-                       SrcConst, DstConst,
-                       SrcLoop, DstLoop,
+  return exactRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, SrcLoop, DstLoop,
                        Result) ||
-    gcdMIVtest(Src, Dst, Result) ||
-    symbolicRDIVtest(SrcCoeff, DstCoeff,
-                     SrcConst, DstConst,
-                     SrcLoop, DstLoop);
+         gcdMIVtest(Src, Dst, Result) ||
+         symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, SrcLoop,
+                          DstLoop);
 }
 
-
 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
 // Return true if dependence disproved.
 // Can sometimes refine direction vectors.
@@ -2383,7 +2321,7 @@ bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   Result.Consistent = false;
   return gcdMIVtest(Src, Dst, Result) ||
-    banerjeeMIVtest(Src, Dst, Loops, Result);
+         banerjeeMIVtest(Src, Dst, Loops, Result);
 }
 
 // Given a product, e.g., 10*X*Y, returns the first constant operand,
@@ -2428,7 +2366,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   // we can't quit the loop just because the GCD == 1.
   const SCEV *Coefficients = Src;
   while (const SCEVAddRecExpr *AddRec =
-         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+             dyn_cast<SCEVAddRecExpr>(Coefficients)) {
     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
     // If the coefficient is the product of a constant and other stuff,
     // we can use the constant in the GCD computation.
@@ -2446,7 +2384,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   // we can't quit the loop just because the GCD == 1.
   Coefficients = Dst;
   while (const SCEVAddRecExpr *AddRec =
-         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+             dyn_cast<SCEVAddRecExpr>(Coefficients)) {
     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
     // If the coefficient is the product of a constant and other stuff,
     // we can use the constant in the GCD computation.
@@ -2468,16 +2406,14 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
       if (isa<SCEVConstant>(Operand)) {
         assert(!Constant && "Surprised to find multiple constants");
         Constant = cast<SCEVConstant>(Operand);
-      }
-      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
+      } else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
         // Search for constant operand to participate in GCD;
         // If none found; return false.
         std::optional<APInt> ConstOp = getConstantPart(Product);
         if (!ConstOp)
           return false;
         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, ConstOp->abs());
-      }
-      else
+      } else
         return false;
     }
   }
@@ -2512,7 +2448,7 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   bool Improved = false;
   Coefficients = Src;
   while (const SCEVAddRecExpr *AddRec =
-         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
+             dyn_cast<SCEVAddRecExpr>(Coefficients)) {
     Coefficients = AddRec->getStart();
     const Loop *CurLoop = AddRec->getLoop();
     RunningGCD = ExtraGCD;
@@ -2578,7 +2514,6 @@ bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   return false;
 }
 
-
 //===----------------------------------------------------------------------===//
 // banerjeeMIVtest -
 // Use Banerjee's Inequalities to test an MIV subscript pair.
@@ -2652,8 +2587,8 @@ bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
     // Explore the direction vector hierarchy.
     unsigned DepthExpanded = 0;
-    unsigned NewDeps = exploreDirections(1, A, B, Bound,
-                                         Loops, DepthExpanded, Delta);
+    unsigned NewDeps =
+        exploreDirections(1, A, B, Bound, Loops, DepthExpanded, Delta);
     if (NewDeps > 0) {
       bool Improved = false;
       for (unsigned K = 1; K <= CommonLevels; ++K) {
@@ -2670,23 +2605,20 @@ bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
       }
       if (Improved)
         ++BanerjeeSuccesses;
-    }
-    else {
+    } else {
       ++BanerjeeIndependence;
       Disproved = true;
     }
-  }
-  else {
+  } else {
     ++BanerjeeIndependence;
     Disproved = true;
   }
-  delete [] Bound;
-  delete [] A;
-  delete [] B;
+  delete[] Bound;
+  delete[] A;
+  delete[] B;
   return Disproved;
 }
 
-
 // Hierarchically expands the direction vector
 // search space, combining the directions of discovered dependences
 // in the DirSet field of Bound. Returns the number of distinct
@@ -2788,27 +2720,26 @@ unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
 
     // test bounds for <, *, *, ...
     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
-      NewDeps += exploreDirections(Level + 1, A, B, Bound,
-                                   Loops, DepthExpanded, Delta);
+      NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+                                   Delta);
 
     // Test bounds for =, *, *, ...
     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
-      NewDeps += exploreDirections(Level + 1, A, B, Bound,
-                                   Loops, DepthExpanded, Delta);
+      NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+                                   Delta);
 
     // test bounds for >, *, *, ...
     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
-      NewDeps += exploreDirections(Level + 1, A, B, Bound,
-                                   Loops, DepthExpanded, Delta);
+      NewDeps += exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+                                   Delta);
 
     Bound[Level].Direction = Dependence::DVEntry::ALL;
     return NewDeps;
-  }
-  else
-    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
+  } else
+    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded,
+                             Delta);
 }
 
-
 // Returns true iff the current bounds are plausible.
 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
                                 BoundInfo *Bound, const SCEV *Delta) const {
@@ -2822,7 +2753,6 @@ bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
   return true;
 }
 
-
 // Computes the upper and lower bounds for level K
 // using the * direction. Records them in Bound.
 // Wolfe gives the equations
@@ -2840,17 +2770,14 @@ bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
 // and the upper bound is always >= 0.
 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
                                    BoundInfo *Bound, unsigned K) const {
-  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
-  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
+  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Represents -infinity
+  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Represents +infinity
   if (Bound[K].Iterations) {
-    Bound[K].Lower[Dependence::DVEntry::ALL] =
-      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
-                     Bound[K].Iterations);
-    Bound[K].Upper[Dependence::DVEntry::ALL] =
-      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
-                     Bound[K].Iterations);
-  }
-  else {
+    Bound[K].Lower[Dependence::DVEntry::ALL] = SE->getMulExpr(
+        SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), Bound[K].Iterations);
+    Bound[K].Upper[Dependence::DVEntry::ALL] = SE->getMulExpr(
+        SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), Bound[K].Iterations);
+  } else {
     // If the difference is 0, we won't need to know the number of iterations.
     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
       Bound[K].Lower[Dependence::DVEntry::ALL] =
@@ -2861,7 +2788,6 @@ void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
   }
 }
 
-
 // Computes the upper and lower bounds for level K
 // using the = direction. Records them in Bound.
 // Wolfe gives the equations
@@ -2879,18 +2805,19 @@ void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
 // and the upper bound is always >= 0.
 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
                                   BoundInfo *Bound, unsigned K) const {
-  Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
-  Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
+  Bound[K].Lower[Dependence::DVEntry::EQ] =
+      nullptr; // Default value = -infinity.
+  Bound[K].Upper[Dependence::DVEntry::EQ] =
+      nullptr; // Default value = +infinity.
   if (Bound[K].Iterations) {
     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
     const SCEV *NegativePart = getNegativePart(Delta);
     Bound[K].Lower[Dependence::DVEntry::EQ] =
-      SE->getMulExpr(NegativePart, Bound[K].Iterations);
+        SE->getMulExpr(NegativePart, Bound[K].Iterations);
     const SCEV *PositivePart = getPositivePart(Delta);
     Bound[K].Upper[Dependence::DVEntry::EQ] =
-      SE->getMulExpr(PositivePart, Bound[K].Iterations);
-  }
-  else {
+        SE->getMulExpr(PositivePart, Bound[K].Iterations);
+  } else {
     // If the positive/negative part of the difference is 0,
     // we won't need to know the number of iterations.
     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
@@ -2903,7 +2830,6 @@ void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
   }
 }
 
-
 // Computes the upper and lower bounds for level K
 // using the < direction. Records them in Bound.
 // Wolfe gives the equations
@@ -2919,35 +2845,35 @@ void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
 // We must be careful to handle the case where the upper bound is unknown.
 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
                                   BoundInfo *Bound, unsigned K) const {
-  Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
-  Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
+  Bound[K].Lower[Dependence::DVEntry::LT] =
+      nullptr; // Default value = -infinity.
+  Bound[K].Upper[Dependence::DVEntry::LT] =
+      nullptr; // Default value = +infinity.
   if (Bound[K].Iterations) {
     const SCEV *Iter_1 = SE->getMinusSCEV(
         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
     const SCEV *NegPart =
-      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
+        getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
     Bound[K].Lower[Dependence::DVEntry::LT] =
-      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
+        SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
     const SCEV *PosPart =
-      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
+        getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
     Bound[K].Upper[Dependence::DVEntry::LT] =
-      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
-  }
-  else {
+        SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
+  } else {
     // If the positive/negative part of the difference is 0,
     // we won't need to know the number of iterations.
     const SCEV *NegPart =
-      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
+        getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
     if (NegPart->isZero())
       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
     const SCEV *PosPart =
-      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
+        getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
     if (PosPart->isZero())
       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   }
 }
 
-
 // Computes the upper and lower bounds for level K
 // using the > direction. Records them in Bound.
 // Wolfe gives the equations
@@ -2963,45 +2889,45 @@ void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
 // We must be careful to handle the case where the upper bound is unknown.
 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
                                   BoundInfo *Bound, unsigned K) const {
-  Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
-  Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
+  Bound[K].Lower[Dependence::DVEntry::GT] =
+      nullptr; // Default value = -infinity.
+  Bound[K].Upper[Dependence::DVEntry::GT] =
+      nullptr; // Default value = +infinity.
   if (Bound[K].Iterations) {
     const SCEV *Iter_1 = SE->getMinusSCEV(
         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
     const SCEV *NegPart =
-      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
+        getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
     Bound[K].Lower[Dependence::DVEntry::GT] =
-      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
+        SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
     const SCEV *PosPart =
-      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
+        getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
     Bound[K].Upper[Dependence::DVEntry::GT] =
-      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
-  }
-  else {
+        SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
+  } else {
     // If the positive/negative part of the difference is 0,
     // we won't need to know the number of iterations.
-    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
+    const SCEV *NegPart =
+        getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
     if (NegPart->isZero())
       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
-    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
+    const SCEV *PosPart =
+        getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
     if (PosPart->isZero())
       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
   }
 }
 
-
 // X^+ = max(X, 0)
 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
 }
 
-
 // X^- = min(X, 0)
 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
   return SE->getSMinExpr(X, SE->getZero(X->getType()));
 }
 
-
 // Walks through the subscript,
 // collecting each coefficient, the associated loop bounds,
 // and recording its positive and negative parts for later use.
@@ -3046,7 +2972,6 @@ DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
   return CI;
 }
 
-
 // Looks through all the bounds info and
 // computes the lower bound given the current direction settings
 // at each level. If the lower bound for any level is -inf,
@@ -3062,7 +2987,6 @@ const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
   return Sum;
 }
 
-
 // Looks through all the bounds info and
 // computes the upper bound given the current direction settings
 // at each level. If the upper bound at any level is +inf,
@@ -3078,7 +3002,6 @@ const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
   return Sum;
 }
 
-
 //===----------------------------------------------------------------------===//
 // Constraint manipulation for Delta test.
 
@@ -3098,7 +3021,6 @@ const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
   return findCoefficient(AddRec->getStart(), TargetLoop);
 }
 
-
 // Given a linear SCEV,
 // return the SCEV given by zeroing out the coefficient
 // corresponding to the specified loop.
@@ -3112,12 +3034,10 @@ const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
   if (AddRec->getLoop() == TargetLoop)
     return AddRec->getStart();
   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
-                           AddRec->getStepRecurrence(*SE),
-                           AddRec->getLoop(),
+                           AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
                            AddRec->getNoWrapFlags());
 }
 
-
 // Given a linear SCEV Expr,
 // return the SCEV given by adding some Value to the
 // coefficient corresponding to the specified TargetLoop.
@@ -3128,17 +3048,13 @@ const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
                                              const SCEV *Value) const {
   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   if (!AddRec) // create a new addRec
-    return SE->getAddRecExpr(Expr,
-                             Value,
-                             TargetLoop,
+    return SE->getAddRecExpr(Expr, Value, TargetLoop,
                              SCEV::FlagAnyWrap); // Worst case, with no info.
   if (AddRec->getLoop() == TargetLoop) {
     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
     if (Sum->isZero())
       return AddRec->getStart();
-    return SE->getAddRecExpr(AddRec->getStart(),
-                             Sum,
-                             AddRec->getLoop(),
+    return SE->getAddRecExpr(AddRec->getStart(), Sum, AddRec->getLoop(),
                              AddRec->getNoWrapFlags());
   }
   if (SE->isLoopInvariant(AddRec, TargetLoop))
@@ -3149,7 +3065,6 @@ const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
       AddRec->getNoWrapFlags());
 }
 
-
 // Review the constraints, looking for opportunities
 // to simplify a subscript pair (Src and Dst).
 // Return true if some simplification occurs.
@@ -3178,7 +3093,6 @@ bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
   return Result;
 }
 
-
 // Attempt to propagate a distance
 // constraint into a subscript pair (Src and Dst).
 // Return true if some simplification occurs.
@@ -3204,7 +3118,6 @@ bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
   return true;
 }
 
-
 // Attempt to propagate a line
 // constraint into a subscript pair (Src and Dst).
 // Return true if some simplification occurs.
@@ -3224,22 +3137,24 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
   if (A->isZero()) {
     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
-    if (!Bconst || !Cconst) return false;
+    if (!Bconst || !Cconst)
+      return false;
     APInt Beta = Bconst->getAPInt();
     APInt Charlie = Cconst->getAPInt();
     APInt CdivB = Charlie.sdiv(Beta);
     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
-    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
+    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K,
+    //    SE->getConstant(CdivB)));
     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
     Dst = zeroCoefficient(Dst, CurLoop);
     if (!findCoefficient(Src, CurLoop)->isZero())
       Consistent = false;
-  }
-  else if (B->isZero()) {
+  } else if (B->isZero()) {
     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
-    if (!Aconst || !Cconst) return false;
+    if (!Aconst || !Cconst)
+      return false;
     APInt Alpha = Aconst->getAPInt();
     APInt Charlie = Cconst->getAPInt();
     APInt CdivA = Charlie.sdiv(Alpha);
@@ -3249,11 +3164,11 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
     Src = zeroCoefficient(Src, CurLoop);
     if (!findCoefficient(Dst, CurLoop)->isZero())
       Consistent = false;
-  }
-  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
+  } else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
-    if (!Aconst || !Cconst) return false;
+    if (!Aconst || !Cconst)
+      return false;
     APInt Alpha = Aconst->getAPInt();
     APInt Charlie = Cconst->getAPInt();
     APInt CdivA = Charlie.sdiv(Alpha);
@@ -3264,8 +3179,7 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
     Dst = addToCoefficient(Dst, CurLoop, A_K);
     if (!findCoefficient(Dst, CurLoop)->isZero())
       Consistent = false;
-  }
-  else {
+  } else {
     // paper is incorrect here, or perhaps just misleading
     const SCEV *A_K = findCoefficient(Src, CurLoop);
     Src = SE->getMulExpr(Src, A);
@@ -3281,7 +3195,6 @@ bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
   return true;
 }
 
-
 // Attempt to propagate a point
 // constraint into a subscript pair (Src and Dst).
 // Return true if some simplification occurs.
@@ -3302,7 +3215,6 @@ bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
   return true;
 }
 
-
 // Update direction vector entry based on the current constraint.
 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
                                      const Constraint &CurConstraint) const {
@@ -3322,34 +3234,28 @@ void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
       NewDirection |= Dependence::DVEntry::GT;
     Level.Direction &= NewDirection;
-  }
-  else if (CurConstraint.isLine()) {
+  } else if (CurConstraint.isLine()) {
     Level.Scalar = false;
     Level.Distance = nullptr;
     // direction should be accurate
-  }
-  else if (CurConstraint.isPoint()) {
+  } else if (CurConstraint.isPoint()) {
     Level.Scalar = false;
     Level.Distance = nullptr;
     unsigned NewDirection = Dependence::DVEntry::NONE;
-    if (!isKnownPredicate(CmpInst::ICMP_NE,
-                          CurConstraint.getY(),
+    if (!isKnownPredicate(CmpInst::ICMP_NE, CurConstraint.getY(),
                           CurConstraint.getX()))
       // if X may be = Y
       NewDirection |= Dependence::DVEntry::EQ;
-    if (!isKnownPredicate(CmpInst::ICMP_SLE,
-                          CurConstraint.getY(),
+    if (!isKnownPredicate(CmpInst::ICMP_SLE, CurConstraint.getY(),
                           CurConstraint.getX()))
       // if Y may be > X
       NewDirection |= Dependence::DVEntry::LT;
-    if (!isKnownPredicate(CmpInst::ICMP_SGE,
-                          CurConstraint.getY(),
+    if (!isKnownPredicate(CmpInst::ICMP_SGE, CurConstraint.getY(),
                           CurConstraint.getX()))
       // if Y may be < X
       NewDirection |= Dependence::DVEntry::GT;
     Level.Direction &= NewDirection;
-  }
-  else
+  } else
     llvm_unreachable("constraint has unexpected kind");
 }
 
@@ -3425,7 +3331,7 @@ bool DependenceInfo::tryDelinearizeFixedSize(
         dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
     assert(SrcBase && DstBase && SrcBase == DstBase &&
            "expected src and dst scev unknowns to be equal");
-    });
+  });
 
   SmallVector<int, 4> SrcSizes;
   SmallVector<int, 4> DstSizes;
@@ -3737,9 +3643,8 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
     Pair[P].Group.resize(Pairs);
     removeMatchingExtensions(&Pair[P]);
     Pair[P].Classification =
-      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
-                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
-                   Pair[P].Loops);
+        classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), Pair[P].Dst,
+                     LI->getLoopFor(Dst->getParent()), Pair[P].Loops);
     Pair[P].GroupLoops = Pair[P].Loops;
     Pair[P].Group.set(P);
     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
@@ -3814,18 +3719,15 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
     if (Pair[SI].Classification == Subscript::NonLinear) {
       // ignore these, but collect loops for later
       ++NonlinearSubscriptPairs;
-      collectCommonLoops(Pair[SI].Src,
-                         LI->getLoopFor(Src->getParent()),
+      collectCommonLoops(Pair[SI].Src, LI->getLoopFor(Src->getParent()),
                          Pair[SI].Loops);
-      collectCommonLoops(Pair[SI].Dst,
-                         LI->getLoopFor(Dst->getParent()),
+      collectCommonLoops(Pair[SI].Dst, LI->getLoopFor(Dst->getParent()),
                          Pair[SI].Loops);
       Result.Consistent = false;
     } else if (Pair[SI].Classification == Subscript::ZIV) {
       // always separable
       Separable.set(SI);
-    }
-    else {
+    } else {
       // SIV, RDIV, or MIV, so check for coupled group
       bool Done = true;
       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
@@ -3843,8 +3745,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
         if (Pair[SI].Group.count() == 1) {
           Separable.set(SI);
           ++SeparableSubscriptPairs;
-        }
-        else {
+        } else {
           Coupled.set(SI);
           ++CoupledSubscriptPairs;
         }
@@ -3950,10 +3851,9 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
                           Constraints, Result.Consistent)) {
               LLVM_DEBUG(dbgs() << "\t    Changed\n");
               ++DeltaPropagations;
-              Pair[SJ].Classification =
-                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
-                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
-                             Pair[SJ].Loops);
+              Pair[SJ].Classification = classifyPair(
+                  Pair[SJ].Src, LI->getLoopFor(Src->getParent()), Pair[SJ].Dst,
+                  LI->getLoopFor(Dst->getParent()), Pair[SJ].Loops);
               switch (Pair[SJ].Classification) {
               case Subscript::ZIV:
                 LLVM_DEBUG(dbgs() << "ZIV\n");
@@ -3995,8 +3895,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
           LLVM_DEBUG(dbgs() << "MIV test\n");
           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
             return nullptr;
-        }
-        else
+        } else
           llvm_unreachable("expected only MIV subscripts at this point");
       }
 
@@ -4052,8 +3951,7 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst,
         break;
       }
     }
-  }
-  else {
+  } else {
     // On the other hand, if all directions are equal and there's no
     // loop-independent dependence possible, then no dependence exists.
     bool AllEqual = true;
@@ -4158,9 +4056,8 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
     Pair[P].Group.resize(Pairs);
     removeMatchingExtensions(&Pair[P]);
     Pair[P].Classification =
-      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
-                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
-                   Pair[P].Loops);
+        classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), Pair[P].Dst,
+                     LI->getLoopFor(Dst->getParent()), Pair[P].Loops);
     Pair[P].GroupLoops = Pair[P].Loops;
     Pair[P].Group.set(P);
   }
@@ -4172,15 +4069,12 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
   for (unsigned SI = 0; SI < Pairs; ++SI) {
     if (Pair[SI].Classification == Subscript::NonLinear) {
       // ignore these, but collect loops for later
-      collectCommonLoops(Pair[SI].Src,
-                         LI->getLoopFor(Src->getParent()),
+      collectCommonLoops(Pair[SI].Src, LI->getLoopFor(Src->getParent()),
                          Pair[SI].Loops);
-      collectCommonLoops(Pair[SI].Dst,
-                         LI->getLoopFor(Dst->getParent()),
+      collectCommonLoops(Pair[SI].Dst, LI->getLoopFor(Dst->getParent()),
                          Pair[SI].Loops);
       Result.Consistent = false;
-    }
-    else if (Pair[SI].Classification == Subscript::ZIV)
+    } else if (Pair[SI].Classification == Subscript::ZIV)
       Separable.set(SI);
     else {
       // SIV, RDIV, or MIV, so check for coupled group
@@ -4214,8 +4108,8 @@ const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
     case Subscript::SIV: {
       unsigned Level;
       const SCEV *SplitIter = nullptr;
-      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
-                     Result, NewConstraint, SplitIter);
+      (void)testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
+                    SplitIter);
       if (Level == SplitLevel) {
         assert(SplitIter != nullptr);
         return SplitIter;



More information about the llvm-commits mailing list