[llvm] 005b23b - [IA][RISCV] Support VP loads/stores in InterleavedAccessPass (#120490)

via llvm-commits llvm-commits at lists.llvm.org
Tue Feb 4 11:07:41 PST 2025


Author: Min-Yih Hsu
Date: 2025-02-04T11:07:34-08:00
New Revision: 005b23bb3bf0b943db3a6d12b01b2c01789341b8

URL: https://github.com/llvm/llvm-project/commit/005b23bb3bf0b943db3a6d12b01b2c01789341b8
DIFF: https://github.com/llvm/llvm-project/commit/005b23bb3bf0b943db3a6d12b01b2c01789341b8.diff

LOG: [IA][RISCV] Support VP loads/stores in InterleavedAccessPass (#120490)

Teach InterleavedAccessPass to recognize the following patterns:
  - vp.store an interleaved scalable vector
  - Deinterleaving a scalable vector loaded from vp.load

Upon recognizing these patterns, IA will collect the interleaved /
deinterleaved operands and delegate them over to their respective
newly-added TLI hooks.

For RISC-V, these patterns are lowered into segmented loads/stores

Right now we only recognized power-of-two (de)interleave cases, in which
(de)interleave4/8 are synthesized from a tree of (de)interleave2.

---------

Co-authored-by: Nikolay Panchenko <nicholas.panchenko at gmail.com>

Added: 
    llvm/test/CodeGen/RISCV/rvv/vp-vector-interleaved-access.ll

Modified: 
    llvm/include/llvm/CodeGen/TargetLowering.h
    llvm/lib/CodeGen/InterleavedAccessPass.cpp
    llvm/lib/Target/RISCV/RISCVISelLowering.cpp
    llvm/lib/Target/RISCV/RISCVISelLowering.h

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/CodeGen/TargetLowering.h b/llvm/include/llvm/CodeGen/TargetLowering.h
index 04ee24c0916e5f5..bbecc7a6ddaee79 100644
--- a/llvm/include/llvm/CodeGen/TargetLowering.h
+++ b/llvm/include/llvm/CodeGen/TargetLowering.h
@@ -94,6 +94,7 @@ class TargetRegisterClass;
 class TargetRegisterInfo;
 class TargetTransformInfo;
 class Value;
+class VPIntrinsic;
 
 namespace Sched {
 
@@ -3156,6 +3157,30 @@ class TargetLoweringBase {
     return false;
   }
 
+  /// Lower an interleaved load to target specific intrinsics. Return
+  /// true on success.
+  ///
+  /// \p Load is a vp.load instruction.
+  /// \p Mask is a mask value
+  /// \p DeinterleaveRes is a list of deinterleaved results.
+  virtual bool
+  lowerDeinterleavedIntrinsicToVPLoad(VPIntrinsic *Load, Value *Mask,
+                                      ArrayRef<Value *> DeinterleaveRes) const {
+    return false;
+  }
+
+  /// Lower an interleaved store to target specific intrinsics. Return
+  /// true on success.
+  ///
+  /// \p Store is the vp.store instruction.
+  /// \p Mask is a mask value
+  /// \p InterleaveOps is a list of values being interleaved.
+  virtual bool
+  lowerInterleavedIntrinsicToVPStore(VPIntrinsic *Store, Value *Mask,
+                                     ArrayRef<Value *> InterleaveOps) const {
+    return false;
+  }
+
   /// Lower a deinterleave intrinsic to a target specific load intrinsic.
   /// Return true on success. Currently only supports
   /// llvm.vector.deinterleave2

diff  --git a/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/llvm/lib/CodeGen/InterleavedAccessPass.cpp
index 3f6a69ecb7d729a..3261f2858b2368c 100644
--- a/llvm/lib/CodeGen/InterleavedAccessPass.cpp
+++ b/llvm/lib/CodeGen/InterleavedAccessPass.cpp
@@ -630,11 +630,37 @@ getVectorDeinterleaveFactor(IntrinsicInst *II,
   return true;
 }
 
+// Return the corresponded deinterleaved mask, or nullptr if there is no valid
+// mask.
+static Value *getMask(Value *WideMask, unsigned Factor,
+                      VectorType *LeafValueTy) {
+  using namespace llvm::PatternMatch;
+  if (auto *IMI = dyn_cast<IntrinsicInst>(WideMask)) {
+    SmallVector<Value *, 8> Operands;
+    SmallVector<Instruction *, 8> DeadInsts;
+    if (getVectorInterleaveFactor(IMI, Operands, DeadInsts)) {
+      assert(!Operands.empty());
+      if (Operands.size() == Factor && llvm::all_equal(Operands))
+        return Operands[0];
+    }
+  }
+
+  if (match(WideMask, m_AllOnes())) {
+    // Scale the vector length of all-ones mask.
+    ElementCount OrigEC =
+        cast<VectorType>(WideMask->getType())->getElementCount();
+    assert(OrigEC.getKnownMinValue() % Factor == 0);
+    return ConstantVector::getSplat(OrigEC.divideCoefficientBy(Factor),
+                                    cast<Constant>(WideMask)->getSplatValue());
+  }
+
+  return nullptr;
+}
+
 bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
     IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) {
-  LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0));
-
-  if (!LI || !LI->hasOneUse() || !LI->isSimple())
+  Value *LoadedVal = DI->getOperand(0);
+  if (!LoadedVal->hasOneUse() || !isa<LoadInst, VPIntrinsic>(LoadedVal))
     return false;
 
   SmallVector<Value *, 8> DeinterleaveValues;
@@ -643,16 +669,43 @@ bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
                                    DeinterleaveDeadInsts))
     return false;
 
-  LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI
-                    << " with factor = " << DeinterleaveValues.size() << "\n");
+  const unsigned Factor = DeinterleaveValues.size();
 
-  // Try and match this with target specific intrinsics.
-  if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues))
-    return false;
+  if (auto *VPLoad = dyn_cast<VPIntrinsic>(LoadedVal)) {
+    if (VPLoad->getIntrinsicID() != Intrinsic::vp_load)
+      return false;
+    // Check mask operand. Handle both all-true and interleaved mask.
+    Value *WideMask = VPLoad->getOperand(1);
+    Value *Mask = getMask(WideMask, Factor,
+                          cast<VectorType>(DeinterleaveValues[0]->getType()));
+    if (!Mask)
+      return false;
+
+    LLVM_DEBUG(dbgs() << "IA: Found a vp.load with deinterleave intrinsic "
+                      << *DI << " and factor = " << Factor << "\n");
+
+    // Since lowerInterleaveLoad expects Shuffles and LoadInst, use special
+    // TLI function to emit target-specific interleaved instruction.
+    if (!TLI->lowerDeinterleavedIntrinsicToVPLoad(VPLoad, Mask,
+                                                  DeinterleaveValues))
+      return false;
+
+  } else {
+    auto *LI = cast<LoadInst>(LoadedVal);
+    if (!LI->isSimple())
+      return false;
+
+    LLVM_DEBUG(dbgs() << "IA: Found a load with deinterleave intrinsic " << *DI
+                      << " and factor = " << Factor << "\n");
+
+    // Try and match this with target specific intrinsics.
+    if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues))
+      return false;
+  }
 
   DeadInsts.insert(DeinterleaveDeadInsts.begin(), DeinterleaveDeadInsts.end());
   // We now have a target-specific load, so delete the old one.
-  DeadInsts.insert(LI);
+  DeadInsts.insert(cast<Instruction>(LoadedVal));
   return true;
 }
 
@@ -660,10 +713,8 @@ bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
     IntrinsicInst *II, SmallSetVector<Instruction *, 32> &DeadInsts) {
   if (!II->hasOneUse())
     return false;
-
-  StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin()));
-
-  if (!SI || !SI->isSimple())
+  Value *StoredBy = II->user_back();
+  if (!isa<StoreInst, VPIntrinsic>(StoredBy))
     return false;
 
   SmallVector<Value *, 8> InterleaveValues;
@@ -671,15 +722,41 @@ bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
   if (!getVectorInterleaveFactor(II, InterleaveValues, InterleaveDeadInsts))
     return false;
 
-  LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II
-                    << " with factor = " << InterleaveValues.size() << "\n");
+  const unsigned Factor = InterleaveValues.size();
 
-  // Try and match this with target specific intrinsics.
-  if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues))
-    return false;
+  if (auto *VPStore = dyn_cast<VPIntrinsic>(StoredBy)) {
+    if (VPStore->getIntrinsicID() != Intrinsic::vp_store)
+      return false;
+
+    Value *WideMask = VPStore->getOperand(2);
+    Value *Mask = getMask(WideMask, Factor,
+                          cast<VectorType>(InterleaveValues[0]->getType()));
+    if (!Mask)
+      return false;
+
+    LLVM_DEBUG(dbgs() << "IA: Found a vp.store with interleave intrinsic "
+                      << *II << " and factor = " << Factor << "\n");
+
+    // Since lowerInterleavedStore expects Shuffle and StoreInst, use special
+    // TLI function to emit target-specific interleaved instruction.
+    if (!TLI->lowerInterleavedIntrinsicToVPStore(VPStore, Mask,
+                                                 InterleaveValues))
+      return false;
+  } else {
+    auto *SI = cast<StoreInst>(StoredBy);
+    if (!SI->isSimple())
+      return false;
+
+    LLVM_DEBUG(dbgs() << "IA: Found a store with interleave intrinsic " << *II
+                      << " and factor = " << Factor << "\n");
+
+    // Try and match this with target specific intrinsics.
+    if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues))
+      return false;
+  }
 
   // We now have a target-specific store, so delete the old one.
-  DeadInsts.insert(SI);
+  DeadInsts.insert(cast<Instruction>(StoredBy));
   DeadInsts.insert(InterleaveDeadInsts.begin(), InterleaveDeadInsts.end());
   return true;
 }

diff  --git a/llvm/lib/Target/RISCV/RISCVISelLowering.cpp b/llvm/lib/Target/RISCV/RISCVISelLowering.cpp
index 7c3b58389da28ee..2d2213b420f5a46 100644
--- a/llvm/lib/Target/RISCV/RISCVISelLowering.cpp
+++ b/llvm/lib/Target/RISCV/RISCVISelLowering.cpp
@@ -22,6 +22,7 @@
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Analysis/VectorUtils.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineFunction.h"
@@ -22773,6 +22774,231 @@ bool RISCVTargetLowering::lowerInterleaveIntrinsicToStore(
   return true;
 }
 
+static bool isMultipleOfN(const Value *V, const DataLayout &DL, unsigned N) {
+  assert(N);
+  if (N == 1)
+    return true;
+
+  if (isPowerOf2_32(N)) {
+    KnownBits KB = llvm::computeKnownBits(V, DL);
+    return KB.countMinTrailingZeros() >= Log2_32(N);
+  }
+
+  using namespace PatternMatch;
+  // Right now we're only recognizing the simplest pattern.
+  uint64_t C;
+  return match(V, m_c_Mul(m_Value(), m_ConstantInt(C))) && C && C % N == 0;
+}
+
+/// Lower an interleaved vp.load into a vlsegN intrinsic.
+///
+/// E.g. Lower an interleaved vp.load (Factor = 2):
+///   %l = call <vscale x 64 x i8> @llvm.vp.load.nxv64i8.p0(ptr %ptr,
+///                                                         %mask,
+///                                                         i32 %wide.rvl)
+///   %dl = tail call { <vscale x 32 x i8>, <vscale x 32 x i8> }
+///             @llvm.vector.deinterleave2.nxv64i8(
+///               <vscale x 64 x i8> %l)
+///   %r0 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %dl, 0
+///   %r1 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %dl, 1
+///
+/// Into:
+///   %rvl = udiv %wide.rvl, 2
+///   %sl = call { <vscale x 32 x i8>, <vscale x 32 x i8> }
+///             @llvm.riscv.vlseg2.mask.nxv32i8.i64(<vscale x 32 x i8> undef,
+///                                                 <vscale x 32 x i8> undef,
+///                                                 ptr %ptr,
+///                                                 %mask,
+///                                                 i64 %rvl,
+///                                                 i64 1)
+///   %r0 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %sl, 0
+///   %r1 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %sl, 1
+///
+/// NOTE: the deinterleave2 intrinsic won't be touched and is expected to be
+/// removed by the caller
+/// TODO: We probably can loosen the dependency on matching extractvalue when
+/// dealing with factor of 2 (extractvalue is still required for most of other
+/// factors though).
+bool RISCVTargetLowering::lowerDeinterleavedIntrinsicToVPLoad(
+    VPIntrinsic *Load, Value *Mask,
+    ArrayRef<Value *> DeinterleaveResults) const {
+  assert(Mask && "Expect a valid mask");
+  assert(Load->getIntrinsicID() == Intrinsic::vp_load &&
+         "Unexpected intrinsic");
+
+  const unsigned Factor = DeinterleaveResults.size();
+
+  auto *WideVTy = dyn_cast<ScalableVectorType>(Load->getType());
+  // TODO: Support fixed vectors.
+  if (!WideVTy)
+    return false;
+
+  unsigned WideNumElements = WideVTy->getElementCount().getKnownMinValue();
+  assert(WideNumElements % Factor == 0 &&
+         "ElementCount of a wide load must be divisible by interleave factor");
+  auto *VTy =
+      VectorType::get(WideVTy->getScalarType(), WideNumElements / Factor,
+                      WideVTy->isScalableTy());
+  auto &DL = Load->getModule()->getDataLayout();
+  Align Alignment = Load->getParamAlign(0).value_or(
+      DL.getABITypeAlign(WideVTy->getElementType()));
+  if (!isLegalInterleavedAccessType(
+          VTy, Factor, Alignment,
+          Load->getArgOperand(0)->getType()->getPointerAddressSpace(), DL))
+    return false;
+
+  IRBuilder<> Builder(Load);
+  Value *WideEVL = Load->getArgOperand(2);
+  // Conservatively check if EVL is a multiple of factor, otherwise some
+  // (trailing) elements might be lost after the transformation.
+  if (!isMultipleOfN(WideEVL, Load->getDataLayout(), Factor))
+    return false;
+
+  auto *XLenTy = Type::getIntNTy(Load->getContext(), Subtarget.getXLen());
+  Value *EVL = Builder.CreateZExt(
+      Builder.CreateUDiv(WideEVL, ConstantInt::get(WideEVL->getType(), Factor)),
+      XLenTy);
+
+  static const Intrinsic::ID IntrMaskIds[] = {
+      Intrinsic::riscv_vlseg2_mask, Intrinsic::riscv_vlseg3_mask,
+      Intrinsic::riscv_vlseg4_mask, Intrinsic::riscv_vlseg5_mask,
+      Intrinsic::riscv_vlseg6_mask, Intrinsic::riscv_vlseg7_mask,
+      Intrinsic::riscv_vlseg8_mask,
+  };
+
+  unsigned SEW = DL.getTypeSizeInBits(VTy->getElementType());
+  unsigned NumElts = VTy->getElementCount().getKnownMinValue();
+  Type *VecTupTy = TargetExtType::get(
+      Load->getContext(), "riscv.vector.tuple",
+      ScalableVectorType::get(Type::getInt8Ty(Load->getContext()),
+                              NumElts * SEW / 8),
+      Factor);
+
+  Value *PoisonVal = PoisonValue::get(VecTupTy);
+
+  Function *VlsegNFunc = Intrinsic::getOrInsertDeclaration(
+      Load->getModule(), IntrMaskIds[Factor - 2],
+      {VecTupTy, Mask->getType(), EVL->getType()});
+
+  Value *Operands[] = {
+      PoisonVal,
+      Load->getArgOperand(0),
+      Mask,
+      EVL,
+      ConstantInt::get(XLenTy, RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC),
+      ConstantInt::get(XLenTy, Log2_64(SEW))};
+
+  CallInst *VlsegN = Builder.CreateCall(VlsegNFunc, Operands);
+
+  SmallVector<Type *, 8> AggrTypes{Factor, VTy};
+  Value *Return =
+      PoisonValue::get(StructType::get(Load->getContext(), AggrTypes));
+  Function *VecExtractFunc = Intrinsic::getOrInsertDeclaration(
+      Load->getModule(), Intrinsic::riscv_tuple_extract, {VTy, VecTupTy});
+  for (unsigned i = 0; i < Factor; ++i) {
+    Value *VecExtract =
+        Builder.CreateCall(VecExtractFunc, {VlsegN, Builder.getInt32(i)});
+    Return = Builder.CreateInsertValue(Return, VecExtract, i);
+  }
+
+  for (auto [Idx, DIO] : enumerate(DeinterleaveResults)) {
+    // We have to create a brand new ExtractValue to replace each
+    // of these old ExtractValue instructions.
+    Value *NewEV =
+        Builder.CreateExtractValue(Return, {static_cast<unsigned>(Idx)});
+    DIO->replaceAllUsesWith(NewEV);
+  }
+
+  return true;
+}
+
+/// Lower an interleaved vp.store into a vssegN intrinsic.
+///
+/// E.g. Lower an interleaved vp.store (Factor = 2):
+///
+///   %is = tail call <vscale x 64 x i8>
+///             @llvm.vector.interleave2.nxv64i8(
+///                               <vscale x 32 x i8> %load0,
+///                               <vscale x 32 x i8> %load1
+///   %wide.rvl = shl nuw nsw i32 %rvl, 1
+///   tail call void @llvm.vp.store.nxv64i8.p0(
+///                               <vscale x 64 x i8> %is, ptr %ptr,
+///                               %mask,
+///                               i32 %wide.rvl)
+///
+/// Into:
+///   call void @llvm.riscv.vsseg2.mask.nxv32i8.i64(
+///                               <vscale x 32 x i8> %load1,
+///                               <vscale x 32 x i8> %load2, ptr %ptr,
+///                               %mask,
+///                               i64 %rvl)
+bool RISCVTargetLowering::lowerInterleavedIntrinsicToVPStore(
+    VPIntrinsic *Store, Value *Mask,
+    ArrayRef<Value *> InterleaveOperands) const {
+  assert(Mask && "Expect a valid mask");
+  assert(Store->getIntrinsicID() == Intrinsic::vp_store &&
+         "Unexpected intrinsic");
+
+  const unsigned Factor = InterleaveOperands.size();
+
+  auto *VTy = dyn_cast<ScalableVectorType>(InterleaveOperands[0]->getType());
+  // TODO: Support fixed vectors.
+  if (!VTy)
+    return false;
+
+  const DataLayout &DL = Store->getDataLayout();
+  Align Alignment = Store->getParamAlign(1).value_or(
+      DL.getABITypeAlign(VTy->getElementType()));
+  if (!isLegalInterleavedAccessType(
+          VTy, Factor, Alignment,
+          Store->getArgOperand(1)->getType()->getPointerAddressSpace(), DL))
+    return false;
+
+  IRBuilder<> Builder(Store);
+  Value *WideEVL = Store->getArgOperand(3);
+  // Conservatively check if EVL is a multiple of factor, otherwise some
+  // (trailing) elements might be lost after the transformation.
+  if (!isMultipleOfN(WideEVL, Store->getDataLayout(), Factor))
+    return false;
+
+  auto *XLenTy = Type::getIntNTy(Store->getContext(), Subtarget.getXLen());
+  Value *EVL = Builder.CreateZExt(
+      Builder.CreateUDiv(WideEVL, ConstantInt::get(WideEVL->getType(), Factor)),
+      XLenTy);
+
+  static const Intrinsic::ID IntrMaskIds[] = {
+      Intrinsic::riscv_vsseg2_mask, Intrinsic::riscv_vsseg3_mask,
+      Intrinsic::riscv_vsseg4_mask, Intrinsic::riscv_vsseg5_mask,
+      Intrinsic::riscv_vsseg6_mask, Intrinsic::riscv_vsseg7_mask,
+      Intrinsic::riscv_vsseg8_mask,
+  };
+
+  unsigned SEW = DL.getTypeSizeInBits(VTy->getElementType());
+  unsigned NumElts = VTy->getElementCount().getKnownMinValue();
+  Type *VecTupTy = TargetExtType::get(
+      Store->getContext(), "riscv.vector.tuple",
+      ScalableVectorType::get(Type::getInt8Ty(Store->getContext()),
+                              NumElts * SEW / 8),
+      Factor);
+
+  Function *VecInsertFunc = Intrinsic::getOrInsertDeclaration(
+      Store->getModule(), Intrinsic::riscv_tuple_insert, {VecTupTy, VTy});
+  Value *StoredVal = PoisonValue::get(VecTupTy);
+  for (unsigned i = 0; i < Factor; ++i)
+    StoredVal = Builder.CreateCall(
+        VecInsertFunc, {StoredVal, InterleaveOperands[i], Builder.getInt32(i)});
+
+  Function *VssegNFunc = Intrinsic::getOrInsertDeclaration(
+      Store->getModule(), IntrMaskIds[Factor - 2],
+      {VecTupTy, Mask->getType(), EVL->getType()});
+
+  Value *Operands[] = {StoredVal, Store->getArgOperand(1), Mask, EVL,
+                       ConstantInt::get(XLenTy, Log2_64(SEW))};
+
+  Builder.CreateCall(VssegNFunc, Operands);
+  return true;
+}
+
 MachineInstr *
 RISCVTargetLowering::EmitKCFICheck(MachineBasicBlock &MBB,
                                    MachineBasicBlock::instr_iterator &MBBI,

diff  --git a/llvm/lib/Target/RISCV/RISCVISelLowering.h b/llvm/lib/Target/RISCV/RISCVISelLowering.h
index 77605a3076a80a1..e9dd8ff96fa37b4 100644
--- a/llvm/lib/Target/RISCV/RISCVISelLowering.h
+++ b/llvm/lib/Target/RISCV/RISCVISelLowering.h
@@ -910,6 +910,14 @@ class RISCVTargetLowering : public TargetLowering {
   bool lowerInterleaveIntrinsicToStore(
       StoreInst *SI, ArrayRef<Value *> InterleaveValues) const override;
 
+  bool lowerDeinterleavedIntrinsicToVPLoad(
+      VPIntrinsic *Load, Value *Mask,
+      ArrayRef<Value *> DeinterleaveRes) const override;
+
+  bool lowerInterleavedIntrinsicToVPStore(
+      VPIntrinsic *Store, Value *Mask,
+      ArrayRef<Value *> InterleaveOps) const override;
+
   bool supportKCFIBundles() const override { return true; }
 
   SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr,

diff  --git a/llvm/test/CodeGen/RISCV/rvv/vp-vector-interleaved-access.ll b/llvm/test/CodeGen/RISCV/rvv/vp-vector-interleaved-access.ll
new file mode 100644
index 000000000000000..e481891dfd52fc0
--- /dev/null
+++ b/llvm/test/CodeGen/RISCV/rvv/vp-vector-interleaved-access.ll
@@ -0,0 +1,816 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 2
+; RUN: llc < %s -mtriple=riscv32 -mattr=+v,m -O2 | FileCheck -check-prefixes=CHECK,RV32 %s
+; RUN: llc < %s -mtriple=riscv64 -mattr=+v,m -O2 | FileCheck -check-prefixes=CHECK,RV64 %s
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>} @load_factor2_v2(ptr %ptr, i32 %evl) {
+; RV32-LABEL: load_factor2_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    srli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg2e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: load_factor2_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    srli a1, a1, 33
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg2e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %wide.masked.load = call <vscale x 4 x i32> @llvm.vp.load.nxv4i32.p0(ptr %ptr, <vscale x 4 x i1> splat (i1 true), i32 %rvl)
+  %deinterleaved.results = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %wide.masked.load)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 0
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 1
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32> } %res1
+}
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>} @load_factor4_v2(ptr %ptr, i32 %evl) {
+; RV32-LABEL: load_factor4_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    srli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg4e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: load_factor4_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 34
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg4e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %wide.masked.load = call <vscale x 8 x i32> @llvm.vp.load.nxv8i32.p0(ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %d0.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 1
+  %d1 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.0)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 0
+  %t2 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 1
+  %d2 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.1)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 0
+  %t3 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 1
+
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res1, <vscale x 2 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res2, <vscale x 2 x i32> %t3, 3
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res3
+}
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>} @load_factor8_v2(ptr %ptr, i32 %evl) {
+; RV32-LABEL: load_factor8_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 3
+; RV32-NEXT:    srli a1, a1, 3
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg8e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: load_factor8_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 35
+; RV64-NEXT:    srli a1, a1, 35
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg8e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 8
+  %wide.masked.load = call <vscale x 16 x i32> @llvm.vp.load.nxv16i32.p0(ptr %ptr, <vscale x 16 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <vscale x 8 x i32>, <vscale x 8 x i32> } @llvm.vector.deinterleave2.nxv16i32(<vscale x 16 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 8 x i32>, <vscale x 8 x i32> } %d0, 0
+  %d0.1 = extractvalue { <vscale x 8 x i32>, <vscale x 8 x i32> } %d0, 1
+  %d1 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %d0.0)
+  %d1.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d1, 0
+  %d1.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d1, 1
+  %d2 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %d0.1)
+  %d2.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d2, 0
+  %d2.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d2, 1
+
+  %d3 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d1.0)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d3, 0
+  %t4 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d3, 1
+  %d4 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d1.1)
+  %t2 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d4, 0
+  %t6 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d4, 1
+  %d5 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d2.0)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d5, 0
+  %t5 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d5, 1
+  %d6 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d2.1)
+  %t3 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d6, 0
+  %t7 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d6, 1
+
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res1, <vscale x 2 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res2, <vscale x 2 x i32> %t3, 3
+  %res4 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res3, <vscale x 2 x i32> %t4, 4
+  %res5 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res4, <vscale x 2 x i32> %t5, 5
+  %res6 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res5, <vscale x 2 x i32> %t6, 6
+  %res7 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res6, <vscale x 2 x i32> %t7, 7
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res7
+}
+
+define void @store_factor2_v2(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: store_factor2_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    srli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV32-NEXT:    vsseg2e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: store_factor2_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    srli a1, a1, 33
+; RV64-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV64-NEXT:    vsseg2e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.vec = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1)
+  call void @llvm.vp.store.nxv2i32.p0(<vscale x 2 x i32> %interleaved.vec, ptr %ptr, <vscale x 2 x i1> splat (i1 true), i32 %rvl)
+  ret void
+}
+
+define void @store_factor4_v2(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: store_factor4_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 3
+; RV32-NEXT:    srli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV32-NEXT:    vmv1r.v v10, v8
+; RV32-NEXT:    vmv1r.v v11, v9
+; RV32-NEXT:    vsseg4e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: store_factor4_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 35
+; RV64-NEXT:    srli a1, a1, 34
+; RV64-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV64-NEXT:    vmv1r.v v10, v8
+; RV64-NEXT:    vmv1r.v v11, v9
+; RV64-NEXT:    vsseg4e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 8
+  %interleaved.vec0 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  %interleaved.vec1 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v1, <vscale x 1 x i32> %v1)
+  %interleaved.vec2 = call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %interleaved.vec0, <vscale x 2 x i32> %interleaved.vec1)
+  call void @llvm.vp.store.nxv4i32.p0(<vscale x 4 x i32> %interleaved.vec2, ptr %ptr, <vscale x 4 x i1> splat (i1 true), i32 %rvl)
+  ret void
+}
+
+define void @store_factor8_v2(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: store_factor8_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 3
+; RV32-NEXT:    srli a1, a1, 3
+; RV32-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV32-NEXT:    vmv1r.v v10, v8
+; RV32-NEXT:    vmv1r.v v11, v9
+; RV32-NEXT:    vmv1r.v v12, v8
+; RV32-NEXT:    vmv1r.v v13, v9
+; RV32-NEXT:    vmv1r.v v14, v8
+; RV32-NEXT:    vmv1r.v v15, v9
+; RV32-NEXT:    vsseg8e32.v v8, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: store_factor8_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 35
+; RV64-NEXT:    srli a1, a1, 35
+; RV64-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV64-NEXT:    vmv1r.v v10, v8
+; RV64-NEXT:    vmv1r.v v11, v9
+; RV64-NEXT:    vmv1r.v v12, v8
+; RV64-NEXT:    vmv1r.v v13, v9
+; RV64-NEXT:    vmv1r.v v14, v8
+; RV64-NEXT:    vmv1r.v v15, v9
+; RV64-NEXT:    vsseg8e32.v v8, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 8
+  %interleaved.vec0 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  %interleaved.vec1 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  %interleaved.vec2 = call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %interleaved.vec0, <vscale x 2 x i32> %interleaved.vec1)
+  %interleaved.vec3 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v1, <vscale x 1 x i32> %v1)
+  %interleaved.vec4 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v1, <vscale x 1 x i32> %v1)
+  %interleaved.vec5 = call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %interleaved.vec3, <vscale x 2 x i32> %interleaved.vec4)
+  %interleaved.vec6 = call <vscale x 8 x i32> @llvm.vector.interleave2.nxv8i32(<vscale x 4 x i32> %interleaved.vec2, <vscale x 4 x i32> %interleaved.vec5)
+  call void @llvm.vp.store.nxv8i32.p0(<vscale x 8 x i32> %interleaved.vec6, ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  ret void
+}
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>} @masked_load_factor2_v2(<vscale x 2 x i1> %mask, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_load_factor2_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    srli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg2e32.v v8, (a0), v0.t
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_load_factor2_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    srli a1, a1, 33
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg2e32.v v8, (a0), v0.t
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.mask = tail call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask, <vscale x 2 x i1> %mask)
+  %wide.masked.load = tail call <vscale x 4 x i32> @llvm.vp.load.nxv4i32.p0(ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  %deinterleaved.results = tail call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv16i32(<vscale x 4 x i32> %wide.masked.load)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 0
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 1
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32> } %res1
+}
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>} @masked_load_factor4_v2(<vscale x 2 x i1> %mask, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_load_factor4_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    srli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg4e32.v v8, (a0), v0.t
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_load_factor4_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 34
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg4e32.v v8, (a0), v0.t
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %interleaved.mask0 = call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask, <vscale x 2 x i1> %mask)
+  %interleaved.mask1 = call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask, <vscale x 2 x i1> %mask)
+  %interleaved.mask2 = call <vscale x 8 x i1> @llvm.vector.interleave2.nxv8i1(<vscale x 4 x i1> %interleaved.mask0, <vscale x 4 x i1> %interleaved.mask1)
+  %wide.masked.load = call <vscale x 8 x i32> @llvm.vp.load.nxv8i32.p0(ptr %ptr, <vscale x 8 x i1> %interleaved.mask2, i32 %rvl)
+  %d0 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %d0.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 1
+  %d1 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.0)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 0
+  %t2 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 1
+  %d2 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.1)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 0
+  %t3 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 1
+
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res1, <vscale x 2 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res2, <vscale x 2 x i32> %t3, 3
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res3
+}
+
+define void @masked_store_factor2_v2(<vscale x 1 x i1> %mask, <vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_store_factor2_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    vsetivli zero, 1, e8, m1, ta, ma
+; RV32-NEXT:    vmv1r.v v9, v8
+; RV32-NEXT:    srli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV32-NEXT:    vsseg2e32.v v8, (a0), v0.t
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_store_factor2_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    vsetivli zero, 1, e8, m1, ta, ma
+; RV64-NEXT:    vmv1r.v v9, v8
+; RV64-NEXT:    srli a1, a1, 33
+; RV64-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV64-NEXT:    vsseg2e32.v v8, (a0), v0.t
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.mask = tail call <vscale x 2 x i1> @llvm.vector.interleave2.nxv2i1(<vscale x 1 x i1> %mask, <vscale x 1 x i1> %mask)
+  %interleaved.vec = tail call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  tail call void @llvm.vp.store.nxv2i32.p0(<vscale x 2 x i32> %interleaved.vec, ptr %ptr, <vscale x 2 x i1> %interleaved.mask, i32 %rvl)
+  ret void
+}
+
+define void @masked_load_store_factor2_v2_shared_mask(<vscale x 2 x i1> %mask, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_load_store_factor2_v2_shared_mask:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    srli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV32-NEXT:    vlseg2e32.v v8, (a0), v0.t
+; RV32-NEXT:    vsseg2e32.v v8, (a0), v0.t
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_load_store_factor2_v2_shared_mask:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    srli a1, a1, 33
+; RV64-NEXT:    vsetvli zero, a1, e32, m1, ta, ma
+; RV64-NEXT:    vlseg2e32.v v8, (a0), v0.t
+; RV64-NEXT:    vsseg2e32.v v8, (a0), v0.t
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.mask = tail call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask, <vscale x 2 x i1> %mask)
+  %wide.masked.load = tail call <vscale x 4 x i32> @llvm.vp.load.nxv4i32.p0(ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  %deinterleaved.results = tail call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv16i32(<vscale x 4 x i32> %wide.masked.load)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 0
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 1
+  %interleaved.vec = tail call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %t0, <vscale x 2 x i32> %t1)
+  tail call void @llvm.vp.store.nxv4i32.p0(<vscale x 4 x i32> %interleaved.vec, ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  ret void
+}
+
+define i32 @masked_load_store_factor2_v2_shared_mask_extract(<vscale x 2 x i1> %mask, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_load_store_factor2_v2_shared_mask_extract:
+; RV32:       # %bb.0:
+; RV32-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmv1r.v v8, v0
+; RV32-NEXT:    vmv.v.i v9, 0
+; RV32-NEXT:    li a2, -1
+; RV32-NEXT:    vsetvli a3, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vmv.v.i v10, 0
+; RV32-NEXT:    csrr a3, vlenb
+; RV32-NEXT:    vsetvli a4, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmerge.vim v11, v9, 1, v0
+; RV32-NEXT:    srli a3, a3, 2
+; RV32-NEXT:    vwaddu.vv v12, v11, v11
+; RV32-NEXT:    vwmaccu.vx v12, a2, v11
+; RV32-NEXT:    vmsne.vi v0, v12, 0
+; RV32-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vslidedown.vx v11, v12, a3
+; RV32-NEXT:    vmerge.vim v10, v10, 1, v0
+; RV32-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmsne.vi v0, v11, 0
+; RV32-NEXT:    add a2, a3, a3
+; RV32-NEXT:    vmerge.vim v9, v9, 1, v0
+; RV32-NEXT:    vsetvli zero, a2, e8, mf2, ta, ma
+; RV32-NEXT:    vslideup.vx v10, v9, a3
+; RV32-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vmsne.vi v0, v10, 0
+; RV32-NEXT:    slli a2, a1, 1
+; RV32-NEXT:    vsetvli zero, a2, e32, m2, ta, ma
+; RV32-NEXT:    vle32.v v10, (a0), v0.t
+; RV32-NEXT:    li a1, 32
+; RV32-NEXT:    vsetvli a3, zero, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wx v13, v10, a1
+; RV32-NEXT:    vmv.x.s a1, v10
+; RV32-NEXT:    vnsrl.wi v12, v10, 0
+; RV32-NEXT:    srli a2, a2, 1
+; RV32-NEXT:    vmv1r.v v0, v8
+; RV32-NEXT:    vsetvli zero, a2, e32, m1, ta, ma
+; RV32-NEXT:    vsseg2e32.v v12, (a0), v0.t
+; RV32-NEXT:    mv a0, a1
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_load_store_factor2_v2_shared_mask_extract:
+; RV64:       # %bb.0:
+; RV64-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmv1r.v v8, v0
+; RV64-NEXT:    vmv.v.i v9, 0
+; RV64-NEXT:    li a2, -1
+; RV64-NEXT:    vsetvli a3, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vmv.v.i v10, 0
+; RV64-NEXT:    csrr a3, vlenb
+; RV64-NEXT:    slli a4, a1, 33
+; RV64-NEXT:    vsetvli a1, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmerge.vim v11, v9, 1, v0
+; RV64-NEXT:    srli a3, a3, 2
+; RV64-NEXT:    vwaddu.vv v12, v11, v11
+; RV64-NEXT:    vwmaccu.vx v12, a2, v11
+; RV64-NEXT:    vmsne.vi v0, v12, 0
+; RV64-NEXT:    vsetvli a1, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vslidedown.vx v11, v12, a3
+; RV64-NEXT:    vmerge.vim v10, v10, 1, v0
+; RV64-NEXT:    vsetvli a1, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmsne.vi v0, v11, 0
+; RV64-NEXT:    add a1, a3, a3
+; RV64-NEXT:    vmerge.vim v9, v9, 1, v0
+; RV64-NEXT:    vsetvli zero, a1, e8, mf2, ta, ma
+; RV64-NEXT:    vslideup.vx v10, v9, a3
+; RV64-NEXT:    vsetvli a1, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vmsne.vi v0, v10, 0
+; RV64-NEXT:    srli a1, a4, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m2, ta, ma
+; RV64-NEXT:    vle32.v v10, (a0), v0.t
+; RV64-NEXT:    li a1, 32
+; RV64-NEXT:    vsetvli a2, zero, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wx v13, v10, a1
+; RV64-NEXT:    vmv.x.s a1, v10
+; RV64-NEXT:    vnsrl.wi v12, v10, 0
+; RV64-NEXT:    srli a4, a4, 33
+; RV64-NEXT:    vmv1r.v v0, v8
+; RV64-NEXT:    vsetvli zero, a4, e32, m1, ta, ma
+; RV64-NEXT:    vsseg2e32.v v12, (a0), v0.t
+; RV64-NEXT:    mv a0, a1
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.mask = tail call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask, <vscale x 2 x i1> %mask)
+  %wide.masked.load = tail call <vscale x 4 x i32> @llvm.vp.load.nxv4i32.p0(ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  %deinterleaved.results = tail call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv16i32(<vscale x 4 x i32> %wide.masked.load)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 0
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 1
+  %r0 = extractelement <vscale x 4 x i32> %wide.masked.load, i32 0
+  %interleaved.vec = tail call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %t0, <vscale x 2 x i32> %t1)
+  tail call void @llvm.vp.store.nxv4i32.p0(<vscale x 4 x i32> %interleaved.vec, ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  ret i32 %r0
+}
+
+define void @masked_store_factor4_v2(<vscale x 1 x i1> %mask, <vscale x 1 x i32> %v0, <vscale x 1 x i32> %v1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: masked_store_factor4_v2:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    srli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV32-NEXT:    vmv1r.v v10, v8
+; RV32-NEXT:    vmv1r.v v11, v9
+; RV32-NEXT:    vsseg4e32.v v8, (a0), v0.t
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: masked_store_factor4_v2:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 34
+; RV64-NEXT:    vsetvli zero, a1, e32, mf2, ta, ma
+; RV64-NEXT:    vmv1r.v v10, v8
+; RV64-NEXT:    vmv1r.v v11, v9
+; RV64-NEXT:    vsseg4e32.v v8, (a0), v0.t
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %interleaved.mask0 = call <vscale x 2 x i1> @llvm.vector.interleave2.nxv2i1(<vscale x 1 x i1> %mask, <vscale x 1 x i1> %mask)
+  %interleaved.mask1 = call <vscale x 2 x i1> @llvm.vector.interleave2.nxv2i1(<vscale x 1 x i1> %mask, <vscale x 1 x i1> %mask)
+  %interleaved.mask2 = call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %interleaved.mask0, <vscale x 2 x i1> %interleaved.mask1)
+  %interleaved.vec0 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  %interleaved.vec1 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v1, <vscale x 1 x i32> %v1)
+  %interleaved.vec2 = call <vscale x 4 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 2 x i32> %interleaved.vec0, <vscale x 2 x i32> %interleaved.vec1)
+  call void @llvm.vp.store.nxv4i32.p0(<vscale x 4 x i32> %interleaved.vec2, ptr %ptr, <vscale x 4 x i1> %interleaved.mask2, i32 %rvl)
+  ret void
+}
+
+; Negative tests
+
+; We should not transform this function because the deinterleave tree is not in a desired form.
+define {<vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>} @incorrect_extract_value_index(ptr %ptr, i32 %evl) {
+; RV32-LABEL: incorrect_extract_value_index:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV32-NEXT:    vle32.v v8, (a0)
+; RV32-NEXT:    li a0, 32
+; RV32-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV32-NEXT:    vnsrl.wi v12, v8, 0
+; RV32-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wx v9, v12, a0
+; RV32-NEXT:    vnsrl.wi v8, v12, 0
+; RV32-NEXT:    vmv.v.v v10, v9
+; RV32-NEXT:    vmv.v.v v11, v9
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: incorrect_extract_value_index:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV64-NEXT:    vle32.v v8, (a0)
+; RV64-NEXT:    li a0, 32
+; RV64-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV64-NEXT:    vnsrl.wi v12, v8, 0
+; RV64-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wx v9, v12, a0
+; RV64-NEXT:    vnsrl.wi v8, v12, 0
+; RV64-NEXT:    vmv.v.v v10, v9
+; RV64-NEXT:    vmv.v.v v11, v9
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %wide.masked.load = call <vscale x 8 x i32> @llvm.vp.load.nxv8i32.p0(ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %d0.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %d1 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.0)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 0
+  %t2 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 1
+  %d2 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.1)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 1
+  %t3 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 1
+
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res1, <vscale x 2 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res2, <vscale x 2 x i32> %t3, 3
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res3
+}
+
+; We should not transform this function because the expression is not a balanced tree.
+define {<vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32>} @not_balanced_load_tree(ptr %ptr, i32 %evl) {
+; RV32-LABEL: not_balanced_load_tree:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV32-NEXT:    vle32.v v12, (a0)
+; RV32-NEXT:    li a0, 32
+; RV32-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV32-NEXT:    vnsrl.wx v8, v12, a0
+; RV32-NEXT:    vnsrl.wi v16, v12, 0
+; RV32-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wi v10, v16, 0
+; RV32-NEXT:    vnsrl.wx v11, v16, a0
+; RV32-NEXT:    vsetvli a1, zero, e32, mf2, ta, ma
+; RV32-NEXT:    vnsrl.wx v12, v11, a0
+; RV32-NEXT:    vnsrl.wi v11, v11, 0
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: not_balanced_load_tree:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV64-NEXT:    vle32.v v12, (a0)
+; RV64-NEXT:    li a0, 32
+; RV64-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV64-NEXT:    vnsrl.wx v8, v12, a0
+; RV64-NEXT:    vnsrl.wi v16, v12, 0
+; RV64-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wi v10, v16, 0
+; RV64-NEXT:    vnsrl.wx v11, v16, a0
+; RV64-NEXT:    vsetvli a1, zero, e32, mf2, ta, ma
+; RV64-NEXT:    vnsrl.wx v12, v11, a0
+; RV64-NEXT:    vnsrl.wi v11, v11, 0
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %wide.masked.load = call <vscale x 8 x i32> @llvm.vp.load.nxv8i32.p0(ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %t0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 1
+  %d1 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.0)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 0
+  %d1.1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 1
+  %d2 = call { <vscale x 1 x i32>, <vscale x 1 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 2 x i32> %d1.1)
+  %t2 = extractvalue { <vscale x 1 x i32>, <vscale x 1 x i32> } %d2, 0
+  %t3 = extractvalue { <vscale x 1 x i32>, <vscale x 1 x i32> } %d2, 1
+
+  %res0 = insertvalue { <vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32> } poison, <vscale x 4 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32> } %res1, <vscale x 1 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32> } %res2, <vscale x 1 x i32> %t3, 3
+  ret { <vscale x 4 x i32>, <vscale x 2 x i32>, <vscale x 1 x i32>, <vscale x 1 x i32> } %res3
+}
+
+define void @not_balanced_store_tree(<vscale x 1 x i32> %v0, <vscale x 2 x i32> %v1, <vscale x 4 x i32> %v2, ptr %ptr, i32 %evl) {
+; RV32-LABEL: not_balanced_store_tree:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    vsetvli a2, zero, e32, mf2, ta, ma
+; RV32-NEXT:    vwaddu.vv v12, v8, v8
+; RV32-NEXT:    li a2, -1
+; RV32-NEXT:    csrr a3, vlenb
+; RV32-NEXT:    vwmaccu.vx v12, a2, v8
+; RV32-NEXT:    srli a3, a3, 3
+; RV32-NEXT:    vsetvli a4, zero, e32, m1, ta, ma
+; RV32-NEXT:    vslidedown.vx v8, v12, a3
+; RV32-NEXT:    add a4, a3, a3
+; RV32-NEXT:    vsetvli zero, a4, e32, m1, ta, ma
+; RV32-NEXT:    vslideup.vx v12, v8, a3
+; RV32-NEXT:    vsetvli a3, zero, e32, m1, ta, ma
+; RV32-NEXT:    vwaddu.vv v14, v12, v9
+; RV32-NEXT:    vwmaccu.vx v14, a2, v9
+; RV32-NEXT:    vsetvli a3, zero, e32, m2, ta, ma
+; RV32-NEXT:    vwaddu.vv v16, v14, v10
+; RV32-NEXT:    vwmaccu.vx v16, a2, v10
+; RV32-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV32-NEXT:    vse32.v v16, (a0)
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: not_balanced_store_tree:
+; RV64:       # %bb.0:
+; RV64-NEXT:    vsetvli a2, zero, e32, mf2, ta, ma
+; RV64-NEXT:    vwaddu.vv v12, v8, v8
+; RV64-NEXT:    li a2, -1
+; RV64-NEXT:    csrr a3, vlenb
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    vwmaccu.vx v12, a2, v8
+; RV64-NEXT:    srli a3, a3, 3
+; RV64-NEXT:    vsetvli a4, zero, e32, m1, ta, ma
+; RV64-NEXT:    vslidedown.vx v8, v12, a3
+; RV64-NEXT:    add a4, a3, a3
+; RV64-NEXT:    vsetvli zero, a4, e32, m1, ta, ma
+; RV64-NEXT:    vslideup.vx v12, v8, a3
+; RV64-NEXT:    vsetvli a3, zero, e32, m1, ta, ma
+; RV64-NEXT:    vwaddu.vv v14, v12, v9
+; RV64-NEXT:    vwmaccu.vx v14, a2, v9
+; RV64-NEXT:    vsetvli a3, zero, e32, m2, ta, ma
+; RV64-NEXT:    vwaddu.vv v16, v14, v10
+; RV64-NEXT:    vwmaccu.vx v16, a2, v10
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV64-NEXT:    vse32.v v16, (a0)
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %interleaved.vec0 = call <vscale x 2 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 1 x i32> %v0, <vscale x 1 x i32> %v0)
+  %interleaved.vec1 = call <vscale x 4 x i32> @llvm.vector.interleave2.nxv2i32(<vscale x 2 x i32> %interleaved.vec0, <vscale x 2 x i32> %v1)
+  %interleaved.vec2 = call <vscale x 8 x i32> @llvm.vector.interleave2.nxv4i32(<vscale x 4 x i32> %interleaved.vec1, <vscale x 4 x i32> %v2)
+  call void @llvm.vp.store.nxv8i32.p0(<vscale x 8 x i32> %interleaved.vec2, ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  ret void
+}
+
+; We only support scalable vectors for now.
+define {<2 x i32>, <2 x i32>, <2 x i32>, <2 x i32>} @not_scalable_vectors(ptr %ptr, i32 %evl) {
+; RV32-LABEL: not_scalable_vectors:
+; RV32:       # %bb.0:
+; RV32-NEXT:    slli a1, a1, 2
+; RV32-NEXT:    vsetvli zero, a1, e32, m2, ta, ma
+; RV32-NEXT:    vle32.v v8, (a0)
+; RV32-NEXT:    li a0, 32
+; RV32-NEXT:    vsetivli zero, 4, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wx v12, v8, a0
+; RV32-NEXT:    vnsrl.wi v11, v8, 0
+; RV32-NEXT:    vsetivli zero, 2, e32, mf2, ta, ma
+; RV32-NEXT:    vnsrl.wx v10, v11, a0
+; RV32-NEXT:    vnsrl.wi v8, v11, 0
+; RV32-NEXT:    vnsrl.wx v11, v12, a0
+; RV32-NEXT:    vnsrl.wi v9, v12, 0
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: not_scalable_vectors:
+; RV64:       # %bb.0:
+; RV64-NEXT:    slli a1, a1, 34
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m2, ta, ma
+; RV64-NEXT:    vle32.v v8, (a0)
+; RV64-NEXT:    li a0, 32
+; RV64-NEXT:    vsetivli zero, 4, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wx v12, v8, a0
+; RV64-NEXT:    vnsrl.wi v11, v8, 0
+; RV64-NEXT:    vsetivli zero, 2, e32, mf2, ta, ma
+; RV64-NEXT:    vnsrl.wx v10, v11, a0
+; RV64-NEXT:    vnsrl.wi v8, v11, 0
+; RV64-NEXT:    vnsrl.wx v11, v12, a0
+; RV64-NEXT:    vnsrl.wi v9, v12, 0
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 4
+  %wide.masked.load = call <8 x i32> @llvm.vp.load.v8i32.p0(ptr %ptr, <8 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <4 x i32>, <4 x i32> } @llvm.vector.deinterleave2.v8i32(<8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <4 x i32>, <4 x i32> } %d0, 0
+  %d0.1 = extractvalue { <4 x i32>, <4 x i32> } %d0, 1
+  %d1 = call { <2 x i32>, <2 x i32> } @llvm.vector.deinterleave2.v4i32(<4 x i32> %d0.0)
+  %t0 = extractvalue { <2 x i32>, <2 x i32> } %d1, 0
+  %t2 = extractvalue { <2 x i32>, <2 x i32> } %d1, 1
+  %d2 = call { <2 x i32>, <2 x i32> } @llvm.vector.deinterleave2.v4i32(<4 x i32> %d0.1)
+  %t1 = extractvalue { <2 x i32>, <2 x i32> } %d2, 0
+  %t3 = extractvalue { <2 x i32>, <2 x i32> } %d2, 1
+
+  %res0 = insertvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } poison, <2 x i32> %t0, 0
+  %res1 = insertvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %res0, <2 x i32> %t1, 1
+  %res2 = insertvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %res1, <2 x i32> %t2, 2
+  %res3 = insertvalue { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %res2, <2 x i32> %t3, 3
+  ret { <2 x i32>, <2 x i32>, <2 x i32>, <2 x i32> } %res3
+}
+
+define {<vscale x 2 x i32>, <vscale x 2 x i32>} @not_same_mask(<vscale x 2 x i1> %mask0, <vscale x 2 x i1> %mask1, ptr %ptr, i32 %evl) {
+; RV32-LABEL: not_same_mask:
+; RV32:       # %bb.0:
+; RV32-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmv1r.v v9, v0
+; RV32-NEXT:    vmv1r.v v0, v8
+; RV32-NEXT:    vmv.v.i v8, 0
+; RV32-NEXT:    li a2, -1
+; RV32-NEXT:    vsetvli a3, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vmv.v.i v10, 0
+; RV32-NEXT:    csrr a3, vlenb
+; RV32-NEXT:    vsetvli a4, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmerge.vim v11, v8, 1, v0
+; RV32-NEXT:    vmv1r.v v0, v9
+; RV32-NEXT:    vmerge.vim v9, v8, 1, v0
+; RV32-NEXT:    srli a3, a3, 2
+; RV32-NEXT:    vwaddu.vv v12, v9, v11
+; RV32-NEXT:    vwmaccu.vx v12, a2, v11
+; RV32-NEXT:    vmsne.vi v0, v12, 0
+; RV32-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vslidedown.vx v9, v12, a3
+; RV32-NEXT:    vmerge.vim v10, v10, 1, v0
+; RV32-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV32-NEXT:    vmsne.vi v0, v9, 0
+; RV32-NEXT:    add a2, a3, a3
+; RV32-NEXT:    vmerge.vim v8, v8, 1, v0
+; RV32-NEXT:    vsetvli zero, a2, e8, mf2, ta, ma
+; RV32-NEXT:    vslideup.vx v10, v8, a3
+; RV32-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV32-NEXT:    vmsne.vi v0, v10, 0
+; RV32-NEXT:    slli a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, m2, ta, ma
+; RV32-NEXT:    vle32.v v10, (a0), v0.t
+; RV32-NEXT:    li a0, 32
+; RV32-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wx v9, v10, a0
+; RV32-NEXT:    vnsrl.wi v8, v10, 0
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: not_same_mask:
+; RV64:       # %bb.0:
+; RV64-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmv1r.v v9, v0
+; RV64-NEXT:    vmv1r.v v0, v8
+; RV64-NEXT:    vmv.v.i v8, 0
+; RV64-NEXT:    li a2, -1
+; RV64-NEXT:    vsetvli a3, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vmv.v.i v10, 0
+; RV64-NEXT:    csrr a3, vlenb
+; RV64-NEXT:    slli a1, a1, 33
+; RV64-NEXT:    vsetvli a4, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmerge.vim v11, v8, 1, v0
+; RV64-NEXT:    vmv1r.v v0, v9
+; RV64-NEXT:    vmerge.vim v9, v8, 1, v0
+; RV64-NEXT:    srli a3, a3, 2
+; RV64-NEXT:    vwaddu.vv v12, v9, v11
+; RV64-NEXT:    vwmaccu.vx v12, a2, v11
+; RV64-NEXT:    vmsne.vi v0, v12, 0
+; RV64-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vslidedown.vx v9, v12, a3
+; RV64-NEXT:    vmerge.vim v10, v10, 1, v0
+; RV64-NEXT:    vsetvli a2, zero, e8, mf4, ta, ma
+; RV64-NEXT:    vmsne.vi v0, v9, 0
+; RV64-NEXT:    add a2, a3, a3
+; RV64-NEXT:    vmerge.vim v8, v8, 1, v0
+; RV64-NEXT:    vsetvli zero, a2, e8, mf2, ta, ma
+; RV64-NEXT:    vslideup.vx v10, v8, a3
+; RV64-NEXT:    vsetvli a2, zero, e8, mf2, ta, ma
+; RV64-NEXT:    vmsne.vi v0, v10, 0
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m2, ta, ma
+; RV64-NEXT:    vle32.v v10, (a0), v0.t
+; RV64-NEXT:    li a0, 32
+; RV64-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wx v9, v10, a0
+; RV64-NEXT:    vnsrl.wi v8, v10, 0
+; RV64-NEXT:    ret
+  %rvl = mul i32 %evl, 2
+  %interleaved.mask = tail call <vscale x 4 x i1> @llvm.vector.interleave2.nxv4i1(<vscale x 2 x i1> %mask0, <vscale x 2 x i1> %mask1)
+  %wide.masked.load = tail call <vscale x 4 x i32> @llvm.vp.load.nxv4i32.p0(ptr %ptr, <vscale x 4 x i1> %interleaved.mask, i32 %rvl)
+  %deinterleaved.results = tail call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv16i32(<vscale x 4 x i32> %wide.masked.load)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 0
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %deinterleaved.results, 1
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32> } %res1
+}
+
+; EVL should be a multiple of factor
+define {<vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>} @invalid_evl(ptr %ptr, i32 %evl) {
+; RV32-LABEL: invalid_evl:
+; RV32:       # %bb.0:
+; RV32-NEXT:    ori a1, a1, 1
+; RV32-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV32-NEXT:    vle32.v v8, (a0)
+; RV32-NEXT:    li a0, 32
+; RV32-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV32-NEXT:    vnsrl.wx v12, v8, a0
+; RV32-NEXT:    vnsrl.wi v14, v8, 0
+; RV32-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV32-NEXT:    vnsrl.wx v10, v14, a0
+; RV32-NEXT:    vnsrl.wi v8, v14, 0
+; RV32-NEXT:    vnsrl.wx v11, v12, a0
+; RV32-NEXT:    vnsrl.wi v9, v12, 0
+; RV32-NEXT:    ret
+;
+; RV64-LABEL: invalid_evl:
+; RV64:       # %bb.0:
+; RV64-NEXT:    ori a1, a1, 1
+; RV64-NEXT:    slli a1, a1, 32
+; RV64-NEXT:    srli a1, a1, 32
+; RV64-NEXT:    vsetvli zero, a1, e32, m4, ta, ma
+; RV64-NEXT:    vle32.v v8, (a0)
+; RV64-NEXT:    li a0, 32
+; RV64-NEXT:    vsetvli a1, zero, e32, m2, ta, ma
+; RV64-NEXT:    vnsrl.wx v12, v8, a0
+; RV64-NEXT:    vnsrl.wi v14, v8, 0
+; RV64-NEXT:    vsetvli a1, zero, e32, m1, ta, ma
+; RV64-NEXT:    vnsrl.wx v10, v14, a0
+; RV64-NEXT:    vnsrl.wi v8, v14, 0
+; RV64-NEXT:    vnsrl.wx v11, v12, a0
+; RV64-NEXT:    vnsrl.wi v9, v12, 0
+; RV64-NEXT:    ret
+  %rvl = or i32 %evl, 1
+  %wide.masked.load = call <vscale x 8 x i32> @llvm.vp.load.nxv8i32.p0(ptr %ptr, <vscale x 8 x i1> splat (i1 true), i32 %rvl)
+  %d0 = call { <vscale x 4 x i32>, <vscale x 4 x i32> } @llvm.vector.deinterleave2.nxv8i32(<vscale x 8 x i32> %wide.masked.load)
+  %d0.0 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 0
+  %d0.1 = extractvalue { <vscale x 4 x i32>, <vscale x 4 x i32> } %d0, 1
+  %d1 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.0)
+  %t0 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 0
+  %t2 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d1, 1
+  %d2 = call { <vscale x 2 x i32>, <vscale x 2 x i32> } @llvm.vector.deinterleave2.nxv4i32(<vscale x 4 x i32> %d0.1)
+  %t1 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 0
+  %t3 = extractvalue { <vscale x 2 x i32>, <vscale x 2 x i32> } %d2, 1
+
+  %res0 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } poison, <vscale x 2 x i32> %t0, 0
+  %res1 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res0, <vscale x 2 x i32> %t1, 1
+  %res2 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res1, <vscale x 2 x i32> %t2, 2
+  %res3 = insertvalue { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res2, <vscale x 2 x i32> %t3, 3
+  ret { <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32>, <vscale x 2 x i32> } %res3
+}
+
+;; NOTE: These prefixes are unused and the list is autogenerated. Do not add tests below this line:
+; CHECK: {{.*}}


        


More information about the llvm-commits mailing list