[llvm] [libc] [reland][libc][NFC] Refactor FPBits and remove LongDoubleBits specialization (PR #78465)

via llvm-commits llvm-commits at lists.llvm.org
Wed Jan 17 08:31:39 PST 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-libc

Author: Guillaume Chatelet (gchatelet)

<details>
<summary>Changes</summary>

- [reland][libc][NFC] Refactor FPBits and remove LongDoubleBits specialization (#<!-- -->78447)
- Turn 'as' static function into a 'to_storage_type' member function.


---

Patch is 46.96 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/78465.diff


9 Files Affected:

- (modified) libc/src/__support/FPUtil/FPBits.h (+392-95) 
- (modified) libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h (+1-1) 
- (removed) libc/src/__support/FPUtil/x86_64/LongDoubleBits.h (-179) 
- (modified) libc/src/__support/FPUtil/x86_64/NextAfterLongDouble.h (+4-4) 
- (modified) libc/src/__support/UInt.h (+1-1) 
- (modified) libc/test/src/__support/FPUtil/fpbits_test.cpp (+213) 
- (modified) libc/test/utils/FPUtil/x86_long_double_test.cpp (+6-6) 
- (modified) utils/bazel/llvm-project-overlay/libc/BUILD.bazel (-1) 
- (added) utils/bazel/llvm-project-overlay/libc/test/src/__support/FPUtil/BUILD.bazel (+42) 


``````````diff
diff --git a/libc/src/__support/FPUtil/FPBits.h b/libc/src/__support/FPUtil/FPBits.h
index 93e32ba7cc9415..4309a535abd079 100644
--- a/libc/src/__support/FPUtil/FPBits.h
+++ b/libc/src/__support/FPUtil/FPBits.h
@@ -31,6 +31,40 @@ enum class FPType {
   X86_Binary80,
 };
 
+// The classes hierarchy is as follows:
+//
+//             ┌───────────────────┐
+//             │ FPLayout<FPType>  │
+//             └─────────▲─────────┘
+//                       │
+//             ┌─────────┴─────────┐
+//             │ FPRepBase<FPType> │
+//             └─────────▲─────────┘
+//                       │
+//          ┌────────────┴─────────────┐
+//          │                          │
+// ┌────────┴──────┐     ┌─────────────┴──────────────┐
+// │ FPRep<FPType> │     │ FPRep<FPType::X86_Binary80 │
+// └────────▲──────┘     └─────────────▲──────────────┘
+//          │                          │
+//          └────────────┬─────────────┘
+//                       │
+//                 ┌─────┴─────┐
+//                 │ FPBits<T> │
+//                 └───────────┘
+//
+// - 'FPLayout' defines only a few constants, namely the 'StorageType' and the
+// length of the sign, the exponent and significand parts.
+// - 'FPRepBase' builds more constants on top of those from 'FPLayout' like
+// exponent bias, shifts and masks. It also defines tools to assemble or test
+// these parts.
+// - 'FPRep' defines functions to interact with the floating point
+// representation. The default implementation is the one for 'IEEE754', a
+// specialization is provided for X86 Extended Precision that has a different
+// encoding.
+// - 'FPBits' is templated on the platform floating point types. Contrary to
+// 'FPRep' that is platform agnostic 'FPBits' is architecture dependent.
+
 namespace internal {
 
 // Defines the layout (sign, exponent, significand) of a floating point type in
@@ -132,11 +166,127 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   static_assert((SIG_MASK & EXP_MASK & SIGN_MASK) == 0, "masks disjoint");
   static_assert((SIG_MASK | EXP_MASK | SIGN_MASK) == FP_MASK, "masks cover");
 
-private:
+protected:
   LIBC_INLINE static constexpr StorageType bit_at(int position) {
     return StorageType(1) << position;
   }
 
+  // A stongly typed integer that prevents mixing and matching integers with
+  // different semantics.
+  template <typename T> struct TypedInt {
+    using value_type = T;
+    LIBC_INLINE constexpr explicit TypedInt(T value) : value(value) {}
+    LIBC_INLINE constexpr TypedInt(const TypedInt &value) = default;
+
+    LIBC_INLINE constexpr explicit operator T() const { return value; }
+
+    LIBC_INLINE constexpr StorageType to_storage_type() const {
+      return StorageType(value);
+    }
+
+  private:
+    T value;
+  };
+
+  // An opaque type to store a floating point exponent.
+  // We define special values but it is valid to create arbitrary values as long
+  // as they are in the range [MIN, MAX].
+  struct Exponent : public TypedInt<int32_t> {
+    using UP = TypedInt<int32_t>;
+    using UP::UP;
+    LIBC_INLINE
+    static constexpr auto MIN() { return Exponent(1 - EXP_BIAS); }
+    LIBC_INLINE static constexpr auto ZERO() { return Exponent(0); }
+    LIBC_INLINE static constexpr auto MAX() { return Exponent(EXP_BIAS); }
+  };
+
+  // An opaque type to store a floating point biased exponent.
+  // We define special values but it is valid to create arbitrary values as long
+  // as they are in the range [BITS_ALL_ZEROES, BITS_ALL_ONES].
+  // Values greater than BITS_ALL_ONES are truncated.
+  struct BiasedExponent : public TypedInt<uint32_t> {
+    using UP = TypedInt<uint32_t>;
+    using UP::UP;
+
+    LIBC_INLINE constexpr BiasedExponent(Exponent exp)
+        : UP(static_cast<int32_t>(exp) + EXP_BIAS) {}
+    // The exponent value for denormal numbers.
+    LIBC_INLINE static constexpr auto BITS_ALL_ZEROES() {
+      return BiasedExponent(uint32_t(0));
+    }
+    // The exponent value for infinity.
+    LIBC_INLINE static constexpr auto BITS_ALL_ONES() {
+      return BiasedExponent(uint32_t(2 * EXP_BIAS + 1));
+    }
+  };
+
+  // An opaque type to store a floating point significand.
+  // We define special values but it is valid to create arbitrary values as long
+  // as they are in the range [BITS_ALL_ZEROES, BITS_ALL_ONES].
+  // Note that the semantics of the Significand are implementation dependent.
+  // Values greater than BITS_ALL_ONES are truncated.
+  struct Significand : public TypedInt<StorageType> {
+    using UP = TypedInt<StorageType>;
+    using UP::UP;
+
+    LIBC_INLINE friend constexpr Significand operator|(const Significand a,
+                                                       const Significand b) {
+      return Significand(
+          StorageType(a.to_storage_type() | b.to_storage_type()));
+    }
+    LIBC_INLINE friend constexpr Significand operator^(const Significand a,
+                                                       const Significand b) {
+      return Significand(
+          StorageType(a.to_storage_type() ^ b.to_storage_type()));
+    }
+    LIBC_INLINE friend constexpr Significand operator>>(const Significand a,
+                                                        int shift) {
+      return Significand(StorageType(a.to_storage_type() >> shift));
+    }
+
+    LIBC_INLINE static constexpr auto ZERO() {
+      return Significand(StorageType(0));
+    }
+    LIBC_INLINE static constexpr auto LSB() {
+      return Significand(StorageType(1));
+    }
+    LIBC_INLINE static constexpr auto MSB() {
+      return Significand(StorageType(bit_at(SIG_LEN - 1)));
+    }
+    // Aliases
+    LIBC_INLINE static constexpr auto BITS_ALL_ZEROES() { return ZERO(); }
+    LIBC_INLINE static constexpr auto BITS_ALL_ONES() {
+      return Significand(SIG_MASK);
+    }
+  };
+
+  LIBC_INLINE static constexpr StorageType encode(BiasedExponent exp) {
+    return (exp.to_storage_type() << SIG_LEN) & EXP_MASK;
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(Significand value) {
+    return value.to_storage_type() & SIG_MASK;
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(BiasedExponent exp,
+                                                  Significand sig) {
+    return encode(exp) | encode(sig);
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(bool sign, BiasedExponent exp,
+                                                  Significand sig) {
+    if (sign)
+      return SIGN_MASK | encode(exp, sig);
+    return encode(exp, sig);
+  }
+
+  LIBC_INLINE constexpr StorageType exp_bits() const { return bits & EXP_MASK; }
+  LIBC_INLINE constexpr StorageType sig_bits() const { return bits & SIG_MASK; }
+  LIBC_INLINE constexpr StorageType exp_sig_bits() const {
+    return bits & EXP_SIG_MASK;
+  }
+
+private:
   // Merge bits from 'a' and 'b' values according to 'mask'.
   // Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when
   // corresponding bits are ones.
@@ -155,20 +305,6 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   LIBC_INLINE_VAR static constexpr StorageType FRACTION_MASK =
       mask_trailing_ones<StorageType, FRACTION_LEN>();
 
-  // If a number x is a NAN, then it is a quiet NAN if:
-  //   QUIET_NAN_MASK & bits(x) != 0
-  LIBC_INLINE_VAR static constexpr StorageType QUIET_NAN_MASK =
-      fp_type == FPType::X86_Binary80
-          ? bit_at(SIG_LEN - 1) | bit_at(SIG_LEN - 2) // 0b1100...
-          : bit_at(SIG_LEN - 1);                      // 0b1000...
-
-  // Mask to generate a default signaling NAN. Any NAN that is not
-  // a quiet NAN is considered a signaling NAN.
-  LIBC_INLINE_VAR static constexpr StorageType DEFAULT_SIGNALING_NAN =
-      fp_type == FPType::X86_Binary80
-          ? bit_at(SIG_LEN - 1) | bit_at(SIG_LEN - 3) // 0b1010...
-          : bit_at(SIG_LEN - 2);                      // 0b0100...
-
   // The floating point number representation as an unsigned integer.
   StorageType bits = 0;
 
@@ -220,6 +356,9 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   }
 
   LIBC_INLINE constexpr StorageType uintval() const { return bits & FP_MASK; }
+  LIBC_INLINE constexpr void set_uintval(StorageType value) {
+    bits = (value & FP_MASK);
+  }
 
   LIBC_INLINE constexpr bool is_zero() const {
     return (bits & EXP_SIG_MASK) == 0;
@@ -241,6 +380,214 @@ template <FPType fp_type> struct FPRep : public FPRepBase<fp_type> {
   using UP::FRACTION_LEN;
   using UP::FRACTION_MASK;
   using UP::MANTISSA_PRECISION;
+
+protected:
+  using typename UP::BiasedExponent;
+  using typename UP::Exponent;
+  using typename UP::Significand;
+  using UP::encode;
+  using UP::exp_bits;
+  using UP::exp_sig_bits;
+  using UP::sig_bits;
+
+public:
+  LIBC_INLINE constexpr bool is_nan() const {
+    return exp_sig_bits() >
+           encode(BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+  }
+  LIBC_INLINE constexpr bool is_quiet_nan() const {
+    return exp_sig_bits() >=
+           encode(BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+  }
+  LIBC_INLINE constexpr bool is_signaling_nan() const {
+    return is_nan() && !is_quiet_nan();
+  }
+  LIBC_INLINE constexpr bool is_inf() const {
+    return exp_sig_bits() ==
+           encode(BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+  }
+  LIBC_INLINE constexpr bool is_zero() const {
+    return exp_sig_bits() ==
+           encode(BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+  }
+  LIBC_INLINE constexpr bool is_finite() const {
+    return exp_bits() != encode(BiasedExponent::BITS_ALL_ONES());
+  }
+  LIBC_INLINE
+  constexpr bool is_subnormal() const {
+    return exp_bits() == encode(BiasedExponent::BITS_ALL_ZEROES());
+  }
+  LIBC_INLINE constexpr bool is_normal() const {
+    return is_finite() && !is_subnormal();
+  }
+
+  LIBC_INLINE static constexpr StorageType zero(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+  }
+  LIBC_INLINE static constexpr StorageType one(bool sign = false) {
+    return encode(sign, Exponent::ZERO(), Significand::ZERO());
+  }
+  LIBC_INLINE static constexpr StorageType min_subnormal(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::LSB());
+  }
+  LIBC_INLINE static constexpr StorageType max_subnormal(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(),
+                  Significand::BITS_ALL_ONES());
+  }
+  LIBC_INLINE static constexpr StorageType min_normal(bool sign = false) {
+    return encode(sign, Exponent::MIN(), Significand::ZERO());
+  }
+  LIBC_INLINE static constexpr StorageType max_normal(bool sign = false) {
+    return encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES());
+  }
+  LIBC_INLINE static constexpr StorageType inf(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+  }
+  LIBC_INLINE static constexpr StorageType build_nan(bool sign = false,
+                                                     StorageType v = 0) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(),
+                  (v ? Significand(v) : (Significand::MSB() >> 1)));
+  }
+  LIBC_INLINE static constexpr StorageType build_quiet_nan(bool sign = false,
+                                                           StorageType v = 0) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(),
+                  Significand::MSB() | Significand(v));
+  }
+
+  // The function return mantissa with the implicit bit set iff the current
+  // value is a valid normal number.
+  LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
+    if (is_subnormal())
+      return sig_bits();
+    return (StorageType(1) << UP::SIG_LEN) | sig_bits();
+  }
+};
+
+// Specialization for the X86 Extended Precision type.
+template <>
+struct FPRep<FPType::X86_Binary80> : public FPRepBase<FPType::X86_Binary80> {
+  using UP = FPRepBase<FPType::X86_Binary80>;
+  using typename UP::StorageType;
+  using UP::FRACTION_LEN;
+  using UP::FRACTION_MASK;
+  using UP::MANTISSA_PRECISION;
+
+protected:
+  using typename UP::BiasedExponent;
+  using typename UP::Significand;
+  using UP::encode;
+
+public:
+  // The x86 80 bit float represents the leading digit of the mantissa
+  // explicitly. This is the mask for that bit.
+  static constexpr StorageType EXPLICIT_BIT_MASK = StorageType(1)
+                                                   << FRACTION_LEN;
+  // The X80 significand is made of an explicit bit and the fractional part.
+  static_assert((EXPLICIT_BIT_MASK & FRACTION_MASK) == 0,
+                "the explicit bit and the fractional part should not overlap");
+  static_assert((EXPLICIT_BIT_MASK | FRACTION_MASK) == SIG_MASK,
+                "the explicit bit and the fractional part should cover the "
+                "whole significand");
+
+  LIBC_INLINE constexpr bool is_nan() const {
+    // Most encoding forms from the table found in
+    // https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format
+    // are interpreted as NaN.
+    // More precisely :
+    // - Pseudo-Infinity
+    // - Pseudo Not a Number
+    // - Signalling Not a Number
+    // - Floating-point Indefinite
+    // - Quiet Not a Number
+    // - Unnormal
+    // This can be reduced to the following logic:
+    if (exp_bits() == encode(BiasedExponent::BITS_ALL_ONES()))
+      return !is_inf();
+    if (exp_bits() != encode(BiasedExponent::BITS_ALL_ZEROES()))
+      return (sig_bits() & encode(Significand::MSB())) == 0;
+    return false;
+  }
+  LIBC_INLINE constexpr bool is_quiet_nan() const {
+    return exp_sig_bits() >=
+           encode(BiasedExponent::BITS_ALL_ONES(),
+                  Significand::MSB() | (Significand::MSB() >> 1));
+  }
+  LIBC_INLINE constexpr bool is_signaling_nan() const {
+    return is_nan() && !is_quiet_nan();
+  }
+  LIBC_INLINE constexpr bool is_inf() const {
+    return exp_sig_bits() ==
+           encode(BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+  }
+  LIBC_INLINE constexpr bool is_zero() const {
+    return exp_sig_bits() ==
+           encode(BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+  }
+  LIBC_INLINE constexpr bool is_finite() const {
+    return !is_inf() && !is_nan();
+  }
+  LIBC_INLINE
+  constexpr bool is_subnormal() const {
+    return exp_sig_bits() >
+           encode(BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+  }
+  LIBC_INLINE constexpr bool is_normal() const {
+    const auto exp = exp_bits();
+    if (exp == encode(BiasedExponent::BITS_ALL_ZEROES()) ||
+        exp == encode(BiasedExponent::BITS_ALL_ONES()))
+      return false;
+    return get_implicit_bit();
+  }
+
+  LIBC_INLINE static constexpr StorageType zero(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+  }
+  LIBC_INLINE static constexpr StorageType one(bool sign = false) {
+    return encode(sign, Exponent::ZERO(), Significand::MSB());
+  }
+  LIBC_INLINE static constexpr StorageType min_subnormal(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::LSB());
+  }
+  LIBC_INLINE static constexpr StorageType max_subnormal(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ZEROES(),
+                  Significand::BITS_ALL_ONES() ^ Significand::MSB());
+  }
+  LIBC_INLINE static constexpr StorageType min_normal(bool sign = false) {
+    return encode(sign, Exponent::MIN(), Significand::MSB());
+  }
+  LIBC_INLINE static constexpr StorageType max_normal(bool sign = false) {
+    return encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES());
+  }
+  LIBC_INLINE static constexpr StorageType inf(bool sign = false) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+  }
+  LIBC_INLINE static constexpr StorageType build_nan(bool sign = false,
+                                                     StorageType v = 0) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(),
+                  Significand::MSB() |
+                      (v ? Significand(v) : (Significand::MSB() >> 2)));
+  }
+  LIBC_INLINE static constexpr StorageType build_quiet_nan(bool sign = false,
+                                                           StorageType v = 0) {
+    return encode(sign, BiasedExponent::BITS_ALL_ONES(),
+                  Significand::MSB() | (Significand::MSB() >> 1) |
+                      Significand(v));
+  }
+
+  LIBC_INLINE constexpr StorageType get_explicit_mantissa() const {
+    return sig_bits();
+  }
+
+  // The following functions are specific to FPRep<FPType::X86_Binary80>.
+  // TODO: Remove if possible.
+  LIBC_INLINE constexpr bool get_implicit_bit() const {
+    return static_cast<bool>(bits & EXPLICIT_BIT_MASK);
+  }
+
+  LIBC_INLINE constexpr void set_implicit_bit(bool implicitVal) {
+    if (get_implicit_bit() != implicitVal)
+      bits ^= EXPLICIT_BIT_MASK;
+  }
 };
 
 } // namespace internal
@@ -276,47 +623,29 @@ template <typename T> LIBC_INLINE static constexpr FPType get_fp_type() {
     static_assert(cpp::always_false<UnqualT>, "Unsupported type");
 }
 
-// A generic class to represent single precision, double precision, and quad
-// precision IEEE 754 floating point formats.
-// On most platforms, the 'float' type corresponds to single precision floating
-// point numbers, the 'double' type corresponds to double precision floating
-// point numers, and the 'long double' type corresponds to the quad precision
-// floating numbers. On x86 platforms however, the 'long double' type maps to
-// an x87 floating point format. This format is an IEEE 754 extension format.
-// It is handled as an explicit specialization of this class.
+// A generic class to represent floating point formats.
+// On most platforms, the 'float' type corresponds to single precision
+// floating point numbers, the 'double' type corresponds to double precision
+// floating point numers, and the 'long double' type corresponds to the quad
+// precision floating numbers. On x86 platforms however, the 'long double'
+// type maps to an x87 floating point format.
 template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
   static_assert(cpp::is_floating_point_v<T>,
                 "FPBits instantiated with invalid type.");
   using UP = internal::FPRep<get_fp_type<T>()>;
-
-private:
-  using UP::EXP_SIG_MASK;
-  using UP::QUIET_NAN_MASK;
-  using UP::SIG_LEN;
-  using UP::SIG_MASK;
-
-public:
+  using Rep = UP;
   using StorageType = typename UP::StorageType;
+
   using UP::bits;
-  using UP::EXP_BIAS;
   using UP::EXP_LEN;
-  using UP::EXP_MASK;
-  using UP::EXP_MASK_SHIFT;
-  using UP::FRACTION_LEN;
-  using UP::FRACTION_MASK;
-  using UP::SIGN_MASK;
-  using UP::TOTAL_LEN;
   using UP::UP;
 
-  using UP::get_biased_exponent;
-  using UP::is_zero;
   // Constants.
   static constexpr int MAX_BIASED_EXPONENT = (1 << EXP_LEN) - 1;
-  static constexpr StorageType MIN_SUBNORMAL = StorageType(1);
-  static constexpr StorageType MAX_SUBNORMAL = FRACTION_MASK;
-  static constexpr StorageType MIN_NORMAL = (StorageType(1) << FRACTION_LEN);
-  static constexpr StorageType MAX_NORMAL =
-      (StorageType(MAX_BIASED_EXPONENT - 1) << SIG_LEN) | SIG_MASK;
+  static constexpr StorageType MIN_NORMAL = UP::min_normal(false);
+  static constexpr StorageType MAX_NORMAL = UP::max_normal(false);
+  static constexpr StorageType MIN_SUBNORMAL = UP::min_subnormal(false);
+  static constexpr StorageType MAX_SUBNORMAL = UP::max_subnormal(false);
 
   // Constructors.
   LIBC_INLINE constexpr FPBits() = default;
@@ -338,88 +667,58 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
 
   LIBC_INLINE constexpr explicit operator T() const { return get_val(); }
 
-  // The function return mantissa with the implicit bit set iff the current
-  // value is a valid normal number.
-  LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
-    return ((get_biased_exponent() > 0 && !is_inf_or_nan())
-                ? (FRACTION_MASK + 1)
-                : 0) |
-           (FRACTION_MASK & bits);
-  }
-
-  LIBC_INLINE constexpr bool is_inf() const {
-    return (bits & EXP_SIG_MASK) == EXP_MASK;
-  }
-
-  LIBC_INLINE constexpr bool is_nan() const {
-    return (bits & EXP_SIG_MASK) > EXP_MASK;
-  }
-
-  LIBC_INLINE constexpr bool is_quiet_nan() const {
-    return...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/78465


More information about the llvm-commits mailing list