[compiler-rt] problem #77737 Fix a possible null dereference (PR #78985)

via llvm-commits llvm-commits at lists.llvm.org
Mon Jan 22 06:52:11 PST 2024


https://github.com/harbandana created https://github.com/llvm/llvm-project/pull/78985

None

>From 3bebf2ae6ce886edd5a4f9e989ecef6cbfaddb64 Mon Sep 17 00:00:00 2001
From: Harbandana Kaur <harbandanakaur13 at chromium.org>
Date: Mon, 22 Jan 2024 20:02:12 +0530
Subject: [PATCH] =?UTF-8?q?problem=C2=A0#77737=20Fix=20a=20possible=20null?=
 =?UTF-8?q?=20dereference?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

---
 compiler-rt/lib/hwasan/hwasan_report.cpp | 2196 +++++++++++-----------
 1 file changed, 1096 insertions(+), 1100 deletions(-)

diff --git a/compiler-rt/lib/hwasan/hwasan_report.cpp b/compiler-rt/lib/hwasan/hwasan_report.cpp
index 784cfb904aa2756..6765888ce7a7ac6 100644
--- a/compiler-rt/lib/hwasan/hwasan_report.cpp
+++ b/compiler-rt/lib/hwasan/hwasan_report.cpp
@@ -1,1100 +1,1096 @@
-//===-- hwasan_report.cpp -------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file is a part of HWAddressSanitizer.
-//
-// Error reporting.
-//===----------------------------------------------------------------------===//
-
-#include "hwasan_report.h"
-
-#include <dlfcn.h>
-
-#include "hwasan.h"
-#include "hwasan_allocator.h"
-#include "hwasan_globals.h"
-#include "hwasan_mapping.h"
-#include "hwasan_thread.h"
-#include "hwasan_thread_list.h"
-#include "sanitizer_common/sanitizer_allocator_internal.h"
-#include "sanitizer_common/sanitizer_array_ref.h"
-#include "sanitizer_common/sanitizer_common.h"
-#include "sanitizer_common/sanitizer_flags.h"
-#include "sanitizer_common/sanitizer_internal_defs.h"
-#include "sanitizer_common/sanitizer_mutex.h"
-#include "sanitizer_common/sanitizer_report_decorator.h"
-#include "sanitizer_common/sanitizer_stackdepot.h"
-#include "sanitizer_common/sanitizer_stacktrace_printer.h"
-#include "sanitizer_common/sanitizer_symbolizer.h"
-
-using namespace __sanitizer;
-
-namespace __hwasan {
-
-class ScopedReport {
- public:
-  explicit ScopedReport(bool fatal) : fatal(fatal) {
-    Lock lock(&error_message_lock_);
-    error_message_ptr_ = fatal ? &error_message_ : nullptr;
-    ++hwasan_report_count;
-  }
-
-  ~ScopedReport() {
-    void (*report_cb)(const char *);
-    {
-      Lock lock(&error_message_lock_);
-      report_cb = error_report_callback_;
-      error_message_ptr_ = nullptr;
-    }
-    if (report_cb)
-      report_cb(error_message_.data());
-    if (fatal)
-      SetAbortMessage(error_message_.data());
-    if (common_flags()->print_module_map >= 2 ||
-        (fatal && common_flags()->print_module_map))
-      DumpProcessMap();
-    if (fatal)
-      Die();
-  }
-
-  static void MaybeAppendToErrorMessage(const char *msg) {
-    Lock lock(&error_message_lock_);
-    if (!error_message_ptr_)
-      return;
-    error_message_ptr_->Append(msg);
-  }
-
-  static void SetErrorReportCallback(void (*callback)(const char *)) {
-    Lock lock(&error_message_lock_);
-    error_report_callback_ = callback;
-  }
-
- private:
-  InternalScopedString error_message_;
-  bool fatal;
-
-  static Mutex error_message_lock_;
-  static InternalScopedString *error_message_ptr_
-      SANITIZER_GUARDED_BY(error_message_lock_);
-  static void (*error_report_callback_)(const char *);
-};
-
-Mutex ScopedReport::error_message_lock_;
-InternalScopedString *ScopedReport::error_message_ptr_;
-void (*ScopedReport::error_report_callback_)(const char *);
-
-// If there is an active ScopedReport, append to its error message.
-void AppendToErrorMessageBuffer(const char *buffer) {
-  ScopedReport::MaybeAppendToErrorMessage(buffer);
-}
-
-static StackTrace GetStackTraceFromId(u32 id) {
-  CHECK(id);
-  StackTrace res = StackDepotGet(id);
-  CHECK(res.trace);
-  return res;
-}
-
-static void MaybePrintAndroidHelpUrl() {
-#if SANITIZER_ANDROID
-  Printf(
-      "Learn more about HWASan reports: "
-      "https://source.android.com/docs/security/test/memory-safety/"
-      "hwasan-reports\n");
-#endif
-}
-
-namespace {
-// A RAII object that holds a copy of the current thread stack ring buffer.
-// The actual stack buffer may change while we are iterating over it (for
-// example, Printf may call syslog() which can itself be built with hwasan).
-class SavedStackAllocations {
- public:
-  SavedStackAllocations() = default;
-
-  explicit SavedStackAllocations(Thread *t) { CopyFrom(t); }
-
-  void CopyFrom(Thread *t) {
-    StackAllocationsRingBuffer *rb = t->stack_allocations();
-    uptr size = rb->size() * sizeof(uptr);
-    void *storage =
-        MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
-    new (&rb_) StackAllocationsRingBuffer(*rb, storage);
-    thread_id_ = t->unique_id();
-  }
-
-  ~SavedStackAllocations() {
-    if (rb_) {
-      StackAllocationsRingBuffer *rb = get();
-      UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
-    }
-  }
-
-  const StackAllocationsRingBuffer *get() const {
-    return (const StackAllocationsRingBuffer *)&rb_;
-  }
-
-  StackAllocationsRingBuffer *get() {
-    return (StackAllocationsRingBuffer *)&rb_;
-  }
-
-  u32 thread_id() const { return thread_id_; }
-
- private:
-  uptr rb_ = 0;
-  u32 thread_id_;
-};
-
-class Decorator: public __sanitizer::SanitizerCommonDecorator {
- public:
-  Decorator() : SanitizerCommonDecorator() { }
-  const char *Access() { return Blue(); }
-  const char *Allocation() const { return Magenta(); }
-  const char *Origin() const { return Magenta(); }
-  const char *Name() const { return Green(); }
-  const char *Location() { return Green(); }
-  const char *Thread() { return Green(); }
-};
-}  // namespace
-
-static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
-                               HeapAllocationRecord *har, uptr *ring_index,
-                               uptr *num_matching_addrs,
-                               uptr *num_matching_addrs_4b) {
-  if (!rb) return false;
-
-  *num_matching_addrs = 0;
-  *num_matching_addrs_4b = 0;
-  for (uptr i = 0, size = rb->size(); i < size; i++) {
-    auto h = (*rb)[i];
-    if (h.tagged_addr <= tagged_addr &&
-        h.tagged_addr + h.requested_size > tagged_addr) {
-      *har = h;
-      *ring_index = i;
-      return true;
-    }
-
-    // Measure the number of heap ring buffer entries that would have matched
-    // if we had only one entry per address (e.g. if the ring buffer data was
-    // stored at the address itself). This will help us tune the allocator
-    // implementation for MTE.
-    if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
-        UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
-      ++*num_matching_addrs;
-    }
-
-    // Measure the number of heap ring buffer entries that would have matched
-    // if we only had 4 tag bits, which is the case for MTE.
-    auto untag_4b = [](uptr p) {
-      return p & ((1ULL << 60) - 1);
-    };
-    if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
-        untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
-      ++*num_matching_addrs_4b;
-    }
-  }
-  return false;
-}
-
-static void PrintStackAllocations(const StackAllocationsRingBuffer *sa,
-                                  tag_t addr_tag, uptr untagged_addr) {
-  uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
-  bool found_local = false;
-  InternalScopedString location;
-  for (uptr i = 0; i < frames; i++) {
-    const uptr *record_addr = &(*sa)[i];
-    uptr record = *record_addr;
-    if (!record)
-      break;
-    tag_t base_tag =
-        reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
-    uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
-    uptr pc_mask = (1ULL << kRecordFPShift) - 1;
-    uptr pc = record & pc_mask;
-    FrameInfo frame;
-    if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
-      for (LocalInfo &local : frame.locals) {
-        if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
-          continue;
-        if (!(local.name && internal_strlen(local.name)) &&
-            !(local.function_name && internal_strlen(local.name)) &&
-            !(local.decl_file && internal_strlen(local.decl_file)))
-          continue;
-        tag_t obj_tag = base_tag ^ local.tag_offset;
-        if (obj_tag != addr_tag)
-          continue;
-        // Guess top bits of local variable from the faulting address, because
-        // we only store bits 4-19 of FP (bits 0-3 are guaranteed to be zero).
-        uptr local_beg = (fp + local.frame_offset) |
-                         (untagged_addr & ~(uptr(kRecordFPModulus) - 1));
-        uptr local_end = local_beg + local.size;
-
-        if (!found_local) {
-          Printf("\nPotentially referenced stack objects:\n");
-          found_local = true;
-        }
-
-        uptr offset;
-        const char *whence;
-        const char *cause;
-        if (local_beg <= untagged_addr && untagged_addr < local_end) {
-          offset = untagged_addr - local_beg;
-          whence = "inside";
-          cause = "use-after-scope";
-        } else if (untagged_addr >= local_end) {
-          offset = untagged_addr - local_end;
-          whence = "after";
-          cause = "stack-buffer-overflow";
-        } else {
-          offset = local_beg - untagged_addr;
-          whence = "before";
-          cause = "stack-buffer-overflow";
-        }
-        Decorator d;
-        Printf("%s", d.Error());
-        Printf("Cause: %s\n", cause);
-        Printf("%s", d.Default());
-        Printf("%s", d.Location());
-        StackTracePrinter::GetOrInit()->RenderSourceLocation(
-            &location, local.decl_file, local.decl_line, /* column= */ 0,
-            common_flags()->symbolize_vs_style,
-            common_flags()->strip_path_prefix);
-        Printf(
-            "%p is located %zd bytes %s a %zd-byte local variable %s [%p,%p) "
-            "in %s %s\n",
-            untagged_addr, offset, whence, local_end - local_beg, local.name,
-            local_beg, local_end, local.function_name, location.data());
-        location.clear();
-        Printf("%s\n", d.Default());
-      }
-      frame.Clear();
-    }
-  }
-
-  if (found_local)
-    return;
-
-  // We didn't find any locals. Most likely we don't have symbols, so dump
-  // the information that we have for offline analysis.
-  InternalScopedString frame_desc;
-  Printf("Previously allocated frames:\n");
-  for (uptr i = 0; i < frames; i++) {
-    const uptr *record_addr = &(*sa)[i];
-    uptr record = *record_addr;
-    if (!record)
-      break;
-    uptr pc_mask = (1ULL << 48) - 1;
-    uptr pc = record & pc_mask;
-    frame_desc.AppendF("  record_addr:0x%zx record:0x%zx",
-                       reinterpret_cast<uptr>(record_addr), record);
-    SymbolizedStackHolder symbolized_stack(
-        Symbolizer::GetOrInit()->SymbolizePC(pc));
-    const SymbolizedStack *frame = symbolized_stack.get();
-    if (frame) {
-      StackTracePrinter::GetOrInit()->RenderFrame(
-          &frame_desc, " %F %L", 0, frame->info.address, &frame->info,
-          common_flags()->symbolize_vs_style,
-          common_flags()->strip_path_prefix);
-    }
-    Printf("%s\n", frame_desc.data());
-    frame_desc.clear();
-  }
-}
-
-// Returns true if tag == *tag_ptr, reading tags from short granules if
-// necessary. This may return a false positive if tags 1-15 are used as a
-// regular tag rather than a short granule marker.
-static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
-  if (tag == *tag_ptr)
-    return true;
-  if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
-    return false;
-  uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
-  tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
-  return tag == inline_tag;
-}
-
-// HWASan globals store the size of the global in the descriptor. In cases where
-// we don't have a binary with symbols, we can't grab the size of the global
-// from the debug info - but we might be able to retrieve it from the
-// descriptor. Returns zero if the lookup failed.
-static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
-  // Find the ELF object that this global resides in.
-  Dl_info info;
-  if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
-    return 0;
-  auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
-  auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
-      reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
-
-  // Get the load bias. This is normally the same as the dli_fbase address on
-  // position-independent code, but can be different on non-PIE executables,
-  // binaries using LLD's partitioning feature, or binaries compiled with a
-  // linker script.
-  ElfW(Addr) load_bias = 0;
-  for (const auto &phdr :
-       ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
-    if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
-      continue;
-    load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
-    break;
-  }
-
-  // Walk all globals in this ELF object, looking for the one we're interested
-  // in. Once we find it, we can stop iterating and return the size of the
-  // global we're interested in.
-  for (const hwasan_global &global :
-       HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
-    if (global.addr() <= ptr && ptr < global.addr() + global.size())
-      return global.size();
-
-  return 0;
-}
-
-void ReportStats() {}
-
-constexpr uptr kDumpWidth = 16;
-constexpr uptr kShadowLines = 17;
-constexpr uptr kShadowDumpSize = kShadowLines * kDumpWidth;
-
-constexpr uptr kShortLines = 3;
-constexpr uptr kShortDumpSize = kShortLines * kDumpWidth;
-constexpr uptr kShortDumpOffset = (kShadowLines - kShortLines) / 2 * kDumpWidth;
-
-static uptr GetPrintTagStart(uptr addr) {
-  addr = MemToShadow(addr);
-  addr = RoundDownTo(addr, kDumpWidth);
-  addr -= kDumpWidth * (kShadowLines / 2);
-  return addr;
-}
-
-template <typename PrintTag>
-static void PrintTagInfoAroundAddr(uptr addr, uptr num_rows,
-                                   InternalScopedString &s,
-                                   PrintTag print_tag) {
-  uptr center_row_beg = RoundDownTo(addr, kDumpWidth);
-  uptr beg_row = center_row_beg - kDumpWidth * (num_rows / 2);
-  uptr end_row = center_row_beg + kDumpWidth * ((num_rows + 1) / 2);
-  for (uptr row = beg_row; row < end_row; row += kDumpWidth) {
-    s.Append(row == center_row_beg ? "=>" : "  ");
-    s.AppendF("%p:", (void *)ShadowToMem(row));
-    for (uptr i = 0; i < kDumpWidth; i++) {
-      s.Append(row + i == addr ? "[" : " ");
-      print_tag(s, row + i);
-      s.Append(row + i == addr ? "]" : " ");
-    }
-    s.AppendF("\n");
-  }
-}
-
-template <typename GetTag, typename GetShortTag>
-static void PrintTagsAroundAddr(uptr addr, GetTag get_tag,
-                                GetShortTag get_short_tag) {
-  InternalScopedString s;
-  addr = MemToShadow(addr);
-  s.AppendF(
-      "\nMemory tags around the buggy address (one tag corresponds to %zd "
-      "bytes):\n",
-      kShadowAlignment);
-  PrintTagInfoAroundAddr(addr, kShadowLines, s,
-                         [&](InternalScopedString &s, uptr tag_addr) {
-                           tag_t tag = get_tag(tag_addr);
-                           s.AppendF("%02x", tag);
-                         });
-
-  s.AppendF(
-      "Tags for short granules around the buggy address (one tag corresponds "
-      "to %zd bytes):\n",
-      kShadowAlignment);
-  PrintTagInfoAroundAddr(addr, kShortLines, s,
-                         [&](InternalScopedString &s, uptr tag_addr) {
-                           tag_t tag = get_tag(tag_addr);
-                           if (tag >= 1 && tag <= kShadowAlignment) {
-                             tag_t short_tag = get_short_tag(tag_addr);
-                             s.AppendF("%02x", short_tag);
-                           } else {
-                             s.AppendF("..");
-                           }
-                         });
-  s.AppendF(
-      "See "
-      "https://clang.llvm.org/docs/"
-      "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
-      "description of short granule tags\n");
-  Printf("%s", s.data());
-}
-
-static uptr GetTopPc(const StackTrace *stack) {
-  return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
-                     : 0;
-}
-
-namespace {
-class BaseReport {
- public:
-  BaseReport(StackTrace *stack, bool fatal, uptr tagged_addr, uptr access_size)
-      : scoped_report(fatal),
-        stack(stack),
-        tagged_addr(tagged_addr),
-        access_size(access_size),
-        untagged_addr(UntagAddr(tagged_addr)),
-        ptr_tag(GetTagFromPointer(tagged_addr)),
-        mismatch_offset(FindMismatchOffset()),
-        heap(CopyHeapChunk()),
-        allocations(CopyAllocations()),
-        candidate(FindBufferOverflowCandidate()),
-        shadow(CopyShadow()) {}
-
- protected:
-  struct OverflowCandidate {
-    uptr untagged_addr = 0;
-    bool after = false;
-    bool is_close = false;
-
-    struct {
-      uptr begin = 0;
-      uptr end = 0;
-      u32 thread_id = 0;
-      u32 stack_id = 0;
-      bool is_allocated = false;
-    } heap;
-  };
-
-  struct HeapAllocation {
-    HeapAllocationRecord har = {};
-    uptr ring_index = 0;
-    uptr num_matching_addrs = 0;
-    uptr num_matching_addrs_4b = 0;
-    u32 free_thread_id = 0;
-  };
-
-  struct Allocations {
-    ArrayRef<SavedStackAllocations> stack;
-    ArrayRef<HeapAllocation> heap;
-  };
-
-  struct HeapChunk {
-    uptr begin = 0;
-    uptr size = 0;
-    u32 stack_id = 0;
-    bool from_small_heap = false;
-    bool is_allocated = false;
-  };
-
-  struct Shadow {
-    uptr addr = 0;
-    tag_t tags[kShadowDumpSize] = {};
-    tag_t short_tags[kShortDumpSize] = {};
-  };
-
-  sptr FindMismatchOffset() const;
-  Shadow CopyShadow() const;
-  tag_t GetTagCopy(uptr addr) const;
-  tag_t GetShortTagCopy(uptr addr) const;
-  HeapChunk CopyHeapChunk() const;
-  Allocations CopyAllocations();
-  OverflowCandidate FindBufferOverflowCandidate() const;
-  void PrintAddressDescription() const;
-  void PrintHeapOrGlobalCandidate() const;
-  void PrintTags(uptr addr) const;
-
-  SavedStackAllocations stack_allocations_storage[16];
-  HeapAllocation heap_allocations_storage[256];
-
-  const ScopedReport scoped_report;
-  const StackTrace *stack = nullptr;
-  const uptr tagged_addr = 0;
-  const uptr access_size = 0;
-  const uptr untagged_addr = 0;
-  const tag_t ptr_tag = 0;
-  const sptr mismatch_offset = 0;
-
-  const HeapChunk heap;
-  const Allocations allocations;
-  const OverflowCandidate candidate;
-
-  const Shadow shadow;
-};
-
-sptr BaseReport::FindMismatchOffset() const {
-  if (!access_size)
-    return 0;
-  sptr offset =
-      __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
-  CHECK_GE(offset, 0);
-  CHECK_LT(offset, static_cast<sptr>(access_size));
-  tag_t *tag_ptr =
-      reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
-  tag_t mem_tag = *tag_ptr;
-
-  if (mem_tag && mem_tag < kShadowAlignment) {
-    tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
-                                                   ~(kShadowAlignment - 1));
-    // If offset is 0, (untagged_addr + offset) is not aligned to granules.
-    // This is the offset of the leftmost accessed byte within the bad granule.
-    u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
-    tag_t short_tag = granule_ptr[kShadowAlignment - 1];
-    // The first mismatch was a short granule that matched the ptr_tag.
-    if (short_tag == ptr_tag) {
-      // If the access starts after the end of the short granule, then the first
-      // bad byte is the first byte of the access; otherwise it is the first
-      // byte past the end of the short granule
-      if (mem_tag > in_granule_offset) {
-        offset += mem_tag - in_granule_offset;
-      }
-    }
-  }
-  return offset;
-}
-
-BaseReport::Shadow BaseReport::CopyShadow() const {
-  Shadow result;
-  if (!MemIsApp(untagged_addr))
-    return result;
-
-  result.addr = GetPrintTagStart(untagged_addr + mismatch_offset);
-  uptr tag_addr = result.addr;
-  uptr short_end = kShortDumpOffset + ARRAY_SIZE(shadow.short_tags);
-  for (uptr i = 0; i < ARRAY_SIZE(result.tags); ++i, ++tag_addr) {
-    if (!MemIsShadow(tag_addr))
-      continue;
-    result.tags[i] = *reinterpret_cast<tag_t *>(tag_addr);
-    if (i < kShortDumpOffset || i >= short_end)
-      continue;
-    uptr granule_addr = ShadowToMem(tag_addr);
-    if (1 <= result.tags[i] && result.tags[i] <= kShadowAlignment &&
-        IsAccessibleMemoryRange(granule_addr, kShadowAlignment)) {
-      result.short_tags[i - kShortDumpOffset] =
-          *reinterpret_cast<tag_t *>(granule_addr + kShadowAlignment - 1);
-    }
-  }
-  return result;
-}
-
-tag_t BaseReport::GetTagCopy(uptr addr) const {
-  CHECK_GE(addr, shadow.addr);
-  uptr idx = addr - shadow.addr;
-  CHECK_LT(idx, ARRAY_SIZE(shadow.tags));
-  return shadow.tags[idx];
-}
-
-tag_t BaseReport::GetShortTagCopy(uptr addr) const {
-  CHECK_GE(addr, shadow.addr + kShortDumpOffset);
-  uptr idx = addr - shadow.addr - kShortDumpOffset;
-  CHECK_LT(idx, ARRAY_SIZE(shadow.short_tags));
-  return shadow.short_tags[idx];
-}
-
-BaseReport::HeapChunk BaseReport::CopyHeapChunk() const {
-  HeapChunk result = {};
-  if (MemIsShadow(untagged_addr))
-    return result;
-  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
-  result.begin = chunk.Beg();
-  if (result.begin) {
-    result.size = chunk.ActualSize();
-    result.from_small_heap = chunk.FromSmallHeap();
-    result.is_allocated = chunk.IsAllocated();
-    result.stack_id = chunk.GetAllocStackId();
-  }
-  return result;
-}
-
-BaseReport::Allocations BaseReport::CopyAllocations() {
-  if (MemIsShadow(untagged_addr))
-    return {};
-  uptr stack_allocations_count = 0;
-  uptr heap_allocations_count = 0;
-  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
-    if (stack_allocations_count < ARRAY_SIZE(stack_allocations_storage) &&
-        t->AddrIsInStack(untagged_addr)) {
-      stack_allocations_storage[stack_allocations_count++].CopyFrom(t);
-    }
-
-    if (heap_allocations_count < ARRAY_SIZE(heap_allocations_storage)) {
-      // Scan all threads' ring buffers to find if it's a heap-use-after-free.
-      HeapAllocationRecord har;
-      uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
-      if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
-                             &ring_index, &num_matching_addrs,
-                             &num_matching_addrs_4b)) {
-        auto &ha = heap_allocations_storage[heap_allocations_count++];
-        ha.har = har;
-        ha.ring_index = ring_index;
-        ha.num_matching_addrs = num_matching_addrs;
-        ha.num_matching_addrs_4b = num_matching_addrs_4b;
-        ha.free_thread_id = t->unique_id();
-      }
-    }
-  });
-
-  return {{stack_allocations_storage, stack_allocations_count},
-          {heap_allocations_storage, heap_allocations_count}};
-}
-
-BaseReport::OverflowCandidate BaseReport::FindBufferOverflowCandidate() const {
-  OverflowCandidate result = {};
-  if (MemIsShadow(untagged_addr))
-    return result;
-  // Check if this looks like a heap buffer overflow by scanning
-  // the shadow left and right and looking for the first adjacent
-  // object with a different memory tag. If that tag matches ptr_tag,
-  // check the allocator if it has a live chunk there.
-  tag_t *tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
-  tag_t *candidate_tag_ptr = nullptr, *left = tag_ptr, *right = tag_ptr;
-  uptr candidate_distance = 0;
-  for (; candidate_distance < 1000; candidate_distance++) {
-    if (MemIsShadow(reinterpret_cast<uptr>(left)) && TagsEqual(ptr_tag, left)) {
-      candidate_tag_ptr = left;
-      break;
-    }
-    --left;
-    if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
-        TagsEqual(ptr_tag, right)) {
-      candidate_tag_ptr = right;
-      break;
-    }
-    ++right;
-  }
-
-  constexpr auto kCloseCandidateDistance = 1;
-  result.is_close = candidate_distance <= kCloseCandidateDistance;
-
-  result.after = candidate_tag_ptr == left;
-  result.untagged_addr = ShadowToMem(reinterpret_cast<uptr>(candidate_tag_ptr));
-  HwasanChunkView chunk = FindHeapChunkByAddress(result.untagged_addr);
-  if (chunk.IsAllocated()) {
-    result.heap.is_allocated = true;
-    result.heap.begin = chunk.Beg();
-    result.heap.end = chunk.End();
-    result.heap.thread_id = chunk.GetAllocThreadId();
-    result.heap.stack_id = chunk.GetAllocStackId();
-  }
-  return result;
-}
-
-void BaseReport::PrintHeapOrGlobalCandidate() const {
-  Decorator d;
-  if (candidate.heap.is_allocated) {
-    uptr offset;
-    const char *whence;
-    if (candidate.heap.begin <= untagged_addr &&
-        untagged_addr < candidate.heap.end) {
-      offset = untagged_addr - candidate.heap.begin;
-      whence = "inside";
-    } else if (candidate.after) {
-      offset = untagged_addr - candidate.heap.end;
-      whence = "after";
-    } else {
-      offset = candidate.heap.begin - untagged_addr;
-      whence = "before";
-    }
-    Printf("%s", d.Error());
-    Printf("\nCause: heap-buffer-overflow\n");
-    Printf("%s", d.Default());
-    Printf("%s", d.Location());
-    Printf("%p is located %zd bytes %s a %zd-byte region [%p,%p)\n",
-           untagged_addr, offset, whence,
-           candidate.heap.end - candidate.heap.begin, candidate.heap.begin,
-           candidate.heap.end);
-    Printf("%s", d.Allocation());
-    Printf("allocated by thread T%u here:\n", candidate.heap.thread_id);
-    Printf("%s", d.Default());
-    GetStackTraceFromId(candidate.heap.stack_id).Print();
-    return;
-  }
-  // Check whether the address points into a loaded library. If so, this is
-  // most likely a global variable.
-  const char *module_name;
-  uptr module_address;
-  Symbolizer *sym = Symbolizer::GetOrInit();
-  if (sym->GetModuleNameAndOffsetForPC(candidate.untagged_addr, &module_name,
-                                       &module_address)) {
-    Printf("%s", d.Error());
-    Printf("\nCause: global-overflow\n");
-    Printf("%s", d.Default());
-    DataInfo info;
-    Printf("%s", d.Location());
-    if (sym->SymbolizeData(candidate.untagged_addr, &info) && info.start) {
-      Printf(
-          "%p is located %zd bytes %s a %zd-byte global variable "
-          "%s [%p,%p) in %s\n",
-          untagged_addr,
-          candidate.after ? untagged_addr - (info.start + info.size)
-                          : info.start - untagged_addr,
-          candidate.after ? "after" : "before", info.size, info.name,
-          info.start, info.start + info.size, module_name);
-    } else {
-      uptr size = GetGlobalSizeFromDescriptor(candidate.untagged_addr);
-      if (size == 0)
-        // We couldn't find the size of the global from the descriptors.
-        Printf(
-            "%p is located %s a global variable in "
-            "\n    #0 0x%x (%s+0x%x)\n",
-            untagged_addr, candidate.after ? "after" : "before",
-            candidate.untagged_addr, module_name, module_address);
-      else
-        Printf(
-            "%p is located %s a %zd-byte global variable in "
-            "\n    #0 0x%x (%s+0x%x)\n",
-            untagged_addr, candidate.after ? "after" : "before", size,
-            candidate.untagged_addr, module_name, module_address);
-    }
-    Printf("%s", d.Default());
-  }
-}
-
-void BaseReport::PrintAddressDescription() const {
-  Decorator d;
-  int num_descriptions_printed = 0;
-
-  if (MemIsShadow(untagged_addr)) {
-    Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
-           d.Default());
-    return;
-  }
-
-  // Print some very basic information about the address, if it's a heap.
-  if (heap.begin) {
-    Printf(
-        "%s[%p,%p) is a %s %s heap chunk; "
-        "size: %zd offset: %zd\n%s",
-        d.Location(), heap.begin, heap.begin + heap.size,
-        heap.from_small_heap ? "small" : "large",
-        heap.is_allocated ? "allocated" : "unallocated", heap.size,
-        untagged_addr - heap.begin, d.Default());
-  }
-
-  auto announce_by_id = [](u32 thread_id) {
-    hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
-      if (thread_id == t->unique_id())
-        t->Announce();
-    });
-  };
-
-  // Check stack first. If the address is on the stack of a live thread, we
-  // know it cannot be a heap / global overflow.
-  for (const auto &sa : allocations.stack) {
-    Printf("%s", d.Error());
-    Printf("\nCause: stack tag-mismatch\n");
-    Printf("%s", d.Location());
-    Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
-           sa.thread_id());
-    Printf("%s", d.Default());
-    announce_by_id(sa.thread_id());
-    PrintStackAllocations(sa.get(), ptr_tag, untagged_addr);
-    num_descriptions_printed++;
-  }
-
-  if (allocations.stack.empty() && candidate.untagged_addr &&
-      candidate.is_close) {
-    PrintHeapOrGlobalCandidate();
-    num_descriptions_printed++;
-  }
-
-  for (const auto &ha : allocations.heap) {
-    const HeapAllocationRecord har = ha.har;
-
-    Printf("%s", d.Error());
-    Printf("\nCause: use-after-free\n");
-    Printf("%s", d.Location());
-    Printf("%p is located %zd bytes inside a %zd-byte region [%p,%p)\n",
-           untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
-           har.requested_size, UntagAddr(har.tagged_addr),
-           UntagAddr(har.tagged_addr) + har.requested_size);
-    Printf("%s", d.Allocation());
-    Printf("freed by thread T%u here:\n", ha.free_thread_id);
-    Printf("%s", d.Default());
-    GetStackTraceFromId(har.free_context_id).Print();
-
-    Printf("%s", d.Allocation());
-    Printf("previously allocated by thread T%u here:\n", har.alloc_thread_id);
-    Printf("%s", d.Default());
-    GetStackTraceFromId(har.alloc_context_id).Print();
-
-    // Print a developer note: the index of this heap object
-    // in the thread's deallocation ring buffer.
-    Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ha.ring_index + 1,
-           flags()->heap_history_size);
-    Printf("hwasan_dev_note_num_matching_addrs: %zd\n", ha.num_matching_addrs);
-    Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
-           ha.num_matching_addrs_4b);
-
-    announce_by_id(ha.free_thread_id);
-    // TODO: announce_by_id(har.alloc_thread_id);
-    num_descriptions_printed++;
-  }
-
-  if (candidate.untagged_addr && num_descriptions_printed == 0) {
-    PrintHeapOrGlobalCandidate();
-    num_descriptions_printed++;
-  }
-
-  // Print the remaining threads, as an extra information, 1 line per thread.
-  if (flags()->print_live_threads_info) {
-    Printf("\n");
-    hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
-  }
-
-  if (!num_descriptions_printed)
-    // We exhausted our possibilities. Bail out.
-    Printf("HWAddressSanitizer can not describe address in more detail.\n");
-  if (num_descriptions_printed > 1) {
-    Printf(
-        "There are %d potential causes, printed above in order "
-        "of likeliness.\n",
-        num_descriptions_printed);
-  }
-}
-
-void BaseReport::PrintTags(uptr addr) const {
-  if (shadow.addr) {
-    PrintTagsAroundAddr(
-        addr, [&](uptr addr) { return GetTagCopy(addr); },
-        [&](uptr addr) { return GetShortTagCopy(addr); });
-  }
-}
-
-class InvalidFreeReport : public BaseReport {
- public:
-  InvalidFreeReport(StackTrace *stack, uptr tagged_addr)
-      : BaseReport(stack, flags()->halt_on_error, tagged_addr, 0) {}
-  ~InvalidFreeReport();
-
- private:
-};
-
-InvalidFreeReport::~InvalidFreeReport() {
-  Decorator d;
-  Printf("%s", d.Error());
-  uptr pc = GetTopPc(stack);
-  const char *bug_type = "invalid-free";
-  const Thread *thread = GetCurrentThread();
-  if (thread) {
-    Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
-           SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
-  } else {
-    Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
-           SanitizerToolName, bug_type, untagged_addr, pc);
-  }
-  Printf("%s", d.Access());
-  if (shadow.addr) {
-    Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag,
-           GetTagCopy(MemToShadow(untagged_addr)));
-  }
-  Printf("%s", d.Default());
-
-  stack->Print();
-
-  PrintAddressDescription();
-  PrintTags(untagged_addr);
-  MaybePrintAndroidHelpUrl();
-  ReportErrorSummary(bug_type, stack);
-}
-
-class TailOverwrittenReport : public BaseReport {
- public:
-  explicit TailOverwrittenReport(StackTrace *stack, uptr tagged_addr,
-                                 uptr orig_size, const u8 *expected)
-      : BaseReport(stack, flags()->halt_on_error, tagged_addr, 0),
-        orig_size(orig_size),
-        tail_size(kShadowAlignment - (orig_size % kShadowAlignment)) {
-    CHECK_GT(tail_size, 0U);
-    CHECK_LT(tail_size, kShadowAlignment);
-    internal_memcpy(tail_copy,
-                    reinterpret_cast<u8 *>(untagged_addr + orig_size),
-                    tail_size);
-    internal_memcpy(actual_expected, expected, tail_size);
-    // Short granule is stashed in the last byte of the magic string. To avoid
-    // confusion, make the expected magic string contain the short granule tag.
-    if (orig_size % kShadowAlignment != 0)
-      actual_expected[tail_size - 1] = ptr_tag;
-  }
-  ~TailOverwrittenReport();
-
- private:
-  const uptr orig_size = 0;
-  const uptr tail_size = 0;
-  u8 actual_expected[kShadowAlignment] = {};
-  u8 tail_copy[kShadowAlignment] = {};
-};
-
-TailOverwrittenReport::~TailOverwrittenReport() {
-  Decorator d;
-  Printf("%s", d.Error());
-  const char *bug_type = "allocation-tail-overwritten";
-  Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
-         bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
-  Printf("\n%s", d.Default());
-  Printf(
-      "Stack of invalid access unknown. Issue detected at deallocation "
-      "time.\n");
-  Printf("%s", d.Allocation());
-  Printf("deallocated here:\n");
-  Printf("%s", d.Default());
-  stack->Print();
-  if (heap.begin) {
-    Printf("%s", d.Allocation());
-    Printf("allocated here:\n");
-    Printf("%s", d.Default());
-    GetStackTraceFromId(heap.stack_id).Print();
-  }
-
-  InternalScopedString s;
-  u8 *tail = tail_copy;
-  s.AppendF("Tail contains: ");
-  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
-  for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", tail[i]);
-  s.AppendF("\n");
-  s.AppendF("Expected:      ");
-  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
-  for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", actual_expected[i]);
-  s.AppendF("\n");
-  s.AppendF("               ");
-  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF("   ");
-  for (uptr i = 0; i < tail_size; i++)
-    s.AppendF("%s ", actual_expected[i] != tail[i] ? "^^" : "  ");
-
-  s.AppendF(
-      "\nThis error occurs when a buffer overflow overwrites memory\n"
-      "after a heap object, but within the %zd-byte granule, e.g.\n"
-      "   char *x = new char[20];\n"
-      "   x[25] = 42;\n"
-      "%s does not detect such bugs in uninstrumented code at the time of "
-      "write,"
-      "\nbut can detect them at the time of free/delete.\n"
-      "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
-      kShadowAlignment, SanitizerToolName);
-  Printf("%s", s.data());
-  GetCurrentThread()->Announce();
-  PrintTags(untagged_addr);
-  MaybePrintAndroidHelpUrl();
-  ReportErrorSummary(bug_type, stack);
-}
-
-class TagMismatchReport : public BaseReport {
- public:
-  explicit TagMismatchReport(StackTrace *stack, uptr tagged_addr,
-                             uptr access_size, bool is_store, bool fatal,
-                             uptr *registers_frame)
-      : BaseReport(stack, fatal, tagged_addr, access_size),
-        is_store(is_store),
-        registers_frame(registers_frame) {}
-  ~TagMismatchReport();
-
- private:
-  const bool is_store;
-  const uptr *registers_frame;
-};
-
-TagMismatchReport::~TagMismatchReport() {
-  Decorator d;
-  // TODO: when possible, try to print heap-use-after-free, etc.
-  const char *bug_type = "tag-mismatch";
-  uptr pc = GetTopPc(stack);
-  Printf("%s", d.Error());
-  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
-         untagged_addr, pc);
-
-  Thread *t = GetCurrentThread();
-
-  tag_t mem_tag = GetTagCopy(MemToShadow(untagged_addr + mismatch_offset));
-
-  Printf("%s", d.Access());
-  if (mem_tag && mem_tag < kShadowAlignment) {
-    tag_t short_tag =
-        GetShortTagCopy(MemToShadow(untagged_addr + mismatch_offset));
-    Printf(
-        "%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
-        is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
-        mem_tag, short_tag, t->unique_id());
-  } else {
-    Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
-           is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
-           mem_tag, t->unique_id());
-  }
-  if (mismatch_offset)
-    Printf("Invalid access starting at offset %zu\n", mismatch_offset);
-  Printf("%s", d.Default());
-
-  stack->Print();
-
-  PrintAddressDescription();
-  t->Announce();
-
-  PrintTags(untagged_addr + mismatch_offset);
-
-  if (registers_frame)
-    ReportRegisters(registers_frame, pc);
-
-  MaybePrintAndroidHelpUrl();
-  ReportErrorSummary(bug_type, stack);
-}
-}  // namespace
-
-void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
-  InvalidFreeReport R(stack, tagged_addr);
-}
-
-void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
-                           const u8 *expected) {
-  TailOverwrittenReport R(stack, tagged_addr, orig_size, expected);
-}
-
-void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
-                       bool is_store, bool fatal, uptr *registers_frame) {
-  TagMismatchReport R(stack, tagged_addr, access_size, is_store, fatal,
-                      registers_frame);
-}
-
-// See the frame breakdown defined in __hwasan_tag_mismatch (from
-// hwasan_tag_mismatch_{aarch64,riscv64}.S).
-void ReportRegisters(const uptr *frame, uptr pc) {
-  Printf("\nRegisters where the failure occurred (pc %p):\n", pc);
-
-  // We explicitly print a single line (4 registers/line) each iteration to
-  // reduce the amount of logcat error messages printed. Each Printf() will
-  // result in a new logcat line, irrespective of whether a newline is present,
-  // and so we wish to reduce the number of Printf() calls we have to make.
-#if defined(__aarch64__)
-  Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
-       frame[0], frame[1], frame[2], frame[3]);
-#elif SANITIZER_RISCV64
-  Printf("    sp  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
-         reinterpret_cast<const u8 *>(frame) + 256, frame[1], frame[2],
-         frame[3]);
-#endif
-  Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
-       frame[4], frame[5], frame[6], frame[7]);
-  Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
-       frame[8], frame[9], frame[10], frame[11]);
-  Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
-       frame[12], frame[13], frame[14], frame[15]);
-  Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
-       frame[16], frame[17], frame[18], frame[19]);
-  Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
-       frame[20], frame[21], frame[22], frame[23]);
-  Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
-       frame[24], frame[25], frame[26], frame[27]);
-  // hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
-  // passes it to this function.
-#if defined(__aarch64__)
-  Printf("    x28 %016llx  x29 %016llx  x30 %016llx   sp %016llx\n", frame[28],
-         frame[29], frame[30], reinterpret_cast<const u8 *>(frame) + 256);
-#elif SANITIZER_RISCV64
-  Printf("    x28 %016llx  x29 %016llx  x30 %016llx  x31 %016llx\n", frame[28],
-         frame[29], frame[30], frame[31]);
-#else
-#endif
-}
-
-}  // namespace __hwasan
-
-void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
-  __hwasan::ScopedReport::SetErrorReportCallback(callback);
-}
+//===-- hwasan_report.cpp -------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of HWAddressSanitizer.
+//
+// Error reporting.
+//===----------------------------------------------------------------------===//
+
+#include "hwasan_report.h"
+#include <dlfcn.h>
+#include "hwasan.h"
+#include "hwasan_allocator.h"
+#include "hwasan_globals.h"
+#include "hwasan_mapping.h"
+#include "hwasan_thread.h"
+#include "hwasan_thread_list.h"
+#include "sanitizer_common/sanitizer_allocator_internal.h"
+#include "sanitizer_common/sanitizer_array_ref.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_flags.h"
+#include "sanitizer_common/sanitizer_internal_defs.h"
+#include "sanitizer_common/sanitizer_mutex.h"
+#include "sanitizer_common/sanitizer_report_decorator.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "sanitizer_common/sanitizer_stacktrace_printer.h"
+#include "sanitizer_common/sanitizer_symbolizer.h"
+
+using namespace __sanitizer;
+
+namespace __hwasan {
+
+class ScopedReport {
+ public:
+  explicit ScopedReport(bool fatal) : fatal(fatal) {
+    Lock lock(&error_message_lock_);
+    error_message_ptr_ = fatal ? &error_message_ : nullptr;
+    ++hwasan_report_count;
+  }
+
+  ~ScopedReport() {
+    void (*report_cb)(const char *);
+    {
+      Lock lock(&error_message_lock_);
+      report_cb = error_report_callback_;
+      error_message_ptr_ = nullptr;
+    }
+    if (report_cb)
+      report_cb(error_message_.data());
+    if (fatal)
+      SetAbortMessage(error_message_.data());
+    if (common_flags()->print_module_map >= 2 ||
+        (fatal && common_flags()->print_module_map))
+      DumpProcessMap();
+    if (fatal)
+      Die();
+  }
+
+  static void MaybeAppendToErrorMessage(const char *msg) {
+    Lock lock(&error_message_lock_);
+    if (!error_message_ptr_)
+      return;
+    error_message_ptr_->Append(msg);
+  }
+
+  static void SetErrorReportCallback(void (*callback)(const char *)) {
+    Lock lock(&error_message_lock_);
+    error_report_callback_ = callback;
+  }
+
+ private:
+  InternalScopedString error_message_;
+  bool fatal;
+
+  static Mutex error_message_lock_;
+  static InternalScopedString *error_message_ptr_
+      SANITIZER_GUARDED_BY(error_message_lock_);
+  static void (*error_report_callback_)(const char *);
+};
+
+Mutex ScopedReport::error_message_lock_;
+InternalScopedString *ScopedReport::error_message_ptr_;
+void (*ScopedReport::error_report_callback_)(const char *);
+
+// If there is an active ScopedReport, append to its error message.
+void AppendToErrorMessageBuffer(const char *buffer) {
+  ScopedReport::MaybeAppendToErrorMessage(buffer);
+}
+
+static StackTrace GetStackTraceFromId(u32 id) {
+  CHECK(id);
+  StackTrace res = StackDepotGet(id);
+  CHECK(res.trace);
+  return res;
+}
+
+static void MaybePrintAndroidHelpUrl() {
+#if SANITIZER_ANDROID
+  Printf(
+      "Learn more about HWASan reports: "
+      "https://source.android.com/docs/security/test/memory-safety/"
+      "hwasan-reports\n");
+#endif
+}
+
+namespace {
+// A RAII object that holds a copy of the current thread stack ring buffer.
+// The actual stack buffer may change while we are iterating over it (for
+// example, Printf may call syslog() which can itself be built with hwasan).
+class SavedStackAllocations {
+ public:
+  SavedStackAllocations() = default;
+
+  explicit SavedStackAllocations(Thread *t) { CopyFrom(t); }
+
+  void CopyFrom(Thread *t) {
+    StackAllocationsRingBuffer *rb = t->stack_allocations();
+    uptr size = rb->size() * sizeof(uptr);
+    void *storage =
+        MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
+    new (&rb_) StackAllocationsRingBuffer(*rb, storage);
+    thread_id_ = t->unique_id();
+  }
+
+  ~SavedStackAllocations() {
+    if (rb_) {
+      StackAllocationsRingBuffer *rb = get();
+      UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
+    }
+  }
+
+  const StackAllocationsRingBuffer *get() const {
+    return (const StackAllocationsRingBuffer *)&rb_;
+  }
+
+  StackAllocationsRingBuffer *get() {
+    return (StackAllocationsRingBuffer *)&rb_;
+  }
+
+  u32 thread_id() const { return thread_id_; }
+
+ private:
+  uptr rb_ = 0;
+  u32 thread_id_;
+};
+
+class Decorator: public __sanitizer::SanitizerCommonDecorator {
+ public:
+  Decorator() : SanitizerCommonDecorator() { }
+  const char *Access() { return Blue(); }
+  const char *Allocation() const { return Magenta(); }
+  const char *Origin() const { return Magenta(); }
+  const char *Name() const { return Green(); }
+  const char *Location() { return Green(); }
+  const char *Thread() { return Green(); }
+};
+}  // namespace
+
+static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
+                               HeapAllocationRecord *har, uptr *ring_index,
+                               uptr *num_matching_addrs,
+                               uptr *num_matching_addrs_4b) {
+  if (!rb) return false;
+
+  *num_matching_addrs = 0;
+  *num_matching_addrs_4b = 0;
+  for (uptr i = 0, size = rb->size(); i < size; i++) {
+    auto h = (*rb)[i];
+    if (h.tagged_addr <= tagged_addr &&
+        h.tagged_addr + h.requested_size > tagged_addr) {
+      *har = h;
+      *ring_index = i;
+      return true;
+    }
+
+    // Measure the number of heap ring buffer entries that would have matched
+    // if we had only one entry per address (e.g. if the ring buffer data was
+    // stored at the address itself). This will help us tune the allocator
+    // implementation for MTE.
+    if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
+        UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
+      ++*num_matching_addrs;
+    }
+
+    // Measure the number of heap ring buffer entries that would have matched
+    // if we only had 4 tag bits, which is the case for MTE.
+    auto untag_4b = [](uptr p) {
+      return p & ((1ULL << 60) - 1);
+    };
+    if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
+        untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
+      ++*num_matching_addrs_4b;
+    }
+  }
+  return false;
+}
+
+static void PrintStackAllocations(const StackAllocationsRingBuffer *sa,
+                                  tag_t addr_tag, uptr untagged_addr) {
+  uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
+  bool found_local = false;
+  InternalScopedString location;
+  for (uptr i = 0; i < frames; i++) {
+    const uptr *record_addr = &(*sa)[i];
+    uptr record = *record_addr;
+    if (!record)
+      break;
+    tag_t base_tag =
+        reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
+    uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
+    uptr pc_mask = (1ULL << kRecordFPShift) - 1;
+    uptr pc = record & pc_mask;
+    FrameInfo frame;
+    if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
+      for (LocalInfo &local : frame.locals) {
+        if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
+          continue;
+        if (!(local.name && internal_strlen(local.name)))
+          continue;
+        tag_t obj_tag = base_tag ^ local.tag_offset;
+        if (obj_tag != addr_tag)
+          continue;
+        // Guess top bits of local variable from the faulting address, because
+        // we only store bits 4-19 of FP (bits 0-3 are guaranteed to be zero).
+        uptr local_beg = (fp + local.frame_offset) |
+                         (untagged_addr & ~(uptr(kRecordFPModulus) - 1));
+        uptr local_end = local_beg + local.size;
+
+        if (!found_local) {
+          Printf("\nPotentially referenced stack objects:\n");
+          found_local = true;
+        }
+
+        uptr offset;
+        const char *whence;
+        const char *cause;
+        if (local_beg <= untagged_addr && untagged_addr < local_end) {
+          offset = untagged_addr - local_beg;
+          whence = "inside";
+          cause = "use-after-scope";
+        } else if (untagged_addr >= local_end) {
+          offset = untagged_addr - local_end;
+          whence = "after";
+          cause = "stack-buffer-overflow";
+        } else {
+          offset = local_beg - untagged_addr;
+          whence = "before";
+          cause = "stack-buffer-overflow";
+        }
+        Decorator d;
+        Printf("%s", d.Error());
+        Printf("Cause: %s\n", cause);
+        Printf("%s", d.Default());
+        Printf("%s", d.Location());
+        StackTracePrinter::GetOrInit()->RenderSourceLocation(
+            &location, local.decl_file, local.decl_line, /* column= */ 0,
+            common_flags()->symbolize_vs_style,
+            common_flags()->strip_path_prefix);
+        Printf(
+            "%p is located %zd bytes %s a %zd-byte local variable %s [%p,%p) "
+            "in %s %s\n",
+            untagged_addr, offset, whence, local_end - local_beg, local.name,
+            local_beg, local_end, local.function_name, location.data());
+        location.clear();
+        Printf("%s\n", d.Default());
+      }
+      frame.Clear();
+    }
+  }
+
+  if (found_local)
+    return;
+
+  // We didn't find any locals. Most likely we don't have symbols, so dump
+  // the information that we have for offline analysis.
+  InternalScopedString frame_desc;
+  Printf("Previously allocated frames:\n");
+  for (uptr i = 0; i < frames; i++) {
+    const uptr *record_addr = &(*sa)[i];
+    uptr record = *record_addr;
+    if (!record)
+      break;
+    uptr pc_mask = (1ULL << 48) - 1;
+    uptr pc = record & pc_mask;
+    frame_desc.AppendF("  record_addr:0x%zx record:0x%zx",
+                       reinterpret_cast<uptr>(record_addr), record);
+    SymbolizedStackHolder symbolized_stack(
+        Symbolizer::GetOrInit()->SymbolizePC(pc));
+    const SymbolizedStack *frame = symbolized_stack.get();
+    if (frame) {
+      StackTracePrinter::GetOrInit()->RenderFrame(
+          &frame_desc, " %F %L", 0, frame->info.address, &frame->info,
+          common_flags()->symbolize_vs_style,
+          common_flags()->strip_path_prefix);
+    }
+    Printf("%s\n", frame_desc.data());
+    frame_desc.clear();
+  }
+}
+
+// Returns true if tag == *tag_ptr, reading tags from short granules if
+// necessary. This may return a false positive if tags 1-15 are used as a
+// regular tag rather than a short granule marker.
+static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
+  if (tag == *tag_ptr)
+    return true;
+  if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
+    return false;
+  uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
+  tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
+  return tag == inline_tag;
+}
+
+// HWASan globals store the size of the global in the descriptor. In cases where
+// we don't have a binary with symbols, we can't grab the size of the global
+// from the debug info - but we might be able to retrieve it from the
+// descriptor. Returns zero if the lookup failed.
+static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
+  // Find the ELF object that this global resides in.
+  Dl_info info;
+  if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
+    return 0;
+  auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
+  auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
+      reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
+
+  // Get the load bias. This is normally the same as the dli_fbase address on
+  // position-independent code, but can be different on non-PIE executables,
+  // binaries using LLD's partitioning feature, or binaries compiled with a
+  // linker script.
+  ElfW(Addr) load_bias = 0;
+  for (const auto &phdr :
+       ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
+    if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
+      continue;
+    load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
+    break;
+  }
+
+  // Walk all globals in this ELF object, looking for the one we're interested
+  // in. Once we find it, we can stop iterating and return the size of the
+  // global we're interested in.
+  for (const hwasan_global &global :
+       HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
+    if (global.addr() <= ptr && ptr < global.addr() + global.size())
+      return global.size();
+
+  return 0;
+}
+
+void ReportStats() {}
+
+constexpr uptr kDumpWidth = 16;
+constexpr uptr kShadowLines = 17;
+constexpr uptr kShadowDumpSize = kShadowLines * kDumpWidth;
+
+constexpr uptr kShortLines = 3;
+constexpr uptr kShortDumpSize = kShortLines * kDumpWidth;
+constexpr uptr kShortDumpOffset = (kShadowLines - kShortLines) / 2 * kDumpWidth;
+
+static uptr GetPrintTagStart(uptr addr) {
+  addr = MemToShadow(addr);
+  addr = RoundDownTo(addr, kDumpWidth);
+  addr -= kDumpWidth * (kShadowLines / 2);
+  return addr;
+}
+
+template <typename PrintTag>
+static void PrintTagInfoAroundAddr(uptr addr, uptr num_rows,
+                                   InternalScopedString &s,
+                                   PrintTag print_tag) {
+  uptr center_row_beg = RoundDownTo(addr, kDumpWidth);
+  uptr beg_row = center_row_beg - kDumpWidth * (num_rows / 2);
+  uptr end_row = center_row_beg + kDumpWidth * ((num_rows + 1) / 2);
+  for (uptr row = beg_row; row < end_row; row += kDumpWidth) {
+    s.Append(row == center_row_beg ? "=>" : "  ");
+    s.AppendF("%p:", (void *)ShadowToMem(row));
+    for (uptr i = 0; i < kDumpWidth; i++) {
+      s.Append(row + i == addr ? "[" : " ");
+      print_tag(s, row + i);
+      s.Append(row + i == addr ? "]" : " ");
+    }
+    s.AppendF("\n");
+  }
+}
+
+template <typename GetTag, typename GetShortTag>
+static void PrintTagsAroundAddr(uptr addr, GetTag get_tag,
+                                GetShortTag get_short_tag) {
+  InternalScopedString s;
+  addr = MemToShadow(addr);
+  s.AppendF(
+      "\nMemory tags around the buggy address (one tag corresponds to %zd "
+      "bytes):\n",
+      kShadowAlignment);
+  PrintTagInfoAroundAddr(addr, kShadowLines, s,
+                         [&](InternalScopedString &s, uptr tag_addr) {
+                           tag_t tag = get_tag(tag_addr);
+                           s.AppendF("%02x", tag);
+                         });
+
+  s.AppendF(
+      "Tags for short granules around the buggy address (one tag corresponds "
+      "to %zd bytes):\n",
+      kShadowAlignment);
+  PrintTagInfoAroundAddr(addr, kShortLines, s,
+                         [&](InternalScopedString &s, uptr tag_addr) {
+                           tag_t tag = get_tag(tag_addr);
+                           if (tag >= 1 && tag <= kShadowAlignment) {
+                             tag_t short_tag = get_short_tag(tag_addr);
+                             s.AppendF("%02x", short_tag);
+                           } else {
+                             s.AppendF("..");
+                           }
+                         });
+  s.AppendF(
+      "See "
+      "https://clang.llvm.org/docs/"
+      "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
+      "description of short granule tags\n");
+  Printf("%s", s.data());
+}
+
+static uptr GetTopPc(const StackTrace *stack) {
+  return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
+                     : 0;
+}
+
+namespace {
+class BaseReport {
+ public:
+  BaseReport(StackTrace *stack, bool fatal, uptr tagged_addr, uptr access_size)
+      : scoped_report(fatal),
+        stack(stack),
+        tagged_addr(tagged_addr),
+        access_size(access_size),
+        untagged_addr(UntagAddr(tagged_addr)),
+        ptr_tag(GetTagFromPointer(tagged_addr)),
+        mismatch_offset(FindMismatchOffset()),
+        heap(CopyHeapChunk()),
+        allocations(CopyAllocations()),
+        candidate(FindBufferOverflowCandidate()),
+        shadow(CopyShadow()) {}
+
+ protected:
+  struct OverflowCandidate {
+    uptr untagged_addr = 0;
+    bool after = false;
+    bool is_close = false;
+
+    struct {
+      uptr begin = 0;
+      uptr end = 0;
+      u32 thread_id = 0;
+      u32 stack_id = 0;
+      bool is_allocated = false;
+    } heap;
+  };
+
+  struct HeapAllocation {
+    HeapAllocationRecord har = {};
+    uptr ring_index = 0;
+    uptr num_matching_addrs = 0;
+    uptr num_matching_addrs_4b = 0;
+    u32 free_thread_id = 0;
+  };
+
+  struct Allocations {
+    ArrayRef<SavedStackAllocations> stack;
+    ArrayRef<HeapAllocation> heap;
+  };
+
+  struct HeapChunk {
+    uptr begin = 0;
+    uptr size = 0;
+    u32 stack_id = 0;
+    bool from_small_heap = false;
+    bool is_allocated = false;
+  };
+
+  struct Shadow {
+    uptr addr = 0;
+    tag_t tags[kShadowDumpSize] = {};
+    tag_t short_tags[kShortDumpSize] = {};
+  };
+
+  sptr FindMismatchOffset() const;
+  Shadow CopyShadow() const;
+  tag_t GetTagCopy(uptr addr) const;
+  tag_t GetShortTagCopy(uptr addr) const;
+  HeapChunk CopyHeapChunk() const;
+  Allocations CopyAllocations();
+  OverflowCandidate FindBufferOverflowCandidate() const;
+  void PrintAddressDescription() const;
+  void PrintHeapOrGlobalCandidate() const;
+  void PrintTags(uptr addr) const;
+
+  SavedStackAllocations stack_allocations_storage[16];
+  HeapAllocation heap_allocations_storage[256];
+
+  const ScopedReport scoped_report;
+  const StackTrace *stack = nullptr;
+  const uptr tagged_addr = 0;
+  const uptr access_size = 0;
+  const uptr untagged_addr = 0;
+  const tag_t ptr_tag = 0;
+  const sptr mismatch_offset = 0;
+
+  const HeapChunk heap;
+  const Allocations allocations;
+  const OverflowCandidate candidate;
+
+  const Shadow shadow;
+};
+
+sptr BaseReport::FindMismatchOffset() const {
+  if (!access_size)
+    return 0;
+  sptr offset =
+      __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
+  CHECK_GE(offset, 0);
+  CHECK_LT(offset, static_cast<sptr>(access_size));
+  tag_t *tag_ptr =
+      reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
+  tag_t mem_tag = *tag_ptr;
+
+  if (mem_tag && mem_tag < kShadowAlignment) {
+    tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
+                                                   ~(kShadowAlignment - 1));
+    // If offset is 0, (untagged_addr + offset) is not aligned to granules.
+    // This is the offset of the leftmost accessed byte within the bad granule.
+    u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
+    tag_t short_tag = granule_ptr[kShadowAlignment - 1];
+    // The first mismatch was a short granule that matched the ptr_tag.
+    if (short_tag == ptr_tag) {
+      // If the access starts after the end of the short granule, then the first
+      // bad byte is the first byte of the access; otherwise it is the first
+      // byte past the end of the short granule
+      if (mem_tag > in_granule_offset) {
+        offset += mem_tag - in_granule_offset;
+      }
+    }
+  }
+  return offset;
+}
+
+BaseReport::Shadow BaseReport::CopyShadow() const {
+  Shadow result;
+  if (!MemIsApp(untagged_addr))
+    return result;
+
+  result.addr = GetPrintTagStart(untagged_addr + mismatch_offset);
+  uptr tag_addr = result.addr;
+  uptr short_end = kShortDumpOffset + ARRAY_SIZE(shadow.short_tags);
+  for (uptr i = 0; i < ARRAY_SIZE(result.tags); ++i, ++tag_addr) {
+    if (!MemIsShadow(tag_addr))
+      continue;
+    result.tags[i] = *reinterpret_cast<tag_t *>(tag_addr);
+    if (i < kShortDumpOffset || i >= short_end)
+      continue;
+    uptr granule_addr = ShadowToMem(tag_addr);
+    if (1 <= result.tags[i] && result.tags[i] <= kShadowAlignment &&
+        IsAccessibleMemoryRange(granule_addr, kShadowAlignment)) {
+      result.short_tags[i - kShortDumpOffset] =
+          *reinterpret_cast<tag_t *>(granule_addr + kShadowAlignment - 1);
+    }
+  }
+  return result;
+}
+
+tag_t BaseReport::GetTagCopy(uptr addr) const {
+  CHECK_GE(addr, shadow.addr);
+  uptr idx = addr - shadow.addr;
+  CHECK_LT(idx, ARRAY_SIZE(shadow.tags));
+  return shadow.tags[idx];
+}
+
+tag_t BaseReport::GetShortTagCopy(uptr addr) const {
+  CHECK_GE(addr, shadow.addr + kShortDumpOffset);
+  uptr idx = addr - shadow.addr - kShortDumpOffset;
+  CHECK_LT(idx, ARRAY_SIZE(shadow.short_tags));
+  return shadow.short_tags[idx];
+}
+
+BaseReport::HeapChunk BaseReport::CopyHeapChunk() const {
+  HeapChunk result = {};
+  if (MemIsShadow(untagged_addr))
+    return result;
+  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
+  result.begin = chunk.Beg();
+  if (result.begin) {
+    result.size = chunk.ActualSize();
+    result.from_small_heap = chunk.FromSmallHeap();
+    result.is_allocated = chunk.IsAllocated();
+    result.stack_id = chunk.GetAllocStackId();
+  }
+  return result;
+}
+
+BaseReport::Allocations BaseReport::CopyAllocations() {
+  if (MemIsShadow(untagged_addr))
+    return {};
+  uptr stack_allocations_count = 0;
+  uptr heap_allocations_count = 0;
+  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
+    if (stack_allocations_count < ARRAY_SIZE(stack_allocations_storage) &&
+        t->AddrIsInStack(untagged_addr)) {
+      stack_allocations_storage[stack_allocations_count++].CopyFrom(t);
+    }
+
+    if (heap_allocations_count < ARRAY_SIZE(heap_allocations_storage)) {
+      // Scan all threads' ring buffers to find if it's a heap-use-after-free.
+      HeapAllocationRecord har;
+      uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
+      if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
+                             &ring_index, &num_matching_addrs,
+                             &num_matching_addrs_4b)) {
+        auto &ha = heap_allocations_storage[heap_allocations_count++];
+        ha.har = har;
+        ha.ring_index = ring_index;
+        ha.num_matching_addrs = num_matching_addrs;
+        ha.num_matching_addrs_4b = num_matching_addrs_4b;
+        ha.free_thread_id = t->unique_id();
+      }
+    }
+  });
+
+  return {{stack_allocations_storage, stack_allocations_count},
+          {heap_allocations_storage, heap_allocations_count}};
+}
+
+BaseReport::OverflowCandidate BaseReport::FindBufferOverflowCandidate() const {
+  OverflowCandidate result = {};
+  if (MemIsShadow(untagged_addr))
+    return result;
+  // Check if this looks like a heap buffer overflow by scanning
+  // the shadow left and right and looking for the first adjacent
+  // object with a different memory tag. If that tag matches ptr_tag,
+  // check the allocator if it has a live chunk there.
+  tag_t *tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
+  tag_t *candidate_tag_ptr = nullptr, *left = tag_ptr, *right = tag_ptr;
+  uptr candidate_distance = 0;
+  for (; candidate_distance < 1000; candidate_distance++) {
+    if (MemIsShadow(reinterpret_cast<uptr>(left)) && TagsEqual(ptr_tag, left)) {
+      candidate_tag_ptr = left;
+      break;
+    }
+    --left;
+    if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
+        TagsEqual(ptr_tag, right)) {
+      candidate_tag_ptr = right;
+      break;
+    }
+    ++right;
+  }
+
+  constexpr auto kCloseCandidateDistance = 1;
+  result.is_close = candidate_distance <= kCloseCandidateDistance;
+
+  result.after = candidate_tag_ptr == left;
+  result.untagged_addr = ShadowToMem(reinterpret_cast<uptr>(candidate_tag_ptr));
+  HwasanChunkView chunk = FindHeapChunkByAddress(result.untagged_addr);
+  if (chunk.IsAllocated()) {
+    result.heap.is_allocated = true;
+    result.heap.begin = chunk.Beg();
+    result.heap.end = chunk.End();
+    result.heap.thread_id = chunk.GetAllocThreadId();
+    result.heap.stack_id = chunk.GetAllocStackId();
+  }
+  return result;
+}
+
+void BaseReport::PrintHeapOrGlobalCandidate() const {
+  Decorator d;
+  if (candidate.heap.is_allocated) {
+    uptr offset;
+    const char *whence;
+    if (candidate.heap.begin <= untagged_addr &&
+        untagged_addr < candidate.heap.end) {
+      offset = untagged_addr - candidate.heap.begin;
+      whence = "inside";
+    } else if (candidate.after) {
+      offset = untagged_addr - candidate.heap.end;
+      whence = "after";
+    } else {
+      offset = candidate.heap.begin - untagged_addr;
+      whence = "before";
+    }
+    Printf("%s", d.Error());
+    Printf("\nCause: heap-buffer-overflow\n");
+    Printf("%s", d.Default());
+    Printf("%s", d.Location());
+    Printf("%p is located %zd bytes %s a %zd-byte region [%p,%p)\n",
+           untagged_addr, offset, whence,
+           candidate.heap.end - candidate.heap.begin, candidate.heap.begin,
+           candidate.heap.end);
+    Printf("%s", d.Allocation());
+    Printf("allocated by thread T%u here:\n", candidate.heap.thread_id);
+    Printf("%s", d.Default());
+    GetStackTraceFromId(candidate.heap.stack_id).Print();
+    return;
+  }
+  // Check whether the address points into a loaded library. If so, this is
+  // most likely a global variable.
+  const char *module_name;
+  uptr module_address;
+  Symbolizer *sym = Symbolizer::GetOrInit();
+  if (sym->GetModuleNameAndOffsetForPC(candidate.untagged_addr, &module_name,
+                                       &module_address)) {
+    Printf("%s", d.Error());
+    Printf("\nCause: global-overflow\n");
+    Printf("%s", d.Default());
+    DataInfo info;
+    Printf("%s", d.Location());
+    if (sym->SymbolizeData(candidate.untagged_addr, &info) && info.start) {
+      Printf(
+          "%p is located %zd bytes %s a %zd-byte global variable "
+          "%s [%p,%p) in %s\n",
+          untagged_addr,
+          candidate.after ? untagged_addr - (info.start + info.size)
+                          : info.start - untagged_addr,
+          candidate.after ? "after" : "before", info.size, info.name,
+          info.start, info.start + info.size, module_name);
+    } else {
+      uptr size = GetGlobalSizeFromDescriptor(candidate.untagged_addr);
+      if (size == 0)
+        // We couldn't find the size of the global from the descriptors.
+        Printf(
+            "%p is located %s a global variable in "
+            "\n    #0 0x%x (%s+0x%x)\n",
+            untagged_addr, candidate.after ? "after" : "before",
+            candidate.untagged_addr, module_name, module_address);
+      else
+        Printf(
+            "%p is located %s a %zd-byte global variable in "
+            "\n    #0 0x%x (%s+0x%x)\n",
+            untagged_addr, candidate.after ? "after" : "before", size,
+            candidate.untagged_addr, module_name, module_address);
+    }
+    Printf("%s", d.Default());
+  }
+}
+
+void BaseReport::PrintAddressDescription() const {
+  Decorator d;
+  int num_descriptions_printed = 0;
+
+  if (MemIsShadow(untagged_addr)) {
+    Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
+           d.Default());
+    return;
+  }
+
+  // Print some very basic information about the address, if it's a heap.
+  if (heap.begin) {
+    Printf(
+        "%s[%p,%p) is a %s %s heap chunk; "
+        "size: %zd offset: %zd\n%s",
+        d.Location(), heap.begin, heap.begin + heap.size,
+        heap.from_small_heap ? "small" : "large",
+        heap.is_allocated ? "allocated" : "unallocated", heap.size,
+        untagged_addr - heap.begin, d.Default());
+  }
+
+  auto announce_by_id = [](u32 thread_id) {
+    hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
+      if (thread_id == t->unique_id())
+        t->Announce();
+    });
+  };
+
+  // Check stack first. If the address is on the stack of a live thread, we
+  // know it cannot be a heap / global overflow.
+  for (const auto &sa : allocations.stack) {
+    Printf("%s", d.Error());
+    Printf("\nCause: stack tag-mismatch\n");
+    Printf("%s", d.Location());
+    Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
+           sa.thread_id());
+    Printf("%s", d.Default());
+    announce_by_id(sa.thread_id());
+    PrintStackAllocations(sa.get(), ptr_tag, untagged_addr);
+    num_descriptions_printed++;
+  }
+
+  if (allocations.stack.empty() && candidate.untagged_addr &&
+      candidate.is_close) {
+    PrintHeapOrGlobalCandidate();
+    num_descriptions_printed++;
+  }
+
+  for (const auto &ha : allocations.heap) {
+    const HeapAllocationRecord har = ha.har;
+
+    Printf("%s", d.Error());
+    Printf("\nCause: use-after-free\n");
+    Printf("%s", d.Location());
+    Printf("%p is located %zd bytes inside a %zd-byte region [%p,%p)\n",
+           untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
+           har.requested_size, UntagAddr(har.tagged_addr),
+           UntagAddr(har.tagged_addr) + har.requested_size);
+    Printf("%s", d.Allocation());
+    Printf("freed by thread T%u here:\n", ha.free_thread_id);
+    Printf("%s", d.Default());
+    GetStackTraceFromId(har.free_context_id).Print();
+
+    Printf("%s", d.Allocation());
+    Printf("previously allocated by thread T%u here:\n", har.alloc_thread_id);
+    Printf("%s", d.Default());
+    GetStackTraceFromId(har.alloc_context_id).Print();
+
+    // Print a developer note: the index of this heap object
+    // in the thread's deallocation ring buffer.
+    Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ha.ring_index + 1,
+           flags()->heap_history_size);
+    Printf("hwasan_dev_note_num_matching_addrs: %zd\n", ha.num_matching_addrs);
+    Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
+           ha.num_matching_addrs_4b);
+
+    announce_by_id(ha.free_thread_id);
+    // TODO: announce_by_id(har.alloc_thread_id);
+    num_descriptions_printed++;
+  }
+
+  if (candidate.untagged_addr && num_descriptions_printed == 0) {
+    PrintHeapOrGlobalCandidate();
+    num_descriptions_printed++;
+  }
+
+  // Print the remaining threads, as an extra information, 1 line per thread.
+  if (flags()->print_live_threads_info) {
+    Printf("\n");
+    hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
+  }
+
+  if (!num_descriptions_printed)
+    // We exhausted our possibilities. Bail out.
+    Printf("HWAddressSanitizer can not describe address in more detail.\n");
+  if (num_descriptions_printed > 1) {
+    Printf(
+        "There are %d potential causes, printed above in order "
+        "of likeliness.\n",
+        num_descriptions_printed);
+  }
+}
+
+void BaseReport::PrintTags(uptr addr) const {
+  if (shadow.addr) {
+    PrintTagsAroundAddr(
+        addr, [&](uptr addr) { return GetTagCopy(addr); },
+        [&](uptr addr) { return GetShortTagCopy(addr); });
+  }
+}
+
+class InvalidFreeReport : public BaseReport {
+ public:
+  InvalidFreeReport(StackTrace *stack, uptr tagged_addr)
+      : BaseReport(stack, flags()->halt_on_error, tagged_addr, 0) {}
+  ~InvalidFreeReport();
+
+ private:
+};
+
+InvalidFreeReport::~InvalidFreeReport() {
+  Decorator d;
+  Printf("%s", d.Error());
+  uptr pc = GetTopPc(stack);
+  const char *bug_type = "invalid-free";
+  const Thread *thread = GetCurrentThread();
+  if (thread) {
+    Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
+           SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
+  } else {
+    Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
+           SanitizerToolName, bug_type, untagged_addr, pc);
+  }
+  Printf("%s", d.Access());
+  if (shadow.addr) {
+    Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag,
+           GetTagCopy(MemToShadow(untagged_addr)));
+  }
+  Printf("%s", d.Default());
+
+  stack->Print();
+
+  PrintAddressDescription();
+  PrintTags(untagged_addr);
+  MaybePrintAndroidHelpUrl();
+  ReportErrorSummary(bug_type, stack);
+}
+
+class TailOverwrittenReport : public BaseReport {
+ public:
+  explicit TailOverwrittenReport(StackTrace *stack, uptr tagged_addr,
+                                 uptr orig_size, const u8 *expected)
+      : BaseReport(stack, flags()->halt_on_error, tagged_addr, 0),
+        orig_size(orig_size),
+        tail_size(kShadowAlignment - (orig_size % kShadowAlignment)) {
+    CHECK_GT(tail_size, 0U);
+    CHECK_LT(tail_size, kShadowAlignment);
+    internal_memcpy(tail_copy,
+                    reinterpret_cast<u8 *>(untagged_addr + orig_size),
+                    tail_size);
+    internal_memcpy(actual_expected, expected, tail_size);
+    // Short granule is stashed in the last byte of the magic string. To avoid
+    // confusion, make the expected magic string contain the short granule tag.
+    if (orig_size % kShadowAlignment != 0)
+      actual_expected[tail_size - 1] = ptr_tag;
+  }
+  ~TailOverwrittenReport();
+
+ private:
+  const uptr orig_size = 0;
+  const uptr tail_size = 0;
+  u8 actual_expected[kShadowAlignment] = {};
+  u8 tail_copy[kShadowAlignment] = {};
+};
+
+TailOverwrittenReport::~TailOverwrittenReport() {
+  Decorator d;
+  Printf("%s", d.Error());
+  const char *bug_type = "allocation-tail-overwritten";
+  Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
+         bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
+  Printf("\n%s", d.Default());
+  Printf(
+      "Stack of invalid access unknown. Issue detected at deallocation "
+      "time.\n");
+  Printf("%s", d.Allocation());
+  Printf("deallocated here:\n");
+  Printf("%s", d.Default());
+  stack->Print();
+  if (heap.begin) {
+    Printf("%s", d.Allocation());
+    Printf("allocated here:\n");
+    Printf("%s", d.Default());
+    GetStackTraceFromId(heap.stack_id).Print();
+  }
+
+  InternalScopedString s;
+  u8 *tail = tail_copy;
+  s.AppendF("Tail contains: ");
+  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
+  for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", tail[i]);
+  s.AppendF("\n");
+  s.AppendF("Expected:      ");
+  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF(".. ");
+  for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", actual_expected[i]);
+  s.AppendF("\n");
+  s.AppendF("               ");
+  for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.AppendF("   ");
+  for (uptr i = 0; i < tail_size; i++)
+    s.AppendF("%s ", actual_expected[i] != tail[i] ? "^^" : "  ");
+
+  s.AppendF(
+      "\nThis error occurs when a buffer overflow overwrites memory\n"
+      "after a heap object, but within the %zd-byte granule, e.g.\n"
+      "   char *x = new char[20];\n"
+      "   x[25] = 42;\n"
+      "%s does not detect such bugs in uninstrumented code at the time of "
+      "write,"
+      "\nbut can detect them at the time of free/delete.\n"
+      "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
+      kShadowAlignment, SanitizerToolName);
+  Printf("%s", s.data());
+  GetCurrentThread()->Announce();
+  PrintTags(untagged_addr);
+  MaybePrintAndroidHelpUrl();
+  ReportErrorSummary(bug_type, stack);
+}
+
+class TagMismatchReport : public BaseReport {
+ public:
+  explicit TagMismatchReport(StackTrace *stack, uptr tagged_addr,
+                             uptr access_size, bool is_store, bool fatal,
+                             uptr *registers_frame)
+      : BaseReport(stack, fatal, tagged_addr, access_size),
+        is_store(is_store),
+        registers_frame(registers_frame) {}
+  ~TagMismatchReport();
+
+ private:
+  const bool is_store;
+  const uptr *registers_frame;
+};
+
+TagMismatchReport::~TagMismatchReport() {
+  Decorator d;
+  // TODO: when possible, try to print heap-use-after-free, etc.
+  const char *bug_type = "tag-mismatch";
+  uptr pc = GetTopPc(stack);
+  Printf("%s", d.Error());
+  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
+         untagged_addr, pc);
+
+  Thread *t = GetCurrentThread();
+
+  tag_t mem_tag = GetTagCopy(MemToShadow(untagged_addr + mismatch_offset));
+
+  Printf("%s", d.Access());
+  if (mem_tag && mem_tag < kShadowAlignment) {
+    tag_t short_tag =
+        GetShortTagCopy(MemToShadow(untagged_addr + mismatch_offset));
+    Printf(
+        "%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
+        is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
+        mem_tag, short_tag, t->unique_id());
+  } else {
+    Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
+           is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
+           mem_tag, t->unique_id());
+  }
+  if (mismatch_offset)
+    Printf("Invalid access starting at offset %zu\n", mismatch_offset);
+  Printf("%s", d.Default());
+
+  stack->Print();
+
+  PrintAddressDescription();
+  t->Announce();
+
+  PrintTags(untagged_addr + mismatch_offset);
+
+  if (registers_frame)
+    ReportRegisters(registers_frame, pc);
+
+  MaybePrintAndroidHelpUrl();
+  ReportErrorSummary(bug_type, stack);
+}
+}  // namespace
+
+void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
+  InvalidFreeReport R(stack, tagged_addr);
+}
+
+void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
+                           const u8 *expected) {
+  TailOverwrittenReport R(stack, tagged_addr, orig_size, expected);
+}
+
+void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
+                       bool is_store, bool fatal, uptr *registers_frame) {
+  TagMismatchReport R(stack, tagged_addr, access_size, is_store, fatal,
+                      registers_frame);
+}
+
+// See the frame breakdown defined in __hwasan_tag_mismatch (from
+// hwasan_tag_mismatch_{aarch64,riscv64}.S).
+void ReportRegisters(const uptr *frame, uptr pc) {
+  Printf("\nRegisters where the failure occurred (pc %p):\n", pc);
+
+  // We explicitly print a single line (4 registers/line) each iteration to
+  // reduce the amount of logcat error messages printed. Each Printf() will
+  // result in a new logcat line, irrespective of whether a newline is present,
+  // and so we wish to reduce the number of Printf() calls we have to make.
+#if defined(__aarch64__)
+  Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
+       frame[0], frame[1], frame[2], frame[3]);
+#elif SANITIZER_RISCV64
+  Printf("    sp  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
+         reinterpret_cast<const u8 *>(frame) + 256, frame[1], frame[2],
+         frame[3]);
+#endif
+  Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
+       frame[4], frame[5], frame[6], frame[7]);
+  Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
+       frame[8], frame[9], frame[10], frame[11]);
+  Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
+       frame[12], frame[13], frame[14], frame[15]);
+  Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
+       frame[16], frame[17], frame[18], frame[19]);
+  Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
+       frame[20], frame[21], frame[22], frame[23]);
+  Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
+       frame[24], frame[25], frame[26], frame[27]);
+  // hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
+  // passes it to this function.
+#if defined(__aarch64__)
+  Printf("    x28 %016llx  x29 %016llx  x30 %016llx   sp %016llx\n", frame[28],
+         frame[29], frame[30], reinterpret_cast<const u8 *>(frame) + 256);
+#elif SANITIZER_RISCV64
+  Printf("    x28 %016llx  x29 %016llx  x30 %016llx  x31 %016llx\n", frame[28],
+         frame[29], frame[30], frame[31]);
+#else
+#endif
+}
+
+}  // namespace __hwasan
+
+void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
+  __hwasan::ScopedReport::SetErrorReportCallback(callback);
+}



More information about the llvm-commits mailing list