[llvm] [VPlan] Implement interleaving as VPlan-to-VPlan transform. (PR #95842)

Florian Hahn via llvm-commits llvm-commits at lists.llvm.org
Fri Sep 20 11:38:23 PDT 2024


================
@@ -1582,3 +1583,449 @@ void VPlanTransforms::createInterleaveGroups(
       }
   }
 }
+
+namespace {
+
+/// Helper to hold state needed for unrolling. It holds the Plan to unroll by
+/// UF. It also holds copies of VPValues across UF-1 unroll parts to facilitate
+/// the unrolling transformation, where the original VPValues are retained for
+/// part zero.
+class UnrollState {
+  /// Plan to unroll.
+  VPlan &Plan;
+  /// Unroll factor to unroll by.
+  const unsigned UF;
+  /// Analysis for types.
+  VPTypeAnalysis TypeInfo;
+
+  /// Unrolling may create recipes that should not be unrolled themselves.
+  /// Those are tracked in ToSkip.
+  SmallPtrSet<VPRecipeBase *, 8> ToSkip;
+
+  // Associate with each VPValue of part 0 its unrolled instances of parts 1,
+  // ..., UF-1.
+  DenseMap<VPValue *, SmallVector<VPValue *>> VPV2Parts;
+
+  void unrollReplicateRegion(VPRegionBlock *VPR);
+  void unrollRecipe(VPRecipeBase &R);
+  void unrollHeaderPHI(VPRecipeBase &R, VPBasicBlock::iterator InsertPtForPhi);
+  void unrollWidenInduction(VPWidenIntOrFpInductionRecipe *IV,
+                            VPBasicBlock::iterator InsertPtForPhi);
+
+  VPValue *getConstantVPV(unsigned Part) {
+    Type *CanIVIntTy = Plan.getCanonicalIV()->getScalarType();
+    return Plan.getOrAddLiveIn(ConstantInt::get(CanIVIntTy, Part));
+  }
+
+public:
+  UnrollState(VPlan &Plan, unsigned UF, LLVMContext &Ctx)
+      : Plan(Plan), UF(UF), TypeInfo(Plan.getCanonicalIV()->getScalarType()) {}
+
+  void unrollBlock(VPBlockBase *VPB);
+
+  VPValue *getValueForPart(VPValue *V, unsigned Part) {
+    if (Part == 0 || V->isLiveIn())
+      return V;
+    assert((VPV2Parts.contains(V) && VPV2Parts[V].size() >= Part) &&
+           "accessed value does not exist");
+    return VPV2Parts[V][Part - 1];
+  }
+
+  /// Given a single original recipe \p OrigR (of part zero), and its copy \p
+  /// CopyR for part \p Part, map every VPValue defined by \p OrigR to its
+  /// corresponding VPValue defined by \p CopyR.
+  void addRecipeForPart(VPRecipeBase *OrigR, VPRecipeBase *CopyR,
+                        unsigned Part) {
+    for (const auto &[Idx, VPV] : enumerate(OrigR->definedValues())) {
+      auto Ins = VPV2Parts.insert({VPV, {}});
+      assert(Ins.first->second.size() == Part - 1 && "earlier parts not set");
+      Ins.first->second.push_back(CopyR->getVPValue(Idx));
+    }
+  }
+
+  /// Given a uniform recipe \p R, add it for all parts.
+  void addUniformForAllParts(VPSingleDefRecipe *R) {
+    auto Ins = VPV2Parts.insert({R, {}});
+    assert(Ins.second && "uniform value already added");
+    for (unsigned Part = 0; Part != UF; ++Part)
+      Ins.first->second.push_back(R);
+  }
+
+  bool contains(VPValue *VPV) const { return VPV2Parts.contains(VPV); }
+
+  /// Update \p R's operand at \p OpIdx with its corresponding VPValue for part
+  /// \p P.
+  void remapOperand(VPRecipeBase *R, unsigned OpIdx, unsigned Part) {
+    auto *Op = R->getOperand(OpIdx);
+    R->setOperand(OpIdx, getValueForPart(Op, Part));
+  }
+
+  /// Update \p R's operands with their corresponding VPValues for part \p P.
+  void remapOperands(VPRecipeBase *R, unsigned Part) {
+    for (const auto &[OpIdx, Op] : enumerate(R->operands()))
+      R->setOperand(OpIdx, getValueForPart(Op, Part));
+  }
+};
+} // namespace
+
+void UnrollState::unrollReplicateRegion(VPRegionBlock *VPR) {
+  VPBlockBase *InsertPt = VPR->getSingleSuccessor();
+  for (unsigned Part = 1; Part != UF; ++Part) {
+    auto *Copy = VPR->clone();
+    VPBlockUtils::insertBlockBefore(Copy, InsertPt);
+
+    auto PartI = vp_depth_first_shallow(Copy->getEntry());
+    auto Part0 = vp_depth_first_shallow(VPR->getEntry());
+    for (const auto &[PartIVPBB, Part0VPBB] :
+         zip(VPBlockUtils::blocksOnly<VPBasicBlock>(PartI),
+             VPBlockUtils::blocksOnly<VPBasicBlock>(Part0))) {
+      for (const auto &[PartIR, Part0R] : zip(*PartIVPBB, *Part0VPBB)) {
+        remapOperands(&PartIR, Part);
+        if (auto *ScalarIVSteps = dyn_cast<VPScalarIVStepsRecipe>(&PartIR)) {
+          ScalarIVSteps->addOperand(getConstantVPV(Part));
+        }
+
+        addRecipeForPart(&Part0R, &PartIR, Part);
+      }
+    }
+  }
+}
+
+void UnrollState::unrollWidenInduction(VPWidenIntOrFpInductionRecipe *IV,
+                                       VPBasicBlock::iterator InsertPtForPhi) {
+  VPBasicBlock *PH = cast<VPBasicBlock>(
+      IV->getParent()->getEnclosingLoopRegion()->getSinglePredecessor());
+  Type *IVTy = TypeInfo.inferScalarType(IV);
+  auto &ID = IV->getInductionDescriptor();
+  FastMathFlags FMFs;
+  if (isa_and_present<FPMathOperator>(ID.getInductionBinOp()))
+    FMFs = ID.getInductionBinOp()->getFastMathFlags();
+
+  VPValue *VectorStep = &Plan.getVF();
+  VPBuilder Builder(PH);
+  if (TypeInfo.inferScalarType(VectorStep) != IVTy) {
+    Instruction::CastOps CastOp =
+        IVTy->isFloatingPointTy() ? Instruction::UIToFP : Instruction::Trunc;
+    VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
+    ToSkip.insert(VectorStep->getDefiningRecipe());
+  }
+
+  VPValue *ScalarStep = IV->getStepValue();
+  auto *ConstStep = ScalarStep->isLiveIn()
+                        ? dyn_cast<ConstantInt>(ScalarStep->getLiveInIRValue())
+                        : nullptr;
+  if (!ConstStep || ConstStep->getZExtValue() != 1) {
+    if (TypeInfo.inferScalarType(ScalarStep) != IVTy) {
+      ScalarStep =
+          Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
+      ToSkip.insert(ScalarStep->getDefiningRecipe());
+    }
+
+    VPInstruction *Mul;
+    if (IVTy->isFloatingPointTy())
+      Mul = Builder.createFPOp(Instruction::FMul, {VectorStep, ScalarStep},
+                               FMFs, IV->getDebugLoc());
+    else
+      Mul = Builder.createNaryOp(Instruction::Mul, {VectorStep, ScalarStep},
+                                 IV->getDebugLoc());
+    VectorStep = Mul;
+    ToSkip.insert(Mul);
+  }
+
+  // Now create recipes to compute the induction steps for part 1 .. UF. Part 0
+  // remains the header phi. Parts > 0 are computed by adding Step to the
+  // previous part. The header phi recipe will get 2 new operands: the step
+  // value for a single part and the last part, used to compute the backedge
+  // value during VPWidenIntOrFpInductionRecipe::execute. %Part.0 =
+  // VPWidenIntOrFpInductionRecipe %Start, %ScalarStep, %VectorStep, %Part.3
+  // %Part.1 = %Part.0 + %VectorStep
+  // %Part.2 = %Part.1 + %VectorStep
+  // %Part.3 = %Part.2 + %VectorStep
+  //
+  // The newly added recipes are added to ToSkip to avoid interleaving them
+  // again.
+  VPValue *Prev = IV;
+  Builder.setInsertPoint(IV->getParent(), InsertPtForPhi);
----------------
fhahn wrote:

Updated to replace cerateFPOp with createNaryOp which takes optional fast-math flags , allowing it to unify the code.

> Could ID.getInductionOpcode() work for non-floats too?

Unfortunately no, as it may be nullptr in some cases for ints (e.g. extends)

https://github.com/llvm/llvm-project/pull/95842


More information about the llvm-commits mailing list