[llvm] [NVPTX] Consistently check fast-math flags when lowering fsqrt (PR #143776)

Alex MacLean via llvm-commits llvm-commits at lists.llvm.org
Wed Jun 11 12:51:39 PDT 2025


https://github.com/AlexMaclean created https://github.com/llvm/llvm-project/pull/143776

Ensure that we check the global, function-level, and instruction-level flags when considering whether to use `sqrt.rn` or `sqrt.approx` to lower either `@llvm.sqrt.f32` or `@llvm.nvvm.sqrt.f`

>From f2c2eba5286f633132d72f8ff2d5ca8789da7e4a Mon Sep 17 00:00:00 2001
From: Alex Maclean <amaclean at nvidia.com>
Date: Wed, 11 Jun 2025 15:00:29 +0000
Subject: [PATCH 1/2] pre-commit tests

---
 llvm/test/CodeGen/NVPTX/fast-math.ll   | 467 ++++++++++++++++++++-----
 llvm/test/CodeGen/NVPTX/sqrt-approx.ll | 339 +++++++++++++++---
 2 files changed, 657 insertions(+), 149 deletions(-)

diff --git a/llvm/test/CodeGen/NVPTX/fast-math.ll b/llvm/test/CodeGen/NVPTX/fast-math.ll
index 4cb6a35e796fb..4911e320a73ec 100644
--- a/llvm/test/CodeGen/NVPTX/fast-math.ll
+++ b/llvm/test/CodeGen/NVPTX/fast-math.ll
@@ -1,58 +1,114 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5
 ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 | FileCheck %s
 ; RUN: %if ptxas %{ llc < %s -mtriple=nvptx64 -mcpu=sm_20 | %ptxas-verify %}
 
 declare float @llvm.sqrt.f32(float)
 declare double @llvm.sqrt.f64(double)
 
-; CHECK-LABEL: sqrt_div(
-; CHECK: sqrt.rn.f32
-; CHECK: div.rn.f32
 define float @sqrt_div(float %a, float %b) {
+; CHECK-LABEL: sqrt_div(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_param_0];
+; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_param_1];
+; CHECK-NEXT:    div.rn.f32 %r4, %r2, %r3;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
+; CHECK-NEXT:    ret;
   %t1 = tail call float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
 }
 
-; CHECK-LABEL: sqrt_div_fast(
-; CHECK: sqrt.rn.f32
-; CHECK: div.approx.f32
 define float @sqrt_div_fast(float %a, float %b) #0 {
+; CHECK-LABEL: sqrt_div_fast(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_param_0];
+; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_fast_param_1];
+; CHECK-NEXT:    div.approx.f32 %r4, %r2, %r3;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
+; CHECK-NEXT:    ret;
   %t1 = tail call float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
 }
 
-; CHECK-LABEL: sqrt_div_fast_ninf(
-; CHECK: sqrt.approx.f32
-; CHECK: div.approx.f32
 define float @sqrt_div_fast_ninf(float %a, float %b) #0 {
+; CHECK-LABEL: sqrt_div_fast_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_ninf_param_0];
+; CHECK-NEXT:    sqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    abs.f32 %r3, %r1;
+; CHECK-NEXT:    setp.lt.f32 %p1, %r3, 0f00800000;
+; CHECK-NEXT:    selp.f32 %r4, 0f00000000, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r5, [sqrt_div_fast_ninf_param_1];
+; CHECK-NEXT:    div.approx.f32 %r6, %r4, %r5;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r6;
+; CHECK-NEXT:    ret;
   %t1 = tail call ninf afn float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
 }
 
-; CHECK-LABEL: sqrt_div_ftz(
-; CHECK: sqrt.rn.ftz.f32
-; CHECK: div.rn.ftz.f32
 define float @sqrt_div_ftz(float %a, float %b) #1 {
+; CHECK-LABEL: sqrt_div_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_ftz_param_1];
+; CHECK-NEXT:    div.rn.ftz.f32 %r4, %r2, %r3;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
+; CHECK-NEXT:    ret;
   %t1 = tail call float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
 }
 
-; CHECK-LABEL: sqrt_div_fast_ftz(
-; CHECK: sqrt.rn.ftz.f32
-; CHECK: div.approx.ftz.f32
 define float @sqrt_div_fast_ftz(float %a, float %b) #0 #1 {
+; CHECK-LABEL: sqrt_div_fast_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_fast_ftz_param_1];
+; CHECK-NEXT:    div.approx.ftz.f32 %r4, %r2, %r3;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
+; CHECK-NEXT:    ret;
   %t1 = tail call float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
 }
 
-; CHECK-LABEL: sqrt_div_fast_ftz_ninf(
-; CHECK: sqrt.approx.ftz.f32
-; CHECK: div.approx.ftz.f32
 define float @sqrt_div_fast_ftz_ninf(float %a, float %b) #0 #1 {
+; CHECK-LABEL: sqrt_div_fast_ftz_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_ftz_ninf_param_0];
+; CHECK-NEXT:    setp.eq.ftz.f32 %p1, %r1, 0f00000000;
+; CHECK-NEXT:    sqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    selp.f32 %r3, 0f00000000, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r4, [sqrt_div_fast_ftz_ninf_param_1];
+; CHECK-NEXT:    div.approx.ftz.f32 %r5, %r3, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r5;
+; CHECK-NEXT:    ret;
   %t1 = tail call ninf afn float @llvm.sqrt.f32(float %a)
   %t2 = fdiv float %t1, %b
   ret float %t2
@@ -61,69 +117,117 @@ define float @sqrt_div_fast_ftz_ninf(float %a, float %b) #0 #1 {
 ; There are no fast-math or ftz versions of sqrt and div for f64.  We use
 ; reciprocal(rsqrt(x)) for sqrt(x), and emit a vanilla divide.
 
-; CHECK-LABEL: sqrt_div_fast_ftz_f64(
-; CHECK: sqrt.rn.f64
-; CHECK: div.rn.f64
 define double @sqrt_div_fast_ftz_f64(double %a, double %b) #0 #1 {
+; CHECK-LABEL: sqrt_div_fast_ftz_f64(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [sqrt_div_fast_ftz_f64_param_0];
+; CHECK-NEXT:    sqrt.rn.f64 %rd2, %rd1;
+; CHECK-NEXT:    ld.param.b64 %rd3, [sqrt_div_fast_ftz_f64_param_1];
+; CHECK-NEXT:    div.rn.f64 %rd4, %rd2, %rd3;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd4;
+; CHECK-NEXT:    ret;
   %t1 = tail call double @llvm.sqrt.f64(double %a)
   %t2 = fdiv double %t1, %b
   ret double %t2
 }
 
-; CHECK-LABEL: sqrt_div_fast_ftz_f64_ninf(
-; CHECK: rsqrt.approx.f64
-; CHECK: rcp.approx.ftz.f64
-; CHECK: div.rn.f64
 define double @sqrt_div_fast_ftz_f64_ninf(double %a, double %b) #0 #1 {
+; CHECK-LABEL: sqrt_div_fast_ftz_f64_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b64 %rd<8>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [sqrt_div_fast_ftz_f64_ninf_param_0];
+; CHECK-NEXT:    abs.f64 %rd2, %rd1;
+; CHECK-NEXT:    setp.lt.f64 %p1, %rd2, 0d0010000000000000;
+; CHECK-NEXT:    rsqrt.approx.f64 %rd3, %rd1;
+; CHECK-NEXT:    rcp.approx.ftz.f64 %rd4, %rd3;
+; CHECK-NEXT:    selp.f64 %rd5, 0d0000000000000000, %rd4, %p1;
+; CHECK-NEXT:    ld.param.b64 %rd6, [sqrt_div_fast_ftz_f64_ninf_param_1];
+; CHECK-NEXT:    div.rn.f64 %rd7, %rd5, %rd6;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd7;
+; CHECK-NEXT:    ret;
   %t1 = tail call ninf afn double @llvm.sqrt.f64(double %a)
   %t2 = fdiv double %t1, %b
   ret double %t2
 }
 
-; CHECK-LABEL: rsqrt(
-; CHECK-NOT: rsqrt.approx
-; CHECK: sqrt.rn.f32
-; CHECK-NOT: rsqrt.approx
 define float @rsqrt(float %a) {
+; CHECK-LABEL: rsqrt(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<4>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [rsqrt_param_0];
+; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    rcp.rn.f32 %r3, %r2;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r3;
+; CHECK-NEXT:    ret;
   %b = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %b
   ret float %ret
 }
 
-; CHECK-LABEL: rsqrt_fast(
-; CHECK-NOT: div.
-; CHECK-NOT: sqrt.
-; CHECK: rsqrt.approx.f32
-; CHECK-NOT: div.
-; CHECK-NOT: sqrt.
 define float @rsqrt_fast(float %a) #0 {
+; CHECK-LABEL: rsqrt_fast(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [rsqrt_fast_param_0];
+; CHECK-NEXT:    rsqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %b = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %b
   ret float %ret
 }
 
-; CHECK-LABEL: rsqrt_fast_ftz(
-; CHECK-NOT: div.
-; CHECK-NOT: sqrt.
-; CHECK: rsqrt.approx.ftz.f32
-; CHECK-NOT: div.
-; CHECK-NOT: sqrt.
 define float @rsqrt_fast_ftz(float %a) #0 #1 {
+; CHECK-LABEL: rsqrt_fast_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [rsqrt_fast_ftz_param_0];
+; CHECK-NEXT:    rsqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %b = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %b
   ret float %ret
 }
 
-; CHECK-LABEL: fadd
-; CHECK: add.rn.f32
 define float @fadd(float %a, float %b) {
+; CHECK-LABEL: fadd(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<4>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fadd_param_0];
+; CHECK-NEXT:    ld.param.b32 %r2, [fadd_param_1];
+; CHECK-NEXT:    add.rn.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r3;
+; CHECK-NEXT:    ret;
   %t1 = fadd float %a, %b
   ret float %t1
 }
 
-; CHECK-LABEL: fadd_ftz
-; CHECK: add.rn.ftz.f32
 define float @fadd_ftz(float %a, float %b) #1 {
+; CHECK-LABEL: fadd_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<4>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fadd_ftz_param_0];
+; CHECK-NEXT:    ld.param.b32 %r2, [fadd_ftz_param_1];
+; CHECK-NEXT:    add.rn.ftz.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r3;
+; CHECK-NEXT:    ret;
   %t1 = fadd float %a, %b
   ret float %t1
 }
@@ -131,41 +235,83 @@ define float @fadd_ftz(float %a, float %b) #1 {
 declare float @llvm.sin.f32(float)
 declare float @llvm.cos.f32(float)
 
-; CHECK-LABEL: fsin_approx_afn
-; CHECK:       sin.approx.f32
 define float @fsin_approx_afn(float %a) {
+; CHECK-LABEL: fsin_approx_afn(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fsin_approx_afn_param_0];
+; CHECK-NEXT:    sin.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %r = tail call afn float @llvm.sin.f32(float %a)
   ret float %r
 }
 
-; CHECK-LABEL: fcos_approx_afn
-; CHECK:       cos.approx.f32
 define float @fcos_approx_afn(float %a) {
+; CHECK-LABEL: fcos_approx_afn(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fcos_approx_afn_param_0];
+; CHECK-NEXT:    cos.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %r = tail call afn float @llvm.cos.f32(float %a)
   ret float %r
 }
 
-; CHECK-LABEL: fsin_approx
-; CHECK:       sin.approx.f32
 define float @fsin_approx(float %a) #0 {
+; CHECK-LABEL: fsin_approx(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fsin_approx_param_0];
+; CHECK-NEXT:    sin.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %r = tail call float @llvm.sin.f32(float %a)
   ret float %r
 }
 
-; CHECK-LABEL: fcos_approx
-; CHECK:       cos.approx.f32
 define float @fcos_approx(float %a) #0 {
+; CHECK-LABEL: fcos_approx(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [fcos_approx_param_0];
+; CHECK-NEXT:    cos.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %r = tail call float @llvm.cos.f32(float %a)
   ret float %r
 }
 
-; CHECK-LABEL: repeated_div_recip_allowed
 define float @repeated_div_recip_allowed(i1 %pred, float %a, float %b, float %divisor) {
-; CHECK: rcp.rn.f32
-; CHECK: mul.rn.f32
-; CHECK: mul.rn.f32
-; CHECK: mul.rn.f32
-; CHECK: selp.f32
+; CHECK-LABEL: repeated_div_recip_allowed(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_recip_allowed_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_recip_allowed_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_recip_allowed_param_3];
+; CHECK-NEXT:    rcp.rn.f32 %r3, %r2;
+; CHECK-NEXT:    mul.rn.f32 %r4, %r1, %r3;
+; CHECK-NEXT:    ld.param.b32 %r5, [repeated_div_recip_allowed_param_2];
+; CHECK-NEXT:    mul.rn.f32 %r6, %r5, %r3;
+; CHECK-NEXT:    mul.rn.f32 %r7, %r4, %r6;
+; CHECK-NEXT:    selp.f32 %r8, %r7, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r8;
+; CHECK-NEXT:    ret;
   %x = fdiv arcp float %a, %divisor
   %y = fdiv arcp float %b, %divisor
   %z = fmul float %x, %y
@@ -173,23 +319,51 @@ define float @repeated_div_recip_allowed(i1 %pred, float %a, float %b, float %di
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_recip_allowed_sel
 define float @repeated_div_recip_allowed_sel(i1 %pred, float %a, float %b, float %divisor) {
-; CHECK: selp.f32
-; CHECK: div.rn.f32
+; CHECK-LABEL: repeated_div_recip_allowed_sel(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_recip_allowed_sel_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_recip_allowed_sel_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_recip_allowed_sel_param_2];
+; CHECK-NEXT:    selp.f32 %r3, %r1, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r4, [repeated_div_recip_allowed_sel_param_3];
+; CHECK-NEXT:    div.rn.f32 %r5, %r3, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r5;
+; CHECK-NEXT:    ret;
   %x = fdiv arcp float %a, %divisor
   %y = fdiv arcp float %b, %divisor
   %w = select i1 %pred, float %x, float %y
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_recip_allowed_ftz
 define float @repeated_div_recip_allowed_ftz(i1 %pred, float %a, float %b, float %divisor) #1 {
-; CHECK: rcp.rn.ftz.f32
-; CHECK: mul.rn.ftz.f32
-; CHECK: mul.rn.ftz.f32
-; CHECK: mul.rn.ftz.f32
-; CHECK: selp.f32
+; CHECK-LABEL: repeated_div_recip_allowed_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_recip_allowed_ftz_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_recip_allowed_ftz_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_recip_allowed_ftz_param_3];
+; CHECK-NEXT:    rcp.rn.ftz.f32 %r3, %r2;
+; CHECK-NEXT:    mul.rn.ftz.f32 %r4, %r1, %r3;
+; CHECK-NEXT:    ld.param.b32 %r5, [repeated_div_recip_allowed_ftz_param_2];
+; CHECK-NEXT:    mul.rn.ftz.f32 %r6, %r5, %r3;
+; CHECK-NEXT:    mul.rn.ftz.f32 %r7, %r4, %r6;
+; CHECK-NEXT:    selp.f32 %r8, %r7, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r8;
+; CHECK-NEXT:    ret;
   %x = fdiv arcp float %a, %divisor
   %y = fdiv arcp float %b, %divisor
   %z = fmul float %x, %y
@@ -197,23 +371,51 @@ define float @repeated_div_recip_allowed_ftz(i1 %pred, float %a, float %b, float
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_recip_allowed_ftz_sel
 define float @repeated_div_recip_allowed_ftz_sel(i1 %pred, float %a, float %b, float %divisor) #1 {
-; CHECK: selp.f32
-; CHECK: div.rn.ftz.f32
+; CHECK-LABEL: repeated_div_recip_allowed_ftz_sel(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_recip_allowed_ftz_sel_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_recip_allowed_ftz_sel_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_recip_allowed_ftz_sel_param_2];
+; CHECK-NEXT:    selp.f32 %r3, %r1, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r4, [repeated_div_recip_allowed_ftz_sel_param_3];
+; CHECK-NEXT:    div.rn.ftz.f32 %r5, %r3, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r5;
+; CHECK-NEXT:    ret;
   %x = fdiv arcp float %a, %divisor
   %y = fdiv arcp float %b, %divisor
   %w = select i1 %pred, float %x, float %y
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_fast
 define float @repeated_div_fast(i1 %pred, float %a, float %b, float %divisor) #0 {
-; CHECK: rcp.approx.f32
-; CHECK: mul.f32
-; CHECK: mul.f32
-; CHECK: mul.f32
-; CHECK: selp.f32
+; CHECK-LABEL: repeated_div_fast(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_fast_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_fast_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_fast_param_3];
+; CHECK-NEXT:    rcp.approx.f32 %r3, %r2;
+; CHECK-NEXT:    mul.f32 %r4, %r1, %r3;
+; CHECK-NEXT:    ld.param.b32 %r5, [repeated_div_fast_param_2];
+; CHECK-NEXT:    mul.f32 %r6, %r5, %r3;
+; CHECK-NEXT:    mul.f32 %r7, %r4, %r6;
+; CHECK-NEXT:    selp.f32 %r8, %r7, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r8;
+; CHECK-NEXT:    ret;
   %x = fdiv float %a, %divisor
   %y = fdiv float %b, %divisor
   %z = fmul float %x, %y
@@ -221,23 +423,51 @@ define float @repeated_div_fast(i1 %pred, float %a, float %b, float %divisor) #0
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_fast_sel
 define float @repeated_div_fast_sel(i1 %pred, float %a, float %b, float %divisor) #0 {
-; CHECK: selp.f32
-; CHECK: div.approx.f32
+; CHECK-LABEL: repeated_div_fast_sel(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_fast_sel_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_fast_sel_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_fast_sel_param_2];
+; CHECK-NEXT:    selp.f32 %r3, %r1, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r4, [repeated_div_fast_sel_param_3];
+; CHECK-NEXT:    div.approx.f32 %r5, %r3, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r5;
+; CHECK-NEXT:    ret;
   %x = fdiv float %a, %divisor
   %y = fdiv float %b, %divisor
   %w = select i1 %pred, float %x, float %y
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_fast_ftz
 define float @repeated_div_fast_ftz(i1 %pred, float %a, float %b, float %divisor) #0 #1 {
-; CHECK: rcp.approx.ftz.f32
-; CHECK: mul.ftz.f32
-; CHECK: mul.ftz.f32
-; CHECK: mul.ftz.f32
-; CHECK: selp.f32
+; CHECK-LABEL: repeated_div_fast_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_fast_ftz_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_fast_ftz_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_fast_ftz_param_3];
+; CHECK-NEXT:    rcp.approx.ftz.f32 %r3, %r2;
+; CHECK-NEXT:    mul.ftz.f32 %r4, %r1, %r3;
+; CHECK-NEXT:    ld.param.b32 %r5, [repeated_div_fast_ftz_param_2];
+; CHECK-NEXT:    mul.ftz.f32 %r6, %r5, %r3;
+; CHECK-NEXT:    mul.ftz.f32 %r7, %r4, %r6;
+; CHECK-NEXT:    selp.f32 %r8, %r7, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r8;
+; CHECK-NEXT:    ret;
   %x = fdiv float %a, %divisor
   %y = fdiv float %b, %divisor
   %z = fmul float %x, %y
@@ -245,33 +475,80 @@ define float @repeated_div_fast_ftz(i1 %pred, float %a, float %b, float %divisor
   ret float %w
 }
 
-; CHECK-LABEL: repeated_div_fast_ftz_sel
 define float @repeated_div_fast_ftz_sel(i1 %pred, float %a, float %b, float %divisor) #0 #1 {
-; CHECK: selp.f32
-; CHECK: div.approx.ftz.f32
+; CHECK-LABEL: repeated_div_fast_ftz_sel(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b16 %rs<3>;
+; CHECK-NEXT:    .reg .b32 %r<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b8 %rs1, [repeated_div_fast_ftz_sel_param_0];
+; CHECK-NEXT:    and.b16 %rs2, %rs1, 1;
+; CHECK-NEXT:    setp.ne.b16 %p1, %rs2, 0;
+; CHECK-NEXT:    ld.param.b32 %r1, [repeated_div_fast_ftz_sel_param_1];
+; CHECK-NEXT:    ld.param.b32 %r2, [repeated_div_fast_ftz_sel_param_2];
+; CHECK-NEXT:    selp.f32 %r3, %r1, %r2, %p1;
+; CHECK-NEXT:    ld.param.b32 %r4, [repeated_div_fast_ftz_sel_param_3];
+; CHECK-NEXT:    div.approx.ftz.f32 %r5, %r3, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r5;
+; CHECK-NEXT:    ret;
   %x = fdiv float %a, %divisor
   %y = fdiv float %b, %divisor
   %w = select i1 %pred, float %x, float %y
   ret float %w
 }
 
-; CHECK-LABEL: frem
 define float @frem(float %a, float %b) #0 {
-  ; CHECK-NOT: testp.infinite
+; CHECK-LABEL: frem(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [frem_param_0];
+; CHECK-NEXT:    ld.param.b32 %r2, [frem_param_1];
+; CHECK-NEXT:    div.approx.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    cvt.rzi.f32.f32 %r4, %r3;
+; CHECK-NEXT:    neg.f32 %r5, %r4;
+; CHECK-NEXT:    fma.rn.f32 %r6, %r5, %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r6;
+; CHECK-NEXT:    ret;
   %rem = frem float %a, %b
   ret float %rem
 }
 
-; CHECK-LABEL: frem_ftz
 define float @frem_ftz(float %a, float %b) #0 #1 {
-  ; CHECK-NOT: testp.infinite
+; CHECK-LABEL: frem_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [frem_ftz_param_0];
+; CHECK-NEXT:    ld.param.b32 %r2, [frem_ftz_param_1];
+; CHECK-NEXT:    div.approx.ftz.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    cvt.rzi.ftz.f32.f32 %r4, %r3;
+; CHECK-NEXT:    neg.ftz.f32 %r5, %r4;
+; CHECK-NEXT:    fma.rn.ftz.f32 %r6, %r5, %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r6;
+; CHECK-NEXT:    ret;
   %rem = frem float %a, %b
   ret float %rem
 }
 
-; CHECK-LABEL: frem_f64
 define double @frem_f64(double %a, double %b) #0 {
-  ; CHECK-NOT: testp.infinite
+; CHECK-LABEL: frem_f64(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [frem_f64_param_0];
+; CHECK-NEXT:    ld.param.b64 %rd2, [frem_f64_param_1];
+; CHECK-NEXT:    div.rn.f64 %rd3, %rd1, %rd2;
+; CHECK-NEXT:    cvt.rzi.f64.f64 %rd4, %rd3;
+; CHECK-NEXT:    neg.f64 %rd5, %rd4;
+; CHECK-NEXT:    fma.rn.f64 %rd6, %rd5, %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd6;
+; CHECK-NEXT:    ret;
   %rem = frem double %a, %b
   ret double %rem
 }
diff --git a/llvm/test/CodeGen/NVPTX/sqrt-approx.ll b/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
index e2a3f1cf0d2de..a60ab717f3755 100644
--- a/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
+++ b/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
@@ -1,3 +1,4 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5
 ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \
 ; RUN:   | FileCheck %s
 ; RUN: %if ptxas %{                                                                   \
@@ -12,34 +13,62 @@ declare double @llvm.sqrt.f64(double)
 
 ; -- reciprocal sqrt --
 
-; CHECK-LABEL: test_rsqrt32
 define float @test_rsqrt32(float %a) #0 {
-; CHECK: rsqrt.approx.f32
+; CHECK-LABEL: test_rsqrt32(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_rsqrt32_param_0];
+; CHECK-NEXT:    rsqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %val = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %val
   ret float %ret
 }
 
-; CHECK-LABEL: test_rsqrt_ftz
 define float @test_rsqrt_ftz(float %a) #0 #1 {
-; CHECK: rsqrt.approx.ftz.f32
+; CHECK-LABEL: test_rsqrt_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_rsqrt_ftz_param_0];
+; CHECK-NEXT:    rsqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %val = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %val
   ret float %ret
 }
 
-; CHECK-LABEL: test_rsqrt64
 define double @test_rsqrt64(double %a) #0 {
-; CHECK: rsqrt.approx.f64
+; CHECK-LABEL: test_rsqrt64(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_rsqrt64_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %val = tail call double @llvm.sqrt.f64(double %a)
   %ret = fdiv double 1.0, %val
   ret double %ret
 }
 
-; CHECK-LABEL: test_rsqrt64_ftz
-define double @test_rsqrt64_ftz(double %a) #0 #1 {
 ; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
-; CHECK: rsqrt.approx.f64
+define double @test_rsqrt64_ftz(double %a) #0 #1 {
+; CHECK-LABEL: test_rsqrt64_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_rsqrt64_ftz_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %val = tail call double @llvm.sqrt.f64(double %a)
   %ret = fdiv double 1.0, %val
   ret double %ret
@@ -47,64 +76,135 @@ define double @test_rsqrt64_ftz(double %a) #0 #1 {
 
 ; -- sqrt --
 
-; CHECK-LABEL: test_sqrt32
 define float @test_sqrt32(float %a) #0 {
-; CHECK: sqrt.rn.f32
+; CHECK-LABEL: test_sqrt32(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_param_0];
+; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt32_ninf
 define float @test_sqrt32_ninf(float %a) #0 {
-; CHECK: sqrt.approx.f32
+; CHECK-LABEL: test_sqrt32_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<5>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_ninf_param_0];
+; CHECK-NEXT:    sqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    abs.f32 %r3, %r1;
+; CHECK-NEXT:    setp.lt.f32 %p1, %r3, 0f00800000;
+; CHECK-NEXT:    selp.f32 %r4, 0f00000000, %r2, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt_ftz
 define float @test_sqrt_ftz(float %a) #0 #1 {
-; CHECK: sqrt.rn.ftz.f32
+; CHECK-LABEL: test_sqrt_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt_ftz_ninf
 define float @test_sqrt_ftz_ninf(float %a) #0 #1 {
-; CHECK: sqrt.approx.ftz.f32
+; CHECK-LABEL: test_sqrt_ftz_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<4>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt_ftz_ninf_param_0];
+; CHECK-NEXT:    setp.eq.ftz.f32 %p1, %r1, 0f00000000;
+; CHECK-NEXT:    sqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    selp.f32 %r3, 0f00000000, %r2, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r3;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt64
 define double @test_sqrt64(double %a) #0 {
-; CHECK: sqrt.rn.f64
+; CHECK-LABEL: test_sqrt64(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_param_0];
+; CHECK-NEXT:    sqrt.rn.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %ret = tail call double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_ninf
-define double @test_sqrt64_ninf(double %a) #0 {
 ; There's no sqrt.approx.f64 instruction; we emit
 ; reciprocal(rsqrt.approx.f64(x)).  There's no non-ftz approximate reciprocal,
 ; so we just use the ftz version.
-; CHECK: rsqrt.approx.f64
-; CHECK: rcp.approx.ftz.f64
+define double @test_sqrt64_ninf(double %a) #0 {
+; CHECK-LABEL: test_sqrt64_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b64 %rd<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_ninf_param_0];
+; CHECK-NEXT:    abs.f64 %rd2, %rd1;
+; CHECK-NEXT:    setp.lt.f64 %p1, %rd2, 0d0010000000000000;
+; CHECK-NEXT:    rsqrt.approx.f64 %rd3, %rd1;
+; CHECK-NEXT:    rcp.approx.ftz.f64 %rd4, %rd3;
+; CHECK-NEXT:    selp.f64 %rd5, 0d0000000000000000, %rd4, %p1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd5;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_ftz
 define double @test_sqrt64_ftz(double %a) #0 #1 {
-; CHECK: sqrt.rn.f64
+; CHECK-LABEL: test_sqrt64_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %ret = tail call double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_ftz_ninf
-define double @test_sqrt64_ftz_ninf(double %a) #0 #1 {
 ; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
-; CHECK: rsqrt.approx.f64
-; CHECK: rcp.approx.ftz.f64
+define double @test_sqrt64_ftz_ninf(double %a) #0 #1 {
+; CHECK-LABEL: test_sqrt64_ftz_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b64 %rd<6>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_ftz_ninf_param_0];
+; CHECK-NEXT:    abs.f64 %rd2, %rd1;
+; CHECK-NEXT:    setp.lt.f64 %p1, %rd2, 0d0010000000000000;
+; CHECK-NEXT:    rsqrt.approx.f64 %rd3, %rd1;
+; CHECK-NEXT:    rcp.approx.ftz.f64 %rd4, %rd3;
+; CHECK-NEXT:    selp.f64 %rd5, 0d0000000000000000, %rd4, %p1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd5;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
@@ -114,93 +214,224 @@ define double @test_sqrt64_ftz_ninf(double %a) #0 #1 {
 ; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed
 ; by some math.
 
-; CHECK-LABEL: test_rsqrt32_refined
 define float @test_rsqrt32_refined(float %a) #0 #2 {
-; CHECK: rsqrt.approx.f32
+; CHECK-LABEL: test_rsqrt32_refined(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_rsqrt32_refined_param_0];
+; CHECK-NEXT:    rsqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    mul.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    fma.rn.f32 %r4, %r3, %r2, 0fC0400000;
+; CHECK-NEXT:    mul.f32 %r5, %r2, 0fBF000000;
+; CHECK-NEXT:    mul.f32 %r6, %r5, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r6;
+; CHECK-NEXT:    ret;
   %val = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %val
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt32_refined
 define float @test_sqrt32_refined(float %a) #0 #2 {
-; CHECK: sqrt.rn.f32
+; CHECK-LABEL: test_sqrt32_refined(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_param_0];
+; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt32_refined_ninf
 define float @test_sqrt32_refined_ninf(float %a) #0 #2 {
-; CHECK: rsqrt.approx.f32
+; CHECK-LABEL: test_sqrt32_refined_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_ninf_param_0];
+; CHECK-NEXT:    rsqrt.approx.f32 %r2, %r1;
+; CHECK-NEXT:    mul.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    fma.rn.f32 %r4, %r3, %r2, 0fC0400000;
+; CHECK-NEXT:    mul.f32 %r5, %r3, 0fBF000000;
+; CHECK-NEXT:    mul.f32 %r6, %r5, %r4;
+; CHECK-NEXT:    abs.f32 %r7, %r1;
+; CHECK-NEXT:    setp.lt.f32 %p1, %r7, 0f00800000;
+; CHECK-NEXT:    selp.f32 %r8, 0f00000000, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r8;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_rsqrt64_refined
 define double @test_rsqrt64_refined(double %a) #0 #2 {
-; CHECK: rsqrt.approx.f64
+; CHECK-LABEL: test_rsqrt64_refined(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_rsqrt64_refined_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    mul.f64 %rd3, %rd1, %rd2;
+; CHECK-NEXT:    fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000;
+; CHECK-NEXT:    mul.f64 %rd5, %rd2, 0dBFE0000000000000;
+; CHECK-NEXT:    mul.f64 %rd6, %rd5, %rd4;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd6;
+; CHECK-NEXT:    ret;
   %val = tail call double @llvm.sqrt.f64(double %a)
   %ret = fdiv double 1.0, %val
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_refined
 define double @test_sqrt64_refined(double %a) #0 #2 {
-; CHECK: sqrt.rn.f64
+; CHECK-LABEL: test_sqrt64_refined(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_refined_param_0];
+; CHECK-NEXT:    sqrt.rn.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %ret = tail call double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_refined_ninf
 define double @test_sqrt64_refined_ninf(double %a) #0 #2 {
-; CHECK: rsqrt.approx.f64
+; CHECK-LABEL: test_sqrt64_refined_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b64 %rd<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_refined_ninf_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    mul.f64 %rd3, %rd1, %rd2;
+; CHECK-NEXT:    fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000;
+; CHECK-NEXT:    mul.f64 %rd5, %rd3, 0dBFE0000000000000;
+; CHECK-NEXT:    mul.f64 %rd6, %rd5, %rd4;
+; CHECK-NEXT:    abs.f64 %rd7, %rd1;
+; CHECK-NEXT:    setp.lt.f64 %p1, %rd7, 0d0010000000000000;
+; CHECK-NEXT:    selp.f64 %rd8, 0d0000000000000000, %rd6, %p1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd8;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
 ; -- refined sqrt and rsqrt with ftz enabled --
 
-; CHECK-LABEL: test_rsqrt32_refined_ftz
 define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 {
-; CHECK: rsqrt.approx.ftz.f32
+; CHECK-LABEL: test_rsqrt32_refined_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_rsqrt32_refined_ftz_param_0];
+; CHECK-NEXT:    rsqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    mul.ftz.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    fma.rn.ftz.f32 %r4, %r3, %r2, 0fC0400000;
+; CHECK-NEXT:    mul.ftz.f32 %r5, %r2, 0fBF000000;
+; CHECK-NEXT:    mul.ftz.f32 %r6, %r5, %r4;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r6;
+; CHECK-NEXT:    ret;
   %val = tail call float @llvm.sqrt.f32(float %a)
   %ret = fdiv float 1.0, %val
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt32_refined_ftz
 define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
-; CHECK: sqrt.rn.ftz.f32
+; CHECK-LABEL: test_sqrt32_refined_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b32 %r<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
+; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_sqrt32_refined_ftz_ninf
 define float @test_sqrt32_refined_ftz_ninf(float %a) #0 #1 #2 {
-; CHECK: rsqrt.approx.ftz.f32
+; CHECK-LABEL: test_sqrt32_refined_ftz_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b32 %r<8>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_ftz_ninf_param_0];
+; CHECK-NEXT:    rsqrt.approx.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    mul.ftz.f32 %r3, %r1, %r2;
+; CHECK-NEXT:    fma.rn.ftz.f32 %r4, %r3, %r2, 0fC0400000;
+; CHECK-NEXT:    mul.ftz.f32 %r5, %r3, 0fBF000000;
+; CHECK-NEXT:    mul.ftz.f32 %r6, %r5, %r4;
+; CHECK-NEXT:    setp.eq.ftz.f32 %p1, %r1, 0f00000000;
+; CHECK-NEXT:    selp.f32 %r7, 0f00000000, %r6, %p1;
+; CHECK-NEXT:    st.param.b32 [func_retval0], %r7;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
   ret float %ret
 }
 
-; CHECK-LABEL: test_rsqrt64_refined_ftz
-define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
 ; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version.
-; CHECK: rsqrt.approx.f64
+define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
+; CHECK-LABEL: test_rsqrt64_refined_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<7>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_rsqrt64_refined_ftz_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    mul.f64 %rd3, %rd1, %rd2;
+; CHECK-NEXT:    fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000;
+; CHECK-NEXT:    mul.f64 %rd5, %rd2, 0dBFE0000000000000;
+; CHECK-NEXT:    mul.f64 %rd6, %rd5, %rd4;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd6;
+; CHECK-NEXT:    ret;
   %val = tail call double @llvm.sqrt.f64(double %a)
   %ret = fdiv double 1.0, %val
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_refined_ftz
 define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 {
-; CHECK: sqrt.rn.f64
+; CHECK-LABEL: test_sqrt64_refined_ftz(
+; CHECK:       {
+; CHECK-NEXT:    .reg .b64 %rd<3>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_refined_ftz_param_0];
+; CHECK-NEXT:    sqrt.rn.f64 %rd2, %rd1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd2;
+; CHECK-NEXT:    ret;
   %ret = tail call double @llvm.sqrt.f64(double %a)
   ret double %ret
 }
 
-; CHECK-LABEL: test_sqrt64_refined_ftz_ninf
 define double @test_sqrt64_refined_ftz_ninf(double %a) #0 #1 #2 {
-; CHECK: rsqrt.approx.f64
+; CHECK-LABEL: test_sqrt64_refined_ftz_ninf(
+; CHECK:       {
+; CHECK-NEXT:    .reg .pred %p<2>;
+; CHECK-NEXT:    .reg .b64 %rd<9>;
+; CHECK-EMPTY:
+; CHECK-NEXT:  // %bb.0:
+; CHECK-NEXT:    ld.param.b64 %rd1, [test_sqrt64_refined_ftz_ninf_param_0];
+; CHECK-NEXT:    rsqrt.approx.f64 %rd2, %rd1;
+; CHECK-NEXT:    mul.f64 %rd3, %rd1, %rd2;
+; CHECK-NEXT:    fma.rn.f64 %rd4, %rd3, %rd2, 0dC008000000000000;
+; CHECK-NEXT:    mul.f64 %rd5, %rd3, 0dBFE0000000000000;
+; CHECK-NEXT:    mul.f64 %rd6, %rd5, %rd4;
+; CHECK-NEXT:    abs.f64 %rd7, %rd1;
+; CHECK-NEXT:    setp.lt.f64 %p1, %rd7, 0d0010000000000000;
+; CHECK-NEXT:    selp.f64 %rd8, 0d0000000000000000, %rd6, %p1;
+; CHECK-NEXT:    st.param.b64 [func_retval0], %rd8;
+; CHECK-NEXT:    ret;
   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
   ret double %ret
 }

>From 815fc4468fa54bf1825120526d9e7385adf0520b Mon Sep 17 00:00:00 2001
From: Alex Maclean <amaclean at nvidia.com>
Date: Wed, 11 Jun 2025 15:15:10 +0000
Subject: [PATCH 2/2] [NVPTX] Consistently check fast-math flags when lowering
 fsqrt

---
 llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp |  4 +--
 llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h   |  2 +-
 llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp | 24 +++++++++-----
 llvm/lib/Target/NVPTX/NVPTXISelLowering.h   |  3 +-
 llvm/lib/Target/NVPTX/NVPTXInstrInfo.td     |  3 --
 llvm/lib/Target/NVPTX/NVPTXIntrinsics.td    | 35 ++++++++++-----------
 llvm/test/CodeGen/NVPTX/fast-math.ll        |  4 +--
 llvm/test/CodeGen/NVPTX/sqrt-approx.ll      |  8 ++---
 8 files changed, 44 insertions(+), 39 deletions(-)

diff --git a/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp b/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
index 32223bf3d601e..121ffc5b9d805 100644
--- a/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
+++ b/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
@@ -71,8 +71,8 @@ NVPTXDAGToDAGISel::getDivF32Level(const SDNode *N) const {
   return Subtarget->getTargetLowering()->getDivF32Level(*MF, *N);
 }
 
-bool NVPTXDAGToDAGISel::usePrecSqrtF32() const {
-  return Subtarget->getTargetLowering()->usePrecSqrtF32();
+bool NVPTXDAGToDAGISel::usePrecSqrtF32(const SDNode *N) const {
+  return Subtarget->getTargetLowering()->usePrecSqrtF32(*MF, N);
 }
 
 bool NVPTXDAGToDAGISel::useF32FTZ() const {
diff --git a/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h b/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
index 71a5b7ff8cd30..473f4781a6c38 100644
--- a/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
+++ b/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
@@ -44,7 +44,7 @@ class LLVM_LIBRARY_VISIBILITY NVPTXDAGToDAGISel : public SelectionDAGISel {
   bool doMulWide;
 
   NVPTX::DivPrecisionLevel getDivF32Level(const SDNode *N) const;
-  bool usePrecSqrtF32() const;
+  bool usePrecSqrtF32(const SDNode *N) const;
   bool useF32FTZ() const;
   bool allowFMA() const;
   bool allowUnsafeFPMath() const;
diff --git a/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp b/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
index d6a134d9abafd..492f4ab76fdbb 100644
--- a/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
+++ b/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
@@ -134,14 +134,23 @@ NVPTXTargetLowering::getDivF32Level(const MachineFunction &MF,
   return NVPTX::DivPrecisionLevel::IEEE754;
 }
 
-bool NVPTXTargetLowering::usePrecSqrtF32() const {
-  if (UsePrecSqrtF32.getNumOccurrences() > 0) {
-    // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
+bool NVPTXTargetLowering::usePrecSqrtF32(const MachineFunction &MF,
+                                         const SDNode *N) const {
+  // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
+  if (UsePrecSqrtF32.getNumOccurrences() > 0)
     return UsePrecSqrtF32;
-  } else {
-    // Otherwise, use sqrt.approx if fast math is enabled
-    return !getTargetMachine().Options.UnsafeFPMath;
+
+  // Otherwise, use sqrt.approx if fast math is enabled
+  if (allowUnsafeFPMath(MF))
+    return false;
+
+  if (N) {
+    const SDNodeFlags Flags = N->getFlags();
+    if (Flags.hasApproximateFuncs())
+      return false;
   }
+
+  return true;
 }
 
 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
@@ -1134,7 +1143,8 @@ SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
                                              bool &UseOneConst,
                                              bool Reciprocal) const {
   if (!(Enabled == ReciprocalEstimate::Enabled ||
-        (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
+        (Enabled == ReciprocalEstimate::Unspecified &&
+         !usePrecSqrtF32(DAG.getMachineFunction()))))
     return SDValue();
 
   if (ExtraSteps == ReciprocalEstimate::Unspecified)
diff --git a/llvm/lib/Target/NVPTX/NVPTXISelLowering.h b/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
index 8d71022a1f102..0a54a8fd71f32 100644
--- a/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
+++ b/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
@@ -225,7 +225,8 @@ class NVPTXTargetLowering : public TargetLowering {
 
   // Get whether we should use a precise or approximate 32-bit floating point
   // sqrt instruction.
-  bool usePrecSqrtF32() const;
+  bool usePrecSqrtF32(const MachineFunction &MF,
+                      const SDNode *N = nullptr) const;
 
   // Get whether we should use instructions that flush floating-point denormals
   // to sign-preserving zero.
diff --git a/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td b/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
index b646d39194c7e..ecaca4a011053 100644
--- a/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
+++ b/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
@@ -151,9 +151,6 @@ def doRsqrtOpt : Predicate<"doRsqrtOpt()">;
 
 def doMulWide      : Predicate<"doMulWide">;
 
-def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
-def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
-
 def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
 def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
 def hasDotInstructions : Predicate<"Subtarget->hasDotInstructions()">;
diff --git a/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td b/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td
index f918160001ba5..1c38cf0cac0ee 100644
--- a/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td
+++ b/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td
@@ -1525,15 +1525,18 @@ def INT_NVVM_SQRT_RZ_D : F_MATH_1<"sqrt.rz.f64", F64RT, F64RT, int_nvvm_sqrt_rz_
 def INT_NVVM_SQRT_RM_D : F_MATH_1<"sqrt.rm.f64", F64RT, F64RT, int_nvvm_sqrt_rm_d>;
 def INT_NVVM_SQRT_RP_D : F_MATH_1<"sqrt.rp.f64", F64RT, F64RT, int_nvvm_sqrt_rp_d>;
 
+def fsqrt_approx : PatFrags<(ops node:$a),
+                            [(fsqrt node:$a),
+                             (int_nvvm_sqrt_f node:$a)], [{
+  return !usePrecSqrtF32(N);
+}]>;
+
 // nvvm_sqrt intrinsic
-def : Pat<(int_nvvm_sqrt_f f32:$a),
-          (INT_NVVM_SQRT_RN_FTZ_F $a)>, Requires<[doF32FTZ, do_SQRTF32_RN]>;
-def : Pat<(int_nvvm_sqrt_f f32:$a),
-          (INT_NVVM_SQRT_RN_F $a)>, Requires<[do_SQRTF32_RN]>;
-def : Pat<(int_nvvm_sqrt_f f32:$a),
-          (INT_NVVM_SQRT_APPROX_FTZ_F $a)>, Requires<[doF32FTZ]>;
-def : Pat<(int_nvvm_sqrt_f f32:$a),
-          (INT_NVVM_SQRT_APPROX_F $a)>;
+def : Pat<(int_nvvm_sqrt_f f32:$a), (INT_NVVM_SQRT_RN_FTZ_F $a)>, Requires<[doF32FTZ]>;
+def : Pat<(int_nvvm_sqrt_f f32:$a), (INT_NVVM_SQRT_RN_F $a)>;
+
+def : Pat<(fsqrt_approx f32:$a), (INT_NVVM_SQRT_APPROX_FTZ_F $a)>, Requires<[doF32FTZ]>;
+def : Pat<(fsqrt_approx f32:$a), (INT_NVVM_SQRT_APPROX_F $a)>;
 
 //
 // Rsqrt
@@ -1556,20 +1559,14 @@ def: Pat<(fdiv f32imm_1, (int_nvvm_sqrt_approx_f f32:$a)),
 def: Pat<(fdiv f32imm_1, (int_nvvm_sqrt_approx_ftz_f f32:$a)),
          (INT_NVVM_RSQRT_APPROX_FTZ_F $a)>,
          Requires<[doRsqrtOpt]>;
-// same for int_nvvm_sqrt_f when non-precision sqrt is requested
-def: Pat<(fdiv f32imm_1, (int_nvvm_sqrt_f f32:$a)),
-         (INT_NVVM_RSQRT_APPROX_F $a)>,
-         Requires<[doRsqrtOpt, do_SQRTF32_APPROX, doNoF32FTZ]>;
-def: Pat<(fdiv f32imm_1, (int_nvvm_sqrt_f f32:$a)),
-         (INT_NVVM_RSQRT_APPROX_FTZ_F $a)>,
-         Requires<[doRsqrtOpt, do_SQRTF32_APPROX, doF32FTZ]>;
 
-def: Pat<(fdiv f32imm_1, (fsqrt f32:$a)),
+// same for int_nvvm_sqrt_f when non-precision sqrt is requested
+def: Pat<(fdiv f32imm_1, (fsqrt_approx f32:$a)),
          (INT_NVVM_RSQRT_APPROX_F $a)>,
-         Requires<[doRsqrtOpt, do_SQRTF32_APPROX, doNoF32FTZ]>;
-def: Pat<(fdiv f32imm_1, (fsqrt f32:$a)),
+         Requires<[doRsqrtOpt, doNoF32FTZ]>;
+def: Pat<(fdiv f32imm_1, (fsqrt_approx f32:$a)),
          (INT_NVVM_RSQRT_APPROX_FTZ_F $a)>,
-         Requires<[doRsqrtOpt, do_SQRTF32_APPROX, doF32FTZ]>;
+         Requires<[doRsqrtOpt, doF32FTZ]>;
 //
 // Add
 //
diff --git a/llvm/test/CodeGen/NVPTX/fast-math.ll b/llvm/test/CodeGen/NVPTX/fast-math.ll
index 4911e320a73ec..bc48d242f88fd 100644
--- a/llvm/test/CodeGen/NVPTX/fast-math.ll
+++ b/llvm/test/CodeGen/NVPTX/fast-math.ll
@@ -29,7 +29,7 @@ define float @sqrt_div_fast(float %a, float %b) #0 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_param_0];
-; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.f32 %r2, %r1;
 ; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_fast_param_1];
 ; CHECK-NEXT:    div.approx.f32 %r4, %r2, %r3;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
@@ -84,7 +84,7 @@ define float @sqrt_div_fast_ftz(float %a, float %b) #0 #1 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [sqrt_div_fast_ftz_param_0];
-; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.ftz.f32 %r2, %r1;
 ; CHECK-NEXT:    ld.param.b32 %r3, [sqrt_div_fast_ftz_param_1];
 ; CHECK-NEXT:    div.approx.ftz.f32 %r4, %r2, %r3;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r4;
diff --git a/llvm/test/CodeGen/NVPTX/sqrt-approx.ll b/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
index a60ab717f3755..a28d264cd8ec0 100644
--- a/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
+++ b/llvm/test/CodeGen/NVPTX/sqrt-approx.ll
@@ -83,7 +83,7 @@ define float @test_sqrt32(float %a) #0 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_param_0];
-; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.f32 %r2, %r1;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
 ; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
@@ -115,7 +115,7 @@ define float @test_sqrt_ftz(float %a) #0 #1 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt_ftz_param_0];
-; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.ftz.f32 %r2, %r1;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
 ; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
@@ -240,7 +240,7 @@ define float @test_sqrt32_refined(float %a) #0 #2 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_param_0];
-; CHECK-NEXT:    sqrt.rn.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.f32 %r2, %r1;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
 ; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)
@@ -352,7 +352,7 @@ define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
 ; CHECK-EMPTY:
 ; CHECK-NEXT:  // %bb.0:
 ; CHECK-NEXT:    ld.param.b32 %r1, [test_sqrt32_refined_ftz_param_0];
-; CHECK-NEXT:    sqrt.rn.ftz.f32 %r2, %r1;
+; CHECK-NEXT:    sqrt.approx.ftz.f32 %r2, %r1;
 ; CHECK-NEXT:    st.param.b32 [func_retval0], %r2;
 ; CHECK-NEXT:    ret;
   %ret = tail call float @llvm.sqrt.f32(float %a)



More information about the llvm-commits mailing list