[llvm] Revert "[APInt] Remove multiplicativeInverse with explicit modulus (#… (PR #87812)

Jay Foad via llvm-commits llvm-commits at lists.llvm.org
Fri Apr 5 11:09:45 PDT 2024


================
@@ -1240,6 +1240,55 @@ APInt APInt::sqrt() const {
   return x_old + 1;
 }
 
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+/// WARNING: a value of '0' may be returned,
+///          signifying that no multiplicative inverse exists!
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+  assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+  // Using the properties listed at the following web page (accessed 06/21/08):
+  //   http://www.numbertheory.org/php/euclid.html
+  // (especially the properties numbered 3, 4 and 9) it can be proved that
+  // BitWidth bits suffice for all the computations in the algorithm implemented
+  // below. More precisely, this number of bits suffice if the multiplicative
+  // inverse exists, but may not suffice for the general extended Euclidean
+  // algorithm.
+
+  APInt r[2] = { modulo, *this };
+  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+  APInt q(BitWidth, 0);
+
+  unsigned i;
+  for (i = 0; r[i^1] != 0; i ^= 1) {
+    // An overview of the math without the confusing bit-flipping:
+    // q = r[i-2] / r[i-1]
+    // r[i] = r[i-2] % r[i-1]
+    // t[i] = t[i-2] - t[i-1] * q
+    udivrem(r[i], r[i^1], q, r[i]);
+    t[i] -= t[i^1] * q;
+  }
+
+  // If this APInt and the modulo are not coprime, there is no multiplicative
+  // inverse, so return 0. We check this by looking at the next-to-last
+  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+  // algorithm.
+  if (r[i] != 1)
+    return APInt(BitWidth, 0);
+
+  // The next-to-last t is the multiplicative inverse.  However, we are
+  // interested in a positive inverse. Calculate a positive one from a negative
+  // one if necessary. A simple addition of the modulo suffices because
+  // abs(t[i]) is known to be less than *this/2 (see the link above).
+  if (t[i].isNegative())
----------------
jayfoad wrote:

This test seems dubious to me if the modulus > 2^(BitWidth - 1). But I guess exhaustive testing will show whether it works or not.

https://github.com/llvm/llvm-project/pull/87812


More information about the llvm-commits mailing list