[llvm] Reland "[LoopVectorize] Add support for reverse loops in isDereferenceableAndAlignedInLoop #96752" (PR #123616)

via llvm-commits llvm-commits at lists.llvm.org
Mon Jan 20 06:04:21 PST 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-llvm-analysis

Author: David Sherwood (david-arm)

<details>
<summary>Changes</summary>

The last attempt failed a sanitiser build because we were
creating a reference to a null Predicates pointer in
isDereferenceableAndAlignedInLoop. This was exposed by
the unit test IsDerefReadOnlyLoop in
unittests/Analysis/LoadsTest.cpp. I fixed this by falling
back on getConstantMaxBackedgeTakenCount if Predicates is
null - see line 316 in llvm/lib/Analysis/Loads.cpp. There
are no other changes.

---

Patch is 39.45 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/123616.diff


5 Files Affected:

- (modified) llvm/include/llvm/Analysis/LoopAccessAnalysis.h (+19) 
- (modified) llvm/lib/Analysis/Loads.cpp (+59-53) 
- (modified) llvm/lib/Analysis/LoopAccessAnalysis.cpp (+26-35) 
- (modified) llvm/test/Transforms/LoopVectorize/X86/load-deref-pred.ll (+71-167) 
- (modified) llvm/test/Transforms/LoopVectorize/load-deref-pred-align.ll (+15-12) 


``````````diff
diff --git a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
index 31374a128856c7..6fc6ca14d08895 100644
--- a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
+++ b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
@@ -853,6 +853,25 @@ bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                          ScalarEvolution &SE, bool CheckType = true);
 
+/// Calculate Start and End points of memory access.
+/// Let's assume A is the first access and B is a memory access on N-th loop
+/// iteration. Then B is calculated as:
+///   B = A + Step*N .
+/// Step value may be positive or negative.
+/// N is a calculated back-edge taken count:
+///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
+/// Start and End points are calculated in the following way:
+/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
+/// where SizeOfElt is the size of single memory access in bytes.
+///
+/// There is no conflict when the intervals are disjoint:
+/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
+std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
+    const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *MaxBECount,
+    ScalarEvolution *SE,
+    DenseMap<std::pair<const SCEV *, Type *>,
+             std::pair<const SCEV *, const SCEV *>> *PointerBounds);
+
 class LoopAccessInfoManager {
   /// The cache.
   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
diff --git a/llvm/lib/Analysis/Loads.cpp b/llvm/lib/Analysis/Loads.cpp
index 11ccfa33821cad..7c704efd1011bf 100644
--- a/llvm/lib/Analysis/Loads.cpp
+++ b/llvm/lib/Analysis/Loads.cpp
@@ -13,6 +13,7 @@
 #include "llvm/Analysis/Loads.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/MemoryBuiltins.h"
 #include "llvm/Analysis/MemoryLocation.h"
@@ -277,84 +278,89 @@ static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
 bool llvm::isDereferenceableAndAlignedInLoop(
     LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT,
     AssumptionCache *AC, SmallVectorImpl<const SCEVPredicate *> *Predicates) {
+  const Align Alignment = LI->getAlign();
   auto &DL = LI->getDataLayout();
   Value *Ptr = LI->getPointerOperand();
-
   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
                 DL.getTypeStoreSize(LI->getType()).getFixedValue());
-  const Align Alignment = LI->getAlign();
-
-  Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
 
   // If given a uniform (i.e. non-varying) address, see if we can prove the
   // access is safe within the loop w/o needing predication.
   if (L->isLoopInvariant(Ptr))
-    return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
-                                              HeaderFirstNonPHI, AC, &DT);
+    return isDereferenceableAndAlignedPointer(
+        Ptr, Alignment, EltSize, DL, L->getHeader()->getFirstNonPHI(), AC, &DT);
+
+  const SCEV *PtrScev = SE.getSCEV(Ptr);
+  auto *AddRec = dyn_cast<SCEVAddRecExpr>(PtrScev);
 
-  // Otherwise, check to see if we have a repeating access pattern where we can
-  // prove that all accesses are well aligned and dereferenceable.
-  auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
+  // Check to see if we have a repeating access pattern and it's possible
+  // to prove all accesses are well aligned.
   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
     return false;
-  auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
+
+  auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
   if (!Step)
     return false;
 
-  auto TC = SE.getSmallConstantMaxTripCount(L, Predicates);
-  if (!TC)
+  // For the moment, restrict ourselves to the case where the access size is a
+  // multiple of the requested alignment and the base is aligned.
+  // TODO: generalize if a case found which warrants
+  if (EltSize.urem(Alignment.value()) != 0)
     return false;
 
   // TODO: Handle overlapping accesses.
-  // We should be computing AccessSize as (TC - 1) * Step + EltSize.
-  if (EltSize.sgt(Step->getAPInt()))
+  if (EltSize.ugt(Step->getAPInt().abs()))
+    return false;
+
+  const SCEV *MaxBECount =
+      Predicates ? SE.getPredicatedConstantMaxBackedgeTakenCount(L, *Predicates)
+                 : SE.getConstantMaxBackedgeTakenCount(L);
+  if (isa<SCEVCouldNotCompute>(MaxBECount))
+    return false;
+
+  const auto &[AccessStart, AccessEnd] = getStartAndEndForAccess(
+      L, PtrScev, LI->getType(), MaxBECount, &SE, nullptr);
+  if (isa<SCEVCouldNotCompute>(AccessStart) ||
+      isa<SCEVCouldNotCompute>(AccessEnd))
     return false;
 
-  // Compute the total access size for access patterns with unit stride and
-  // patterns with gaps. For patterns with unit stride, Step and EltSize are the
-  // same.
-  // For patterns with gaps (i.e. non unit stride), we are
-  // accessing EltSize bytes at every Step.
-  APInt AccessSize = TC * Step->getAPInt();
+  // Try to get the access size.
+  const SCEV *PtrDiff = SE.getMinusSCEV(AccessEnd, AccessStart);
+  APInt MaxPtrDiff = SE.getUnsignedRangeMax(PtrDiff);
 
-  assert(SE.isLoopInvariant(AddRec->getStart(), L) &&
-         "implied by addrec definition");
   Value *Base = nullptr;
-  if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) {
-    Base = StartS->getValue();
-  } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) {
-    // Handle (NewBase + offset) as start value.
-    const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0));
-    const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1));
-    if (StartS->getNumOperands() == 2 && Offset && NewBase) {
-      // The following code below assumes the offset is unsigned, but GEP
-      // offsets are treated as signed so we can end up with a signed value
-      // here too. For example, suppose the initial PHI value is (i8 255),
-      // the offset will be treated as (i8 -1) and sign-extended to (i64 -1).
-      if (Offset->getAPInt().isNegative())
-        return false;
+  APInt AccessSize;
+  if (const SCEVUnknown *NewBase = dyn_cast<SCEVUnknown>(AccessStart)) {
+    Base = NewBase->getValue();
+    AccessSize = MaxPtrDiff;
+  } else if (auto *MinAdd = dyn_cast<SCEVAddExpr>(AccessStart)) {
+    if (MinAdd->getNumOperands() != 2)
+      return false;
 
-      // For the moment, restrict ourselves to the case where the offset is a
-      // multiple of the requested alignment and the base is aligned.
-      // TODO: generalize if a case found which warrants
-      if (Offset->getAPInt().urem(Alignment.value()) != 0)
-        return false;
-      Base = NewBase->getValue();
-      bool Overflow = false;
-      AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow);
-      if (Overflow)
-        return false;
-    }
-  }
+    const auto *Offset = dyn_cast<SCEVConstant>(MinAdd->getOperand(0));
+    const auto *NewBase = dyn_cast<SCEVUnknown>(MinAdd->getOperand(1));
+    if (!Offset || !NewBase)
+      return false;
 
-  if (!Base)
-    return false;
+    // The following code below assumes the offset is unsigned, but GEP
+    // offsets are treated as signed so we can end up with a signed value
+    // here too. For example, suppose the initial PHI value is (i8 255),
+    // the offset will be treated as (i8 -1) and sign-extended to (i64 -1).
+    if (Offset->getAPInt().isNegative())
+      return false;
 
-  // For the moment, restrict ourselves to the case where the access size is a
-  // multiple of the requested alignment and the base is aligned.
-  // TODO: generalize if a case found which warrants
-  if (EltSize.urem(Alignment.value()) != 0)
+    // For the moment, restrict ourselves to the case where the offset is a
+    // multiple of the requested alignment and the base is aligned.
+    // TODO: generalize if a case found which warrants
+    if (Offset->getAPInt().urem(Alignment.value()) != 0)
+      return false;
+
+    AccessSize = MaxPtrDiff + Offset->getAPInt();
+    Base = NewBase->getValue();
+  } else
     return false;
+
+  Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
                                             HeaderFirstNonPHI, AC, &DT);
 }
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 2a68979add666d..11e0a221fc8878 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -190,31 +190,20 @@ RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
   Members.push_back(Index);
 }
 
-/// Calculate Start and End points of memory access.
-/// Let's assume A is the first access and B is a memory access on N-th loop
-/// iteration. Then B is calculated as:
-///   B = A + Step*N .
-/// Step value may be positive or negative.
-/// N is a calculated back-edge taken count:
-///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
-/// Start and End points are calculated in the following way:
-/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
-/// where SizeOfElt is the size of single memory access in bytes.
-///
-/// There is no conflict when the intervals are disjoint:
-/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
-static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
-    const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
-    PredicatedScalarEvolution &PSE,
+std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
+    const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *MaxBECount,
+    ScalarEvolution *SE,
     DenseMap<std::pair<const SCEV *, Type *>,
-             std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
-  ScalarEvolution *SE = PSE.getSE();
-
-  auto [Iter, Ins] = PointerBounds.insert(
-      {{PtrExpr, AccessTy},
-       {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
-  if (!Ins)
-    return Iter->second;
+             std::pair<const SCEV *, const SCEV *>> *PointerBounds) {
+  std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
+  if (PointerBounds) {
+    auto [Iter, Ins] = PointerBounds->insert(
+        {{PtrExpr, AccessTy},
+         {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
+    if (!Ins)
+      return Iter->second;
+    PtrBoundsPair = &Iter->second;
+  }
 
   const SCEV *ScStart;
   const SCEV *ScEnd;
@@ -222,10 +211,8 @@ static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
   if (SE->isLoopInvariant(PtrExpr, Lp)) {
     ScStart = ScEnd = PtrExpr;
   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
-    const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
-
     ScStart = AR->getStart();
-    ScEnd = AR->evaluateAtIteration(Ex, *SE);
+    ScEnd = AR->evaluateAtIteration(MaxBECount, *SE);
     const SCEV *Step = AR->getStepRecurrence(*SE);
 
     // For expressions with negative step, the upper bound is ScStart and the
@@ -244,7 +231,7 @@ static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
 
   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
-  assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
+  assert(SE->isLoopInvariant(ScEnd, Lp) && "ScEnd needs to be invariant");
 
   // Add the size of the pointed element to ScEnd.
   auto &DL = Lp->getHeader()->getDataLayout();
@@ -252,8 +239,10 @@ static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
 
-  Iter->second = {ScStart, ScEnd};
-  return Iter->second;
+  std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
+  if (PointerBounds)
+    *PtrBoundsPair = Res;
+  return Res;
 }
 
 /// Calculate Start and End points of memory access using
@@ -263,8 +252,9 @@ void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
                                     unsigned DepSetId, unsigned ASId,
                                     PredicatedScalarEvolution &PSE,
                                     bool NeedsFreeze) {
+  const SCEV *MaxBECount = PSE.getSymbolicMaxBackedgeTakenCount();
   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
-      Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
+      Lp, PtrExpr, AccessTy, MaxBECount, PSE.getSE(), &DC.getPointerBounds());
   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
          !isa<SCEVCouldNotCompute>(ScEnd) &&
          "must be able to compute both start and end expressions");
@@ -1938,10 +1928,11 @@ MemoryDepChecker::getDependenceDistanceStrideAndSize(
   // required for correctness.
   if (SE.isLoopInvariant(Src, InnermostLoop) ||
       SE.isLoopInvariant(Sink, InnermostLoop)) {
-    const auto &[SrcStart_, SrcEnd_] =
-        getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
-    const auto &[SinkStart_, SinkEnd_] =
-        getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
+    const SCEV *MaxBECount = PSE.getSymbolicMaxBackedgeTakenCount();
+    const auto &[SrcStart_, SrcEnd_] = getStartAndEndForAccess(
+        InnermostLoop, Src, ATy, MaxBECount, PSE.getSE(), &PointerBounds);
+    const auto &[SinkStart_, SinkEnd_] = getStartAndEndForAccess(
+        InnermostLoop, Sink, BTy, MaxBECount, PSE.getSE(), &PointerBounds);
     if (!isa<SCEVCouldNotCompute>(SrcStart_) &&
         !isa<SCEVCouldNotCompute>(SrcEnd_) &&
         !isa<SCEVCouldNotCompute>(SinkStart_) &&
diff --git a/llvm/test/Transforms/LoopVectorize/X86/load-deref-pred.ll b/llvm/test/Transforms/LoopVectorize/X86/load-deref-pred.ll
index 1433e48690bc60..3e50ee42866b9b 100644
--- a/llvm/test/Transforms/LoopVectorize/X86/load-deref-pred.ll
+++ b/llvm/test/Transforms/LoopVectorize/X86/load-deref-pred.ll
@@ -2920,8 +2920,8 @@ loop_exit:
   ret i32 %accum.next
 }
 
-define i32 @neg_test_non_unit_stride_off_by_four_bytes(i64 %len, ptr %test_base) {
-; CHECK-LABEL: @neg_test_non_unit_stride_off_by_four_bytes(
+define i32 @test_non_unit_stride_off_by_four_bytes(i64 %len, ptr %test_base) {
+; CHECK-LABEL: @test_non_unit_stride_off_by_four_bytes(
 ; CHECK-NEXT:  entry:
 ; CHECK-NEXT:    [[ALLOCA:%.*]] = alloca [103 x i32], align 4
 ; CHECK-NEXT:    call void @init(ptr [[ALLOCA]])
@@ -2929,11 +2929,11 @@ define i32 @neg_test_non_unit_stride_off_by_four_bytes(i64 %len, ptr %test_base)
 ; CHECK:       vector.ph:
 ; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
 ; CHECK:       vector.body:
-; CHECK-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[PRED_LOAD_CONTINUE33:%.*]] ]
-; CHECK-NEXT:    [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP144:%.*]], [[PRED_LOAD_CONTINUE33]] ]
-; CHECK-NEXT:    [[VEC_PHI1:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP145:%.*]], [[PRED_LOAD_CONTINUE33]] ]
-; CHECK-NEXT:    [[VEC_PHI2:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP146:%.*]], [[PRED_LOAD_CONTINUE33]] ]
-; CHECK-NEXT:    [[VEC_PHI3:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP147:%.*]], [[PRED_LOAD_CONTINUE33]] ]
+; CHECK-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP112:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[VEC_PHI1:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP113:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[VEC_PHI2:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP114:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[VEC_PHI3:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP115:%.*]], [[VECTOR_BODY]] ]
 ; CHECK-NEXT:    [[OFFSET_IDX:%.*]] = mul i64 [[INDEX]], 2
 ; CHECK-NEXT:    [[TMP0:%.*]] = add i64 [[OFFSET_IDX]], 0
 ; CHECK-NEXT:    [[TMP1:%.*]] = add i64 [[OFFSET_IDX]], 2
@@ -2999,170 +2999,74 @@ define i32 @neg_test_non_unit_stride_off_by_four_bytes(i64 %len, ptr %test_base)
 ; CHECK-NEXT:    [[TMP61:%.*]] = insertelement <4 x i1> [[TMP60]], i1 [[TMP57]], i32 1
 ; CHECK-NEXT:    [[TMP62:%.*]] = insertelement <4 x i1> [[TMP61]], i1 [[TMP58]], i32 2
 ; CHECK-NEXT:    [[TMP63:%.*]] = insertelement <4 x i1> [[TMP62]], i1 [[TMP59]], i32 3
-; CHECK-NEXT:    [[TMP64:%.*]] = extractelement <4 x i1> [[TMP39]], i32 0
-; CHECK-NEXT:    br i1 [[TMP64]], label [[PRED_LOAD_IF:%.*]], label [[PRED_LOAD_CONTINUE:%.*]]
-; CHECK:       pred.load.if:
-; CHECK-NEXT:    [[TMP65:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP0]]
-; CHECK-NEXT:    [[TMP66:%.*]] = load i32, ptr [[TMP65]], align 4
-; CHECK-NEXT:    [[TMP67:%.*]] = insertelement <4 x i32> poison, i32 [[TMP66]], i32 0
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE]]
-; CHECK:       pred.load.continue:
-; CHECK-NEXT:    [[TMP68:%.*]] = phi <4 x i32> [ poison, [[VECTOR_BODY]] ], [ [[TMP67]], [[PRED_LOAD_IF]] ]
-; CHECK-NEXT:    [[TMP69:%.*]] = extractelement <4 x i1> [[TMP39]], i32 1
-; CHECK-NEXT:    br i1 [[TMP69]], label [[PRED_LOAD_IF4:%.*]], label [[PRED_LOAD_CONTINUE5:%.*]]
-; CHECK:       pred.load.if4:
-; CHECK-NEXT:    [[TMP70:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP1]]
-; CHECK-NEXT:    [[TMP71:%.*]] = load i32, ptr [[TMP70]], align 4
-; CHECK-NEXT:    [[TMP72:%.*]] = insertelement <4 x i32> [[TMP68]], i32 [[TMP71]], i32 1
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE5]]
-; CHECK:       pred.load.continue5:
-; CHECK-NEXT:    [[TMP73:%.*]] = phi <4 x i32> [ [[TMP68]], [[PRED_LOAD_CONTINUE]] ], [ [[TMP72]], [[PRED_LOAD_IF4]] ]
-; CHECK-NEXT:    [[TMP74:%.*]] = extractelement <4 x i1> [[TMP39]], i32 2
-; CHECK-NEXT:    br i1 [[TMP74]], label [[PRED_LOAD_IF6:%.*]], label [[PRED_LOAD_CONTINUE7:%.*]]
-; CHECK:       pred.load.if6:
-; CHECK-NEXT:    [[TMP75:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP2]]
-; CHECK-NEXT:    [[TMP76:%.*]] = load i32, ptr [[TMP75]], align 4
-; CHECK-NEXT:    [[TMP77:%.*]] = insertelement <4 x i32> [[TMP73]], i32 [[TMP76]], i32 2
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE7]]
-; CHECK:       pred.load.continue7:
-; CHECK-NEXT:    [[TMP78:%.*]] = phi <4 x i32> [ [[TMP73]], [[PRED_LOAD_CONTINUE5]] ], [ [[TMP77]], [[PRED_LOAD_IF6]] ]
-; CHECK-NEXT:    [[TMP79:%.*]] = extractelement <4 x i1> [[TMP39]], i32 3
-; CHECK-NEXT:    br i1 [[TMP79]], label [[PRED_LOAD_IF8:%.*]], label [[PRED_LOAD_CONTINUE9:%.*]]
-; CHECK:       pred.load.if8:
-; CHECK-NEXT:    [[TMP80:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP3]]
-; CHECK-NEXT:    [[TMP81:%.*]] = load i32, ptr [[TMP80]], align 4
-; CHECK-NEXT:    [[TMP82:%.*]] = insertelement <4 x i32> [[TMP78]], i32 [[TMP81]], i32 3
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE9]]
-; CHECK:       pred.load.continue9:
-; CHECK-NEXT:    [[TMP83:%.*]] = phi <4 x i32> [ [[TMP78]], [[PRED_LOAD_CONTINUE7]] ], [ [[TMP82]], [[PRED_LOAD_IF8]] ]
-; CHECK-NEXT:    [[TMP84:%.*]] = extractelement <4 x i1> [[TMP47]], i32 0
-; CHECK-NEXT:    br i1 [[TMP84]], label [[PRED_LOAD_IF10:%.*]], label [[PRED_LOAD_CONTINUE11:%.*]]
-; CHECK:       pred.load.if10:
-; CHECK-NEXT:    [[TMP85:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP4]]
-; CHECK-NEXT:    [[TMP86:%.*]] = load i32, ptr [[TMP85]], align 4
-; CHECK-NEXT:    [[TMP87:%.*]] = insertelement <4 x i32> poison, i32 [[TMP86]], i32 0
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE11]]
-; CHECK:       pred.load.continue11:
-; CHECK-NEXT:    [[TMP88:%.*]] = phi <4 x i32> [ poison, [[PRED_LOAD_CONTINUE9]] ], [ [[TMP87]], [[PRED_LOAD_IF10]] ]
-; CHECK-NEXT:    [[TMP89:%.*]] = extractelement <4 x i1> [[TMP47]], i32 1
-; CHECK-NEXT:    br i1 [[TMP89]], label [[PRED_LOAD_IF12:%.*]], label [[PRED_LOAD_CONTINUE13:%.*]]
-; CHECK:       pred.load.if12:
-; CHECK-NEXT:    [[TMP90:%.*]] = getelementptr inbounds i32, ptr [[ALLOCA]], i64 [[TMP5]]
-; CHECK-NEXT:    [[TMP91:%.*]] = load i32, ptr [[TMP90]], align 4
-; CHECK-NEXT:    [[TMP92:%.*]] = insertelement <4 x i32> [[TMP88]], i32 [[TMP91]], i32 1
-; CHECK-NEXT:    br label [[PRED_LOAD_CONTINUE13]]
-; CHECK:       pred.load.continue13:
-; CHECK-NEXT:    [[...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/123616


More information about the llvm-commits mailing list