[llvm] 4c4e4e4 - [LV] Strengthen calls to collectInstsToScalarize (NFC) (#130642)

via llvm-commits llvm-commits at lists.llvm.org
Fri Mar 28 10:28:01 PDT 2025


Author: Ramkumar Ramachandra
Date: 2025-03-28T17:27:57Z
New Revision: 4c4e4e4299b16d8dd85811e9dd8697b17c95577f

URL: https://github.com/llvm/llvm-project/commit/4c4e4e4299b16d8dd85811e9dd8697b17c95577f
DIFF: https://github.com/llvm/llvm-project/commit/4c4e4e4299b16d8dd85811e9dd8697b17c95577f.diff

LOG: [LV] Strengthen calls to collectInstsToScalarize (NFC) (#130642)

Avoid the pattern of always calling collectInstsToScalarize after
collectUniformsAndScalars, and call it in collectUniformsAndScalars
instead. Also strengthen checks for early exits in the function.

Added: 
    

Modified: 
    llvm/lib/Transforms/Vectorize/LoopVectorize.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 667529c5c3296..f2be3748799db 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -979,8 +979,7 @@ class LoopVectorizationCostModel {
   /// Setup cost-based decisions for user vectorization factor.
   /// \return true if the UserVF is a feasible VF to be chosen.
   bool selectUserVectorizationFactor(ElementCount UserVF) {
-    collectUniformsAndScalars(UserVF);
-    collectInstsToScalarize(UserVF);
+    collectNonVectorizedAndSetWideningDecisions(UserVF);
     return expectedCost(UserVF).isValid();
   }
 
@@ -1236,13 +1235,14 @@ class LoopVectorizationCostModel {
   /// the loop.
   void collectInstsToScalarize(ElementCount VF);
 
-  /// Collect Uniform and Scalar values for the given \p VF.
+  /// Collect values that will not be widened, including Uniforms, Scalars, and
+  /// Instructions to Scalarize for the given \p VF.
   /// The sets depend on CM decision for Load/Store instructions
   /// that may be vectorized as interleave, gather-scatter or scalarized.
   /// Also make a decision on what to do about call instructions in the loop
   /// at that VF -- scalarize, call a known vector routine, or call a
   /// vector intrinsic.
-  void collectUniformsAndScalars(ElementCount VF) {
+  void collectNonVectorizedAndSetWideningDecisions(ElementCount VF) {
     // Do the analysis once.
     if (VF.isScalar() || Uniforms.contains(VF))
       return;
@@ -1250,6 +1250,7 @@ class LoopVectorizationCostModel {
     collectLoopUniforms(VF);
     setVectorizedCallDecision(VF);
     collectLoopScalars(VF);
+    collectInstsToScalarize(VF);
   }
 
   /// Returns true if the target machine supports masked store operation
@@ -5285,7 +5286,7 @@ LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
           RegUsage[ClassID] += 1;
         }
       } else {
-        collectUniformsAndScalars(VFs[J]);
+        collectNonVectorizedAndSetWideningDecisions(VFs[J]);
         for (auto *Inst : OpenIntervals) {
           // Skip ignored values for VF > 1.
           if (VecValuesToIgnore.count(Inst))
@@ -5382,11 +5383,14 @@ bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
 }
 
 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
-  // If we aren't vectorizing the loop, or if we've already collected the
-  // instructions to scalarize, there's nothing to do. Collection may already
-  // have occurred if we have a user-selected VF and are now computing the
-  // expected cost for interleaving.
-  if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF))
+  assert(VF.isVector() && "Expected VF >= 2");
+
+  // If we've already collected the instructions to scalarize or the predicated
+  // BBs after vectorization, there's nothing to do. Collection may already have
+  // occurred if we have a user-selected VF and are now computing the expected
+  // cost for interleaving.
+  if (InstsToScalarize.contains(VF) ||
+      PredicatedBBsAfterVectorization.contains(VF))
     return;
 
   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
@@ -5394,8 +5398,6 @@ void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
   // map will indicate that we've analyzed it already.
   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
 
-  PredicatedBBsAfterVectorization[VF].clear();
-
   // Find all the instructions that are scalar with predication in the loop and
   // determine if it would be better to not if-convert the blocks they are in.
   // If so, we also record the instructions to scalarize.
@@ -7187,12 +7189,7 @@ void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
   CM.collectInLoopReductions();
   for (const auto &VF : VFCandidates) {
     // Collect Uniform and Scalar instructions after vectorization with VF.
-    CM.collectUniformsAndScalars(VF);
-
-    // Collect the instructions (and their associated costs) that will be more
-    // profitable to scalarize.
-    if (VF.isVector())
-      CM.collectInstsToScalarize(VF);
+    CM.collectNonVectorizedAndSetWideningDecisions(VF);
   }
 
   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);


        


More information about the llvm-commits mailing list