[libc] [llvm] [libc][math] Refactor exp10 implementation to header-only in src/__support/math folder. (PR #148400)

Muhammad Bassiouni via llvm-commits llvm-commits at lists.llvm.org
Mon Jul 14 09:26:04 PDT 2025


https://github.com/bassiounix updated https://github.com/llvm/llvm-project/pull/148400

>From d1bf314ee0c9fd8a75c4c64e6ffe305ecb3cc2b0 Mon Sep 17 00:00:00 2001
From: bassiounix <muhammad.m.bassiouni at gmail.com>
Date: Fri, 11 Jul 2025 03:12:38 +0300
Subject: [PATCH 1/3] [libc][math] Refactor exp implementation to header-only
 in src/__support/math folder.

---
 libc/shared/math.h                       | 1 +
 libc/src/math/generic/common_constants.h | 2 ++
 2 files changed, 3 insertions(+)

diff --git a/libc/shared/math.h b/libc/shared/math.h
index 3012cbb938816..37505191b915b 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -20,5 +20,6 @@
 #include "math/ldexpf.h"
 #include "math/ldexpf128.h"
 #include "math/ldexpf16.h"
+#include "math/exp.h"
 
 #endif // LLVM_LIBC_SHARED_MATH_H
diff --git a/libc/src/math/generic/common_constants.h b/libc/src/math/generic/common_constants.h
index 291816a7889ad..a1d6de3c87240 100644
--- a/libc/src/math/generic/common_constants.h
+++ b/libc/src/math/generic/common_constants.h
@@ -13,6 +13,8 @@
 #include "src/__support/macros/config.h"
 #include "src/__support/math/exp_constants.h"
 #include "src/__support/number_pair.h"
+#include "src/__support/math/exp_constants.h"
+
 
 namespace LIBC_NAMESPACE_DECL {
 

>From 2f2b773496a09015a9a991b0efa197d831e3e576 Mon Sep 17 00:00:00 2001
From: bassiounix <muhammad.m.bassiouni at gmail.com>
Date: Fri, 11 Jul 2025 03:19:04 +0300
Subject: [PATCH 2/3] fix style

---
 libc/shared/math.h                       | 1 -
 libc/src/math/generic/common_constants.h | 2 +-
 2 files changed, 1 insertion(+), 2 deletions(-)

diff --git a/libc/shared/math.h b/libc/shared/math.h
index 37505191b915b..3012cbb938816 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -20,6 +20,5 @@
 #include "math/ldexpf.h"
 #include "math/ldexpf128.h"
 #include "math/ldexpf16.h"
-#include "math/exp.h"
 
 #endif // LLVM_LIBC_SHARED_MATH_H
diff --git a/libc/src/math/generic/common_constants.h b/libc/src/math/generic/common_constants.h
index a1d6de3c87240..80eee06b2d4d9 100644
--- a/libc/src/math/generic/common_constants.h
+++ b/libc/src/math/generic/common_constants.h
@@ -14,7 +14,7 @@
 #include "src/__support/math/exp_constants.h"
 #include "src/__support/number_pair.h"
 #include "src/__support/math/exp_constants.h"
-
+#include "src/__support/number_pair.h"
 
 namespace LIBC_NAMESPACE_DECL {
 

>From 4b0635e56409698ec31668cfcbf2919ff7159ad8 Mon Sep 17 00:00:00 2001
From: bassiounix <muhammad.m.bassiouni at gmail.com>
Date: Sun, 13 Jul 2025 00:40:16 +0300
Subject: [PATCH 3/3] [libc][math] Refactor exp10 implementation to header-only
 in src/__support/math folder.

---
 libc/shared/math.h                            |   1 +
 libc/shared/math/exp10.h                      |  23 +
 libc/src/__support/FPUtil/double_double.h     |   4 +-
 libc/src/__support/math/CMakeLists.txt        |  21 +
 libc/src/__support/math/exp10.h               | 505 ++++++++++++++++++
 libc/src/math/generic/CMakeLists.txt          |  15 +-
 libc/src/math/generic/exp10.cpp               | 485 +----------------
 .../llvm-project-overlay/libc/BUILD.bazel     |  31 +-
 8 files changed, 575 insertions(+), 510 deletions(-)
 create mode 100644 libc/shared/math/exp10.h
 create mode 100644 libc/src/__support/math/exp10.h

diff --git a/libc/shared/math.h b/libc/shared/math.h
index 3012cbb938816..b37aa46820523 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -12,6 +12,7 @@
 #include "libc_common.h"
 
 #include "math/exp.h"
+#include "math/exp10.h"
 #include "math/expf.h"
 #include "math/expf16.h"
 #include "math/frexpf.h"
diff --git a/libc/shared/math/exp10.h b/libc/shared/math/exp10.h
new file mode 100644
index 0000000000000..3d36d9103705f
--- /dev/null
+++ b/libc/shared/math/exp10.h
@@ -0,0 +1,23 @@
+//===-- Shared exp10 function -----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_EXP10_H
+#define LLVM_LIBC_SHARED_MATH_EXP10_H
+
+#include "shared/libc_common.h"
+#include "src/__support/math/exp10.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::exp10;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SHARED_MATH_EXP10_H
diff --git a/libc/src/__support/FPUtil/double_double.h b/libc/src/__support/FPUtil/double_double.h
index c27885aadc028..8e54e845de493 100644
--- a/libc/src/__support/FPUtil/double_double.h
+++ b/libc/src/__support/FPUtil/double_double.h
@@ -151,8 +151,8 @@ LIBC_INLINE DoubleDouble quick_mult(double a, const DoubleDouble &b) {
 }
 
 template <size_t SPLIT_B = 27>
-LIBC_INLINE DoubleDouble quick_mult(const DoubleDouble &a,
-                                    const DoubleDouble &b) {
+LIBC_INLINE constexpr DoubleDouble quick_mult(const DoubleDouble &a,
+                                              const DoubleDouble &b) {
   DoubleDouble r = exact_mult<double, SPLIT_B>(a.hi, b.hi);
   double t1 = multiply_add(a.hi, b.lo, r.lo);
   double t2 = multiply_add(a.lo, b.hi, t1);
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index f7ef9e7694fe6..0bfc996c44fc8 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -149,3 +149,24 @@ add_header_library(
     libc.src.__support.integer_literals
     libc.src.__support.macros.optimization
 )
+
+add_header_library(
+  exp10
+  HDRS
+    exp10.h
+  DEPENDS
+    .exp_constants
+    .exp_utils
+    libc.src.__support.CPP.bit
+    libc.src.__support.CPP.optional
+    libc.src.__support.FPUtil.dyadic_float
+    libc.src.__support.FPUtil.fenv_impl
+    libc.src.__support.FPUtil.fp_bits
+    libc.src.__support.FPUtil.multiply_add
+    libc.src.__support.FPUtil.nearest_integer
+    libc.src.__support.FPUtil.polyeval
+    libc.src.__support.FPUtil.rounding_mode
+    libc.src.__support.FPUtil.triple_double
+    libc.src.__support.integer_literals
+    libc.src.__support.macros.optimization
+)
diff --git a/libc/src/__support/math/exp10.h b/libc/src/__support/math/exp10.h
new file mode 100644
index 0000000000000..da94281c0c745
--- /dev/null
+++ b/libc/src/__support/math/exp10.h
@@ -0,0 +1,505 @@
+//===-- Implementation header for exp10 ------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_EXP10_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_EXP10_H
+
+#include "exp_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
+#include "exp_utils.h"     // ziv_test_denorm.
+#include "src/__support/CPP/bit.h"
+#include "src/__support/CPP/optional.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/nearest_integer.h"
+#include "src/__support/FPUtil/rounding_mode.h"
+#include "src/__support/FPUtil/triple_double.h"
+#include "src/__support/common.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+using fputil::DoubleDouble;
+using fputil::TripleDouble;
+using Float128 = typename fputil::DyadicFloat<128>;
+
+using LIBC_NAMESPACE::operator""_u128;
+
+// log2(10)
+constexpr double LOG2_10 = 0x1.a934f0979a371p+1;
+
+// -2^-12 * log10(2)
+// > a = -2^-12 * log10(2);
+// > b = round(a, 32, RN);
+// > c = round(a - b, 32, RN);
+// > d = round(a - b - c, D, RN);
+// Errors < 1.5 * 2^-144
+constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14;
+constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51;
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51;
+constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87;
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+// Error bounds:
+// Errors when using double precision.
+constexpr double ERR_D = 0x1.8p-63;
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+// Errors when using double-double precision.
+constexpr double ERR_DD = 0x1.8p-99;
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+namespace {
+
+// Polynomial approximations with double precision.  Generated by Sollya with:
+// > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]);
+// > P;
+// Error bounds:
+//   | output - (10^dx - 1) / dx | < 2^-52.
+LIBC_INLINE static constexpr double poly_approx_d(double dx) {
+  // dx^2
+  double dx2 = dx * dx;
+  double c0 =
+      fputil::multiply_add(dx, 0x1.53524c73cea6ap+1, 0x1.26bb1bbb55516p+1);
+  double c1 =
+      fputil::multiply_add(dx, 0x1.2bd75cc6afc65p+0, 0x1.0470587aa264cp+1);
+  double p = fputil::multiply_add(dx2, c1, c0);
+  return p;
+}
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+// Polynomial approximation with double-double precision.  Generated by Solya
+// with:
+// > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]);
+// Error bounds:
+//   | output - 10^(dx) | < 2^-101
+static constexpr DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
+  // Taylor polynomial.
+  constexpr DoubleDouble COEFFS[] = {
+      {0, 0x1p0},
+      {-0x1.f48ad494e927bp-53, 0x1.26bb1bbb55516p1},
+      {-0x1.e2bfab3191cd2p-53, 0x1.53524c73cea69p1},
+      {0x1.80fb65ec3b503p-53, 0x1.0470591de2ca4p1},
+      {0x1.338fc05e21e55p-54, 0x1.2bd7609fd98c4p0},
+      {0x1.d4ea116818fbp-56, 0x1.1429ffd519865p-1},
+      {-0x1.872a8ff352077p-57, 0x1.a7ed70847c8b3p-3},
+
+  };
+
+  DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
+                                    COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
+  return p;
+}
+
+// Polynomial approximation with 128-bit precision:
+// Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
+// For |dx| < 2^-14:
+//   | output - 10^dx | < 1.5 * 2^-124.
+static constexpr Float128 poly_approx_f128(const Float128 &dx) {
+  constexpr Float128 COEFFS_128[]{
+      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
+      {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128},
+      {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128},
+      {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128},
+      {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128},
+      {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128},
+      {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128},
+      {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128},
+  };
+
+  Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
+                                COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
+                                COEFFS_128[6], COEFFS_128[7]);
+  return p;
+}
+
+// Compute 10^(x) using 128-bit precision.
+// TODO(lntue): investigate triple-double precision implementation for this
+// step.
+static constexpr Float128 exp10_f128(double x, double kd, int idx1, int idx2) {
+  double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
+  double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
+  double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144
+
+  Float128 dx = fputil::quick_add(
+      Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
+
+  // TODO: Skip recalculating exp_mid1 and exp_mid2.
+  Float128 exp_mid1 =
+      fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
+                        fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
+                                          Float128(EXP2_MID1[idx1].lo)));
+
+  Float128 exp_mid2 =
+      fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
+                        fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
+                                          Float128(EXP2_MID2[idx2].lo)));
+
+  Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
+
+  Float128 p = poly_approx_f128(dx);
+
+  Float128 r = fputil::quick_mul(exp_mid, p);
+
+  r.exponent += static_cast<int>(kd) >> 12;
+
+  return r;
+}
+
+// Compute 10^x with double-double precision.
+static constexpr DoubleDouble exp10_double_double(double x, double kd,
+                                                  const DoubleDouble &exp_mid) {
+  // Recalculate dx:
+  //   dx = x - k * 2^-12 * log10(2)
+  double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
+  double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
+  double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140
+
+  DoubleDouble dx = fputil::exact_add(t1, t2);
+  dx.lo += t3;
+
+  // Degree-6 polynomial approximation in double-double precision.
+  // | p - 10^x | < 2^-103.
+  DoubleDouble p = poly_approx_dd(dx);
+
+  // Error bounds: 2^-102.
+  DoubleDouble r = fputil::quick_mult(exp_mid, p);
+
+  return r;
+}
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+// When output is denormal.
+static constexpr double exp10_denorm(double x) {
+  // Range reduction.
+  double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
+  int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
+  double kd = static_cast<double>(k);
+
+  uint32_t idx1 = (k >> 6) & 0x3f;
+  uint32_t idx2 = k & 0x3f;
+
+  int hi = k >> 12;
+
+  DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
+  DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
+  DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
+
+  // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
+  double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
+  double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
+
+  double mid_lo = dx * exp_mid.hi;
+
+  // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
+  double p = poly_approx_d(dx);
+
+  double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
+
+#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+  return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D)
+      .value();
+#else
+  if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
+      LIBC_LIKELY(r.has_value()))
+    return r.value();
+
+  // Use double-double
+  DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
+
+  if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
+      LIBC_LIKELY(r.has_value()))
+    return r.value();
+
+  // Use 128-bit precision
+  Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
+
+  return static_cast<double>(r_f128);
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+}
+
+// Check for exceptional cases when:
+//  * log10(1 - 2^-54) < x < log10(1 + 2^-53)
+//  * x >= log10(2^1024)
+//  * x <= log10(2^-1022)
+//  * x is inf or nan
+static constexpr double set_exceptional(double x) {
+  using FPBits = typename fputil::FPBits<double>;
+  FPBits xbits(x);
+
+  uint64_t x_u = xbits.uintval();
+  uint64_t x_abs = xbits.abs().uintval();
+
+  // |x| < log10(1 + 2^-53)
+  if (x_abs <= 0x3c8bcb7b1526e50e) {
+    // 10^(x) ~ 1 + x/2
+    return fputil::multiply_add(x, 0.5, 1.0);
+  }
+
+  // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan.
+  if (x_u >= 0xc0733a7146f72a42) {
+    // x <= log10(2^-1075) or -inf/nan
+    if (x_u > 0xc07439b746e36b52) {
+      // exp(-Inf) = 0
+      if (xbits.is_inf())
+        return 0.0;
+
+      // exp(nan) = nan
+      if (xbits.is_nan())
+        return x;
+
+      if (fputil::quick_get_round() == FE_UPWARD)
+        return FPBits::min_subnormal().get_val();
+      fputil::set_errno_if_required(ERANGE);
+      fputil::raise_except_if_required(FE_UNDERFLOW);
+      return 0.0;
+    }
+
+    return exp10_denorm(x);
+  }
+
+  // x >= log10(2^1024) or +inf/nan
+  // x is finite
+  if (x_u < 0x7ff0'0000'0000'0000ULL) {
+    int rounding = fputil::quick_get_round();
+    if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
+      return FPBits::max_normal().get_val();
+
+    fputil::set_errno_if_required(ERANGE);
+    fputil::raise_except_if_required(FE_OVERFLOW);
+  }
+  // x is +inf or nan
+  return x + FPBits::inf().get_val();
+}
+
+} // namespace
+
+namespace math {
+
+static constexpr double exp10(double x) {
+  using FPBits = typename fputil::FPBits<double>;
+  FPBits xbits(x);
+
+  uint64_t x_u = xbits.uintval();
+
+  // x <= log10(2^-1022) or x >= log10(2^1024) or
+  // log10(1 - 2^-54) < x < log10(1 + 2^-53).
+  if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 ||
+                    (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) ||
+                    x_u < 0x3c8bcb7b1526e50e)) {
+    return set_exceptional(x);
+  }
+
+  // Now log10(2^-1075) < x <= log10(1 - 2^-54) or
+  //     log10(1 + 2^-53) < x < log10(2^1024)
+
+  // Range reduction:
+  // Let x = log10(2) * (hi + mid1 + mid2) + lo
+  // in which:
+  //   hi is an integer
+  //   mid1 * 2^6 is an integer
+  //   mid2 * 2^12 is an integer
+  // then:
+  //   10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo).
+  // With this formula:
+  //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
+  //     field.
+  //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
+  //   - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
+  //
+  // We compute (hi + mid1 + mid2) together by perform the rounding on
+  //   x * log2(10) * 2^12.
+  // Since |x| < |log10(2^-1075)| < 2^9,
+  //   |x * 2^12| < 2^9 * 2^12 < 2^21,
+  // So we can fit the rounded result round(x * 2^12) in int32_t.
+  // Thus, the goal is to be able to use an additional addition and fixed width
+  // shift to get an int32_t representing round(x * 2^12).
+  //
+  // Assuming int32_t using 2-complement representation, since the mantissa part
+  // of a double precision is unsigned with the leading bit hidden, if we add an
+  // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the
+  // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
+  // considered as a proper 2-complement representations of x*2^12.
+  //
+  // One small problem with this approach is that the sum (x*2^12 + C) in
+  // double precision is rounded to the least significant bit of the dorminant
+  // factor C.  In order to minimize the rounding errors from this addition, we
+  // want to minimize e1.  Another constraint that we want is that after
+  // shifting the mantissa so that the least significant bit of int32_t
+  // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
+  // any adjustment.  So combining these 2 requirements, we can choose
+  //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
+  // after right shifting the mantissa, the resulting int32_t has correct sign.
+  // With this choice of C, the number of mantissa bits we need to shift to the
+  // right is: 52 - 33 = 19.
+  //
+  // Moreover, since the integer right shifts are equivalent to rounding down,
+  // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
+  // +infinity.  So in particular, we can compute:
+  //   hmm = x * 2^12 + C,
+  // where C = 2^33 + 2^32 + 2^-1, then if
+  //   k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
+  // the reduced argument:
+  //   lo = x - log10(2) * 2^-12 * k is bounded by:
+  //   |lo|  = |x - log10(2) * 2^-12 * k|
+  //         = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k |
+  //        <= log10(2) * 2^-12 * (2^-1 + 2^-19)
+  //         < 1.5 * 2^-2 * (2^-13 + 2^-31)
+  //         = 1.5 * (2^-15 * 2^-31)
+  //
+  // Finally, notice that k only uses the mantissa of x * 2^12, so the
+  // exponent 2^12 is not needed.  So we can simply define
+  //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
+  //   k = int32_t(lower 51 bits of double(x + C) >> 19).
+
+  // Rounding errors <= 2^-31.
+  double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
+  int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
+  double kd = static_cast<double>(k);
+
+  uint32_t idx1 = (k >> 6) & 0x3f;
+  uint32_t idx2 = k & 0x3f;
+
+  int hi = k >> 12;
+
+  DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
+  DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
+  DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
+
+  // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
+  double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
+  double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
+
+  // We use the degree-4 polynomial to approximate 10^(lo):
+  //   10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4
+  //           = 1 + lo * P(lo)
+  // So that the errors are bounded by:
+  //   |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
+  // Let P_ be an evaluation of P where all intermediate computations are in
+  // double precision.  Using either Horner's or Estrin's schemes, the evaluated
+  // errors can be bounded by:
+  //      |P_(lo) - P(lo)| < 2^-51
+  //   => |lo * P_(lo) - (2^lo - 1) | < 2^-65
+  //   => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64.
+  // Since we approximate
+  //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
+  // We use the expression:
+  //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
+  //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
+  // with errors bounded by 2^-64.
+
+  double mid_lo = dx * exp_mid.hi;
+
+  // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
+  double p = poly_approx_d(dx);
+
+  double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
+
+#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+  int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+  double r =
+      cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo));
+  return r;
+#else
+  double upper = exp_mid.hi + (lo + ERR_D);
+  double lower = exp_mid.hi + (lo - ERR_D);
+
+  if (LIBC_LIKELY(upper == lower)) {
+    // To multiply by 2^hi, a fast way is to simply add hi to the exponent
+    // field.
+    int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+    double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
+    return r;
+  }
+
+  // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23.
+  // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0)
+  if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) {
+    switch (x_u) {
+    case 0x3ff0000000000000: // x = 1.0
+      return 10.0;
+    case 0x4000000000000000: // x = 2.0
+      return 100.0;
+    case 0x4008000000000000: // x = 3.0
+      return 1'000.0;
+    case 0x4010000000000000: // x = 4.0
+      return 10'000.0;
+    case 0x4014000000000000: // x = 5.0
+      return 100'000.0;
+    case 0x4018000000000000: // x = 6.0
+      return 1'000'000.0;
+    case 0x401c000000000000: // x = 7.0
+      return 10'000'000.0;
+    case 0x4020000000000000: // x = 8.0
+      return 100'000'000.0;
+    case 0x4022000000000000: // x = 9.0
+      return 1'000'000'000.0;
+    case 0x4024000000000000: // x = 10.0
+      return 10'000'000'000.0;
+    case 0x4026000000000000: // x = 11.0
+      return 100'000'000'000.0;
+    case 0x4028000000000000: // x = 12.0
+      return 1'000'000'000'000.0;
+    case 0x402a000000000000: // x = 13.0
+      return 10'000'000'000'000.0;
+    case 0x402c000000000000: // x = 14.0
+      return 100'000'000'000'000.0;
+    case 0x402e000000000000: // x = 15.0
+      return 1'000'000'000'000'000.0;
+    case 0x4030000000000000: // x = 16.0
+      return 10'000'000'000'000'000.0;
+    case 0x4031000000000000: // x = 17.0
+      return 100'000'000'000'000'000.0;
+    case 0x4032000000000000: // x = 18.0
+      return 1'000'000'000'000'000'000.0;
+    case 0x4033000000000000: // x = 19.0
+      return 10'000'000'000'000'000'000.0;
+    case 0x4034000000000000: // x = 20.0
+      return 100'000'000'000'000'000'000.0;
+    case 0x4035000000000000: // x = 21.0
+      return 1'000'000'000'000'000'000'000.0;
+    case 0x4036000000000000: // x = 22.0
+      return 10'000'000'000'000'000'000'000.0;
+    case 0x4037000000000000: // x = 23.0
+      return 0x1.52d02c7e14af6p76 + x;
+    }
+  }
+
+  // Use double-double
+  DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
+
+  double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
+  double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
+
+  if (LIBC_LIKELY(upper_dd == lower_dd)) {
+    // To multiply by 2^hi, a fast way is to simply add hi to the exponent
+    // field.
+    int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+    double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
+    return r;
+  }
+
+  // Use 128-bit precision
+  Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
+
+  return static_cast<double>(r_f128);
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_EXP10_H
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index b59beacd94143..352c2ad4ab22a 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -1457,20 +1457,7 @@ add_entrypoint_object(
   HDRS
     ../exp10.h
   DEPENDS
-    .common_constants
-    .explogxf
-    libc.src.__support.CPP.bit
-    libc.src.__support.CPP.optional
-    libc.src.__support.FPUtil.dyadic_float
-    libc.src.__support.FPUtil.fenv_impl
-    libc.src.__support.FPUtil.fp_bits
-    libc.src.__support.FPUtil.multiply_add
-    libc.src.__support.FPUtil.nearest_integer
-    libc.src.__support.FPUtil.polyeval
-    libc.src.__support.FPUtil.rounding_mode
-    libc.src.__support.FPUtil.triple_double
-    libc.src.__support.integer_literals
-    libc.src.__support.macros.optimization
+    libc.src.__support.math.exp10
     libc.src.errno.errno
 )
 
diff --git a/libc/src/math/generic/exp10.cpp b/libc/src/math/generic/exp10.cpp
index c464979b092c3..5c36d28c166ae 100644
--- a/libc/src/math/generic/exp10.cpp
+++ b/libc/src/math/generic/exp10.cpp
@@ -7,491 +7,10 @@
 //===----------------------------------------------------------------------===//
 
 #include "src/math/exp10.h"
-#include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
-#include "explogxf.h"         // ziv_test_denorm.
-#include "src/__support/CPP/bit.h"
-#include "src/__support/CPP/optional.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/FPUtil/rounding_mode.h"
-#include "src/__support/FPUtil/triple_double.h"
-#include "src/__support/common.h"
-#include "src/__support/integer_literals.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+#include "src/__support/math/exp10.h"
 
 namespace LIBC_NAMESPACE_DECL {
 
-using fputil::DoubleDouble;
-using fputil::TripleDouble;
-using Float128 = typename fputil::DyadicFloat<128>;
-
-using LIBC_NAMESPACE::operator""_u128;
-
-// log2(10)
-constexpr double LOG2_10 = 0x1.a934f0979a371p+1;
-
-// -2^-12 * log10(2)
-// > a = -2^-12 * log10(2);
-// > b = round(a, 32, RN);
-// > c = round(a - b, 32, RN);
-// > d = round(a - b - c, D, RN);
-// Errors < 1.5 * 2^-144
-constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14;
-constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51;
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51;
-constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87;
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-// Error bounds:
-// Errors when using double precision.
-constexpr double ERR_D = 0x1.8p-63;
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-// Errors when using double-double precision.
-constexpr double ERR_DD = 0x1.8p-99;
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-namespace {
-
-// Polynomial approximations with double precision.  Generated by Sollya with:
-// > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]);
-// > P;
-// Error bounds:
-//   | output - (10^dx - 1) / dx | < 2^-52.
-LIBC_INLINE double poly_approx_d(double dx) {
-  // dx^2
-  double dx2 = dx * dx;
-  double c0 =
-      fputil::multiply_add(dx, 0x1.53524c73cea6ap+1, 0x1.26bb1bbb55516p+1);
-  double c1 =
-      fputil::multiply_add(dx, 0x1.2bd75cc6afc65p+0, 0x1.0470587aa264cp+1);
-  double p = fputil::multiply_add(dx2, c1, c0);
-  return p;
-}
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-// Polynomial approximation with double-double precision.  Generated by Solya
-// with:
-// > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]);
-// Error bounds:
-//   | output - 10^(dx) | < 2^-101
-DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
-  // Taylor polynomial.
-  constexpr DoubleDouble COEFFS[] = {
-      {0, 0x1p0},
-      {-0x1.f48ad494e927bp-53, 0x1.26bb1bbb55516p1},
-      {-0x1.e2bfab3191cd2p-53, 0x1.53524c73cea69p1},
-      {0x1.80fb65ec3b503p-53, 0x1.0470591de2ca4p1},
-      {0x1.338fc05e21e55p-54, 0x1.2bd7609fd98c4p0},
-      {0x1.d4ea116818fbp-56, 0x1.1429ffd519865p-1},
-      {-0x1.872a8ff352077p-57, 0x1.a7ed70847c8b3p-3},
-
-  };
-
-  DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
-                                    COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
-  return p;
-}
-
-// Polynomial approximation with 128-bit precision:
-// Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
-// For |dx| < 2^-14:
-//   | output - 10^dx | < 1.5 * 2^-124.
-Float128 poly_approx_f128(const Float128 &dx) {
-  constexpr Float128 COEFFS_128[]{
-      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
-      {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128},
-      {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128},
-      {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128},
-      {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128},
-      {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128},
-      {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128},
-      {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128},
-  };
-
-  Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
-                                COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
-                                COEFFS_128[6], COEFFS_128[7]);
-  return p;
-}
-
-// Compute 10^(x) using 128-bit precision.
-// TODO(lntue): investigate triple-double precision implementation for this
-// step.
-Float128 exp10_f128(double x, double kd, int idx1, int idx2) {
-  double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
-  double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
-  double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144
-
-  Float128 dx = fputil::quick_add(
-      Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
-
-  // TODO: Skip recalculating exp_mid1 and exp_mid2.
-  Float128 exp_mid1 =
-      fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
-                        fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
-                                          Float128(EXP2_MID1[idx1].lo)));
-
-  Float128 exp_mid2 =
-      fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
-                        fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
-                                          Float128(EXP2_MID2[idx2].lo)));
-
-  Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
-
-  Float128 p = poly_approx_f128(dx);
-
-  Float128 r = fputil::quick_mul(exp_mid, p);
-
-  r.exponent += static_cast<int>(kd) >> 12;
-
-  return r;
-}
-
-// Compute 10^x with double-double precision.
-DoubleDouble exp10_double_double(double x, double kd,
-                                 const DoubleDouble &exp_mid) {
-  // Recalculate dx:
-  //   dx = x - k * 2^-12 * log10(2)
-  double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
-  double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
-  double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140
-
-  DoubleDouble dx = fputil::exact_add(t1, t2);
-  dx.lo += t3;
-
-  // Degree-6 polynomial approximation in double-double precision.
-  // | p - 10^x | < 2^-103.
-  DoubleDouble p = poly_approx_dd(dx);
-
-  // Error bounds: 2^-102.
-  DoubleDouble r = fputil::quick_mult(exp_mid, p);
-
-  return r;
-}
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-// When output is denormal.
-double exp10_denorm(double x) {
-  // Range reduction.
-  double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
-  int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
-  double kd = static_cast<double>(k);
-
-  uint32_t idx1 = (k >> 6) & 0x3f;
-  uint32_t idx2 = k & 0x3f;
-
-  int hi = k >> 12;
-
-  DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
-  DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
-  DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
-
-  // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
-  double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
-  double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
-
-  double mid_lo = dx * exp_mid.hi;
-
-  // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
-  double p = poly_approx_d(dx);
-
-  double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
-
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-  return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D)
-      .value();
-#else
-  if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
-      LIBC_LIKELY(r.has_value()))
-    return r.value();
-
-  // Use double-double
-  DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
-
-  if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
-      LIBC_LIKELY(r.has_value()))
-    return r.value();
-
-  // Use 128-bit precision
-  Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
-
-  return static_cast<double>(r_f128);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-}
-
-// Check for exceptional cases when:
-//  * log10(1 - 2^-54) < x < log10(1 + 2^-53)
-//  * x >= log10(2^1024)
-//  * x <= log10(2^-1022)
-//  * x is inf or nan
-double set_exceptional(double x) {
-  using FPBits = typename fputil::FPBits<double>;
-  FPBits xbits(x);
-
-  uint64_t x_u = xbits.uintval();
-  uint64_t x_abs = xbits.abs().uintval();
-
-  // |x| < log10(1 + 2^-53)
-  if (x_abs <= 0x3c8bcb7b1526e50e) {
-    // 10^(x) ~ 1 + x/2
-    return fputil::multiply_add(x, 0.5, 1.0);
-  }
-
-  // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan.
-  if (x_u >= 0xc0733a7146f72a42) {
-    // x <= log10(2^-1075) or -inf/nan
-    if (x_u > 0xc07439b746e36b52) {
-      // exp(-Inf) = 0
-      if (xbits.is_inf())
-        return 0.0;
-
-      // exp(nan) = nan
-      if (xbits.is_nan())
-        return x;
-
-      if (fputil::quick_get_round() == FE_UPWARD)
-        return FPBits::min_subnormal().get_val();
-      fputil::set_errno_if_required(ERANGE);
-      fputil::raise_except_if_required(FE_UNDERFLOW);
-      return 0.0;
-    }
-
-    return exp10_denorm(x);
-  }
-
-  // x >= log10(2^1024) or +inf/nan
-  // x is finite
-  if (x_u < 0x7ff0'0000'0000'0000ULL) {
-    int rounding = fputil::quick_get_round();
-    if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
-      return FPBits::max_normal().get_val();
-
-    fputil::set_errno_if_required(ERANGE);
-    fputil::raise_except_if_required(FE_OVERFLOW);
-  }
-  // x is +inf or nan
-  return x + FPBits::inf().get_val();
-}
-
-} // namespace
-
-LLVM_LIBC_FUNCTION(double, exp10, (double x)) {
-  using FPBits = typename fputil::FPBits<double>;
-  FPBits xbits(x);
-
-  uint64_t x_u = xbits.uintval();
-
-  // x <= log10(2^-1022) or x >= log10(2^1024) or
-  // log10(1 - 2^-54) < x < log10(1 + 2^-53).
-  if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 ||
-                    (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) ||
-                    x_u < 0x3c8bcb7b1526e50e)) {
-    return set_exceptional(x);
-  }
-
-  // Now log10(2^-1075) < x <= log10(1 - 2^-54) or
-  //     log10(1 + 2^-53) < x < log10(2^1024)
-
-  // Range reduction:
-  // Let x = log10(2) * (hi + mid1 + mid2) + lo
-  // in which:
-  //   hi is an integer
-  //   mid1 * 2^6 is an integer
-  //   mid2 * 2^12 is an integer
-  // then:
-  //   10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo).
-  // With this formula:
-  //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
-  //     field.
-  //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
-  //   - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
-  //
-  // We compute (hi + mid1 + mid2) together by perform the rounding on
-  //   x * log2(10) * 2^12.
-  // Since |x| < |log10(2^-1075)| < 2^9,
-  //   |x * 2^12| < 2^9 * 2^12 < 2^21,
-  // So we can fit the rounded result round(x * 2^12) in int32_t.
-  // Thus, the goal is to be able to use an additional addition and fixed width
-  // shift to get an int32_t representing round(x * 2^12).
-  //
-  // Assuming int32_t using 2-complement representation, since the mantissa part
-  // of a double precision is unsigned with the leading bit hidden, if we add an
-  // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the
-  // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
-  // considered as a proper 2-complement representations of x*2^12.
-  //
-  // One small problem with this approach is that the sum (x*2^12 + C) in
-  // double precision is rounded to the least significant bit of the dorminant
-  // factor C.  In order to minimize the rounding errors from this addition, we
-  // want to minimize e1.  Another constraint that we want is that after
-  // shifting the mantissa so that the least significant bit of int32_t
-  // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
-  // any adjustment.  So combining these 2 requirements, we can choose
-  //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
-  // after right shifting the mantissa, the resulting int32_t has correct sign.
-  // With this choice of C, the number of mantissa bits we need to shift to the
-  // right is: 52 - 33 = 19.
-  //
-  // Moreover, since the integer right shifts are equivalent to rounding down,
-  // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
-  // +infinity.  So in particular, we can compute:
-  //   hmm = x * 2^12 + C,
-  // where C = 2^33 + 2^32 + 2^-1, then if
-  //   k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
-  // the reduced argument:
-  //   lo = x - log10(2) * 2^-12 * k is bounded by:
-  //   |lo|  = |x - log10(2) * 2^-12 * k|
-  //         = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k |
-  //        <= log10(2) * 2^-12 * (2^-1 + 2^-19)
-  //         < 1.5 * 2^-2 * (2^-13 + 2^-31)
-  //         = 1.5 * (2^-15 * 2^-31)
-  //
-  // Finally, notice that k only uses the mantissa of x * 2^12, so the
-  // exponent 2^12 is not needed.  So we can simply define
-  //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
-  //   k = int32_t(lower 51 bits of double(x + C) >> 19).
-
-  // Rounding errors <= 2^-31.
-  double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
-  int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
-  double kd = static_cast<double>(k);
-
-  uint32_t idx1 = (k >> 6) & 0x3f;
-  uint32_t idx2 = k & 0x3f;
-
-  int hi = k >> 12;
-
-  DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
-  DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
-  DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
-
-  // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
-  double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
-  double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
-
-  // We use the degree-4 polynomial to approximate 10^(lo):
-  //   10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4
-  //           = 1 + lo * P(lo)
-  // So that the errors are bounded by:
-  //   |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
-  // Let P_ be an evaluation of P where all intermediate computations are in
-  // double precision.  Using either Horner's or Estrin's schemes, the evaluated
-  // errors can be bounded by:
-  //      |P_(lo) - P(lo)| < 2^-51
-  //   => |lo * P_(lo) - (2^lo - 1) | < 2^-65
-  //   => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64.
-  // Since we approximate
-  //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
-  // We use the expression:
-  //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
-  //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
-  // with errors bounded by 2^-64.
-
-  double mid_lo = dx * exp_mid.hi;
-
-  // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
-  double p = poly_approx_d(dx);
-
-  double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
-
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-  int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
-  double r =
-      cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo));
-  return r;
-#else
-  double upper = exp_mid.hi + (lo + ERR_D);
-  double lower = exp_mid.hi + (lo - ERR_D);
-
-  if (LIBC_LIKELY(upper == lower)) {
-    // To multiply by 2^hi, a fast way is to simply add hi to the exponent
-    // field.
-    int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
-    double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
-    return r;
-  }
-
-  // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23.
-  // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0)
-  if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) {
-    switch (x_u) {
-    case 0x3ff0000000000000: // x = 1.0
-      return 10.0;
-    case 0x4000000000000000: // x = 2.0
-      return 100.0;
-    case 0x4008000000000000: // x = 3.0
-      return 1'000.0;
-    case 0x4010000000000000: // x = 4.0
-      return 10'000.0;
-    case 0x4014000000000000: // x = 5.0
-      return 100'000.0;
-    case 0x4018000000000000: // x = 6.0
-      return 1'000'000.0;
-    case 0x401c000000000000: // x = 7.0
-      return 10'000'000.0;
-    case 0x4020000000000000: // x = 8.0
-      return 100'000'000.0;
-    case 0x4022000000000000: // x = 9.0
-      return 1'000'000'000.0;
-    case 0x4024000000000000: // x = 10.0
-      return 10'000'000'000.0;
-    case 0x4026000000000000: // x = 11.0
-      return 100'000'000'000.0;
-    case 0x4028000000000000: // x = 12.0
-      return 1'000'000'000'000.0;
-    case 0x402a000000000000: // x = 13.0
-      return 10'000'000'000'000.0;
-    case 0x402c000000000000: // x = 14.0
-      return 100'000'000'000'000.0;
-    case 0x402e000000000000: // x = 15.0
-      return 1'000'000'000'000'000.0;
-    case 0x4030000000000000: // x = 16.0
-      return 10'000'000'000'000'000.0;
-    case 0x4031000000000000: // x = 17.0
-      return 100'000'000'000'000'000.0;
-    case 0x4032000000000000: // x = 18.0
-      return 1'000'000'000'000'000'000.0;
-    case 0x4033000000000000: // x = 19.0
-      return 10'000'000'000'000'000'000.0;
-    case 0x4034000000000000: // x = 20.0
-      return 100'000'000'000'000'000'000.0;
-    case 0x4035000000000000: // x = 21.0
-      return 1'000'000'000'000'000'000'000.0;
-    case 0x4036000000000000: // x = 22.0
-      return 10'000'000'000'000'000'000'000.0;
-    case 0x4037000000000000: // x = 23.0
-      return 0x1.52d02c7e14af6p76 + x;
-    }
-  }
-
-  // Use double-double
-  DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
-
-  double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
-  double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
-
-  if (LIBC_LIKELY(upper_dd == lower_dd)) {
-    // To multiply by 2^hi, a fast way is to simply add hi to the exponent
-    // field.
-    int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
-    double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
-    return r;
-  }
-
-  // Use 128-bit precision
-  Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
-
-  return static_cast<double>(r_f128);
-#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-}
+LLVM_LIBC_FUNCTION(double, exp10, (double x)) { return math::exp10(x); }
 
 } // namespace LIBC_NAMESPACE_DECL
diff --git a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
index 4ab0126291276..26fc8b4cf6543 100644
--- a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
@@ -2245,6 +2245,24 @@ libc_support_library(
     ],
 )
 
+libc_support_library(
+    name = "__support_math_exp10",
+    hdrs = ["src/__support/math/exp10.h"],
+    deps = [
+        ":__support_math_exp_constants",
+        ":__support_math_exp_utils",
+        ":__support_fputil_double_double",
+        ":__support_fputil_dyadic_float",
+        ":__support_fputil_multiply_add",
+        ":__support_fputil_nearest_integer",
+        ":__support_fputil_polyeval",
+        ":__support_fputil_rounding_mode",
+        ":__support_fputil_triple_double",
+        ":__support_integer_literals",
+        ":__support_macros_optimization",
+    ],
+)
+
 ############################### complex targets ################################
 
 libc_function(
@@ -2849,17 +2867,8 @@ libc_math_function(
 libc_math_function(
     name = "exp10",
     additional_deps = [
-        ":__support_fputil_double_double",
-        ":__support_fputil_dyadic_float",
-        ":__support_fputil_multiply_add",
-        ":__support_fputil_nearest_integer",
-        ":__support_fputil_polyeval",
-        ":__support_fputil_rounding_mode",
-        ":__support_fputil_triple_double",
-        ":__support_integer_literals",
-        ":__support_macros_optimization",
-        ":common_constants",
-        ":explogxf",
+        ":__support_math_exp10",
+        ":errno",
     ],
 )
 



More information about the llvm-commits mailing list