[llvm] [llvm][CodeGen] Add a new software pipeliner 'Window Scheduler' (PR #84443)

Hua Tian via llvm-commits llvm-commits at lists.llvm.org
Sun Apr 7 00:52:24 PDT 2024


================
@@ -0,0 +1,692 @@
+//======----------- WindowScheduler.cpp - window scheduler -------------======//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// An implementation of the Window Scheduling software pipelining algorithm.
+//
+// The fundamental concept of the window scheduling algorithm involves folding
+// the original MBB at a specific position, followed by list scheduling on the
+// folded MIs. The optimal scheduling result is then chosen from various folding
+// positions as the final scheduling outcome.
+//
+// The primary challenge in this algorithm lies in generating the folded MIs and
+// establishing their dependencies. We have innovatively employed a new MBB,
+// created by copying the original MBB three times, known as TripleMBB. This
+// TripleMBB enables the convenient implementation of MI folding and dependency
+// establishment. To facilitate the algorithm's implementation, we have also
+// devised data structures such as OriMIs, TriMIs, TriToOri, and OriToCycle.
+//
+// Another challenge in the algorithm is the scheduling of phis. Semantically,
+// it is difficult to place the phis in the window and perform list scheduling.
+// Therefore, we schedule these phis separately after each list scheduling.
+//
+// The provided implementation is designed for use before the Register Allocator
+// (RA). If the target requires implementation after RA, it is recommended to
+// reimplement analyseII(), schedulePhi(), and expand(). Additionally,
+// target-specific logic can be added in initialize(), preProcess(), and
+// postProcess().
+//
+// Lastly, it is worth mentioning that getSearchIndexes() is an important
+// function. We have experimented with more complex heuristics on downstream
+// target and achieved favorable results.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/WindowScheduler.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachinePipeliner.h"
+#include "llvm/CodeGen/ModuloSchedule.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TimeProfiler.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pipeliner"
+
+namespace {
+STATISTIC(NumTryWindowSchedule,
+          "Number of loops that we attempt to use window scheduling");
+STATISTIC(NumTryWindowSearch,
+          "Number of times that we run list schedule in the window scheduling");
+STATISTIC(NumWindowSchedule,
+          "Number of loops that we successfully use window scheduling");
+STATISTIC(NumFailAnalyseII,
+          "Window scheduling abort due to the failure of the II analysis");
+
+cl::opt<unsigned>
+    WindowSearchNum("window-search-num",
+                    cl::desc("The number of searches per loop in the window "
+                             "algorithm. 0 means no search number limit."),
+                    cl::Hidden, cl::init(6));
+
+cl::opt<unsigned> WindowSearchRatio(
+    "window-search-ratio",
+    cl::desc("The ratio of searches per loop in the window algorithm. 100 "
+             "means search all positions in the loop, while 0 means not "
+             "performing any search."),
+    cl::Hidden, cl::init(40));
+
+cl::opt<unsigned> WindowIICoeff(
+    "window-ii-coeff",
+    cl::desc(
+        "The coefficient used when initializing II in the window algorithm."),
+    cl::Hidden, cl::init(5));
+
+cl::opt<unsigned> WindowRegionLimit(
+    "window-region-limit",
+    cl::desc(
+        "The lower limit of the scheduling region in the window algorithm."),
+    cl::Hidden, cl::init(3));
+
+cl::opt<unsigned> WindowDiffLimit(
+    "window-diff-limit",
+    cl::desc("The lower limit of the difference between best II and base II in "
+             "the window algorithm. If the difference is smaller than "
+             "this lower limit, window scheduling will not be performed."),
+    cl::Hidden, cl::init(2));
+} // namespace
+
+// WindowIILimit serves as an indicator of abnormal scheduling results and could
+// potentially be referenced by the derived target window scheduler.
+cl::opt<unsigned>
+    WindowIILimit("window-ii-limit",
+                  cl::desc("The upper limit of II in the window algorithm."),
+                  cl::Hidden, cl::init(1000));
+
+WindowScheduler::WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
+    : Context(C), MF(C->MF), MBB(ML.getHeader()), Loop(ML) {
+  Subtarget = &(MF->getSubtarget());
+  TII = Subtarget->getInstrInfo();
+  TRI = Subtarget->getRegisterInfo();
+  MRI = &MF->getRegInfo();
+  TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
+      createMachineScheduler(/*OnlyBuildGraph=*/true));
+}
+
+bool WindowScheduler::run() {
+  if (!initialize()) {
+    LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
+    return false;
+  }
+  // The window algorithm is time-consuming, and its compilation time should be
+  // taken into consideration.
+  TimeTraceScope Scope("WindowSearch");
+  ++NumTryWindowSchedule;
+  // Performing the relevant processing before window scheduling.
+  preProcess();
+  // The main window scheduling begins.
+  std::unique_ptr<ScheduleDAGInstrs> SchedDAG(createMachineScheduler());
+  auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
+  for (unsigned Idx : SearchIndexes) {
+    OriToCycle.clear();
+    ++NumTryWindowSearch;
+    // The scheduling starts with non-phi instruction, so SchedPhiNum needs to
+    // be added to Idx.
+    unsigned Offset = Idx + SchedPhiNum;
+    auto Range = getScheduleRange(Offset, SchedInstrNum);
+    SchedDAG->startBlock(MBB);
+    SchedDAG->enterRegion(MBB, Range.begin(), Range.end(), SchedInstrNum);
+    SchedDAG->schedule();
+    LLVM_DEBUG(SchedDAG->dump());
+    unsigned II = analyseII(*SchedDAG, Offset);
+    if (II == WindowIILimit) {
+      restoreTripleMBB();
+      LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
+      ++NumFailAnalyseII;
+      continue;
+    }
+    schedulePhi(Offset, II);
+    updateScheduleResult(Offset, II);
+    restoreTripleMBB();
+    LLVM_DEBUG(dbgs() << "Current window Offset is " << Offset << " and II is "
+                      << II << ".\n");
+  }
+  // Performing the relevant processing after window scheduling.
+  postProcess();
+  // Check whether the scheduling result is valid.
+  if (!isScheduleValid()) {
+    LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
+    return false;
+  }
+  LLVM_DEBUG(dbgs() << "\nBest window offset is " << BestOffset
+                    << " and Best II is " << BestII << ".\n");
+  // Expand the scheduling result to prologue, kernel, and epilogue.
+  expand();
+  ++NumWindowSchedule;
+  return true;
+}
+
+ScheduleDAGInstrs *
+WindowScheduler::createMachineScheduler(bool OnlyBuildGraph) {
+  return OnlyBuildGraph
+             ? new ScheduleDAGMI(
+                   Context, std::make_unique<PostGenericScheduler>(Context),
+                   true)
+             : Context->PassConfig->createMachineScheduler(Context);
+}
+
+bool WindowScheduler::initialize() {
+  if (!Subtarget->enableWindowScheduler()) {
+    LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
+    return false;
+  }
+  // Initialized the member variables used by window algorithm.
+  OriMIs.clear();
+  TriMIs.clear();
+  TriToOri.clear();
+  OriToCycle.clear();
+  SchedResult.clear();
+  SchedPhiNum = 0;
+  SchedInstrNum = 0;
+  BestII = UINT_MAX;
+  BestOffset = 0;
+  BaseII = 0;
+  // List scheduling used in the window algorithm depends on LiveIntervals.
+  if (!Context->LIS) {
+    LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
+    return false;
+  }
+  // Check each MI in MBB.
+  SmallVector<Register, 8> PhiDefs;
+  auto PLI = TII->analyzeLoopForPipelining(MBB);
+  for (auto &MI : *MBB) {
+    if (MI.isDebugInstr() || MI.isTerminator())
+      continue;
+    if (MI.isPHI()) {
+      for (auto Def : PhiDefs)
+        if (MI.readsRegister(Def, TRI)) {
+          LLVM_DEBUG(
+              dbgs()
+              << "Consecutive phis are not allowed in window scheduling!\n");
+          return false;
+        }
+      for (auto Def : MI.defs())
+        if (Def.isReg())
+          PhiDefs.push_back(Def.getReg());
+      ++SchedPhiNum;
+      ++BestOffset;
+    } else
+      ++SchedInstrNum;
+    if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
+      LLVM_DEBUG(
+          dbgs() << "Boundary MI is not allowed in window scheduling!\n");
+      return false;
+    }
+    if (PLI->shouldIgnoreForPipelining(&MI)) {
+      LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
+                           "window scheduling!\n");
+      return false;
+    }
+    for (auto &Def : MI.defs())
+      if (Def.isReg() && Def.getReg().isPhysical())
+        return false;
+  }
+  if (SchedInstrNum <= WindowRegionLimit) {
+    LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
+    return false;
+  }
+  return true;
+}
+
+void WindowScheduler::preProcess() {
+  // Prior to window scheduling, it's necessary to backup the original MBB,
+  // generate a new TripleMBB, and build a TripleDAG based on the TripleMBB.
+  backupMBB();
+  generateTripleMBB();
+  TripleDAG->startBlock(MBB);
+  TripleDAG->enterRegion(
+      MBB, MBB->begin(), MBB->getFirstTerminator(),
+      std::distance(MBB->begin(), MBB->getFirstTerminator()));
+  TripleDAG->buildSchedGraph(Context->AA);
+}
+
+void WindowScheduler::postProcess() {
+  // After window scheduling, it's necessary to clear the TripleDAG and restore
+  // to the original MBB.
+  TripleDAG->exitRegion();
+  TripleDAG->finishBlock();
+  restoreMBB();
+}
+
+void WindowScheduler::backupMBB() {
+  for (auto &MI : MBB->instrs())
+    OriMIs.push_back(&MI);
+  // Remove MIs and the corresponding live intervals.
+  for (auto &MI : make_early_inc_range(*MBB)) {
+    Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
+    MBB->remove(&MI);
+  }
+}
+
+void WindowScheduler::restoreMBB() {
+  // Erase MIs and the corresponding live intervals.
+  for (auto &MI : make_early_inc_range(*MBB)) {
+    Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
+    MI.eraseFromParent();
+  }
+  // Restore MBB to the state before window scheduling.
+  for (auto *MI : OriMIs)
+    MBB->push_back(MI);
+  updateLiveIntervals();
+}
+
+void WindowScheduler::generateTripleMBB() {
+  const unsigned DuplicateNum = 3;
+  TriMIs.clear();
+  TriToOri.clear();
+  assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
+  // Step 1: Performing the first copy of MBB instructions, excluding
+  // terminators. At the same time, we back up the anti-register of phis.
+  // DefPairs hold the old and new define register pairs.
+  std::map<Register, Register> DefPairs;
+  for (auto *MI : OriMIs) {
+    if (MI->isDebugInstr() || MI->isTerminator())
+      continue;
+    if (MI->isPHI())
+      if (Register AntiReg = getAntiRegister(MI))
+        DefPairs[MI->getOperand(0).getReg()] = AntiReg;
+    auto *NewMI = MF->CloneMachineInstr(MI);
+    MBB->push_back(NewMI);
+    TriMIs.push_back(NewMI);
+    TriToOri[NewMI] = MI;
+  }
+  // Step 2: Performing the remaining two copies of MBB instructions excluding
+  // phis, and the last one contains terminators. At the same time, registers
+  // are updated accordingly.
+  for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
+    for (auto *MI : OriMIs) {
+      if (MI->isPHI() || MI->isDebugInstr() ||
+          (MI->isTerminator() && Cnt < DuplicateNum - 1))
+        continue;
+      auto *NewMI = MF->CloneMachineInstr(MI);
+      std::map<Register, Register> NewDefs;
+      // New defines are updated.
+      for (auto MO : NewMI->defs())
+        if (MO.isReg() && MO.getReg().isVirtual()) {
+          Register NewDef =
+              MRI->createVirtualRegister(MRI->getRegClass(MO.getReg()));
+          NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
+          NewDefs[MO.getReg()] = NewDef;
+        }
+      // New uses are updated.
+      for (auto DefRegPair : DefPairs)
+        if (NewMI->readsRegister(DefRegPair.first, TRI)) {
+          Register NewUse = DefRegPair.second;
+          // Note the update process for '%1 -> %9' in '%10 = sub i32 %9, %3':
+          //
+          // BB.3:                                  DefPairs
+          // ==================================
+          // %1 = phi i32 [%2, %BB.1], [%7, %BB.3]  (%1,%7)
+          // ...
+          // ==================================
+          // ...
+          // %4 = sub i32 %1, %3
+          // ...
+          // %7 = add i32 %5, %6
+          // ...
+          // ----------------------------------
+          // ...
+          // %8 = sub i32 %7, %3                    (%1,%7),(%4,%8)
+          // ...
+          // %9 = add i32 %5, %6                    (%1,%7),(%4,%8),(%7,%9)
+          // ...
+          // ----------------------------------
+          // ...
+          // %10 = sub i32 %9, %3                   (%1,%7),(%4,%10),(%7,%9)
+          // ...            ^
+          // %11 = add i32 %5, %6                   (%1,%7),(%4,%10),(%7,%11)
+          // ...
+          // ==================================
+          //          < Terminators >
+          // ==================================
+          if (DefPairs.count(NewUse))
+            NewUse = DefPairs[NewUse];
+          NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
+        }
+      // DefPairs is updated at last.
+      for (auto &NewDef : NewDefs)
+        DefPairs[NewDef.first] = NewDef.second;
+      MBB->push_back(NewMI);
+      TriMIs.push_back(NewMI);
+      TriToOri[NewMI] = MI;
+    }
+  }
+  // Step 3: The registers used by phis are updated, and they are generated in
+  // the third copy of MBB.
+  // In the privious example, the old phi is:
+  // %1 = phi i32 [%2, %BB.1], [%7, %BB.3]
+  // The new phi is:
+  // %1 = phi i32 [%2, %BB.1], [%11, %BB.3]
+  for (auto &Phi : MBB->phis())
+    for (auto DefRegPair : DefPairs)
+      if (Phi.readsRegister(DefRegPair.first, TRI))
+        Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
+  updateLiveIntervals();
+}
+
+void WindowScheduler::restoreTripleMBB() {
+  // After list scheduling, the MBB is restored in one traversal.
+  for (size_t I = 0; I < TriMIs.size(); ++I) {
+    auto *MI = TriMIs[I];
+    auto OldPos = MBB->begin();
+    std::advance(OldPos, I);
----------------
huaatian wrote:

Regarding debug information, we referred to the approach used by the SMS algorithm.
During the scheduling process, we do not consider the impact of debug IR. Debug IR is stored in OriMIs for code recovery in case the scheduling fails. That is to say, during the scheduling process, TriMIs do not contain any debug IR.
Additionally, we have added a new test to demonstrate how the Window Scheduling algorithm handles debug information.

https://github.com/llvm/llvm-project/pull/84443


More information about the llvm-commits mailing list