[llvm] [APInt] Restore multiplicativeInverse with explicit modulus and better testing (PR #87812)

Jeremy Kun via llvm-commits llvm-commits at lists.llvm.org
Fri Apr 5 13:16:26 PDT 2024


https://github.com/j2kun updated https://github.com/llvm/llvm-project/pull/87812

>From 02329106f64c176507512202bb25ffb3cc6767f4 Mon Sep 17 00:00:00 2001
From: Jeremy Kun <j2kun at users.noreply.github.com>
Date: Fri, 5 Apr 2024 10:55:01 -0700
Subject: [PATCH 1/3] Revert "[APInt] Remove multiplicativeInverse with
 explicit modulus (#87644)"

This reverts commit 0b293e8c36d97bbd7f85ed5b67ce510ff7fd86ee.

There are out-of-tree uses of this method, and it is planned to be used
as part of a new polynomial dialect in MLIR, a starting PR of which is
https://github.com/llvm/llvm-project/pull/72081 (later PRs will add
lowerings that need the removed functionality)
---
 llvm/include/llvm/ADT/APInt.h    |  3 ++
 llvm/lib/Support/APInt.cpp       | 49 ++++++++++++++++++++++++++++++++
 llvm/unittests/ADT/APIntTest.cpp | 19 ++++++++++---
 3 files changed, 67 insertions(+), 4 deletions(-)

diff --git a/llvm/include/llvm/ADT/APInt.h b/llvm/include/llvm/ADT/APInt.h
index 8d3c029b2e7e91..bd1716219ee5fc 100644
--- a/llvm/include/llvm/ADT/APInt.h
+++ b/llvm/include/llvm/ADT/APInt.h
@@ -1740,6 +1740,9 @@ class [[nodiscard]] APInt {
     return *this;
   }
 
+  /// \returns the multiplicative inverse for a given modulo.
+  APInt multiplicativeInverse(const APInt &modulo) const;
+
   /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
   APInt multiplicativeInverse() const;
 
diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp
index 224ea0924f0aaa..f8f699f8f6ccd7 100644
--- a/llvm/lib/Support/APInt.cpp
+++ b/llvm/lib/Support/APInt.cpp
@@ -1240,6 +1240,55 @@ APInt APInt::sqrt() const {
   return x_old + 1;
 }
 
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+/// WARNING: a value of '0' may be returned,
+///          signifying that no multiplicative inverse exists!
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+  assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+  // Using the properties listed at the following web page (accessed 06/21/08):
+  //   http://www.numbertheory.org/php/euclid.html
+  // (especially the properties numbered 3, 4 and 9) it can be proved that
+  // BitWidth bits suffice for all the computations in the algorithm implemented
+  // below. More precisely, this number of bits suffice if the multiplicative
+  // inverse exists, but may not suffice for the general extended Euclidean
+  // algorithm.
+
+  APInt r[2] = { modulo, *this };
+  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+  APInt q(BitWidth, 0);
+
+  unsigned i;
+  for (i = 0; r[i^1] != 0; i ^= 1) {
+    // An overview of the math without the confusing bit-flipping:
+    // q = r[i-2] / r[i-1]
+    // r[i] = r[i-2] % r[i-1]
+    // t[i] = t[i-2] - t[i-1] * q
+    udivrem(r[i], r[i^1], q, r[i]);
+    t[i] -= t[i^1] * q;
+  }
+
+  // If this APInt and the modulo are not coprime, there is no multiplicative
+  // inverse, so return 0. We check this by looking at the next-to-last
+  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+  // algorithm.
+  if (r[i] != 1)
+    return APInt(BitWidth, 0);
+
+  // The next-to-last t is the multiplicative inverse.  However, we are
+  // interested in a positive inverse. Calculate a positive one from a negative
+  // one if necessary. A simple addition of the modulo suffices because
+  // abs(t[i]) is known to be less than *this/2 (see the link above).
+  if (t[i].isNegative())
+    t[i] += modulo;
+
+  return std::move(t[i]);
+}
+
 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
 APInt APInt::multiplicativeInverse() const {
   assert((*this)[0] &&
diff --git a/llvm/unittests/ADT/APIntTest.cpp b/llvm/unittests/ADT/APIntTest.cpp
index 76fc26412407e7..23f9ee2d39c441 100644
--- a/llvm/unittests/ADT/APIntTest.cpp
+++ b/llvm/unittests/ADT/APIntTest.cpp
@@ -3249,11 +3249,22 @@ TEST(APIntTest, SolveQuadraticEquationWrap) {
 }
 
 TEST(APIntTest, MultiplicativeInverseExaustive) {
-  for (unsigned BitWidth = 1; BitWidth <= 8; ++BitWidth) {
-    for (unsigned Value = 1; Value < (1u << BitWidth); Value += 2) {
-      // Multiplicative inverse exists for all odd numbers.
+  for (unsigned BitWidth = 1; BitWidth <= 16; ++BitWidth) {
+    for (unsigned Value = 0; Value < (1u << BitWidth); ++Value) {
       APInt V = APInt(BitWidth, Value);
-      EXPECT_EQ(V * V.multiplicativeInverse(), 1);
+      APInt MulInv =
+          V.zext(BitWidth + 1)
+              .multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1))
+              .trunc(BitWidth);
+      APInt One = V * MulInv;
+      if (V[0]) {
+        // Multiplicative inverse exists for all odd numbers.
+        EXPECT_TRUE(One.isOne());
+        EXPECT_TRUE((V * V.multiplicativeInverse()).isOne());
+      } else {
+        // Multiplicative inverse does not exist for even numbers (and 0).
+        EXPECT_TRUE(MulInv.isZero());
+      }
     }
   }
 }

>From 8ff652be8252107744b34808faec1a46fe6d9fef Mon Sep 17 00:00:00 2001
From: Jeremy Kun <j2kun at users.noreply.github.com>
Date: Fri, 5 Apr 2024 12:37:03 -0700
Subject: [PATCH 2/3] address review comments

---
 llvm/include/llvm/ADT/APInt.h    |  4 +-
 llvm/lib/Support/APInt.cpp       | 45 +++++++++++------------
 llvm/unittests/ADT/APIntTest.cpp | 63 +++++++++++++++++++++++++-------
 3 files changed, 74 insertions(+), 38 deletions(-)

diff --git a/llvm/include/llvm/ADT/APInt.h b/llvm/include/llvm/ADT/APInt.h
index bd1716219ee5fc..fbf5cdefb7f488 100644
--- a/llvm/include/llvm/ADT/APInt.h
+++ b/llvm/include/llvm/ADT/APInt.h
@@ -1740,8 +1740,8 @@ class [[nodiscard]] APInt {
     return *this;
   }
 
-  /// \returns the multiplicative inverse for a given modulo.
-  APInt multiplicativeInverse(const APInt &modulo) const;
+  /// \returns the multiplicative inverse for a given modulus.
+  APInt multiplicativeInverse(const APInt &Modulus) const;
 
   /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
   APInt multiplicativeInverse() const;
diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp
index f8f699f8f6ccd7..fcfc0fba01ec25 100644
--- a/llvm/lib/Support/APInt.cpp
+++ b/llvm/lib/Support/APInt.cpp
@@ -1240,15 +1240,15 @@ APInt APInt::sqrt() const {
   return x_old + 1;
 }
 
-/// Computes the multiplicative inverse of this APInt for a given modulo. The
-/// iterative extended Euclidean algorithm is used to solve for this value,
+/// Computes the multiplicative inverse of this APInt for a given modululus,
+/// or returns 0 if no multiplicative inverse exists.
+///
+/// The iterative extended Euclidean algorithm is used to solve for this value,
 /// however we simplify it to speed up calculating only the inverse, and take
 /// advantage of div+rem calculations. We also use some tricks to avoid copying
 /// (potentially large) APInts around.
-/// WARNING: a value of '0' may be returned,
-///          signifying that no multiplicative inverse exists!
-APInt APInt::multiplicativeInverse(const APInt& modulo) const {
-  assert(ult(modulo) && "This APInt must be smaller than the modulo");
+APInt APInt::multiplicativeInverse(const APInt& Modulus) const {
+  assert(ult(Modulus) && "This APInt must be smaller than the modulus");
 
   // Using the properties listed at the following web page (accessed 06/21/08):
   //   http://www.numbertheory.org/php/euclid.html
@@ -1257,36 +1257,35 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
   // below. More precisely, this number of bits suffice if the multiplicative
   // inverse exists, but may not suffice for the general extended Euclidean
   // algorithm.
-
-  APInt r[2] = { modulo, *this };
-  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
-  APInt q(BitWidth, 0);
+  APInt R[2] = { Modulus, *this };
+  APInt T[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+  APInt Q(BitWidth, 0);
 
   unsigned i;
-  for (i = 0; r[i^1] != 0; i ^= 1) {
+  for (i = 0; R[i^1] != 0; i ^= 1) {
     // An overview of the math without the confusing bit-flipping:
-    // q = r[i-2] / r[i-1]
-    // r[i] = r[i-2] % r[i-1]
-    // t[i] = t[i-2] - t[i-1] * q
-    udivrem(r[i], r[i^1], q, r[i]);
-    t[i] -= t[i^1] * q;
+    // Q = R[i-2] / R[i-1]
+    // R[i] = R[i-2] % R[i-1]
+    // T[i] = T[i-2] - T[i-1] * Q
+    udivrem(R[i], R[i^1], Q, R[i]);
+    T[i] -= T[i^1] * Q;
   }
 
-  // If this APInt and the modulo are not coprime, there is no multiplicative
+  // If this APInt and the modulus are not coprime, there is no multiplicative
   // inverse, so return 0. We check this by looking at the next-to-last
-  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+  // remainder, which is the gcd(*this, modulus) as calculated by the Euclidean
   // algorithm.
-  if (r[i] != 1)
+  if (R[i] != 1)
     return APInt(BitWidth, 0);
 
   // The next-to-last t is the multiplicative inverse.  However, we are
   // interested in a positive inverse. Calculate a positive one from a negative
-  // one if necessary. A simple addition of the modulo suffices because
+  // one if necessary. A simple addition of the modulus suffices because
   // abs(t[i]) is known to be less than *this/2 (see the link above).
-  if (t[i].isNegative())
-    t[i] += modulo;
+  if (T[i].isNegative())
+    T[i] += Modulus;
 
-  return std::move(t[i]);
+  return std::move(T[i]);
 }
 
 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
diff --git a/llvm/unittests/ADT/APIntTest.cpp b/llvm/unittests/ADT/APIntTest.cpp
index 23f9ee2d39c441..e15d3b9cdf3167 100644
--- a/llvm/unittests/ADT/APIntTest.cpp
+++ b/llvm/unittests/ADT/APIntTest.cpp
@@ -3248,21 +3248,58 @@ TEST(APIntTest, SolveQuadraticEquationWrap) {
     Iterate(i);
 }
 
-TEST(APIntTest, MultiplicativeInverseExaustive) {
-  for (unsigned BitWidth = 1; BitWidth <= 16; ++BitWidth) {
-    for (unsigned Value = 0; Value < (1u << BitWidth); ++Value) {
+TEST(APIntTest, MultiplicativeInverseExaustivePowerOfTwo) {
+  for (unsigned BitWidth = 1; BitWidth <= 8; ++BitWidth) {
+    for (unsigned Value = 1; Value < (1u << BitWidth); Value += 2) {
+      // Multiplicative inverse exists for all odd numbers.
       APInt V = APInt(BitWidth, Value);
-      APInt MulInv =
-          V.zext(BitWidth + 1)
-              .multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1))
-              .trunc(BitWidth);
-      APInt One = V * MulInv;
-      if (V[0]) {
-        // Multiplicative inverse exists for all odd numbers.
-        EXPECT_TRUE(One.isOne());
-        EXPECT_TRUE((V * V.multiplicativeInverse()).isOne());
+      EXPECT_EQ(V * V.multiplicativeInverse(), 1);
+    }
+  }
+}
+
+TEST(APIntTest, ModularMultiplicativeInverseSpecific) {
+  // Test a single modulus for all known inverses and non-inverses.
+  int BitWidth = 8;
+  APInt Modulus(BitWidth, 26);
+  int Values[12] = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25};
+  int Inverses[12] = {1, 9, 21, 15, 3, 19, 7, 23, 11, 5, 17, 25};
+  int NonInvertibleElements[14] = {0,  2,  4,  6,  8,  10, 12,
+                                   13, 14, 16, 18, 20, 22, 24};
+
+  for (size_t i = 0; i < 12; ++i) {
+    APInt V(BitWidth, Values[i]);
+    APInt Inv = V.multiplicativeInverse(Modulus);
+    EXPECT_EQ(Inv, Inverses[i]);
+  }
+
+  for (size_t i = 0; i < 14; ++i) {
+    APInt V(BitWidth, NonInvertibleElements[i]);
+    APInt Inv = V.multiplicativeInverse(Modulus);
+    EXPECT_EQ(Inv, 0);
+  }
+}
+
+TEST(APIntTest, ModularMultiplicativeInverseExaustive) {
+  // Test all moduli and all values up to 8 bits using a gcd test to determine
+  // if a multiplicative inverse exists.
+  int BitWidth = 8;
+  for (unsigned Modulus = 2; Modulus < (1u << BitWidth); ++Modulus) {
+    for (unsigned Value = 0; Value < Modulus; ++Value) {
+      APInt M(BitWidth, Modulus);
+      APInt V(BitWidth, Value);
+      EXPECT_TRUE(V.ult(M))
+          << "Expected " << V << " ult " << M << ", but it was not";
+      APInt MulInv = V.multiplicativeInverse(M);
+      if (APIntOps::GreatestCommonDivisor(V, M).isOne()) {
+        EXPECT_FALSE(MulInv.isZero());
+        // Multiplication verification must take place in a larger bit width
+        APInt Actual = (V.zext(2 * BitWidth) * MulInv.zext(2 * BitWidth))
+                           .urem(M.zext(2 * BitWidth));
+        EXPECT_TRUE(Actual.isOne())
+            << "Expected " << V << " * " << MulInv << " = 1 mod " << M
+            << ", but it was " << Actual;
       } else {
-        // Multiplicative inverse does not exist for even numbers (and 0).
         EXPECT_TRUE(MulInv.isZero());
       }
     }

>From f0cd987e0b24520becc2b7a95391741b1d9ef0d6 Mon Sep 17 00:00:00 2001
From: Jeremy Kun <j2kun at users.noreply.github.com>
Date: Fri, 5 Apr 2024 13:16:16 -0700
Subject: [PATCH 3/3] clang-format

---
 llvm/lib/Support/APInt.cpp | 12 ++++++------
 1 file changed, 6 insertions(+), 6 deletions(-)

diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp
index fcfc0fba01ec25..635bf8793ec230 100644
--- a/llvm/lib/Support/APInt.cpp
+++ b/llvm/lib/Support/APInt.cpp
@@ -1247,7 +1247,7 @@ APInt APInt::sqrt() const {
 /// however we simplify it to speed up calculating only the inverse, and take
 /// advantage of div+rem calculations. We also use some tricks to avoid copying
 /// (potentially large) APInts around.
-APInt APInt::multiplicativeInverse(const APInt& Modulus) const {
+APInt APInt::multiplicativeInverse(const APInt &Modulus) const {
   assert(ult(Modulus) && "This APInt must be smaller than the modulus");
 
   // Using the properties listed at the following web page (accessed 06/21/08):
@@ -1257,18 +1257,18 @@ APInt APInt::multiplicativeInverse(const APInt& Modulus) const {
   // below. More precisely, this number of bits suffice if the multiplicative
   // inverse exists, but may not suffice for the general extended Euclidean
   // algorithm.
-  APInt R[2] = { Modulus, *this };
-  APInt T[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+  APInt R[2] = {Modulus, *this};
+  APInt T[2] = {APInt(BitWidth, 0), APInt(BitWidth, 1)};
   APInt Q(BitWidth, 0);
 
   unsigned i;
-  for (i = 0; R[i^1] != 0; i ^= 1) {
+  for (i = 0; R[i ^ 1] != 0; i ^= 1) {
     // An overview of the math without the confusing bit-flipping:
     // Q = R[i-2] / R[i-1]
     // R[i] = R[i-2] % R[i-1]
     // T[i] = T[i-2] - T[i-1] * Q
-    udivrem(R[i], R[i^1], Q, R[i]);
-    T[i] -= T[i^1] * Q;
+    udivrem(R[i], R[i ^ 1], Q, R[i]);
+    T[i] -= T[i ^ 1] * Q;
   }
 
   // If this APInt and the modulus are not coprime, there is no multiplicative



More information about the llvm-commits mailing list