[llvm] [AMDGPU][AggressiveInstCombine] Narrow 64 bit math to 32 bit if profitable (PR #130577)
via llvm-commits
llvm-commits at lists.llvm.org
Tue Mar 11 03:33:12 PDT 2025
================
@@ -1224,6 +1224,68 @@ static bool foldLibCalls(Instruction &I, TargetTransformInfo &TTI,
return false;
}
+static bool tryNarrowMathIfNoOverflow(Instruction &I, TargetTransformInfo &TTI,
+ const DataLayout &DL) {
+ unsigned opc = I.getOpcode();
+ Type *OldType = I.getType();
+ if (opc != Instruction::Add && opc != Instruction::Mul &&
+ !OldType->isIntOrIntVectorTy()) {
+ return false;
+ }
+ unsigned OrigBit = OldType->getScalarSizeInBits();
+ unsigned MaxBitsNeed = OrigBit;
+ switch (opc) {
+ case Instruction::Add:
+ MaxBitsNeed = KnownBits::add(computeKnownBits(I.getOperand(0), DL),
+ computeKnownBits(I.getOperand(1), DL))
+ .countMaxActiveBits();
----------------
Shoreshen wrote:
Hi @dtcxzyw , what kind of generalized proof??
Roughly if `a` is n bit integer (0~(n-1) bit) and and the highest bit that is possible to be 1 is m<n-1, then a must be positive. Then we have $a \leq \sum_{i=0}^m2^i,b \leq \sum_{i=0}^m2^i$. In conclusion $a+b\leq 2*\sum_{i=0}^m2^i=\sum_{i=1}^{m+1}2^i$ and $a\times b\leq \left(\sum_{i=0}^m2^i\right)\cdot\left(\sum_{i=0}^m2^i\right)=2^{2m+2}-2^{m+2}+1$
https://github.com/llvm/llvm-project/pull/130577
More information about the llvm-commits
mailing list