[llvm] [CAS] Add LLVMCAS library with InMemoryCAS implementation (PR #114096)
Paul Kirth via llvm-commits
llvm-commits at lists.llvm.org
Wed Oct 30 11:05:06 PDT 2024
================
@@ -0,0 +1,120 @@
+# Content Addressable Storage
+
+## Introduction to CAS
+
+Content Addressable Storage, or `CAS`, is a storage system where it assigns
+unique addresses to the data stored. It is very useful for data deduplicaton
+and creating unique identifiers.
+
+Unlikely other kind of storage system like file system, CAS is immutable. It
+is more reliable to model a computation when representing the inputs and outputs
+of the computation using objects stored in CAS.
+
+The basic unit of the CAS library is a CASObject, where it contains:
+
+* Data: arbitrary data
+* References: references to other CASObject
+
+It can be conceptually modeled as something like:
+
+```
+struct CASObject {
+ ArrayRef<char> Data;
+ ArrayRef<CASObject*> Refs;
+}
+```
+
+Such abstraction can allow simple composition of CASObjects into a DAG to
+represent complicated data structure while still allowing data deduplication.
+Note you can compare two DAGs by just comparing the CASObject hash of two
+root nodes.
+
+
+
+## LLVM CAS Library User Guide
+
+The CAS-like storage provided in LLVM is `llvm::cas::ObjectStore`.
+To reference a CASObject, there are few different abstractions provided
+with different trade-offs:
+
+### ObjectRef
+
+`ObjectRef` is a lightweight reference to a CASObject stored in the CAS.
+This is the most commonly used abstraction and it is cheap to copy/pass
+along. It has following properties:
+
+* `ObjectRef` is only meaningful within the `ObjectStore` that created the ref.
+`ObjectRef` created by different `ObjectStore` cannot be cross-referenced or
+compared.
+* `ObjectRef` doesn't guarantee the existence of the CASObject it points to. An
+explicitly load is required before accessing the data stored in CASObject.
+This load can also fail, for reasons like but not limited to: object does
+not exist, corrupted CAS storage, operation timeout, etc.
+* If two `ObjectRef` are equal, it is guarantee that the object they point to
+(if exists) are identical. If they are not equal, the underlying objects are
+guaranteed to be not the same.
+
+### ObjectProxy
+
+`ObjectProxy` represents a loaded CASObject. With an `ObjectProxy`, the
+underlying stored data and references can be accessed without the need
+of error handling. The class APIs also provide convenient methods to
+access underlying data. The lifetime of the underlying data is equal to
+the lifetime of the instance of `ObjectStore` unless explicitly copied.
+
+### CASID
+
+`CASID` is the hash identifier for CASObjects. It owns the underlying
+storage for hash value so it can be expensive to copy and compare depending
+on the hash algorithm. `CASID` is generally only useful in rare situations
+like printing raw hash value or exchanging hash values between different
+CAS instances with the same hashing schema.
+
+### ObjectStore
+
+`ObjectStore` is the CAS-like object storage. It provides API to save
+and load CASObjects, for example:
+
+```
+ObjectRef A, B, C;
+Expected<ObjectRef> Stored = ObjectStore.store("data", {A, B});
+Expected<ObjectProxy> Loaded = ObjectStore.getProxy(C);
+```
+
+It also provides APIs to convert between `ObjectRef`, `ObjectProxy` and
+`CASID`.
+
+
+
+## CAS Library Implementation Guide
+
+The LLVM ObjectStore APIs are designed so that it is easy to add
+customized CAS implementation that are interchangeable with builtin
+CAS implementations.
+
+To add your own implementation, you just need to add a subclass to
+`llvm::cas::ObjectStore` and implement all its pure virtual methods.
+To be interchangeable with LLVM ObjectStore, the new CAS implementation
+needs to conform to following contracts:
+
+* Different CASObject stored in the ObjectStore needs to have a different hash
+and result in a different `ObjectRef`. Vice versa, same CASObject should have
+same hash and same `ObjectRef`. Note two different CASObjects with identical
+data but different references are considered different objects.
+* `ObjectRef`s are comparable within the same `ObjectStore` instance, and can
+be used to determine the equality of the underlying CASObjects.
+* The loaded objects from the ObjectStore need to have the lifetime to be at
+least as long as the ObjectStore itself.
+
+If not specified, the behavior can be implementation defined. For example,
+`ObjectRef` can be used to point to a loaded CASObject so
+`ObjectStore` never fails to load. It is also legal to use a stricter model
+than required. For example, an `ObjectRef` that can be used to compare
+objects between different `ObjectStore` instances is legal but user
+of the ObjectStore should not depend on this behavior.
+
+For CAS library implementer, there is also a `ObjectHandle` class that
+is an internal representation of a loaded CASObject reference.
----------------
ilovepi wrote:
```suggestion
For CAS library implementers, there is also an `ObjectHandle` class that
is an internal representation of a loaded CASObject reference.
```
https://github.com/llvm/llvm-project/pull/114096
More information about the llvm-commits
mailing list