[llvm] [NFC] Add a new Intrinsics.cpp file for intrinsic code (PR #110078)
Rahul Joshi via llvm-commits
llvm-commits at lists.llvm.org
Mon Sep 30 10:06:31 PDT 2024
https://github.com/jurahul updated https://github.com/llvm/llvm-project/pull/110078
>From ceaab0ef4ad0abffa1111115499ce063ae987368 Mon Sep 17 00:00:00 2001
From: Rahul Joshi <rjoshi at nvidia.com>
Date: Wed, 25 Sep 2024 20:47:58 -0700
Subject: [PATCH] [NFC] Add a new Intrinsics.cpp file for intrinsic code
Add new file Intrinsics.cpp and move `lookupLLVMIntrinsicByName`
to that file.
---
llvm/include/llvm/IR/Intrinsics.h | 2 +-
llvm/lib/IR/CMakeLists.txt | 1 +
llvm/lib/IR/Function.cpp | 963 -------------------------
llvm/lib/IR/IntrinsicInst.cpp | 42 --
llvm/lib/IR/Intrinsics.cpp | 1088 +++++++++++++++++++++++++++++
5 files changed, 1090 insertions(+), 1006 deletions(-)
create mode 100644 llvm/lib/IR/Intrinsics.cpp
diff --git a/llvm/include/llvm/IR/Intrinsics.h b/llvm/include/llvm/IR/Intrinsics.h
index 95df3f2cd654ad..b251036247c5c0 100644
--- a/llvm/include/llvm/IR/Intrinsics.h
+++ b/llvm/include/llvm/IR/Intrinsics.h
@@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
//
// This file defines a set of enums which allow processing of intrinsic
-// functions. Values of these enum types are returned by
+// functions. Values of these enum types are returned by
// Function::getIntrinsicID.
//
//===----------------------------------------------------------------------===//
diff --git a/llvm/lib/IR/CMakeLists.txt b/llvm/lib/IR/CMakeLists.txt
index e5756940dd5a03..544f4ea9223d0e 100644
--- a/llvm/lib/IR/CMakeLists.txt
+++ b/llvm/lib/IR/CMakeLists.txt
@@ -32,6 +32,7 @@ add_llvm_component_library(LLVMCore
GCStrategy.cpp
GVMaterializer.cpp
Globals.cpp
+ Intrinsics.cpp
IRBuilder.cpp
IRPrintingPasses.cpp
SSAContext.cpp
diff --git a/llvm/lib/IR/Function.cpp b/llvm/lib/IR/Function.cpp
index 052ee1fdc93906..e4786e0bc6032b 100644
--- a/llvm/lib/IR/Function.cpp
+++ b/llvm/lib/IR/Function.cpp
@@ -33,24 +33,6 @@
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/IntrinsicsAArch64.h"
-#include "llvm/IR/IntrinsicsAMDGPU.h"
-#include "llvm/IR/IntrinsicsARM.h"
-#include "llvm/IR/IntrinsicsBPF.h"
-#include "llvm/IR/IntrinsicsDirectX.h"
-#include "llvm/IR/IntrinsicsHexagon.h"
-#include "llvm/IR/IntrinsicsLoongArch.h"
-#include "llvm/IR/IntrinsicsMips.h"
-#include "llvm/IR/IntrinsicsNVPTX.h"
-#include "llvm/IR/IntrinsicsPowerPC.h"
-#include "llvm/IR/IntrinsicsR600.h"
-#include "llvm/IR/IntrinsicsRISCV.h"
-#include "llvm/IR/IntrinsicsS390.h"
-#include "llvm/IR/IntrinsicsSPIRV.h"
-#include "llvm/IR/IntrinsicsVE.h"
-#include "llvm/IR/IntrinsicsWebAssembly.h"
-#include "llvm/IR/IntrinsicsX86.h"
-#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
@@ -939,69 +921,10 @@ void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
MemoryEffects::inaccessibleOrArgMemOnly());
}
-/// Table of string intrinsic names indexed by enum value.
-static constexpr const char *const IntrinsicNameTable[] = {
- "not_intrinsic",
-#define GET_INTRINSIC_NAME_TABLE
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_NAME_TABLE
-};
-
-/// Table of per-target intrinsic name tables.
-#define GET_INTRINSIC_TARGET_DATA
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_TARGET_DATA
-
-bool Intrinsic::isTargetIntrinsic(Intrinsic::ID IID) {
- return IID > TargetInfos[0].Count;
-}
-
bool Function::isTargetIntrinsic() const {
return Intrinsic::isTargetIntrinsic(IntID);
}
-/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
-/// target as \c Name, or the generic table if \c Name is not target specific.
-///
-/// Returns the relevant slice of \c IntrinsicNameTable and the target name.
-static std::pair<ArrayRef<const char *>, StringRef>
-findTargetSubtable(StringRef Name) {
- assert(Name.starts_with("llvm."));
-
- ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
- // Drop "llvm." and take the first dotted component. That will be the target
- // if this is target specific.
- StringRef Target = Name.drop_front(5).split('.').first;
- auto It = partition_point(
- Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
- // We've either found the target or just fall back to the generic set, which
- // is always first.
- const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
- return {ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count), TI.Name};
-}
-
-/// This does the actual lookup of an intrinsic ID which matches the given
-/// function name.
-Intrinsic::ID Intrinsic::lookupIntrinsicID(StringRef Name) {
- auto [NameTable, Target] = findTargetSubtable(Name);
- int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name, Target);
- if (Idx == -1)
- return Intrinsic::not_intrinsic;
-
- // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
- // an index into a sub-table.
- int Adjust = NameTable.data() - IntrinsicNameTable;
- Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
-
- // If the intrinsic is not overloaded, require an exact match. If it is
- // overloaded, require either exact or prefix match.
- const auto MatchSize = strlen(NameTable[Idx]);
- assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
- bool IsExactMatch = Name.size() == MatchSize;
- return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
- : Intrinsic::not_intrinsic;
-}
-
void Function::updateAfterNameChange() {
LibFuncCache = UnknownLibFunc;
StringRef Name = getName();
@@ -1014,892 +937,6 @@ void Function::updateAfterNameChange() {
IntID = Intrinsic::lookupIntrinsicID(Name);
}
-/// Returns a stable mangling for the type specified for use in the name
-/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
-/// of named types is simply their name. Manglings for unnamed types consist
-/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
-/// combined with the mangling of their component types. A vararg function
-/// type will have a suffix of 'vararg'. Since function types can contain
-/// other function types, we close a function type mangling with suffix 'f'
-/// which can't be confused with it's prefix. This ensures we don't have
-/// collisions between two unrelated function types. Otherwise, you might
-/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
-/// The HasUnnamedType boolean is set if an unnamed type was encountered,
-/// indicating that extra care must be taken to ensure a unique name.
-static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
- std::string Result;
- if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
- Result += "p" + utostr(PTyp->getAddressSpace());
- } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
- Result += "a" + utostr(ATyp->getNumElements()) +
- getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
- } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
- if (!STyp->isLiteral()) {
- Result += "s_";
- if (STyp->hasName())
- Result += STyp->getName();
- else
- HasUnnamedType = true;
- } else {
- Result += "sl_";
- for (auto *Elem : STyp->elements())
- Result += getMangledTypeStr(Elem, HasUnnamedType);
- }
- // Ensure nested structs are distinguishable.
- Result += "s";
- } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
- Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
- for (size_t i = 0; i < FT->getNumParams(); i++)
- Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
- if (FT->isVarArg())
- Result += "vararg";
- // Ensure nested function types are distinguishable.
- Result += "f";
- } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
- ElementCount EC = VTy->getElementCount();
- if (EC.isScalable())
- Result += "nx";
- Result += "v" + utostr(EC.getKnownMinValue()) +
- getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
- } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
- Result += "t";
- Result += TETy->getName();
- for (Type *ParamTy : TETy->type_params())
- Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
- for (unsigned IntParam : TETy->int_params())
- Result += "_" + utostr(IntParam);
- // Ensure nested target extension types are distinguishable.
- Result += "t";
- } else if (Ty) {
- switch (Ty->getTypeID()) {
- default: llvm_unreachable("Unhandled type");
- case Type::VoidTyID: Result += "isVoid"; break;
- case Type::MetadataTyID: Result += "Metadata"; break;
- case Type::HalfTyID: Result += "f16"; break;
- case Type::BFloatTyID: Result += "bf16"; break;
- case Type::FloatTyID: Result += "f32"; break;
- case Type::DoubleTyID: Result += "f64"; break;
- case Type::X86_FP80TyID: Result += "f80"; break;
- case Type::FP128TyID: Result += "f128"; break;
- case Type::PPC_FP128TyID:
- Result += "ppcf128";
- break;
- case Type::X86_AMXTyID: Result += "x86amx"; break;
- case Type::IntegerTyID:
- Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
- break;
- }
- }
- return Result;
-}
-
-StringRef Intrinsic::getBaseName(ID id) {
- assert(id < num_intrinsics && "Invalid intrinsic ID!");
- return IntrinsicNameTable[id];
-}
-
-StringRef Intrinsic::getName(ID id) {
- assert(id < num_intrinsics && "Invalid intrinsic ID!");
- assert(!Intrinsic::isOverloaded(id) &&
- "This version of getName does not support overloading");
- return getBaseName(id);
-}
-
-static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
- Module *M, FunctionType *FT,
- bool EarlyModuleCheck) {
-
- assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
- assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
- "This version of getName is for overloaded intrinsics only");
- (void)EarlyModuleCheck;
- assert((!EarlyModuleCheck || M ||
- !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
- "Intrinsic overloading on pointer types need to provide a Module");
- bool HasUnnamedType = false;
- std::string Result(Intrinsic::getBaseName(Id));
- for (Type *Ty : Tys)
- Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
- if (HasUnnamedType) {
- assert(M && "unnamed types need a module");
- if (!FT)
- FT = Intrinsic::getType(M->getContext(), Id, Tys);
- else
- assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
- "Provided FunctionType must match arguments");
- return M->getUniqueIntrinsicName(Result, Id, FT);
- }
- return Result;
-}
-
-std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
- FunctionType *FT) {
- assert(M && "We need to have a Module");
- return getIntrinsicNameImpl(Id, Tys, M, FT, true);
-}
-
-std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
- return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
-}
-
-/// IIT_Info - These are enumerators that describe the entries returned by the
-/// getIntrinsicInfoTableEntries function.
-///
-/// Defined in Intrinsics.td.
-enum IIT_Info {
-#define GET_INTRINSIC_IITINFO
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_IITINFO
-};
-
-static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
- IIT_Info LastInfo,
- SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
- using namespace Intrinsic;
-
- bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
-
- IIT_Info Info = IIT_Info(Infos[NextElt++]);
- unsigned StructElts = 2;
-
- switch (Info) {
- case IIT_Done:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
- return;
- case IIT_VARARG:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
- return;
- case IIT_MMX:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
- return;
- case IIT_AMX:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
- return;
- case IIT_TOKEN:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
- return;
- case IIT_METADATA:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
- return;
- case IIT_F16:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
- return;
- case IIT_BF16:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
- return;
- case IIT_F32:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
- return;
- case IIT_F64:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
- return;
- case IIT_F128:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
- return;
- case IIT_PPCF128:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
- return;
- case IIT_I1:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
- return;
- case IIT_I2:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
- return;
- case IIT_I4:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
- return;
- case IIT_AARCH64_SVCOUNT:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
- return;
- case IIT_I8:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
- return;
- case IIT_I16:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
- return;
- case IIT_I32:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
- return;
- case IIT_I64:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
- return;
- case IIT_I128:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
- return;
- case IIT_V1:
- OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V2:
- OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V3:
- OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V4:
- OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V6:
- OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V8:
- OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V10:
- OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V16:
- OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V32:
- OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V64:
- OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V128:
- OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V256:
- OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V512:
- OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_V1024:
- OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- case IIT_EXTERNREF:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
- return;
- case IIT_FUNCREF:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
- return;
- case IIT_PTR:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
- return;
- case IIT_ANYPTR: // [ANYPTR addrspace]
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
- Infos[NextElt++]));
- return;
- case IIT_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
- return;
- }
- case IIT_EXTEND_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
- ArgInfo));
- return;
- }
- case IIT_TRUNC_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
- ArgInfo));
- return;
- }
- case IIT_HALF_VEC_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
- ArgInfo));
- return;
- }
- case IIT_SAME_VEC_WIDTH_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
- ArgInfo));
- return;
- }
- case IIT_VEC_OF_ANYPTRS_TO_ELT: {
- unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(
- IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
- return;
- }
- case IIT_EMPTYSTRUCT:
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
- return;
- case IIT_STRUCT9: ++StructElts; [[fallthrough]];
- case IIT_STRUCT8: ++StructElts; [[fallthrough]];
- case IIT_STRUCT7: ++StructElts; [[fallthrough]];
- case IIT_STRUCT6: ++StructElts; [[fallthrough]];
- case IIT_STRUCT5: ++StructElts; [[fallthrough]];
- case IIT_STRUCT4: ++StructElts; [[fallthrough]];
- case IIT_STRUCT3: ++StructElts; [[fallthrough]];
- case IIT_STRUCT2: {
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
-
- for (unsigned i = 0; i != StructElts; ++i)
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- }
- case IIT_SUBDIVIDE2_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
- ArgInfo));
- return;
- }
- case IIT_SUBDIVIDE4_ARG: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
- ArgInfo));
- return;
- }
- case IIT_VEC_ELEMENT: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
- ArgInfo));
- return;
- }
- case IIT_SCALABLE_VEC: {
- DecodeIITType(NextElt, Infos, Info, OutputTable);
- return;
- }
- case IIT_VEC_OF_BITCASTS_TO_INT: {
- unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
- OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
- ArgInfo));
- return;
- }
- }
- llvm_unreachable("unhandled");
-}
-
-#define GET_INTRINSIC_GENERATOR_GLOBAL
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_GENERATOR_GLOBAL
-
-void Intrinsic::getIntrinsicInfoTableEntries(ID id,
- SmallVectorImpl<IITDescriptor> &T){
- static_assert(sizeof(IIT_Table[0]) == 2,
- "Expect 16-bit entries in IIT_Table");
- // Check to see if the intrinsic's type was expressible by the table.
- uint16_t TableVal = IIT_Table[id - 1];
-
- // Decode the TableVal into an array of IITValues.
- SmallVector<unsigned char> IITValues;
- ArrayRef<unsigned char> IITEntries;
- unsigned NextElt = 0;
- if (TableVal >> 15) {
- // This is an offset into the IIT_LongEncodingTable.
- IITEntries = IIT_LongEncodingTable;
-
- // Strip sentinel bit.
- NextElt = TableVal & 0x7fff;
- } else {
- // If the entry was encoded into a single word in the table itself, decode
- // it from an array of nibbles to an array of bytes.
- do {
- IITValues.push_back(TableVal & 0xF);
- TableVal >>= 4;
- } while (TableVal);
-
- IITEntries = IITValues;
- NextElt = 0;
- }
-
- // Okay, decode the table into the output vector of IITDescriptors.
- DecodeIITType(NextElt, IITEntries, IIT_Done, T);
- while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
- DecodeIITType(NextElt, IITEntries, IIT_Done, T);
-}
-
-static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
- ArrayRef<Type*> Tys, LLVMContext &Context) {
- using namespace Intrinsic;
-
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
-
- switch (D.Kind) {
- case IITDescriptor::Void: return Type::getVoidTy(Context);
- case IITDescriptor::VarArg: return Type::getVoidTy(Context);
- case IITDescriptor::MMX:
- return llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
- case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
- case IITDescriptor::Token: return Type::getTokenTy(Context);
- case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
- case IITDescriptor::Half: return Type::getHalfTy(Context);
- case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
- case IITDescriptor::Float: return Type::getFloatTy(Context);
- case IITDescriptor::Double: return Type::getDoubleTy(Context);
- case IITDescriptor::Quad: return Type::getFP128Ty(Context);
- case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
- case IITDescriptor::AArch64Svcount:
- return TargetExtType::get(Context, "aarch64.svcount");
-
- case IITDescriptor::Integer:
- return IntegerType::get(Context, D.Integer_Width);
- case IITDescriptor::Vector:
- return VectorType::get(DecodeFixedType(Infos, Tys, Context),
- D.Vector_Width);
- case IITDescriptor::Pointer:
- return PointerType::get(Context, D.Pointer_AddressSpace);
- case IITDescriptor::Struct: {
- SmallVector<Type *, 8> Elts;
- for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
- Elts.push_back(DecodeFixedType(Infos, Tys, Context));
- return StructType::get(Context, Elts);
- }
- case IITDescriptor::Argument:
- return Tys[D.getArgumentNumber()];
- case IITDescriptor::ExtendArgument: {
- Type *Ty = Tys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return VectorType::getExtendedElementVectorType(VTy);
-
- return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
- }
- case IITDescriptor::TruncArgument: {
- Type *Ty = Tys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return VectorType::getTruncatedElementVectorType(VTy);
-
- IntegerType *ITy = cast<IntegerType>(Ty);
- assert(ITy->getBitWidth() % 2 == 0);
- return IntegerType::get(Context, ITy->getBitWidth() / 2);
- }
- case IITDescriptor::Subdivide2Argument:
- case IITDescriptor::Subdivide4Argument: {
- Type *Ty = Tys[D.getArgumentNumber()];
- VectorType *VTy = dyn_cast<VectorType>(Ty);
- assert(VTy && "Expected an argument of Vector Type");
- int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
- return VectorType::getSubdividedVectorType(VTy, SubDivs);
- }
- case IITDescriptor::HalfVecArgument:
- return VectorType::getHalfElementsVectorType(cast<VectorType>(
- Tys[D.getArgumentNumber()]));
- case IITDescriptor::SameVecWidthArgument: {
- Type *EltTy = DecodeFixedType(Infos, Tys, Context);
- Type *Ty = Tys[D.getArgumentNumber()];
- if (auto *VTy = dyn_cast<VectorType>(Ty))
- return VectorType::get(EltTy, VTy->getElementCount());
- return EltTy;
- }
- case IITDescriptor::VecElementArgument: {
- Type *Ty = Tys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return VTy->getElementType();
- llvm_unreachable("Expected an argument of Vector Type");
- }
- case IITDescriptor::VecOfBitcastsToInt: {
- Type *Ty = Tys[D.getArgumentNumber()];
- VectorType *VTy = dyn_cast<VectorType>(Ty);
- assert(VTy && "Expected an argument of Vector Type");
- return VectorType::getInteger(VTy);
- }
- case IITDescriptor::VecOfAnyPtrsToElt:
- // Return the overloaded type (which determines the pointers address space)
- return Tys[D.getOverloadArgNumber()];
- }
- llvm_unreachable("unhandled");
-}
-
-FunctionType *Intrinsic::getType(LLVMContext &Context,
- ID id, ArrayRef<Type*> Tys) {
- SmallVector<IITDescriptor, 8> Table;
- getIntrinsicInfoTableEntries(id, Table);
-
- ArrayRef<IITDescriptor> TableRef = Table;
- Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
-
- SmallVector<Type*, 8> ArgTys;
- while (!TableRef.empty())
- ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
-
- // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
- // If we see void type as the type of the last argument, it is vararg intrinsic
- if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
- ArgTys.pop_back();
- return FunctionType::get(ResultTy, ArgTys, true);
- }
- return FunctionType::get(ResultTy, ArgTys, false);
-}
-
-bool Intrinsic::isOverloaded(ID id) {
-#define GET_INTRINSIC_OVERLOAD_TABLE
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_OVERLOAD_TABLE
-}
-
-/// This defines the "Intrinsic::getAttributes(ID id)" method.
-#define GET_INTRINSIC_ATTRIBUTES
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_INTRINSIC_ATTRIBUTES
-
-Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
- // There can never be multiple globals with the same name of different types,
- // because intrinsics must be a specific type.
- auto *FT = getType(M->getContext(), id, Tys);
- return cast<Function>(
- M->getOrInsertFunction(
- Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
- .getCallee());
-}
-
-// This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
-#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
-
-// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
-#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
-#include "llvm/IR/IntrinsicImpl.inc"
-#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
-
-bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
- switch (QID) {
-#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
- case Intrinsic::INTRINSIC:
-#include "llvm/IR/ConstrainedOps.def"
-#undef INSTRUCTION
- return true;
- default:
- return false;
- }
-}
-
-bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
- switch (QID) {
-#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
- case Intrinsic::INTRINSIC: \
- return ROUND_MODE == 1;
-#include "llvm/IR/ConstrainedOps.def"
-#undef INSTRUCTION
- default:
- return false;
- }
-}
-
-using DeferredIntrinsicMatchPair =
- std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
-
-static bool matchIntrinsicType(
- Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type *> &ArgTys,
- SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
- bool IsDeferredCheck) {
- using namespace Intrinsic;
-
- // If we ran out of descriptors, there are too many arguments.
- if (Infos.empty()) return true;
-
- // Do this before slicing off the 'front' part
- auto InfosRef = Infos;
- auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
- DeferredChecks.emplace_back(T, InfosRef);
- return false;
- };
-
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
-
- switch (D.Kind) {
- case IITDescriptor::Void: return !Ty->isVoidTy();
- case IITDescriptor::VarArg: return true;
- case IITDescriptor::MMX: {
- FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
- return !VT || VT->getNumElements() != 1 ||
- !VT->getElementType()->isIntegerTy(64);
- }
- case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
- case IITDescriptor::Token: return !Ty->isTokenTy();
- case IITDescriptor::Metadata: return !Ty->isMetadataTy();
- case IITDescriptor::Half: return !Ty->isHalfTy();
- case IITDescriptor::BFloat: return !Ty->isBFloatTy();
- case IITDescriptor::Float: return !Ty->isFloatTy();
- case IITDescriptor::Double: return !Ty->isDoubleTy();
- case IITDescriptor::Quad: return !Ty->isFP128Ty();
- case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
- case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
- case IITDescriptor::AArch64Svcount:
- return !isa<TargetExtType>(Ty) ||
- cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
- case IITDescriptor::Vector: {
- VectorType *VT = dyn_cast<VectorType>(Ty);
- return !VT || VT->getElementCount() != D.Vector_Width ||
- matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
- DeferredChecks, IsDeferredCheck);
- }
- case IITDescriptor::Pointer: {
- PointerType *PT = dyn_cast<PointerType>(Ty);
- return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
- }
-
- case IITDescriptor::Struct: {
- StructType *ST = dyn_cast<StructType>(Ty);
- if (!ST || !ST->isLiteral() || ST->isPacked() ||
- ST->getNumElements() != D.Struct_NumElements)
- return true;
-
- for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
- if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
- DeferredChecks, IsDeferredCheck))
- return true;
- return false;
- }
-
- case IITDescriptor::Argument:
- // If this is the second occurrence of an argument,
- // verify that the later instance matches the previous instance.
- if (D.getArgumentNumber() < ArgTys.size())
- return Ty != ArgTys[D.getArgumentNumber()];
-
- if (D.getArgumentNumber() > ArgTys.size() ||
- D.getArgumentKind() == IITDescriptor::AK_MatchType)
- return IsDeferredCheck || DeferCheck(Ty);
-
- assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
- "Table consistency error");
- ArgTys.push_back(Ty);
-
- switch (D.getArgumentKind()) {
- case IITDescriptor::AK_Any: return false; // Success
- case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
- case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
- case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
- case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
- default: break;
- }
- llvm_unreachable("all argument kinds not covered");
-
- case IITDescriptor::ExtendArgument: {
- // If this is a forward reference, defer the check for later.
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck || DeferCheck(Ty);
-
- Type *NewTy = ArgTys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
- NewTy = VectorType::getExtendedElementVectorType(VTy);
- else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
- NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
- else
- return true;
-
- return Ty != NewTy;
- }
- case IITDescriptor::TruncArgument: {
- // If this is a forward reference, defer the check for later.
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck || DeferCheck(Ty);
-
- Type *NewTy = ArgTys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
- NewTy = VectorType::getTruncatedElementVectorType(VTy);
- else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
- NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
- else
- return true;
-
- return Ty != NewTy;
- }
- case IITDescriptor::HalfVecArgument:
- // If this is a forward reference, defer the check for later.
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck || DeferCheck(Ty);
- return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
- VectorType::getHalfElementsVectorType(
- cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
- case IITDescriptor::SameVecWidthArgument: {
- if (D.getArgumentNumber() >= ArgTys.size()) {
- // Defer check and subsequent check for the vector element type.
- Infos = Infos.slice(1);
- return IsDeferredCheck || DeferCheck(Ty);
- }
- auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
- auto *ThisArgType = dyn_cast<VectorType>(Ty);
- // Both must be vectors of the same number of elements or neither.
- if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
- return true;
- Type *EltTy = Ty;
- if (ThisArgType) {
- if (ReferenceType->getElementCount() !=
- ThisArgType->getElementCount())
- return true;
- EltTy = ThisArgType->getElementType();
- }
- return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
- IsDeferredCheck);
- }
- case IITDescriptor::VecOfAnyPtrsToElt: {
- unsigned RefArgNumber = D.getRefArgNumber();
- if (RefArgNumber >= ArgTys.size()) {
- if (IsDeferredCheck)
- return true;
- // If forward referencing, already add the pointer-vector type and
- // defer the checks for later.
- ArgTys.push_back(Ty);
- return DeferCheck(Ty);
- }
-
- if (!IsDeferredCheck){
- assert(D.getOverloadArgNumber() == ArgTys.size() &&
- "Table consistency error");
- ArgTys.push_back(Ty);
- }
-
- // Verify the overloaded type "matches" the Ref type.
- // i.e. Ty is a vector with the same width as Ref.
- // Composed of pointers to the same element type as Ref.
- auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
- auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
- if (!ThisArgVecTy || !ReferenceType ||
- (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
- return true;
- return !ThisArgVecTy->getElementType()->isPointerTy();
- }
- case IITDescriptor::VecElementArgument: {
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck ? true : DeferCheck(Ty);
- auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
- return !ReferenceType || Ty != ReferenceType->getElementType();
- }
- case IITDescriptor::Subdivide2Argument:
- case IITDescriptor::Subdivide4Argument: {
- // If this is a forward reference, defer the check for later.
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck || DeferCheck(Ty);
-
- Type *NewTy = ArgTys[D.getArgumentNumber()];
- if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
- int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
- NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
- return Ty != NewTy;
- }
- return true;
- }
- case IITDescriptor::VecOfBitcastsToInt: {
- if (D.getArgumentNumber() >= ArgTys.size())
- return IsDeferredCheck || DeferCheck(Ty);
- auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
- auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
- if (!ThisArgVecTy || !ReferenceType)
- return true;
- return ThisArgVecTy != VectorType::getInteger(ReferenceType);
- }
- }
- llvm_unreachable("unhandled");
-}
-
-Intrinsic::MatchIntrinsicTypesResult
-Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
- ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type *> &ArgTys) {
- SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
- if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
- false))
- return MatchIntrinsicTypes_NoMatchRet;
-
- unsigned NumDeferredReturnChecks = DeferredChecks.size();
-
- for (auto *Ty : FTy->params())
- if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
- return MatchIntrinsicTypes_NoMatchArg;
-
- for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
- DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
- if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
- true))
- return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
- : MatchIntrinsicTypes_NoMatchArg;
- }
-
- return MatchIntrinsicTypes_Match;
-}
-
-bool
-Intrinsic::matchIntrinsicVarArg(bool isVarArg,
- ArrayRef<Intrinsic::IITDescriptor> &Infos) {
- // If there are no descriptors left, then it can't be a vararg.
- if (Infos.empty())
- return isVarArg;
-
- // There should be only one descriptor remaining at this point.
- if (Infos.size() != 1)
- return true;
-
- // Check and verify the descriptor.
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
- if (D.Kind == IITDescriptor::VarArg)
- return !isVarArg;
-
- return true;
-}
-
-bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
- SmallVectorImpl<Type *> &ArgTys) {
- if (!ID)
- return false;
-
- SmallVector<Intrinsic::IITDescriptor, 8> Table;
- getIntrinsicInfoTableEntries(ID, Table);
- ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
-
- if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
- Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
- return false;
- }
- if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
- return false;
- return true;
-}
-
-bool Intrinsic::getIntrinsicSignature(Function *F,
- SmallVectorImpl<Type *> &ArgTys) {
- return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
- ArgTys);
-}
-
-std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
- SmallVector<Type *, 4> ArgTys;
- if (!getIntrinsicSignature(F, ArgTys))
- return std::nullopt;
-
- Intrinsic::ID ID = F->getIntrinsicID();
- StringRef Name = F->getName();
- std::string WantedName =
- Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
- if (Name == WantedName)
- return std::nullopt;
-
- Function *NewDecl = [&] {
- if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
- if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
- if (ExistingF->getFunctionType() == F->getFunctionType())
- return ExistingF;
-
- // The name already exists, but is not a function or has the wrong
- // prototype. Make place for the new one by renaming the old version.
- // Either this old version will be removed later on or the module is
- // invalid and we'll get an error.
- ExistingGV->setName(WantedName + ".renamed");
- }
- return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
- }();
-
- NewDecl->setCallingConv(F->getCallingConv());
- assert(NewDecl->getFunctionType() == F->getFunctionType() &&
- "Shouldn't change the signature");
- return NewDecl;
-}
-
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it. Optionally ignores callback
/// uses, assume like pointer annotation calls, and references in llvm.used
diff --git a/llvm/lib/IR/IntrinsicInst.cpp b/llvm/lib/IR/IntrinsicInst.cpp
index 5654a3a3236c6d..0a6c93fde6302f 100644
--- a/llvm/lib/IR/IntrinsicInst.cpp
+++ b/llvm/lib/IR/IntrinsicInst.cpp
@@ -236,48 +236,6 @@ void DbgAssignIntrinsic::setValue(Value *V) {
MetadataAsValue::get(getContext(), ValueAsMetadata::get(V)));
}
-int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
- StringRef Name,
- StringRef Target) {
- assert(Name.starts_with("llvm.") && "Unexpected intrinsic prefix");
- assert(Name.drop_front(5).starts_with(Target) && "Unexpected target");
-
- // Do successive binary searches of the dotted name components. For
- // "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
- // intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
- // "llvm.gc.experimental.statepoint", and then we will stop as the range is
- // size 1. During the search, we can skip the prefix that we already know is
- // identical. By using strncmp we consider names with differing suffixes to
- // be part of the equal range.
- size_t CmpEnd = 4; // Skip the "llvm" component.
- if (!Target.empty())
- CmpEnd += 1 + Target.size(); // skip the .target component.
-
- const char *const *Low = NameTable.begin();
- const char *const *High = NameTable.end();
- const char *const *LastLow = Low;
- while (CmpEnd < Name.size() && High - Low > 0) {
- size_t CmpStart = CmpEnd;
- CmpEnd = Name.find('.', CmpStart + 1);
- CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
- auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
- return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
- };
- LastLow = Low;
- std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
- }
- if (High - Low > 0)
- LastLow = Low;
-
- if (LastLow == NameTable.end())
- return -1;
- StringRef NameFound = *LastLow;
- if (Name == NameFound ||
- (Name.starts_with(NameFound) && Name[NameFound.size()] == '.'))
- return LastLow - NameTable.begin();
- return -1;
-}
-
ConstantInt *InstrProfCntrInstBase::getNumCounters() const {
if (InstrProfValueProfileInst::classof(this))
llvm_unreachable("InstrProfValueProfileInst does not have counters!");
diff --git a/llvm/lib/IR/Intrinsics.cpp b/llvm/lib/IR/Intrinsics.cpp
new file mode 100644
index 00000000000000..ef26b1926b9767
--- /dev/null
+++ b/llvm/lib/IR/Intrinsics.cpp
@@ -0,0 +1,1088 @@
+//===-- Intrinsics.cpp - Intrinsic Function Handling ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements functions required for supporting intrinsic functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicsAArch64.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsARM.h"
+#include "llvm/IR/IntrinsicsBPF.h"
+#include "llvm/IR/IntrinsicsDirectX.h"
+#include "llvm/IR/IntrinsicsHexagon.h"
+#include "llvm/IR/IntrinsicsLoongArch.h"
+#include "llvm/IR/IntrinsicsMips.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+#include "llvm/IR/IntrinsicsPowerPC.h"
+#include "llvm/IR/IntrinsicsR600.h"
+#include "llvm/IR/IntrinsicsRISCV.h"
+#include "llvm/IR/IntrinsicsS390.h"
+#include "llvm/IR/IntrinsicsSPIRV.h"
+#include "llvm/IR/IntrinsicsVE.h"
+#include "llvm/IR/IntrinsicsWebAssembly.h"
+#include "llvm/IR/IntrinsicsX86.h"
+#include "llvm/IR/IntrinsicsXCore.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+
+using namespace llvm;
+
+/// Table of string intrinsic names indexed by enum value.
+static constexpr const char *const IntrinsicNameTable[] = {
+ "not_intrinsic",
+#define GET_INTRINSIC_NAME_TABLE
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_NAME_TABLE
+};
+
+StringRef Intrinsic::getBaseName(ID id) {
+ assert(id < num_intrinsics && "Invalid intrinsic ID!");
+ return IntrinsicNameTable[id];
+}
+
+StringRef Intrinsic::getName(ID id) {
+ assert(id < num_intrinsics && "Invalid intrinsic ID!");
+ assert(!Intrinsic::isOverloaded(id) &&
+ "This version of getName does not support overloading");
+ return getBaseName(id);
+}
+
+/// Returns a stable mangling for the type specified for use in the name
+/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
+/// of named types is simply their name. Manglings for unnamed types consist
+/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
+/// combined with the mangling of their component types. A vararg function
+/// type will have a suffix of 'vararg'. Since function types can contain
+/// other function types, we close a function type mangling with suffix 'f'
+/// which can't be confused with it's prefix. This ensures we don't have
+/// collisions between two unrelated function types. Otherwise, you might
+/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
+/// The HasUnnamedType boolean is set if an unnamed type was encountered,
+/// indicating that extra care must be taken to ensure a unique name.
+static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
+ std::string Result;
+ if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
+ Result += "p" + utostr(PTyp->getAddressSpace());
+ } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
+ Result += "a" + utostr(ATyp->getNumElements()) +
+ getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
+ } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
+ if (!STyp->isLiteral()) {
+ Result += "s_";
+ if (STyp->hasName())
+ Result += STyp->getName();
+ else
+ HasUnnamedType = true;
+ } else {
+ Result += "sl_";
+ for (auto *Elem : STyp->elements())
+ Result += getMangledTypeStr(Elem, HasUnnamedType);
+ }
+ // Ensure nested structs are distinguishable.
+ Result += "s";
+ } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
+ Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
+ for (size_t i = 0; i < FT->getNumParams(); i++)
+ Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
+ if (FT->isVarArg())
+ Result += "vararg";
+ // Ensure nested function types are distinguishable.
+ Result += "f";
+ } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ ElementCount EC = VTy->getElementCount();
+ if (EC.isScalable())
+ Result += "nx";
+ Result += "v" + utostr(EC.getKnownMinValue()) +
+ getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
+ } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
+ Result += "t";
+ Result += TETy->getName();
+ for (Type *ParamTy : TETy->type_params())
+ Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
+ for (unsigned IntParam : TETy->int_params())
+ Result += "_" + utostr(IntParam);
+ // Ensure nested target extension types are distinguishable.
+ Result += "t";
+ } else if (Ty) {
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled type");
+ case Type::VoidTyID:
+ Result += "isVoid";
+ break;
+ case Type::MetadataTyID:
+ Result += "Metadata";
+ break;
+ case Type::HalfTyID:
+ Result += "f16";
+ break;
+ case Type::BFloatTyID:
+ Result += "bf16";
+ break;
+ case Type::FloatTyID:
+ Result += "f32";
+ break;
+ case Type::DoubleTyID:
+ Result += "f64";
+ break;
+ case Type::X86_FP80TyID:
+ Result += "f80";
+ break;
+ case Type::FP128TyID:
+ Result += "f128";
+ break;
+ case Type::PPC_FP128TyID:
+ Result += "ppcf128";
+ break;
+ case Type::X86_AMXTyID:
+ Result += "x86amx";
+ break;
+ case Type::IntegerTyID:
+ Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
+ break;
+ }
+ }
+ return Result;
+}
+
+static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
+ Module *M, FunctionType *FT,
+ bool EarlyModuleCheck) {
+
+ assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
+ assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
+ "This version of getName is for overloaded intrinsics only");
+ (void)EarlyModuleCheck;
+ assert((!EarlyModuleCheck || M ||
+ !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
+ "Intrinsic overloading on pointer types need to provide a Module");
+ bool HasUnnamedType = false;
+ std::string Result(Intrinsic::getBaseName(Id));
+ for (Type *Ty : Tys)
+ Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
+ if (HasUnnamedType) {
+ assert(M && "unnamed types need a module");
+ if (!FT)
+ FT = Intrinsic::getType(M->getContext(), Id, Tys);
+ else
+ assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
+ "Provided FunctionType must match arguments");
+ return M->getUniqueIntrinsicName(Result, Id, FT);
+ }
+ return Result;
+}
+
+std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
+ FunctionType *FT) {
+ assert(M && "We need to have a Module");
+ return getIntrinsicNameImpl(Id, Tys, M, FT, true);
+}
+
+std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
+ return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
+}
+
+/// IIT_Info - These are enumerators that describe the entries returned by the
+/// getIntrinsicInfoTableEntries function.
+///
+/// Defined in Intrinsics.td.
+enum IIT_Info {
+#define GET_INTRINSIC_IITINFO
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_IITINFO
+};
+
+static void
+DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
+ IIT_Info LastInfo,
+ SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
+ using namespace Intrinsic;
+
+ bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
+
+ IIT_Info Info = IIT_Info(Infos[NextElt++]);
+ unsigned StructElts = 2;
+
+ switch (Info) {
+ case IIT_Done:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
+ return;
+ case IIT_VARARG:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
+ return;
+ case IIT_MMX:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
+ return;
+ case IIT_AMX:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
+ return;
+ case IIT_TOKEN:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
+ return;
+ case IIT_METADATA:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
+ return;
+ case IIT_F16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
+ return;
+ case IIT_BF16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
+ return;
+ case IIT_F32:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
+ return;
+ case IIT_F64:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
+ return;
+ case IIT_F128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
+ return;
+ case IIT_PPCF128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
+ return;
+ case IIT_I1:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
+ return;
+ case IIT_I2:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
+ return;
+ case IIT_I4:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
+ return;
+ case IIT_AARCH64_SVCOUNT:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
+ return;
+ case IIT_I8:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
+ return;
+ case IIT_I16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 16));
+ return;
+ case IIT_I32:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
+ return;
+ case IIT_I64:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
+ return;
+ case IIT_I128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
+ return;
+ case IIT_V1:
+ OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V2:
+ OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V3:
+ OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V4:
+ OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V6:
+ OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V8:
+ OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V10:
+ OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V16:
+ OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V32:
+ OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V64:
+ OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V128:
+ OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V256:
+ OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V512:
+ OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V1024:
+ OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_EXTERNREF:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
+ return;
+ case IIT_FUNCREF:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
+ return;
+ case IIT_PTR:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
+ return;
+ case IIT_ANYPTR: // [ANYPTR addrspace]
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::Pointer, Infos[NextElt++]));
+ return;
+ case IIT_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
+ return;
+ }
+ case IIT_EXTEND_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::ExtendArgument, ArgInfo));
+ return;
+ }
+ case IIT_TRUNC_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::TruncArgument, ArgInfo));
+ return;
+ }
+ case IIT_HALF_VEC_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::HalfVecArgument, ArgInfo));
+ return;
+ }
+ case IIT_SAME_VEC_WIDTH_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::SameVecWidthArgument, ArgInfo));
+ return;
+ }
+ case IIT_VEC_OF_ANYPTRS_TO_ELT: {
+ unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
+ return;
+ }
+ case IIT_EMPTYSTRUCT:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
+ return;
+ case IIT_STRUCT9:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT8:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT7:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT6:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT5:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT4:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT3:
+ ++StructElts;
+ [[fallthrough]];
+ case IIT_STRUCT2: {
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::Struct, StructElts));
+
+ for (unsigned i = 0; i != StructElts; ++i)
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ }
+ case IIT_SUBDIVIDE2_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::Subdivide2Argument, ArgInfo));
+ return;
+ }
+ case IIT_SUBDIVIDE4_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::Subdivide4Argument, ArgInfo));
+ return;
+ }
+ case IIT_VEC_ELEMENT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::VecElementArgument, ArgInfo));
+ return;
+ }
+ case IIT_SCALABLE_VEC: {
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ }
+ case IIT_VEC_OF_BITCASTS_TO_INT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, ArgInfo));
+ return;
+ }
+ }
+ llvm_unreachable("unhandled");
+}
+
+#define GET_INTRINSIC_GENERATOR_GLOBAL
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_GENERATOR_GLOBAL
+
+void Intrinsic::getIntrinsicInfoTableEntries(
+ ID id, SmallVectorImpl<IITDescriptor> &T) {
+ static_assert(sizeof(IIT_Table[0]) == 2,
+ "Expect 16-bit entries in IIT_Table");
+ // Check to see if the intrinsic's type was expressible by the table.
+ uint16_t TableVal = IIT_Table[id - 1];
+
+ // Decode the TableVal into an array of IITValues.
+ SmallVector<unsigned char> IITValues;
+ ArrayRef<unsigned char> IITEntries;
+ unsigned NextElt = 0;
+ if (TableVal >> 15) {
+ // This is an offset into the IIT_LongEncodingTable.
+ IITEntries = IIT_LongEncodingTable;
+
+ // Strip sentinel bit.
+ NextElt = TableVal & 0x7fff;
+ } else {
+ // If the entry was encoded into a single word in the table itself, decode
+ // it from an array of nibbles to an array of bytes.
+ do {
+ IITValues.push_back(TableVal & 0xF);
+ TableVal >>= 4;
+ } while (TableVal);
+
+ IITEntries = IITValues;
+ NextElt = 0;
+ }
+
+ // Okay, decode the table into the output vector of IITDescriptors.
+ DecodeIITType(NextElt, IITEntries, IIT_Done, T);
+ while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
+ DecodeIITType(NextElt, IITEntries, IIT_Done, T);
+}
+
+static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ ArrayRef<Type *> Tys, LLVMContext &Context) {
+ using namespace Intrinsic;
+
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void:
+ return Type::getVoidTy(Context);
+ case IITDescriptor::VarArg:
+ return Type::getVoidTy(Context);
+ case IITDescriptor::MMX:
+ return llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
+ case IITDescriptor::AMX:
+ return Type::getX86_AMXTy(Context);
+ case IITDescriptor::Token:
+ return Type::getTokenTy(Context);
+ case IITDescriptor::Metadata:
+ return Type::getMetadataTy(Context);
+ case IITDescriptor::Half:
+ return Type::getHalfTy(Context);
+ case IITDescriptor::BFloat:
+ return Type::getBFloatTy(Context);
+ case IITDescriptor::Float:
+ return Type::getFloatTy(Context);
+ case IITDescriptor::Double:
+ return Type::getDoubleTy(Context);
+ case IITDescriptor::Quad:
+ return Type::getFP128Ty(Context);
+ case IITDescriptor::PPCQuad:
+ return Type::getPPC_FP128Ty(Context);
+ case IITDescriptor::AArch64Svcount:
+ return TargetExtType::get(Context, "aarch64.svcount");
+
+ case IITDescriptor::Integer:
+ return IntegerType::get(Context, D.Integer_Width);
+ case IITDescriptor::Vector:
+ return VectorType::get(DecodeFixedType(Infos, Tys, Context),
+ D.Vector_Width);
+ case IITDescriptor::Pointer:
+ return PointerType::get(Context, D.Pointer_AddressSpace);
+ case IITDescriptor::Struct: {
+ SmallVector<Type *, 8> Elts;
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ Elts.push_back(DecodeFixedType(Infos, Tys, Context));
+ return StructType::get(Context, Elts);
+ }
+ case IITDescriptor::Argument:
+ return Tys[D.getArgumentNumber()];
+ case IITDescriptor::ExtendArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::getExtendedElementVectorType(VTy);
+
+ return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
+ }
+ case IITDescriptor::TruncArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::getTruncatedElementVectorType(VTy);
+
+ IntegerType *ITy = cast<IntegerType>(Ty);
+ assert(ITy->getBitWidth() % 2 == 0);
+ return IntegerType::get(Context, ITy->getBitWidth() / 2);
+ }
+ case IITDescriptor::Subdivide2Argument:
+ case IITDescriptor::Subdivide4Argument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ assert(VTy && "Expected an argument of Vector Type");
+ int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
+ return VectorType::getSubdividedVectorType(VTy, SubDivs);
+ }
+ case IITDescriptor::HalfVecArgument:
+ return VectorType::getHalfElementsVectorType(
+ cast<VectorType>(Tys[D.getArgumentNumber()]));
+ case IITDescriptor::SameVecWidthArgument: {
+ Type *EltTy = DecodeFixedType(Infos, Tys, Context);
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (auto *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(EltTy, VTy->getElementCount());
+ return EltTy;
+ }
+ case IITDescriptor::VecElementArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VTy->getElementType();
+ llvm_unreachable("Expected an argument of Vector Type");
+ }
+ case IITDescriptor::VecOfBitcastsToInt: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ assert(VTy && "Expected an argument of Vector Type");
+ return VectorType::getInteger(VTy);
+ }
+ case IITDescriptor::VecOfAnyPtrsToElt:
+ // Return the overloaded type (which determines the pointers address space)
+ return Tys[D.getOverloadArgNumber()];
+ }
+ llvm_unreachable("unhandled");
+}
+
+FunctionType *Intrinsic::getType(LLVMContext &Context, ID id,
+ ArrayRef<Type *> Tys) {
+ SmallVector<IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(id, Table);
+
+ ArrayRef<IITDescriptor> TableRef = Table;
+ Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
+
+ SmallVector<Type *, 8> ArgTys;
+ while (!TableRef.empty())
+ ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
+
+ // DecodeFixedType returns Void for IITDescriptor::Void and
+ // IITDescriptor::VarArg If we see void type as the type of the last argument,
+ // it is vararg intrinsic
+ if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
+ ArgTys.pop_back();
+ return FunctionType::get(ResultTy, ArgTys, true);
+ }
+ return FunctionType::get(ResultTy, ArgTys, false);
+}
+
+bool Intrinsic::isOverloaded(ID id) {
+#define GET_INTRINSIC_OVERLOAD_TABLE
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_OVERLOAD_TABLE
+}
+
+/// Table of per-target intrinsic name tables.
+#define GET_INTRINSIC_TARGET_DATA
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_TARGET_DATA
+
+bool Intrinsic::isTargetIntrinsic(Intrinsic::ID IID) {
+ return IID > TargetInfos[0].Count;
+}
+
+int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
+ StringRef Name,
+ StringRef Target) {
+ assert(Name.starts_with("llvm.") && "Unexpected intrinsic prefix");
+ assert(Name.drop_front(5).starts_with(Target) && "Unexpected target");
+
+ // Do successive binary searches of the dotted name components. For
+ // "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
+ // intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
+ // "llvm.gc.experimental.statepoint", and then we will stop as the range is
+ // size 1. During the search, we can skip the prefix that we already know is
+ // identical. By using strncmp we consider names with differing suffixes to
+ // be part of the equal range.
+ size_t CmpEnd = 4; // Skip the "llvm" component.
+ if (!Target.empty())
+ CmpEnd += 1 + Target.size(); // skip the .target component.
+
+ const char *const *Low = NameTable.begin();
+ const char *const *High = NameTable.end();
+ const char *const *LastLow = Low;
+ while (CmpEnd < Name.size() && High - Low > 0) {
+ size_t CmpStart = CmpEnd;
+ CmpEnd = Name.find('.', CmpStart + 1);
+ CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
+ auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
+ return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
+ };
+ LastLow = Low;
+ std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
+ }
+ if (High - Low > 0)
+ LastLow = Low;
+
+ if (LastLow == NameTable.end())
+ return -1;
+ StringRef NameFound = *LastLow;
+ if (Name == NameFound ||
+ (Name.starts_with(NameFound) && Name[NameFound.size()] == '.'))
+ return LastLow - NameTable.begin();
+ return -1;
+}
+
+/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
+/// target as \c Name, or the generic table if \c Name is not target specific.
+///
+/// Returns the relevant slice of \c IntrinsicNameTable and the target name.
+static std::pair<ArrayRef<const char *>, StringRef>
+findTargetSubtable(StringRef Name) {
+ assert(Name.starts_with("llvm."));
+
+ ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
+ // Drop "llvm." and take the first dotted component. That will be the target
+ // if this is target specific.
+ StringRef Target = Name.drop_front(5).split('.').first;
+ auto It = partition_point(
+ Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
+ // We've either found the target or just fall back to the generic set, which
+ // is always first.
+ const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
+ return {ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count), TI.Name};
+}
+
+/// This does the actual lookup of an intrinsic ID which matches the given
+/// function name.
+Intrinsic::ID Intrinsic::lookupIntrinsicID(StringRef Name) {
+ auto [NameTable, Target] = findTargetSubtable(Name);
+ int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name, Target);
+ if (Idx == -1)
+ return Intrinsic::not_intrinsic;
+
+ // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
+ // an index into a sub-table.
+ int Adjust = NameTable.data() - IntrinsicNameTable;
+ Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
+
+ // If the intrinsic is not overloaded, require an exact match. If it is
+ // overloaded, require either exact or prefix match.
+ const auto MatchSize = strlen(NameTable[Idx]);
+ assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
+ bool IsExactMatch = Name.size() == MatchSize;
+ return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
+ : Intrinsic::not_intrinsic;
+}
+
+/// This defines the "Intrinsic::getAttributes(ID id)" method.
+#define GET_INTRINSIC_ATTRIBUTES
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_ATTRIBUTES
+
+Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type *> Tys) {
+ // There can never be multiple globals with the same name of different types,
+ // because intrinsics must be a specific type.
+ auto *FT = getType(M->getContext(), id, Tys);
+ return cast<Function>(
+ M->getOrInsertFunction(
+ Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
+ .getCallee());
+}
+
+// This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
+#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
+
+// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
+#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
+
+bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
+ switch (QID) {
+#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
+ case Intrinsic::INTRINSIC:
+#include "llvm/IR/ConstrainedOps.def"
+#undef INSTRUCTION
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
+ switch (QID) {
+#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
+ case Intrinsic::INTRINSIC: \
+ return ROUND_MODE == 1;
+#include "llvm/IR/ConstrainedOps.def"
+#undef INSTRUCTION
+ default:
+ return false;
+ }
+}
+
+using DeferredIntrinsicMatchPair =
+ std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
+
+static bool
+matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type *> &ArgTys,
+ SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
+ bool IsDeferredCheck) {
+ using namespace Intrinsic;
+
+ // If we ran out of descriptors, there are too many arguments.
+ if (Infos.empty())
+ return true;
+
+ // Do this before slicing off the 'front' part
+ auto InfosRef = Infos;
+ auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
+ DeferredChecks.emplace_back(T, InfosRef);
+ return false;
+ };
+
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void:
+ return !Ty->isVoidTy();
+ case IITDescriptor::VarArg:
+ return true;
+ case IITDescriptor::MMX: {
+ FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
+ return !VT || VT->getNumElements() != 1 ||
+ !VT->getElementType()->isIntegerTy(64);
+ }
+ case IITDescriptor::AMX:
+ return !Ty->isX86_AMXTy();
+ case IITDescriptor::Token:
+ return !Ty->isTokenTy();
+ case IITDescriptor::Metadata:
+ return !Ty->isMetadataTy();
+ case IITDescriptor::Half:
+ return !Ty->isHalfTy();
+ case IITDescriptor::BFloat:
+ return !Ty->isBFloatTy();
+ case IITDescriptor::Float:
+ return !Ty->isFloatTy();
+ case IITDescriptor::Double:
+ return !Ty->isDoubleTy();
+ case IITDescriptor::Quad:
+ return !Ty->isFP128Ty();
+ case IITDescriptor::PPCQuad:
+ return !Ty->isPPC_FP128Ty();
+ case IITDescriptor::Integer:
+ return !Ty->isIntegerTy(D.Integer_Width);
+ case IITDescriptor::AArch64Svcount:
+ return !isa<TargetExtType>(Ty) ||
+ cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
+ case IITDescriptor::Vector: {
+ VectorType *VT = dyn_cast<VectorType>(Ty);
+ return !VT || VT->getElementCount() != D.Vector_Width ||
+ matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
+ DeferredChecks, IsDeferredCheck);
+ }
+ case IITDescriptor::Pointer: {
+ PointerType *PT = dyn_cast<PointerType>(Ty);
+ return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
+ }
+
+ case IITDescriptor::Struct: {
+ StructType *ST = dyn_cast<StructType>(Ty);
+ if (!ST || !ST->isLiteral() || ST->isPacked() ||
+ ST->getNumElements() != D.Struct_NumElements)
+ return true;
+
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
+ DeferredChecks, IsDeferredCheck))
+ return true;
+ return false;
+ }
+
+ case IITDescriptor::Argument:
+ // If this is the second occurrence of an argument,
+ // verify that the later instance matches the previous instance.
+ if (D.getArgumentNumber() < ArgTys.size())
+ return Ty != ArgTys[D.getArgumentNumber()];
+
+ if (D.getArgumentNumber() > ArgTys.size() ||
+ D.getArgumentKind() == IITDescriptor::AK_MatchType)
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
+ "Table consistency error");
+ ArgTys.push_back(Ty);
+
+ switch (D.getArgumentKind()) {
+ case IITDescriptor::AK_Any:
+ return false; // Success
+ case IITDescriptor::AK_AnyInteger:
+ return !Ty->isIntOrIntVectorTy();
+ case IITDescriptor::AK_AnyFloat:
+ return !Ty->isFPOrFPVectorTy();
+ case IITDescriptor::AK_AnyVector:
+ return !isa<VectorType>(Ty);
+ case IITDescriptor::AK_AnyPointer:
+ return !isa<PointerType>(Ty);
+ default:
+ break;
+ }
+ llvm_unreachable("all argument kinds not covered");
+
+ case IITDescriptor::ExtendArgument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getExtendedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::TruncArgument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getTruncatedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::HalfVecArgument:
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
+ VectorType::getHalfElementsVectorType(
+ cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+ case IITDescriptor::SameVecWidthArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size()) {
+ // Defer check and subsequent check for the vector element type.
+ Infos = Infos.slice(1);
+ return IsDeferredCheck || DeferCheck(Ty);
+ }
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ auto *ThisArgType = dyn_cast<VectorType>(Ty);
+ // Both must be vectors of the same number of elements or neither.
+ if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
+ return true;
+ Type *EltTy = Ty;
+ if (ThisArgType) {
+ if (ReferenceType->getElementCount() != ThisArgType->getElementCount())
+ return true;
+ EltTy = ThisArgType->getElementType();
+ }
+ return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
+ IsDeferredCheck);
+ }
+ case IITDescriptor::VecOfAnyPtrsToElt: {
+ unsigned RefArgNumber = D.getRefArgNumber();
+ if (RefArgNumber >= ArgTys.size()) {
+ if (IsDeferredCheck)
+ return true;
+ // If forward referencing, already add the pointer-vector type and
+ // defer the checks for later.
+ ArgTys.push_back(Ty);
+ return DeferCheck(Ty);
+ }
+
+ if (!IsDeferredCheck) {
+ assert(D.getOverloadArgNumber() == ArgTys.size() &&
+ "Table consistency error");
+ ArgTys.push_back(Ty);
+ }
+
+ // Verify the overloaded type "matches" the Ref type.
+ // i.e. Ty is a vector with the same width as Ref.
+ // Composed of pointers to the same element type as Ref.
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
+ auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType ||
+ (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
+ return true;
+ return !ThisArgVecTy->getElementType()->isPointerTy();
+ }
+ case IITDescriptor::VecElementArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck ? true : DeferCheck(Ty);
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ return !ReferenceType || Ty != ReferenceType->getElementType();
+ }
+ case IITDescriptor::Subdivide2Argument:
+ case IITDescriptor::Subdivide4Argument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
+ int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
+ NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
+ return Ty != NewTy;
+ }
+ return true;
+ }
+ case IITDescriptor::VecOfBitcastsToInt: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType)
+ return true;
+ return ThisArgVecTy != VectorType::getInteger(ReferenceType);
+ }
+ }
+ llvm_unreachable("unhandled");
+}
+
+Intrinsic::MatchIntrinsicTypesResult
+Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type *> &ArgTys) {
+ SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
+ if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
+ false))
+ return MatchIntrinsicTypes_NoMatchRet;
+
+ unsigned NumDeferredReturnChecks = DeferredChecks.size();
+
+ for (auto *Ty : FTy->params())
+ if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
+ return MatchIntrinsicTypes_NoMatchArg;
+
+ for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
+ DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
+ if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
+ true))
+ return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
+ : MatchIntrinsicTypes_NoMatchArg;
+ }
+
+ return MatchIntrinsicTypes_Match;
+}
+
+bool Intrinsic::matchIntrinsicVarArg(
+ bool isVarArg, ArrayRef<Intrinsic::IITDescriptor> &Infos) {
+ // If there are no descriptors left, then it can't be a vararg.
+ if (Infos.empty())
+ return isVarArg;
+
+ // There should be only one descriptor remaining at this point.
+ if (Infos.size() != 1)
+ return true;
+
+ // Check and verify the descriptor.
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+ if (D.Kind == IITDescriptor::VarArg)
+ return !isVarArg;
+
+ return true;
+}
+
+bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
+ SmallVectorImpl<Type *> &ArgTys) {
+ if (!ID)
+ return false;
+
+ SmallVector<Intrinsic::IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(ID, Table);
+ ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
+
+ if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
+ Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
+ return false;
+ }
+ if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
+ return false;
+ return true;
+}
+
+bool Intrinsic::getIntrinsicSignature(Function *F,
+ SmallVectorImpl<Type *> &ArgTys) {
+ return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
+ ArgTys);
+}
+
+std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
+ SmallVector<Type *, 4> ArgTys;
+ if (!getIntrinsicSignature(F, ArgTys))
+ return std::nullopt;
+
+ Intrinsic::ID ID = F->getIntrinsicID();
+ StringRef Name = F->getName();
+ std::string WantedName =
+ Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
+ if (Name == WantedName)
+ return std::nullopt;
+
+ Function *NewDecl = [&] {
+ if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
+ if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
+ if (ExistingF->getFunctionType() == F->getFunctionType())
+ return ExistingF;
+
+ // The name already exists, but is not a function or has the wrong
+ // prototype. Make place for the new one by renaming the old version.
+ // Either this old version will be removed later on or the module is
+ // invalid and we'll get an error.
+ ExistingGV->setName(WantedName + ".renamed");
+ }
+ return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
+ }();
+
+ NewDecl->setCallingConv(F->getCallingConv());
+ assert(NewDecl->getFunctionType() == F->getFunctionType() &&
+ "Shouldn't change the signature");
+ return NewDecl;
+}
More information about the llvm-commits
mailing list