[llvm] Revert "[APInt] Remove multiplicativeInverse with explicit modulus (#… (PR #87812)
Jeremy Kun via llvm-commits
llvm-commits at lists.llvm.org
Fri Apr 5 10:57:33 PDT 2024
https://github.com/j2kun created https://github.com/llvm/llvm-project/pull/87812
…87644)"
This reverts commit 0b293e8c36d97bbd7f85ed5b67ce510ff7fd86ee.
There are out-of-tree uses of this method, and it is planned to be used as part of a new polynomial dialect in MLIR, a starting PR of which is https://github.com/llvm/llvm-project/pull/72081 (later PRs will add lowerings that need the removed functionality)
>From 02329106f64c176507512202bb25ffb3cc6767f4 Mon Sep 17 00:00:00 2001
From: Jeremy Kun <j2kun at users.noreply.github.com>
Date: Fri, 5 Apr 2024 10:55:01 -0700
Subject: [PATCH] Revert "[APInt] Remove multiplicativeInverse with explicit
modulus (#87644)"
This reverts commit 0b293e8c36d97bbd7f85ed5b67ce510ff7fd86ee.
There are out-of-tree uses of this method, and it is planned to be used
as part of a new polynomial dialect in MLIR, a starting PR of which is
https://github.com/llvm/llvm-project/pull/72081 (later PRs will add
lowerings that need the removed functionality)
---
llvm/include/llvm/ADT/APInt.h | 3 ++
llvm/lib/Support/APInt.cpp | 49 ++++++++++++++++++++++++++++++++
llvm/unittests/ADT/APIntTest.cpp | 19 ++++++++++---
3 files changed, 67 insertions(+), 4 deletions(-)
diff --git a/llvm/include/llvm/ADT/APInt.h b/llvm/include/llvm/ADT/APInt.h
index 8d3c029b2e7e91..bd1716219ee5fc 100644
--- a/llvm/include/llvm/ADT/APInt.h
+++ b/llvm/include/llvm/ADT/APInt.h
@@ -1740,6 +1740,9 @@ class [[nodiscard]] APInt {
return *this;
}
+ /// \returns the multiplicative inverse for a given modulo.
+ APInt multiplicativeInverse(const APInt &modulo) const;
+
/// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
APInt multiplicativeInverse() const;
diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp
index 224ea0924f0aaa..f8f699f8f6ccd7 100644
--- a/llvm/lib/Support/APInt.cpp
+++ b/llvm/lib/Support/APInt.cpp
@@ -1240,6 +1240,55 @@ APInt APInt::sqrt() const {
return x_old + 1;
}
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+/// WARNING: a value of '0' may be returned,
+/// signifying that no multiplicative inverse exists!
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+ assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+ // Using the properties listed at the following web page (accessed 06/21/08):
+ // http://www.numbertheory.org/php/euclid.html
+ // (especially the properties numbered 3, 4 and 9) it can be proved that
+ // BitWidth bits suffice for all the computations in the algorithm implemented
+ // below. More precisely, this number of bits suffice if the multiplicative
+ // inverse exists, but may not suffice for the general extended Euclidean
+ // algorithm.
+
+ APInt r[2] = { modulo, *this };
+ APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+ APInt q(BitWidth, 0);
+
+ unsigned i;
+ for (i = 0; r[i^1] != 0; i ^= 1) {
+ // An overview of the math without the confusing bit-flipping:
+ // q = r[i-2] / r[i-1]
+ // r[i] = r[i-2] % r[i-1]
+ // t[i] = t[i-2] - t[i-1] * q
+ udivrem(r[i], r[i^1], q, r[i]);
+ t[i] -= t[i^1] * q;
+ }
+
+ // If this APInt and the modulo are not coprime, there is no multiplicative
+ // inverse, so return 0. We check this by looking at the next-to-last
+ // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+ // algorithm.
+ if (r[i] != 1)
+ return APInt(BitWidth, 0);
+
+ // The next-to-last t is the multiplicative inverse. However, we are
+ // interested in a positive inverse. Calculate a positive one from a negative
+ // one if necessary. A simple addition of the modulo suffices because
+ // abs(t[i]) is known to be less than *this/2 (see the link above).
+ if (t[i].isNegative())
+ t[i] += modulo;
+
+ return std::move(t[i]);
+}
+
/// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
APInt APInt::multiplicativeInverse() const {
assert((*this)[0] &&
diff --git a/llvm/unittests/ADT/APIntTest.cpp b/llvm/unittests/ADT/APIntTest.cpp
index 76fc26412407e7..23f9ee2d39c441 100644
--- a/llvm/unittests/ADT/APIntTest.cpp
+++ b/llvm/unittests/ADT/APIntTest.cpp
@@ -3249,11 +3249,22 @@ TEST(APIntTest, SolveQuadraticEquationWrap) {
}
TEST(APIntTest, MultiplicativeInverseExaustive) {
- for (unsigned BitWidth = 1; BitWidth <= 8; ++BitWidth) {
- for (unsigned Value = 1; Value < (1u << BitWidth); Value += 2) {
- // Multiplicative inverse exists for all odd numbers.
+ for (unsigned BitWidth = 1; BitWidth <= 16; ++BitWidth) {
+ for (unsigned Value = 0; Value < (1u << BitWidth); ++Value) {
APInt V = APInt(BitWidth, Value);
- EXPECT_EQ(V * V.multiplicativeInverse(), 1);
+ APInt MulInv =
+ V.zext(BitWidth + 1)
+ .multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1))
+ .trunc(BitWidth);
+ APInt One = V * MulInv;
+ if (V[0]) {
+ // Multiplicative inverse exists for all odd numbers.
+ EXPECT_TRUE(One.isOne());
+ EXPECT_TRUE((V * V.multiplicativeInverse()).isOne());
+ } else {
+ // Multiplicative inverse does not exist for even numbers (and 0).
+ EXPECT_TRUE(MulInv.isZero());
+ }
}
}
}
More information about the llvm-commits
mailing list