[llvm] [NFC][X86] Clang-format X86BaseInfo.h (PR #73274)
Shengchen Kan via llvm-commits
llvm-commits at lists.llvm.org
Thu Nov 23 18:58:54 PST 2023
https://github.com/KanRobert updated https://github.com/llvm/llvm-project/pull/73274
>From 9641936969144e420bbabf4d0ab210a6d2db78b8 Mon Sep 17 00:00:00 2001
From: Shengchen Kan <shengchen.kan at intel.com>
Date: Fri, 24 Nov 2023 10:12:35 +0800
Subject: [PATCH 1/3] [NFC][X86] Clang-format X86BaseInfo.h
---
.../lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 2660 +++++++++--------
1 file changed, 1412 insertions(+), 1248 deletions(-)
diff --git a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index c1b98d4a4740a5f..ece8cd9cc78047a 100644
--- a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -24,1297 +24,1461 @@
namespace llvm {
namespace X86 {
- // Enums for memory operand decoding. Each memory operand is represented with
- // a 5 operand sequence in the form:
- // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
- // These enums help decode this.
- enum {
- AddrBaseReg = 0,
- AddrScaleAmt = 1,
- AddrIndexReg = 2,
- AddrDisp = 3,
-
- /// AddrSegmentReg - The operand # of the segment in the memory operand.
- AddrSegmentReg = 4,
-
- /// AddrNumOperands - Total number of operands in a memory reference.
- AddrNumOperands = 5
- };
-
- /// AVX512 static rounding constants. These need to match the values in
- /// avx512fintrin.h.
- enum STATIC_ROUNDING {
- TO_NEAREST_INT = 0,
- TO_NEG_INF = 1,
- TO_POS_INF = 2,
- TO_ZERO = 3,
- CUR_DIRECTION = 4,
- NO_EXC = 8
- };
-
- /// The constants to describe instr prefixes if there are
- enum IPREFIXES {
- IP_NO_PREFIX = 0,
- IP_HAS_OP_SIZE = 1U << 0,
- IP_HAS_AD_SIZE = 1U << 1,
- IP_HAS_REPEAT_NE = 1U << 2,
- IP_HAS_REPEAT = 1U << 3,
- IP_HAS_LOCK = 1U << 4,
- IP_HAS_NOTRACK = 1U << 5,
- IP_USE_VEX = 1U << 6,
- IP_USE_VEX2 = 1U << 7,
- IP_USE_VEX3 = 1U << 8,
- IP_USE_EVEX = 1U << 9,
- IP_USE_DISP8 = 1U << 10,
- IP_USE_DISP32 = 1U << 11,
- };
-
- enum OperandType : unsigned {
- /// AVX512 embedded rounding control. This should only have values 0-3.
- OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
- OPERAND_COND_CODE,
- };
-
- // X86 specific condition code. These correspond to X86_*_COND in
- // X86InstrInfo.td. They must be kept in synch.
- enum CondCode {
- COND_O = 0,
- COND_NO = 1,
- COND_B = 2,
- COND_AE = 3,
- COND_E = 4,
- COND_NE = 5,
- COND_BE = 6,
- COND_A = 7,
- COND_S = 8,
- COND_NS = 9,
- COND_P = 10,
- COND_NP = 11,
- COND_L = 12,
- COND_GE = 13,
- COND_LE = 14,
- COND_G = 15,
- LAST_VALID_COND = COND_G,
-
- // Artificial condition codes. These are used by analyzeBranch
- // to indicate a block terminated with two conditional branches that together
- // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
- // which can't be represented on x86 with a single condition. These
- // are never used in MachineInstrs and are inverses of one another.
- COND_NE_OR_P,
- COND_E_AND_NP,
-
- COND_INVALID
- };
-
- // The classification for the first instruction in macro fusion.
- enum class FirstMacroFusionInstKind {
- // TEST
- Test,
- // CMP
- Cmp,
- // AND
- And,
- // FIXME: Zen 3 support branch fusion for OR/XOR.
- // ADD, SUB
- AddSub,
- // INC, DEC
- IncDec,
- // Not valid as a first macro fusion instruction
- Invalid
- };
-
- enum class SecondMacroFusionInstKind {
- // JA, JB and variants.
- AB,
- // JE, JL, JG and variants.
- ELG,
- // JS, JP, JO and variants
- SPO,
- // Not a fusible jump.
- Invalid,
- };
-
- /// \returns the type of the first instruction in macro-fusion.
- inline FirstMacroFusionInstKind
- classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
- switch (Opcode) {
- default:
- return FirstMacroFusionInstKind::Invalid;
- // TEST
- case X86::TEST16i16:
- case X86::TEST16mr:
- case X86::TEST16ri:
- case X86::TEST16rr:
- case X86::TEST32i32:
- case X86::TEST32mr:
- case X86::TEST32ri:
- case X86::TEST32rr:
- case X86::TEST64i32:
- case X86::TEST64mr:
- case X86::TEST64ri32:
- case X86::TEST64rr:
- case X86::TEST8i8:
- case X86::TEST8mr:
- case X86::TEST8ri:
- case X86::TEST8rr:
- return FirstMacroFusionInstKind::Test;
- case X86::AND16i16:
- case X86::AND16ri:
- case X86::AND16ri8:
- case X86::AND16rm:
- case X86::AND16rr:
- case X86::AND16rr_REV:
- case X86::AND32i32:
- case X86::AND32ri:
- case X86::AND32ri8:
- case X86::AND32rm:
- case X86::AND32rr:
- case X86::AND32rr_REV:
- case X86::AND64i32:
- case X86::AND64ri32:
- case X86::AND64ri8:
- case X86::AND64rm:
- case X86::AND64rr:
- case X86::AND64rr_REV:
- case X86::AND8i8:
- case X86::AND8ri:
- case X86::AND8ri8:
- case X86::AND8rm:
- case X86::AND8rr:
- case X86::AND8rr_REV:
- return FirstMacroFusionInstKind::And;
- // FIXME: Zen 3 support branch fusion for OR/XOR.
- // CMP
- case X86::CMP16i16:
- case X86::CMP16mr:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP16rm:
- case X86::CMP16rr:
- case X86::CMP16rr_REV:
- case X86::CMP32i32:
- case X86::CMP32mr:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP32rm:
- case X86::CMP32rr:
- case X86::CMP32rr_REV:
- case X86::CMP64i32:
- case X86::CMP64mr:
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP64rm:
- case X86::CMP64rr:
- case X86::CMP64rr_REV:
- case X86::CMP8i8:
- case X86::CMP8mr:
- case X86::CMP8ri:
- case X86::CMP8ri8:
- case X86::CMP8rm:
- case X86::CMP8rr:
- case X86::CMP8rr_REV:
- return FirstMacroFusionInstKind::Cmp;
- // ADD
- case X86::ADD16i16:
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD16rm:
- case X86::ADD16rr:
- case X86::ADD16rr_REV:
- case X86::ADD32i32:
- case X86::ADD32ri:
- case X86::ADD32ri8:
- case X86::ADD32rm:
- case X86::ADD32rr:
- case X86::ADD32rr_REV:
- case X86::ADD64i32:
- case X86::ADD64ri32:
- case X86::ADD64ri8:
- case X86::ADD64rm:
- case X86::ADD64rr:
- case X86::ADD64rr_REV:
- case X86::ADD8i8:
- case X86::ADD8ri:
- case X86::ADD8ri8:
- case X86::ADD8rm:
- case X86::ADD8rr:
- case X86::ADD8rr_REV:
- // SUB
- case X86::SUB16i16:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB16rm:
- case X86::SUB16rr:
- case X86::SUB16rr_REV:
- case X86::SUB32i32:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB32rm:
- case X86::SUB32rr:
- case X86::SUB32rr_REV:
- case X86::SUB64i32:
- case X86::SUB64ri32:
- case X86::SUB64ri8:
- case X86::SUB64rm:
- case X86::SUB64rr:
- case X86::SUB64rr_REV:
- case X86::SUB8i8:
- case X86::SUB8ri:
- case X86::SUB8ri8:
- case X86::SUB8rm:
- case X86::SUB8rr:
- case X86::SUB8rr_REV:
- return FirstMacroFusionInstKind::AddSub;
- // INC
- case X86::INC16r:
- case X86::INC16r_alt:
- case X86::INC32r:
- case X86::INC32r_alt:
- case X86::INC64r:
- case X86::INC8r:
- // DEC
- case X86::DEC16r:
- case X86::DEC16r_alt:
- case X86::DEC32r:
- case X86::DEC32r_alt:
- case X86::DEC64r:
- case X86::DEC8r:
- return FirstMacroFusionInstKind::IncDec;
- }
+// Enums for memory operand decoding. Each memory operand is represented with
+// a 5 operand sequence in the form:
+// [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
+// These enums help decode this.
+enum {
+ AddrBaseReg = 0,
+ AddrScaleAmt = 1,
+ AddrIndexReg = 2,
+ AddrDisp = 3,
+
+ /// AddrSegmentReg - The operand # of the segment in the memory operand.
+ AddrSegmentReg = 4,
+
+ /// AddrNumOperands - Total number of operands in a memory reference.
+ AddrNumOperands = 5
+};
+
+/// AVX512 static rounding constants. These need to match the values in
+/// avx512fintrin.h.
+enum STATIC_ROUNDING {
+ TO_NEAREST_INT = 0,
+ TO_NEG_INF = 1,
+ TO_POS_INF = 2,
+ TO_ZERO = 3,
+ CUR_DIRECTION = 4,
+ NO_EXC = 8
+};
+
+/// The constants to describe instr prefixes if there are
+enum IPREFIXES {
+ IP_NO_PREFIX = 0,
+ IP_HAS_OP_SIZE = 1U << 0,
+ IP_HAS_AD_SIZE = 1U << 1,
+ IP_HAS_REPEAT_NE = 1U << 2,
+ IP_HAS_REPEAT = 1U << 3,
+ IP_HAS_LOCK = 1U << 4,
+ IP_HAS_NOTRACK = 1U << 5,
+ IP_USE_VEX = 1U << 6,
+ IP_USE_VEX2 = 1U << 7,
+ IP_USE_VEX3 = 1U << 8,
+ IP_USE_EVEX = 1U << 9,
+ IP_USE_DISP8 = 1U << 10,
+ IP_USE_DISP32 = 1U << 11,
+};
+
+enum OperandType : unsigned {
+ /// AVX512 embedded rounding control. This should only have values 0-3.
+ OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
+ OPERAND_COND_CODE,
+};
+
+// X86 specific condition code. These correspond to X86_*_COND in
+// X86InstrInfo.td. They must be kept in synch.
+enum CondCode {
+ COND_O = 0,
+ COND_NO = 1,
+ COND_B = 2,
+ COND_AE = 3,
+ COND_E = 4,
+ COND_NE = 5,
+ COND_BE = 6,
+ COND_A = 7,
+ COND_S = 8,
+ COND_NS = 9,
+ COND_P = 10,
+ COND_NP = 11,
+ COND_L = 12,
+ COND_GE = 13,
+ COND_LE = 14,
+ COND_G = 15,
+ LAST_VALID_COND = COND_G,
+
+ // Artificial condition codes. These are used by analyzeBranch
+ // to indicate a block terminated with two conditional branches that together
+ // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
+ // which can't be represented on x86 with a single condition. These
+ // are never used in MachineInstrs and are inverses of one another.
+ COND_NE_OR_P,
+ COND_E_AND_NP,
+
+ COND_INVALID
+};
+
+// The classification for the first instruction in macro fusion.
+enum class FirstMacroFusionInstKind {
+ // TEST
+ Test,
+ // CMP
+ Cmp,
+ // AND
+ And,
+ // FIXME: Zen 3 support branch fusion for OR/XOR.
+ // ADD, SUB
+ AddSub,
+ // INC, DEC
+ IncDec,
+ // Not valid as a first macro fusion instruction
+ Invalid
+};
+
+enum class SecondMacroFusionInstKind {
+ // JA, JB and variants.
+ AB,
+ // JE, JL, JG and variants.
+ ELG,
+ // JS, JP, JO and variants
+ SPO,
+ // Not a fusible jump.
+ Invalid,
+};
+
+/// \returns the type of the first instruction in macro-fusion.
+inline FirstMacroFusionInstKind
+classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return FirstMacroFusionInstKind::Invalid;
+ // TEST
+ case X86::TEST16i16:
+ case X86::TEST16mr:
+ case X86::TEST16ri:
+ case X86::TEST16rr:
+ case X86::TEST32i32:
+ case X86::TEST32mr:
+ case X86::TEST32ri:
+ case X86::TEST32rr:
+ case X86::TEST64i32:
+ case X86::TEST64mr:
+ case X86::TEST64ri32:
+ case X86::TEST64rr:
+ case X86::TEST8i8:
+ case X86::TEST8mr:
+ case X86::TEST8ri:
+ case X86::TEST8rr:
+ return FirstMacroFusionInstKind::Test;
+ case X86::AND16i16:
+ case X86::AND16ri:
+ case X86::AND16ri8:
+ case X86::AND16rm:
+ case X86::AND16rr:
+ case X86::AND16rr_REV:
+ case X86::AND32i32:
+ case X86::AND32ri:
+ case X86::AND32ri8:
+ case X86::AND32rm:
+ case X86::AND32rr:
+ case X86::AND32rr_REV:
+ case X86::AND64i32:
+ case X86::AND64ri32:
+ case X86::AND64ri8:
+ case X86::AND64rm:
+ case X86::AND64rr:
+ case X86::AND64rr_REV:
+ case X86::AND8i8:
+ case X86::AND8ri:
+ case X86::AND8ri8:
+ case X86::AND8rm:
+ case X86::AND8rr:
+ case X86::AND8rr_REV:
+ return FirstMacroFusionInstKind::And;
+ // FIXME: Zen 3 support branch fusion for OR/XOR.
+ // CMP
+ case X86::CMP16i16:
+ case X86::CMP16mr:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP16rm:
+ case X86::CMP16rr:
+ case X86::CMP16rr_REV:
+ case X86::CMP32i32:
+ case X86::CMP32mr:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP32rm:
+ case X86::CMP32rr:
+ case X86::CMP32rr_REV:
+ case X86::CMP64i32:
+ case X86::CMP64mr:
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP64rm:
+ case X86::CMP64rr:
+ case X86::CMP64rr_REV:
+ case X86::CMP8i8:
+ case X86::CMP8mr:
+ case X86::CMP8ri:
+ case X86::CMP8ri8:
+ case X86::CMP8rm:
+ case X86::CMP8rr:
+ case X86::CMP8rr_REV:
+ return FirstMacroFusionInstKind::Cmp;
+ // ADD
+ case X86::ADD16i16:
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16rm:
+ case X86::ADD16rr:
+ case X86::ADD16rr_REV:
+ case X86::ADD32i32:
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32rm:
+ case X86::ADD32rr:
+ case X86::ADD32rr_REV:
+ case X86::ADD64i32:
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ case X86::ADD64rm:
+ case X86::ADD64rr:
+ case X86::ADD64rr_REV:
+ case X86::ADD8i8:
+ case X86::ADD8ri:
+ case X86::ADD8ri8:
+ case X86::ADD8rm:
+ case X86::ADD8rr:
+ case X86::ADD8rr_REV:
+ // SUB
+ case X86::SUB16i16:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB16rm:
+ case X86::SUB16rr:
+ case X86::SUB16rr_REV:
+ case X86::SUB32i32:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB32rm:
+ case X86::SUB32rr:
+ case X86::SUB32rr_REV:
+ case X86::SUB64i32:
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB64rm:
+ case X86::SUB64rr:
+ case X86::SUB64rr_REV:
+ case X86::SUB8i8:
+ case X86::SUB8ri:
+ case X86::SUB8ri8:
+ case X86::SUB8rm:
+ case X86::SUB8rr:
+ case X86::SUB8rr_REV:
+ return FirstMacroFusionInstKind::AddSub;
+ // INC
+ case X86::INC16r:
+ case X86::INC16r_alt:
+ case X86::INC32r:
+ case X86::INC32r_alt:
+ case X86::INC64r:
+ case X86::INC8r:
+ // DEC
+ case X86::DEC16r:
+ case X86::DEC16r_alt:
+ case X86::DEC32r:
+ case X86::DEC32r_alt:
+ case X86::DEC64r:
+ case X86::DEC8r:
+ return FirstMacroFusionInstKind::IncDec;
}
+}
- /// \returns the type of the second instruction in macro-fusion.
- inline SecondMacroFusionInstKind
- classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
- if (CC == X86::COND_INVALID)
- return SecondMacroFusionInstKind::Invalid;
-
- switch (CC) {
- default:
- return SecondMacroFusionInstKind::Invalid;
- // JE,JZ
- case X86::COND_E:
- // JNE,JNZ
- case X86::COND_NE:
- // JL,JNGE
- case X86::COND_L:
- // JLE,JNG
- case X86::COND_LE:
- // JG,JNLE
- case X86::COND_G:
- // JGE,JNL
- case X86::COND_GE:
- return SecondMacroFusionInstKind::ELG;
- // JB,JC
- case X86::COND_B:
- // JNA,JBE
- case X86::COND_BE:
- // JA,JNBE
- case X86::COND_A:
- // JAE,JNC,JNB
- case X86::COND_AE:
- return SecondMacroFusionInstKind::AB;
- // JS
- case X86::COND_S:
- // JNS
- case X86::COND_NS:
- // JP,JPE
- case X86::COND_P:
- // JNP,JPO
- case X86::COND_NP:
- // JO
- case X86::COND_O:
- // JNO
- case X86::COND_NO:
- return SecondMacroFusionInstKind::SPO;
- }
+/// \returns the type of the second instruction in macro-fusion.
+inline SecondMacroFusionInstKind
+classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
+ if (CC == X86::COND_INVALID)
+ return SecondMacroFusionInstKind::Invalid;
+
+ switch (CC) {
+ default:
+ return SecondMacroFusionInstKind::Invalid;
+ // JE,JZ
+ case X86::COND_E:
+ // JNE,JNZ
+ case X86::COND_NE:
+ // JL,JNGE
+ case X86::COND_L:
+ // JLE,JNG
+ case X86::COND_LE:
+ // JG,JNLE
+ case X86::COND_G:
+ // JGE,JNL
+ case X86::COND_GE:
+ return SecondMacroFusionInstKind::ELG;
+ // JB,JC
+ case X86::COND_B:
+ // JNA,JBE
+ case X86::COND_BE:
+ // JA,JNBE
+ case X86::COND_A:
+ // JAE,JNC,JNB
+ case X86::COND_AE:
+ return SecondMacroFusionInstKind::AB;
+ // JS
+ case X86::COND_S:
+ // JNS
+ case X86::COND_NS:
+ // JP,JPE
+ case X86::COND_P:
+ // JNP,JPO
+ case X86::COND_NP:
+ // JO
+ case X86::COND_O:
+ // JNO
+ case X86::COND_NO:
+ return SecondMacroFusionInstKind::SPO;
}
+}
- /// \param FirstKind kind of the first instruction in macro fusion.
- /// \param SecondKind kind of the second instruction in macro fusion.
- ///
- /// \returns true if the two instruction can be macro fused.
- inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
- SecondMacroFusionInstKind SecondKind) {
- switch (FirstKind) {
- case X86::FirstMacroFusionInstKind::Test:
- case X86::FirstMacroFusionInstKind::And:
- return true;
- case X86::FirstMacroFusionInstKind::Cmp:
- case X86::FirstMacroFusionInstKind::AddSub:
- return SecondKind == X86::SecondMacroFusionInstKind::AB ||
- SecondKind == X86::SecondMacroFusionInstKind::ELG;
- case X86::FirstMacroFusionInstKind::IncDec:
- return SecondKind == X86::SecondMacroFusionInstKind::ELG;
- case X86::FirstMacroFusionInstKind::Invalid:
- return false;
- }
- llvm_unreachable("unknown fusion type");
+/// \param FirstKind kind of the first instruction in macro fusion.
+/// \param SecondKind kind of the second instruction in macro fusion.
+///
+/// \returns true if the two instruction can be macro fused.
+inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
+ SecondMacroFusionInstKind SecondKind) {
+ switch (FirstKind) {
+ case X86::FirstMacroFusionInstKind::Test:
+ case X86::FirstMacroFusionInstKind::And:
+ return true;
+ case X86::FirstMacroFusionInstKind::Cmp:
+ case X86::FirstMacroFusionInstKind::AddSub:
+ return SecondKind == X86::SecondMacroFusionInstKind::AB ||
+ SecondKind == X86::SecondMacroFusionInstKind::ELG;
+ case X86::FirstMacroFusionInstKind::IncDec:
+ return SecondKind == X86::SecondMacroFusionInstKind::ELG;
+ case X86::FirstMacroFusionInstKind::Invalid:
+ return false;
}
+ llvm_unreachable("unknown fusion type");
+}
- /// Defines the possible values of the branch boundary alignment mask.
- enum AlignBranchBoundaryKind : uint8_t {
- AlignBranchNone = 0,
- AlignBranchFused = 1U << 0,
- AlignBranchJcc = 1U << 1,
- AlignBranchJmp = 1U << 2,
- AlignBranchCall = 1U << 3,
- AlignBranchRet = 1U << 4,
- AlignBranchIndirect = 1U << 5
- };
-
- /// Defines the encoding values for segment override prefix.
- enum EncodingOfSegmentOverridePrefix : uint8_t {
- CS_Encoding = 0x2E,
- DS_Encoding = 0x3E,
- ES_Encoding = 0x26,
- FS_Encoding = 0x64,
- GS_Encoding = 0x65,
- SS_Encoding = 0x36
- };
-
- /// Given a segment register, return the encoding of the segment override
- /// prefix for it.
- inline EncodingOfSegmentOverridePrefix
- getSegmentOverridePrefixForReg(unsigned Reg) {
- switch (Reg) {
- default:
- llvm_unreachable("Unknown segment register!");
- case X86::CS:
- return CS_Encoding;
- case X86::DS:
- return DS_Encoding;
- case X86::ES:
- return ES_Encoding;
- case X86::FS:
- return FS_Encoding;
- case X86::GS:
- return GS_Encoding;
- case X86::SS:
- return SS_Encoding;
- }
+/// Defines the possible values of the branch boundary alignment mask.
+enum AlignBranchBoundaryKind : uint8_t {
+ AlignBranchNone = 0,
+ AlignBranchFused = 1U << 0,
+ AlignBranchJcc = 1U << 1,
+ AlignBranchJmp = 1U << 2,
+ AlignBranchCall = 1U << 3,
+ AlignBranchRet = 1U << 4,
+ AlignBranchIndirect = 1U << 5
+};
+
+/// Defines the encoding values for segment override prefix.
+enum EncodingOfSegmentOverridePrefix : uint8_t {
+ CS_Encoding = 0x2E,
+ DS_Encoding = 0x3E,
+ ES_Encoding = 0x26,
+ FS_Encoding = 0x64,
+ GS_Encoding = 0x65,
+ SS_Encoding = 0x36
+};
+
+/// Given a segment register, return the encoding of the segment override
+/// prefix for it.
+inline EncodingOfSegmentOverridePrefix
+getSegmentOverridePrefixForReg(unsigned Reg) {
+ switch (Reg) {
+ default:
+ llvm_unreachable("Unknown segment register!");
+ case X86::CS:
+ return CS_Encoding;
+ case X86::DS:
+ return DS_Encoding;
+ case X86::ES:
+ return ES_Encoding;
+ case X86::FS:
+ return FS_Encoding;
+ case X86::GS:
+ return GS_Encoding;
+ case X86::SS:
+ return SS_Encoding;
}
+}
-} // end namespace X86;
+} // namespace X86
/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
- /// Target Operand Flag enum.
- enum TOF {
- //===------------------------------------------------------------------===//
- // X86 Specific MachineOperand flags.
-
- MO_NO_FLAG,
-
- /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
- /// relocation of:
- /// SYMBOL_LABEL + [. - PICBASELABEL]
- MO_GOT_ABSOLUTE_ADDRESS,
-
- /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
- /// immediate should get the value of the symbol minus the PIC base label:
- /// SYMBOL_LABEL - PICBASELABEL
- MO_PIC_BASE_OFFSET,
-
- /// MO_GOT - On a symbol operand this indicates that the immediate is the
- /// offset to the GOT entry for the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOT
- MO_GOT,
-
- /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
- /// the offset to the location of the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTOFF
- MO_GOTOFF,
-
- /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
- /// offset to the GOT entry for the symbol name from the current code
- /// location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTPCREL
- MO_GOTPCREL,
-
- /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
- /// relocations are guaranteed to be emitted by the integrated assembler
- /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
- MO_GOTPCREL_NORELAX,
-
- /// MO_PLT - On a symbol operand this indicates that the immediate is
- /// offset to the PLT entry of symbol name from the current code location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @PLT
- MO_PLT,
-
- /// MO_TLSGD - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index structure that contains
- /// the module number and variable offset for the symbol. Used in the
- /// general dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSGD
- MO_TLSGD,
-
- /// MO_TLSLD - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index for the module that
- /// contains the symbol. When this index is passed to a call to
- /// __tls_get_addr, the function will return the base address of the TLS
- /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSLD
- MO_TLSLD,
-
- /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index for the module that
- /// contains the symbol. When this index is passed to a call to
- /// ___tls_get_addr, the function will return the base address of the TLS
- /// block for the symbol. Used in the IA32 local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSLDM
- MO_TLSLDM,
-
- /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the thread-pointer offset for the
- /// symbol. Used in the x86-64 initial exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTTPOFF
- MO_GOTTPOFF,
-
- /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
- /// the absolute address of the GOT entry with the negative thread-pointer
- /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
- /// model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @INDNTPOFF
- MO_INDNTPOFF,
-
- /// MO_TPOFF - On a symbol operand this indicates that the immediate is
- /// the thread-pointer offset for the symbol. Used in the x86-64 local
- /// exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TPOFF
- MO_TPOFF,
-
- /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS offset of the symbol. Used
- /// in the local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @DTPOFF
- MO_DTPOFF,
-
- /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
- /// the negative thread-pointer offset for the symbol. Used in the IA32
- /// local exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @NTPOFF
- MO_NTPOFF,
-
- /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the negative thread-pointer offset for
- /// the symbol. Used in the PIC IA32 initial exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTNTPOFF
- MO_GOTNTPOFF,
-
- /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "__imp_FOO" symbol. This is used for
- /// dllimport linkage on windows.
- MO_DLLIMPORT,
-
- /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
- /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY,
-
- /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
- /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
- /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY_PIC_BASE,
-
- /// MO_TLVP - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// This is the TLS offset for the Darwin TLS mechanism.
- MO_TLVP,
-
- /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
- /// is some TLS offset from the picbase.
- ///
- /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
- MO_TLVP_PIC_BASE,
-
- /// MO_SECREL - On a symbol operand this indicates that the immediate is
- /// the offset from beginning of section.
- ///
- /// This is the TLS offset for the COFF/Windows TLS mechanism.
- MO_SECREL,
-
- /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
- /// to be an absolute symbol in range [0,128), so we can use the @ABS8
- /// symbol modifier.
- MO_ABS8,
-
- /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the ".refptr.FOO" symbol. This is used for
- /// stub symbols on windows.
- MO_COFFSTUB,
- };
-
- enum : uint64_t {
- //===------------------------------------------------------------------===//
- // Instruction encodings. These are the standard/most common forms for X86
- // instructions.
- //
-
- // PseudoFrm - This represents an instruction that is a pseudo instruction
- // or one that has not been implemented yet. It is illegal to code generate
- // it, but tolerated for intermediate implementation stages.
- Pseudo = 0,
-
- /// Raw - This form is for instructions that don't have any operands, so
- /// they are just a fixed opcode value, like 'leave'.
- RawFrm = 1,
-
- /// AddRegFrm - This form is used for instructions like 'push r32' that have
- /// their one register operand added to their opcode.
- AddRegFrm = 2,
-
- /// RawFrmMemOffs - This form is for instructions that store an absolute
- /// memory offset as an immediate with a possible segment override.
- RawFrmMemOffs = 3,
-
- /// RawFrmSrc - This form is for instructions that use the source index
- /// register SI/ESI/RSI with a possible segment override.
- RawFrmSrc = 4,
-
- /// RawFrmDst - This form is for instructions that use the destination index
- /// register DI/EDI/RDI.
- RawFrmDst = 5,
-
- /// RawFrmDstSrc - This form is for instructions that use the source index
- /// register SI/ESI/RSI with a possible segment override, and also the
- /// destination index register DI/EDI/RDI.
- RawFrmDstSrc = 6,
-
- /// RawFrmImm8 - This is used for the ENTER instruction, which has two
- /// immediates, the first of which is a 16-bit immediate (specified by
- /// the imm encoding) and the second is a 8-bit fixed value.
- RawFrmImm8 = 7,
-
- /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
- /// immediates, the first of which is a 16 or 32-bit immediate (specified by
- /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
- /// manual, this operand is described as pntr16:32 and pntr16:16
- RawFrmImm16 = 8,
-
- /// AddCCFrm - This form is used for Jcc that encode the condition code
- /// in the lower 4 bits of the opcode.
- AddCCFrm = 9,
-
- /// PrefixByte - This form is used for instructions that represent a prefix
- /// byte like data16 or rep.
- PrefixByte = 10,
-
- /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
- /// byte to specify a destination which in this case is memory and operand 3
- /// with VEX.VVVV, and also encodes a condition code.
- MRMDestMem4VOp3CC = 20,
-
- /// MRM[0-7][rm] - These forms are used to represent instructions that use
- /// a Mod/RM byte, and use the middle field to hold extended opcode
- /// information. In the intel manual these are represented as /0, /1, ...
- ///
-
- // Instructions operate on a register Reg/Opcode operand not the r/m field.
- MRMr0 = 21,
-
- /// MRMSrcMem - But force to use the SIB field.
- MRMSrcMemFSIB = 22,
-
- /// MRMDestMem - But force to use the SIB field.
- MRMDestMemFSIB = 23,
-
- /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is memory.
- ///
- MRMDestMem = 24,
-
- /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is memory.
- ///
- MRMSrcMem = 25,
-
- /// MRMSrcMem4VOp3 - This form is used for instructions that encode
- /// operand 3 with VEX.VVVV and load from memory.
- ///
- MRMSrcMem4VOp3 = 26,
-
- /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
- /// byte to specify the fourth source, which in this case is memory.
- ///
- MRMSrcMemOp4 = 27,
-
- /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
- /// byte to specify the operands and also encodes a condition code.
- ///
- MRMSrcMemCC = 28,
-
- /// MRMXm - This form is used for instructions that use the Mod/RM byte
- /// to specify a memory source, but doesn't use the middle field. And has
- /// a condition code.
- ///
- MRMXmCC = 30,
-
- /// MRMXm - This form is used for instructions that use the Mod/RM byte
- /// to specify a memory source, but doesn't use the middle field.
- ///
- MRMXm = 31,
-
- // Next, instructions that operate on a memory r/m operand...
- MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3
- MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7
-
- /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is a register.
- ///
- MRMDestReg = 40,
-
- /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is a register.
- ///
- MRMSrcReg = 41,
-
- /// MRMSrcReg4VOp3 - This form is used for instructions that encode
- /// operand 3 with VEX.VVVV and do not load from memory.
- ///
- MRMSrcReg4VOp3 = 42,
-
- /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
- /// byte to specify the fourth source, which in this case is a register.
- ///
- MRMSrcRegOp4 = 43,
-
- /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
- /// byte to specify the operands and also encodes a condition code
- ///
- MRMSrcRegCC = 44,
-
- /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
- /// to specify a register source, but doesn't use the middle field. And has
- /// a condition code.
- ///
- MRMXrCC = 46,
-
- /// MRMXr - This form is used for instructions that use the Mod/RM byte
- /// to specify a register source, but doesn't use the middle field.
- ///
- MRMXr = 47,
-
- // Instructions that operate on a register r/m operand...
- MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3
- MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7
-
- // Instructions that operate that have mod=11 and an opcode but ignore r/m.
- MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3
- MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7
-
- /// MRM_XX - A mod/rm byte of exactly 0xXX.
- MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
- MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
- MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
- MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
- MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
- MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
- MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
- MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
- MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
- MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
- MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
- MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
- MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
- MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
- MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
- MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
-
- FormMask = 127,
-
- //===------------------------------------------------------------------===//
- // Actual flags...
-
- // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
- // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
- // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
- // prefix in 16-bit mode.
- OpSizeShift = 7,
- OpSizeMask = 0x3 << OpSizeShift,
-
- OpSizeFixed = 0 << OpSizeShift,
- OpSize16 = 1 << OpSizeShift,
- OpSize32 = 2 << OpSizeShift,
-
- // AsSize - AdSizeX implies this instruction determines its need of 0x67
- // prefix from a normal ModRM memory operand. The other types indicate that
- // an operand is encoded with a specific width and a prefix is needed if
- // it differs from the current mode.
- AdSizeShift = OpSizeShift + 2,
- AdSizeMask = 0x3 << AdSizeShift,
-
- AdSizeX = 0 << AdSizeShift,
- AdSize16 = 1 << AdSizeShift,
- AdSize32 = 2 << AdSizeShift,
- AdSize64 = 3 << AdSizeShift,
-
- //===------------------------------------------------------------------===//
- // OpPrefix - There are several prefix bytes that are used as opcode
- // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
- // no prefix.
- //
- OpPrefixShift = AdSizeShift + 2,
- OpPrefixMask = 0x3 << OpPrefixShift,
-
- // PD - Prefix code for packed double precision vector floating point
- // operations performed in the SSE registers.
- PD = 1 << OpPrefixShift,
-
- // XS, XD - These prefix codes are for single and double precision scalar
- // floating point operations performed in the SSE registers.
- XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
-
- //===------------------------------------------------------------------===//
- // OpMap - This field determines which opcode map this instruction
- // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
- //
- OpMapShift = OpPrefixShift + 2,
- OpMapMask = 0xF << OpMapShift,
-
- // OB - OneByte - Set if this instruction has a one byte opcode.
- OB = 0 << OpMapShift,
-
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
- TB = 1 << OpMapShift,
-
- // T8, TA - Prefix after the 0x0F prefix.
- T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
-
- // XOP8 - Prefix to include use of imm byte.
- XOP8 = 4 << OpMapShift,
-
- // XOP9 - Prefix to exclude use of imm byte.
- XOP9 = 5 << OpMapShift,
-
- // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
- XOPA = 6 << OpMapShift,
-
- /// ThreeDNow - This indicates that the instruction uses the
- /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
- /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
- /// storing a classifier in the imm8 field. To simplify our implementation,
- /// we handle this by storeing the classifier in the opcode field and using
- /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- ThreeDNow = 7 << OpMapShift,
-
- // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
- T_MAP5 = 8 << OpMapShift,
- T_MAP6 = 9 << OpMapShift,
- T_MAP7 = 10 << OpMapShift,
-
- //===------------------------------------------------------------------===//
- // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
- // They are used to specify GPRs and SSE registers, 64-bit operand size,
- // etc. We only cares about REX.W and REX.R bits and only the former is
- // statically determined.
- //
- REXShift = OpMapShift + 4,
- REX_W = 1 << REXShift,
-
- //===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
- // unused so that we can tell if we forgot to set a value.
- ImmShift = REXShift + 1,
- ImmMask = 15 << ImmShift,
- Imm8 = 1 << ImmShift,
- Imm8PCRel = 2 << ImmShift,
- Imm8Reg = 3 << ImmShift,
- Imm16 = 4 << ImmShift,
- Imm16PCRel = 5 << ImmShift,
- Imm32 = 6 << ImmShift,
- Imm32PCRel = 7 << ImmShift,
- Imm32S = 8 << ImmShift,
- Imm64 = 9 << ImmShift,
-
- //===------------------------------------------------------------------===//
- // FP Instruction Classification... Zero is non-fp instruction.
-
- // FPTypeMask - Mask for all of the FP types...
- FPTypeShift = ImmShift + 4,
- FPTypeMask = 7 << FPTypeShift,
-
- // NotFP - The default, set for instructions that do not use FP registers.
- NotFP = 0 << FPTypeShift,
-
- // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
- ZeroArgFP = 1 << FPTypeShift,
-
- // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
- OneArgFP = 2 << FPTypeShift,
-
- // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
- // result back to ST(0). For example, fcos, fsqrt, etc.
- //
- OneArgFPRW = 3 << FPTypeShift,
-
- // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
- // explicit argument, storing the result to either ST(0) or the implicit
- // argument. For example: fadd, fsub, fmul, etc...
- TwoArgFP = 4 << FPTypeShift,
-
- // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
- // explicit argument, but have no destination. Example: fucom, fucomi, ...
- CompareFP = 5 << FPTypeShift,
-
- // CondMovFP - "2 operand" floating point conditional move instructions.
- CondMovFP = 6 << FPTypeShift,
-
- // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
- SpecialFP = 7 << FPTypeShift,
-
- // Lock prefix
- LOCKShift = FPTypeShift + 3,
- LOCK = 1 << LOCKShift,
-
- // REP prefix
- REPShift = LOCKShift + 1,
- REP = 1 << REPShift,
-
- // Execution domain for SSE instructions.
- // 0 means normal, non-SSE instruction.
- SSEDomainShift = REPShift + 1,
-
- // Encoding
- EncodingShift = SSEDomainShift + 2,
- EncodingMask = 0x3 << EncodingShift,
-
- // VEX - encoding using 0xC4/0xC5
- VEX = 1 << EncodingShift,
-
- /// XOP - Opcode prefix used by XOP instructions.
- XOP = 2 << EncodingShift,
-
- // VEX_EVEX - Specifies that this instruction use EVEX form which provides
- // syntax support up to 32 512-bit register operands and up to 7 16-bit
- // mask operands as well as source operand data swizzling/memory operand
- // conversion, eviction hint, and rounding mode.
- EVEX = 3 << EncodingShift,
-
- // Opcode
- OpcodeShift = EncodingShift + 2,
-
- /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
- /// address instructions in SSE are represented as 3 address ones in AVX
- /// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4VShift = OpcodeShift + 8,
- VEX_4V = 1ULL << VEX_4VShift,
-
- /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
- /// instruction uses 256-bit wide registers. This is usually auto detected
- /// if a VR256 register is used, but some AVX instructions also have this
- /// field marked when using a f256 memory references.
- VEX_LShift = VEX_4VShift + 1,
- VEX_L = 1ULL << VEX_LShift,
-
- // EVEX_K - Set if this instruction requires masking
- EVEX_KShift = VEX_LShift + 1,
- EVEX_K = 1ULL << EVEX_KShift,
-
- // EVEX_Z - Set if this instruction has EVEX.Z field set.
- EVEX_ZShift = EVEX_KShift + 1,
- EVEX_Z = 1ULL << EVEX_ZShift,
-
- // EVEX_L2 - Set if this instruction has EVEX.L' field set.
- EVEX_L2Shift = EVEX_ZShift + 1,
- EVEX_L2 = 1ULL << EVEX_L2Shift,
-
- // EVEX_B - Set if this instruction has EVEX.B field set.
- EVEX_BShift = EVEX_L2Shift + 1,
- EVEX_B = 1ULL << EVEX_BShift,
-
- // The scaling factor for the AVX512's 8-bit compressed displacement.
- CD8_Scale_Shift = EVEX_BShift + 1,
- CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
-
- /// Explicitly specified rounding control
- EVEX_RCShift = CD8_Scale_Shift + 3,
- EVEX_RC = 1ULL << EVEX_RCShift,
-
- // NOTRACK prefix
- NoTrackShift = EVEX_RCShift + 1,
- NOTRACK = 1ULL << NoTrackShift,
-
- // Force REX2/VEX/EVEX encoding
- ExplicitOpPrefixShift = NoTrackShift + 1,
- // For instructions that require REX2 prefix even if EGPR is not used.
- ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
- // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
- // is present.
- ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
- // For instructions that are promoted to EVEX space for EGPR.
- ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
- ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
- };
-
- /// \returns true if the instruction with given opcode is a prefix.
- inline bool isPrefix(uint64_t TSFlags) {
- return (TSFlags & X86II::FormMask) == PrefixByte;
- }
+/// Target Operand Flag enum.
+enum TOF {
+ //===------------------------------------------------------------------===//
+ // X86 Specific MachineOperand flags.
- /// \returns true if the instruction with given opcode is a pseudo.
- inline bool isPseudo(uint64_t TSFlags) {
- return (TSFlags & X86II::FormMask) == Pseudo;
- }
+ MO_NO_FLAG,
- /// \returns the "base" X86 opcode for the specified machine
- /// instruction.
- inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
- return TSFlags >> X86II::OpcodeShift;
- }
+ /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
+ /// relocation of:
+ /// SYMBOL_LABEL + [. - PICBASELABEL]
+ MO_GOT_ABSOLUTE_ADDRESS,
- inline bool hasImm(uint64_t TSFlags) {
- return (TSFlags & X86II::ImmMask) != 0;
- }
+ /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
+ /// immediate should get the value of the symbol minus the PIC base label:
+ /// SYMBOL_LABEL - PICBASELABEL
+ MO_PIC_BASE_OFFSET,
- /// Decode the "size of immediate" field from the TSFlags field of the
- /// specified instruction.
- inline unsigned getSizeOfImm(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate size");
- case X86II::Imm8:
- case X86II::Imm8PCRel:
- case X86II::Imm8Reg: return 1;
- case X86II::Imm16:
- case X86II::Imm16PCRel: return 2;
- case X86II::Imm32:
- case X86II::Imm32S:
- case X86II::Imm32PCRel: return 4;
- case X86II::Imm64: return 8;
- }
- }
+ /// MO_GOT - On a symbol operand this indicates that the immediate is the
+ /// offset to the GOT entry for the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOT
+ MO_GOT,
- /// \returns true if the immediate of the specified instruction's TSFlags
- /// indicates that it is pc relative.
- inline bool isImmPCRel(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate size");
- case X86II::Imm8PCRel:
- case X86II::Imm16PCRel:
- case X86II::Imm32PCRel:
- return true;
- case X86II::Imm8:
- case X86II::Imm8Reg:
- case X86II::Imm16:
- case X86II::Imm32:
- case X86II::Imm32S:
- case X86II::Imm64:
- return false;
- }
- }
+ /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
+ /// the offset to the location of the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTOFF
+ MO_GOTOFF,
- /// \returns true if the immediate of the specified instruction's
- /// TSFlags indicates that it is signed.
- inline bool isImmSigned(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate signedness");
- case X86II::Imm32S:
- return true;
- case X86II::Imm8:
- case X86II::Imm8PCRel:
- case X86II::Imm8Reg:
- case X86II::Imm16:
- case X86II::Imm16PCRel:
- case X86II::Imm32:
- case X86II::Imm32PCRel:
- case X86II::Imm64:
- return false;
- }
- }
+ /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
+ /// offset to the GOT entry for the symbol name from the current code
+ /// location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTPCREL
+ MO_GOTPCREL,
- /// Compute whether all of the def operands are repeated in the uses and
- /// therefore should be skipped.
- /// This determines the start of the unique operand list. We need to determine
- /// if all of the defs have a corresponding tied operand in the uses.
- /// Unfortunately, the tied operand information is encoded in the uses not
- /// the defs so we have to use some heuristics to find which operands to
- /// query.
- inline unsigned getOperandBias(const MCInstrDesc& Desc) {
- unsigned NumDefs = Desc.getNumDefs();
- unsigned NumOps = Desc.getNumOperands();
- switch (NumDefs) {
- default: llvm_unreachable("Unexpected number of defs");
- case 0:
- return 0;
- case 1:
- // Common two addr case.
- if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
- return 1;
- // Check for AVX-512 scatter which has a TIED_TO in the second to last
- // operand.
- if (NumOps == 8 &&
- Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
- return 1;
- return 0;
- case 2:
- // XCHG/XADD have two destinations and two sources.
- if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
- return 2;
- // Check for gather. AVX-512 has the second tied operand early. AVX2
- // has it as the last op.
- if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
- Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
- return 2;
- return 0;
- }
- }
+ /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
+ /// relocations are guaranteed to be emitted by the integrated assembler
+ /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
+ MO_GOTPCREL_NORELAX,
- /// The function returns the MCInst operand # for the first field of the
- /// memory operand. If the instruction doesn't have a
- /// memory operand, this returns -1.
+ /// MO_PLT - On a symbol operand this indicates that the immediate is
+ /// offset to the PLT entry of symbol name from the current code location.
///
- /// Note that this ignores tied operands. If there is a tied register which
- /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
- /// counted as one operand.
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @PLT
+ MO_PLT,
+
+ /// MO_TLSGD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index structure that contains
+ /// the module number and variable offset for the symbol. Used in the
+ /// general dynamic TLS access model.
///
- inline int getMemoryOperandNo(uint64_t TSFlags) {
- bool HasVEX_4V = TSFlags & X86II::VEX_4V;
- bool HasEVEX_K = TSFlags & X86II::EVEX_K;
-
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
- case X86II::Pseudo:
- case X86II::RawFrm:
- case X86II::AddRegFrm:
- case X86II::RawFrmImm8:
- case X86II::RawFrmImm16:
- case X86II::RawFrmMemOffs:
- case X86II::RawFrmSrc:
- case X86II::RawFrmDst:
- case X86II::RawFrmDstSrc:
- case X86II::AddCCFrm:
- case X86II::PrefixByte:
- return -1;
- case X86II::MRMDestMem:
- case X86II::MRMDestMemFSIB:
- return 0;
- case X86II::MRMSrcMem:
- case X86II::MRMSrcMemFSIB:
- // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
- // mask register.
- return 1 + HasVEX_4V + HasEVEX_K;
- case X86II::MRMSrcMem4VOp3:
- // Skip registers encoded in reg.
- return 1 + HasEVEX_K;
- case X86II::MRMSrcMemOp4:
- // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
- return 3;
- case X86II::MRMSrcMemCC:
- case X86II::MRMDestMem4VOp3CC:
- // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
- // mask register.
- return 1;
- case X86II::MRMDestReg:
- case X86II::MRMSrcReg:
- case X86II::MRMSrcReg4VOp3:
- case X86II::MRMSrcRegOp4:
- case X86II::MRMSrcRegCC:
- case X86II::MRMXrCC:
- case X86II::MRMr0:
- case X86II::MRMXr:
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- return -1;
- case X86II::MRM0X: case X86II::MRM1X:
- case X86II::MRM2X: case X86II::MRM3X:
- case X86II::MRM4X: case X86II::MRM5X:
- case X86II::MRM6X: case X86II::MRM7X:
- return -1;
- case X86II::MRMXmCC:
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
- return 0 + HasVEX_4V + HasEVEX_K;
- case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
- case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
- case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
- case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
- case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
- case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
- case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
- case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
- case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
- case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
- case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
- case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
- case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
- case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
- case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
- case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
- case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
- case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
- case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
- case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
- case X86II::MRM_FF:
- return -1;
- }
- }
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSGD
+ MO_TLSGD,
+
+ /// MO_TLSLD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// __tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLD
+ MO_TLSLD,
+
+ /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// ___tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the IA32 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLDM
+ MO_TLSLDM,
- /// \returns true if the register is a XMM.
- inline bool isXMMReg(unsigned RegNo) {
- assert(X86::XMM15 - X86::XMM0 == 15 &&
- "XMM0-15 registers are not continuous");
- assert(X86::XMM31 - X86::XMM16 == 15 &&
- "XMM16-31 registers are not continuous");
- return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
- (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
- }
+ /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the thread-pointer offset for the
+ /// symbol. Used in the x86-64 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTTPOFF
+ MO_GOTTPOFF,
+
+ /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the absolute address of the GOT entry with the negative thread-pointer
+ /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
+ /// model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @INDNTPOFF
+ MO_INDNTPOFF,
- /// \returns true if the register is a YMM.
- inline bool isYMMReg(unsigned RegNo) {
- assert(X86::YMM15 - X86::YMM0 == 15 &&
- "YMM0-15 registers are not continuous");
- assert(X86::YMM31 - X86::YMM16 == 15 &&
- "YMM16-31 registers are not continuous");
- return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
- (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
- }
+ /// MO_TPOFF - On a symbol operand this indicates that the immediate is
+ /// the thread-pointer offset for the symbol. Used in the x86-64 local
+ /// exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TPOFF
+ MO_TPOFF,
+
+ /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS offset of the symbol. Used
+ /// in the local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @DTPOFF
+ MO_DTPOFF,
+
+ /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
+ /// the negative thread-pointer offset for the symbol. Used in the IA32
+ /// local exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @NTPOFF
+ MO_NTPOFF,
+
+ /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the negative thread-pointer offset for
+ /// the symbol. Used in the PIC IA32 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTNTPOFF
+ MO_GOTNTPOFF,
+
+ /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "__imp_FOO" symbol. This is used for
+ /// dllimport linkage on windows.
+ MO_DLLIMPORT,
+
+ /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+ /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY,
+
+ /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+ /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+ /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY_PIC_BASE,
+
+ /// MO_TLVP - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// This is the TLS offset for the Darwin TLS mechanism.
+ MO_TLVP,
+
+ /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
+ /// is some TLS offset from the picbase.
+ ///
+ /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
+ MO_TLVP_PIC_BASE,
+
+ /// MO_SECREL - On a symbol operand this indicates that the immediate is
+ /// the offset from beginning of section.
+ ///
+ /// This is the TLS offset for the COFF/Windows TLS mechanism.
+ MO_SECREL,
+
+ /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
+ /// to be an absolute symbol in range [0,128), so we can use the @ABS8
+ /// symbol modifier.
+ MO_ABS8,
+
+ /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the ".refptr.FOO" symbol. This is used for
+ /// stub symbols on windows.
+ MO_COFFSTUB,
+};
+
+enum : uint64_t {
+ //===------------------------------------------------------------------===//
+ // Instruction encodings. These are the standard/most common forms for X86
+ // instructions.
+ //
+
+ // PseudoFrm - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// Raw - This form is for instructions that don't have any operands, so
+ /// they are just a fixed opcode value, like 'leave'.
+ RawFrm = 1,
+
+ /// AddRegFrm - This form is used for instructions like 'push r32' that have
+ /// their one register operand added to their opcode.
+ AddRegFrm = 2,
+
+ /// RawFrmMemOffs - This form is for instructions that store an absolute
+ /// memory offset as an immediate with a possible segment override.
+ RawFrmMemOffs = 3,
+
+ /// RawFrmSrc - This form is for instructions that use the source index
+ /// register SI/ESI/RSI with a possible segment override.
+ RawFrmSrc = 4,
+
+ /// RawFrmDst - This form is for instructions that use the destination index
+ /// register DI/EDI/RDI.
+ RawFrmDst = 5,
+
+ /// RawFrmDstSrc - This form is for instructions that use the source index
+ /// register SI/ESI/RSI with a possible segment override, and also the
+ /// destination index register DI/EDI/RDI.
+ RawFrmDstSrc = 6,
+
+ /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+ /// immediates, the first of which is a 16-bit immediate (specified by
+ /// the imm encoding) and the second is a 8-bit fixed value.
+ RawFrmImm8 = 7,
+
+ /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+ /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+ /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
+ /// manual, this operand is described as pntr16:32 and pntr16:16
+ RawFrmImm16 = 8,
+
+ /// AddCCFrm - This form is used for Jcc that encode the condition code
+ /// in the lower 4 bits of the opcode.
+ AddCCFrm = 9,
+
+ /// PrefixByte - This form is used for instructions that represent a prefix
+ /// byte like data16 or rep.
+ PrefixByte = 10,
+
+ /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
+ /// byte to specify a destination which in this case is memory and operand 3
+ /// with VEX.VVVV, and also encodes a condition code.
+ MRMDestMem4VOp3CC = 20,
+
+ /// MRM[0-7][rm] - These forms are used to represent instructions that use
+ /// a Mod/RM byte, and use the middle field to hold extended opcode
+ /// information. In the intel manual these are represented as /0, /1, ...
+ ///
+
+ // Instructions operate on a register Reg/Opcode operand not the r/m field.
+ MRMr0 = 21,
+
+ /// MRMSrcMem - But force to use the SIB field.
+ MRMSrcMemFSIB = 22,
+
+ /// MRMDestMem - But force to use the SIB field.
+ MRMDestMemFSIB = 23,
+
+ /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is memory.
+ ///
+ MRMDestMem = 24,
+
+ /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is memory.
+ ///
+ MRMSrcMem = 25,
+
+ /// MRMSrcMem4VOp3 - This form is used for instructions that encode
+ /// operand 3 with VEX.VVVV and load from memory.
+ ///
+ MRMSrcMem4VOp3 = 26,
+
+ /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
+ /// byte to specify the fourth source, which in this case is memory.
+ ///
+ MRMSrcMemOp4 = 27,
+
+ /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
+ /// byte to specify the operands and also encodes a condition code.
+ ///
+ MRMSrcMemCC = 28,
- /// \returns true if the register is a ZMM.
- inline bool isZMMReg(unsigned RegNo) {
- assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous");
- return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
+ /// MRMXm - This form is used for instructions that use the Mod/RM byte
+ /// to specify a memory source, but doesn't use the middle field. And has
+ /// a condition code.
+ ///
+ MRMXmCC = 30,
+
+ /// MRMXm - This form is used for instructions that use the Mod/RM byte
+ /// to specify a memory source, but doesn't use the middle field.
+ ///
+ MRMXm = 31,
+
+ // Next, instructions that operate on a memory r/m operand...
+ MRM0m = 32,
+ MRM1m = 33,
+ MRM2m = 34,
+ MRM3m = 35, // Format /0 /1 /2 /3
+ MRM4m = 36,
+ MRM5m = 37,
+ MRM6m = 38,
+ MRM7m = 39, // Format /4 /5 /6 /7
+
+ /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is a register.
+ ///
+ MRMDestReg = 40,
+
+ /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is a register.
+ ///
+ MRMSrcReg = 41,
+
+ /// MRMSrcReg4VOp3 - This form is used for instructions that encode
+ /// operand 3 with VEX.VVVV and do not load from memory.
+ ///
+ MRMSrcReg4VOp3 = 42,
+
+ /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
+ /// byte to specify the fourth source, which in this case is a register.
+ ///
+ MRMSrcRegOp4 = 43,
+
+ /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
+ /// byte to specify the operands and also encodes a condition code
+ ///
+ MRMSrcRegCC = 44,
+
+ /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
+ /// to specify a register source, but doesn't use the middle field. And has
+ /// a condition code.
+ ///
+ MRMXrCC = 46,
+
+ /// MRMXr - This form is used for instructions that use the Mod/RM byte
+ /// to specify a register source, but doesn't use the middle field.
+ ///
+ MRMXr = 47,
+
+ // Instructions that operate on a register r/m operand...
+ MRM0r = 48,
+ MRM1r = 49,
+ MRM2r = 50,
+ MRM3r = 51, // Format /0 /1 /2 /3
+ MRM4r = 52,
+ MRM5r = 53,
+ MRM6r = 54,
+ MRM7r = 55, // Format /4 /5 /6 /7
+
+ // Instructions that operate that have mod=11 and an opcode but ignore r/m.
+ MRM0X = 56,
+ MRM1X = 57,
+ MRM2X = 58,
+ MRM3X = 59, // Format /0 /1 /2 /3
+ MRM4X = 60,
+ MRM5X = 61,
+ MRM6X = 62,
+ MRM7X = 63, // Format /4 /5 /6 /7
+
+ /// MRM_XX - A mod/rm byte of exactly 0xXX.
+ MRM_C0 = 64,
+ MRM_C1 = 65,
+ MRM_C2 = 66,
+ MRM_C3 = 67,
+ MRM_C4 = 68,
+ MRM_C5 = 69,
+ MRM_C6 = 70,
+ MRM_C7 = 71,
+ MRM_C8 = 72,
+ MRM_C9 = 73,
+ MRM_CA = 74,
+ MRM_CB = 75,
+ MRM_CC = 76,
+ MRM_CD = 77,
+ MRM_CE = 78,
+ MRM_CF = 79,
+ MRM_D0 = 80,
+ MRM_D1 = 81,
+ MRM_D2 = 82,
+ MRM_D3 = 83,
+ MRM_D4 = 84,
+ MRM_D5 = 85,
+ MRM_D6 = 86,
+ MRM_D7 = 87,
+ MRM_D8 = 88,
+ MRM_D9 = 89,
+ MRM_DA = 90,
+ MRM_DB = 91,
+ MRM_DC = 92,
+ MRM_DD = 93,
+ MRM_DE = 94,
+ MRM_DF = 95,
+ MRM_E0 = 96,
+ MRM_E1 = 97,
+ MRM_E2 = 98,
+ MRM_E3 = 99,
+ MRM_E4 = 100,
+ MRM_E5 = 101,
+ MRM_E6 = 102,
+ MRM_E7 = 103,
+ MRM_E8 = 104,
+ MRM_E9 = 105,
+ MRM_EA = 106,
+ MRM_EB = 107,
+ MRM_EC = 108,
+ MRM_ED = 109,
+ MRM_EE = 110,
+ MRM_EF = 111,
+ MRM_F0 = 112,
+ MRM_F1 = 113,
+ MRM_F2 = 114,
+ MRM_F3 = 115,
+ MRM_F4 = 116,
+ MRM_F5 = 117,
+ MRM_F6 = 118,
+ MRM_F7 = 119,
+ MRM_F8 = 120,
+ MRM_F9 = 121,
+ MRM_FA = 122,
+ MRM_FB = 123,
+ MRM_FC = 124,
+ MRM_FD = 125,
+ MRM_FE = 126,
+ MRM_FF = 127,
+
+ FormMask = 127,
+
+ //===------------------------------------------------------------------===//
+ // Actual flags...
+
+ // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+ // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+ // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+ // prefix in 16-bit mode.
+ OpSizeShift = 7,
+ OpSizeMask = 0x3 << OpSizeShift,
+
+ OpSizeFixed = 0 << OpSizeShift,
+ OpSize16 = 1 << OpSizeShift,
+ OpSize32 = 2 << OpSizeShift,
+
+ // AsSize - AdSizeX implies this instruction determines its need of 0x67
+ // prefix from a normal ModRM memory operand. The other types indicate that
+ // an operand is encoded with a specific width and a prefix is needed if
+ // it differs from the current mode.
+ AdSizeShift = OpSizeShift + 2,
+ AdSizeMask = 0x3 << AdSizeShift,
+
+ AdSizeX = 0 << AdSizeShift,
+ AdSize16 = 1 << AdSizeShift,
+ AdSize32 = 2 << AdSizeShift,
+ AdSize64 = 3 << AdSizeShift,
+
+ //===------------------------------------------------------------------===//
+ // OpPrefix - There are several prefix bytes that are used as opcode
+ // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+ // no prefix.
+ //
+ OpPrefixShift = AdSizeShift + 2,
+ OpPrefixMask = 0x3 << OpPrefixShift,
+
+ // PD - Prefix code for packed double precision vector floating point
+ // operations performed in the SSE registers.
+ PD = 1 << OpPrefixShift,
+
+ // XS, XD - These prefix codes are for single and double precision scalar
+ // floating point operations performed in the SSE registers.
+ XS = 2 << OpPrefixShift,
+ XD = 3 << OpPrefixShift,
+
+ //===------------------------------------------------------------------===//
+ // OpMap - This field determines which opcode map this instruction
+ // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
+ //
+ OpMapShift = OpPrefixShift + 2,
+ OpMapMask = 0xF << OpMapShift,
+
+ // OB - OneByte - Set if this instruction has a one byte opcode.
+ OB = 0 << OpMapShift,
+
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << OpMapShift,
+
+ // T8, TA - Prefix after the 0x0F prefix.
+ T8 = 2 << OpMapShift,
+ TA = 3 << OpMapShift,
+
+ // XOP8 - Prefix to include use of imm byte.
+ XOP8 = 4 << OpMapShift,
+
+ // XOP9 - Prefix to exclude use of imm byte.
+ XOP9 = 5 << OpMapShift,
+
+ // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+ XOPA = 6 << OpMapShift,
+
+ /// ThreeDNow - This indicates that the instruction uses the
+ /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
+ /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
+ /// storing a classifier in the imm8 field. To simplify our implementation,
+ /// we handle this by storeing the classifier in the opcode field and using
+ /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
+ ThreeDNow = 7 << OpMapShift,
+
+ // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
+ T_MAP5 = 8 << OpMapShift,
+ T_MAP6 = 9 << OpMapShift,
+ T_MAP7 = 10 << OpMapShift,
+
+ //===------------------------------------------------------------------===//
+ // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ // They are used to specify GPRs and SSE registers, 64-bit operand size,
+ // etc. We only cares about REX.W and REX.R bits and only the former is
+ // statically determined.
+ //
+ REXShift = OpMapShift + 4,
+ REX_W = 1 << REXShift,
+
+ //===------------------------------------------------------------------===//
+ // This three-bit field describes the size of an immediate operand. Zero is
+ // unused so that we can tell if we forgot to set a value.
+ ImmShift = REXShift + 1,
+ ImmMask = 15 << ImmShift,
+ Imm8 = 1 << ImmShift,
+ Imm8PCRel = 2 << ImmShift,
+ Imm8Reg = 3 << ImmShift,
+ Imm16 = 4 << ImmShift,
+ Imm16PCRel = 5 << ImmShift,
+ Imm32 = 6 << ImmShift,
+ Imm32PCRel = 7 << ImmShift,
+ Imm32S = 8 << ImmShift,
+ Imm64 = 9 << ImmShift,
+
+ //===------------------------------------------------------------------===//
+ // FP Instruction Classification... Zero is non-fp instruction.
+
+ // FPTypeMask - Mask for all of the FP types...
+ FPTypeShift = ImmShift + 4,
+ FPTypeMask = 7 << FPTypeShift,
+
+ // NotFP - The default, set for instructions that do not use FP registers.
+ NotFP = 0 << FPTypeShift,
+
+ // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ ZeroArgFP = 1 << FPTypeShift,
+
+ // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ OneArgFP = 2 << FPTypeShift,
+
+ // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ // result back to ST(0). For example, fcos, fsqrt, etc.
+ //
+ OneArgFPRW = 3 << FPTypeShift,
+
+ // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ // explicit argument, storing the result to either ST(0) or the implicit
+ // argument. For example: fadd, fsub, fmul, etc...
+ TwoArgFP = 4 << FPTypeShift,
+
+ // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ CompareFP = 5 << FPTypeShift,
+
+ // CondMovFP - "2 operand" floating point conditional move instructions.
+ CondMovFP = 6 << FPTypeShift,
+
+ // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ SpecialFP = 7 << FPTypeShift,
+
+ // Lock prefix
+ LOCKShift = FPTypeShift + 3,
+ LOCK = 1 << LOCKShift,
+
+ // REP prefix
+ REPShift = LOCKShift + 1,
+ REP = 1 << REPShift,
+
+ // Execution domain for SSE instructions.
+ // 0 means normal, non-SSE instruction.
+ SSEDomainShift = REPShift + 1,
+
+ // Encoding
+ EncodingShift = SSEDomainShift + 2,
+ EncodingMask = 0x3 << EncodingShift,
+
+ // VEX - encoding using 0xC4/0xC5
+ VEX = 1 << EncodingShift,
+
+ /// XOP - Opcode prefix used by XOP instructions.
+ XOP = 2 << EncodingShift,
+
+ // VEX_EVEX - Specifies that this instruction use EVEX form which provides
+ // syntax support up to 32 512-bit register operands and up to 7 16-bit
+ // mask operands as well as source operand data swizzling/memory operand
+ // conversion, eviction hint, and rounding mode.
+ EVEX = 3 << EncodingShift,
+
+ // Opcode
+ OpcodeShift = EncodingShift + 2,
+
+ /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
+ /// address instructions in SSE are represented as 3 address ones in AVX
+ /// and the additional register is encoded in VEX_VVVV prefix.
+ VEX_4VShift = OpcodeShift + 8,
+ VEX_4V = 1ULL << VEX_4VShift,
+
+ /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
+ /// instruction uses 256-bit wide registers. This is usually auto detected
+ /// if a VR256 register is used, but some AVX instructions also have this
+ /// field marked when using a f256 memory references.
+ VEX_LShift = VEX_4VShift + 1,
+ VEX_L = 1ULL << VEX_LShift,
+
+ // EVEX_K - Set if this instruction requires masking
+ EVEX_KShift = VEX_LShift + 1,
+ EVEX_K = 1ULL << EVEX_KShift,
+
+ // EVEX_Z - Set if this instruction has EVEX.Z field set.
+ EVEX_ZShift = EVEX_KShift + 1,
+ EVEX_Z = 1ULL << EVEX_ZShift,
+
+ // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+ EVEX_L2Shift = EVEX_ZShift + 1,
+ EVEX_L2 = 1ULL << EVEX_L2Shift,
+
+ // EVEX_B - Set if this instruction has EVEX.B field set.
+ EVEX_BShift = EVEX_L2Shift + 1,
+ EVEX_B = 1ULL << EVEX_BShift,
+
+ // The scaling factor for the AVX512's 8-bit compressed displacement.
+ CD8_Scale_Shift = EVEX_BShift + 1,
+ CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
+
+ /// Explicitly specified rounding control
+ EVEX_RCShift = CD8_Scale_Shift + 3,
+ EVEX_RC = 1ULL << EVEX_RCShift,
+
+ // NOTRACK prefix
+ NoTrackShift = EVEX_RCShift + 1,
+ NOTRACK = 1ULL << NoTrackShift,
+
+ // Force REX2/VEX/EVEX encoding
+ ExplicitOpPrefixShift = NoTrackShift + 1,
+ // For instructions that require REX2 prefix even if EGPR is not used.
+ ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
+ // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
+ // is present.
+ ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
+ // For instructions that are promoted to EVEX space for EGPR.
+ ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
+ ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
+};
+
+/// \returns true if the instruction with given opcode is a prefix.
+inline bool isPrefix(uint64_t TSFlags) {
+ return (TSFlags & X86II::FormMask) == PrefixByte;
+}
+
+/// \returns true if the instruction with given opcode is a pseudo.
+inline bool isPseudo(uint64_t TSFlags) {
+ return (TSFlags & X86II::FormMask) == Pseudo;
+}
+
+/// \returns the "base" X86 opcode for the specified machine
+/// instruction.
+inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
+ return TSFlags >> X86II::OpcodeShift;
+}
+
+inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; }
+
+/// Decode the "size of immediate" field from the TSFlags field of the
+/// specified instruction.
+inline unsigned getSizeOfImm(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default:
+ llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm8Reg:
+ return 1;
+ case X86II::Imm16:
+ case X86II::Imm16PCRel:
+ return 2;
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm32PCRel:
+ return 4;
+ case X86II::Imm64:
+ return 8;
}
+}
- /// \returns true if \p RegNo is an apx extended register.
- inline bool isApxExtendedReg(unsigned RegNo) {
- assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous");
- return RegNo >= X86::R16 && RegNo <= X86::R31WH;
+/// \returns true if the immediate of the specified instruction's TSFlags
+/// indicates that it is pc relative.
+inline bool isImmPCRel(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default:
+ llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8PCRel:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32PCRel:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8Reg:
+ case X86II::Imm16:
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm64:
+ return false;
}
+}
- /// \returns true if the MachineOperand is a x86-64 extended (r8 or
- /// higher) register, e.g. r8, xmm8, xmm13, etc.
- inline bool isX86_64ExtendedReg(unsigned RegNo) {
- if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
- (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
- (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
- (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
- (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
- return true;
-
- if (isApxExtendedReg(RegNo))
- return true;
-
- switch (RegNo) {
- default: break;
- case X86::R8: case X86::R9: case X86::R10: case X86::R11:
- case X86::R12: case X86::R13: case X86::R14: case X86::R15:
- case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
- case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
- case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
- case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
- case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
- case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
- case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
- case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
- case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
- case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
- return true;
- }
+/// \returns true if the immediate of the specified instruction's
+/// TSFlags indicates that it is signed.
+inline bool isImmSigned(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default:
+ llvm_unreachable("Unknown immediate signedness");
+ case X86II::Imm32S:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm8Reg:
+ case X86II::Imm16:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32:
+ case X86II::Imm32PCRel:
+ case X86II::Imm64:
return false;
}
+}
- inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
- uint64_t TSFlags = Desc.TSFlags;
- uint64_t Encoding = TSFlags & EncodingMask;
- // EVEX can always use egpr.
- if (Encoding == X86II::EVEX)
- return true;
-
- // To be conservative, egpr is not used for all pseudo instructions
- // because we are not sure what instruction it will become.
- // FIXME: Could we improve it in X86ExpandPseudo?
- if (isPseudo(TSFlags))
- return false;
-
- // MAP OB/TB in legacy encoding space can always use egpr except
- // XSAVE*/XRSTOR*.
- unsigned Opcode = Desc.Opcode;
- switch (Opcode) {
- default:
- break;
- case X86::XSAVE:
- case X86::XSAVE64:
- case X86::XSAVEOPT:
- case X86::XSAVEOPT64:
- case X86::XSAVEC:
- case X86::XSAVEC64:
- case X86::XSAVES:
- case X86::XSAVES64:
- case X86::XRSTOR:
- case X86::XRSTOR64:
- case X86::XRSTORS:
- case X86::XRSTORS64:
- return false;
- }
- uint64_t OpMap = TSFlags & X86II::OpMapMask;
- return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
+/// Compute whether all of the def operands are repeated in the uses and
+/// therefore should be skipped.
+/// This determines the start of the unique operand list. We need to determine
+/// if all of the defs have a corresponding tied operand in the uses.
+/// Unfortunately, the tied operand information is encoded in the uses not
+/// the defs so we have to use some heuristics to find which operands to
+/// query.
+inline unsigned getOperandBias(const MCInstrDesc &Desc) {
+ unsigned NumDefs = Desc.getNumDefs();
+ unsigned NumOps = Desc.getNumOperands();
+ switch (NumDefs) {
+ default:
+ llvm_unreachable("Unexpected number of defs");
+ case 0:
+ return 0;
+ case 1:
+ // Common two addr case.
+ if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ return 1;
+ // Check for AVX-512 scatter which has a TIED_TO in the second to last
+ // operand.
+ if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
+ return 1;
+ return 0;
+ case 2:
+ // XCHG/XADD have two destinations and two sources.
+ if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
+ return 2;
+ // Check for gather. AVX-512 has the second tied operand early. AVX2
+ // has it as the last op.
+ if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
+ Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
+ return 2;
+ return 0;
}
+}
- /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
- /// registers, e.g. zmm21, etc.
- static inline bool is32ExtendedReg(unsigned RegNo) {
- return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
- (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
- (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
+/// The function returns the MCInst operand # for the first field of the
+/// memory operand. If the instruction doesn't have a
+/// memory operand, this returns -1.
+///
+/// Note that this ignores tied operands. If there is a tied register which
+/// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
+/// counted as one operand.
+///
+inline int getMemoryOperandNo(uint64_t TSFlags) {
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+
+ switch (TSFlags & X86II::FormMask) {
+ default:
+ llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
+ case X86II::Pseudo:
+ case X86II::RawFrm:
+ case X86II::AddRegFrm:
+ case X86II::RawFrmImm8:
+ case X86II::RawFrmImm16:
+ case X86II::RawFrmMemOffs:
+ case X86II::RawFrmSrc:
+ case X86II::RawFrmDst:
+ case X86II::RawFrmDstSrc:
+ case X86II::AddCCFrm:
+ case X86II::PrefixByte:
+ return -1;
+ case X86II::MRMDestMem:
+ case X86II::MRMDestMemFSIB:
+ return 0;
+ case X86II::MRMSrcMem:
+ case X86II::MRMSrcMemFSIB:
+ // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+ // mask register.
+ return 1 + HasVEX_4V + HasEVEX_K;
+ case X86II::MRMSrcMem4VOp3:
+ // Skip registers encoded in reg.
+ return 1 + HasEVEX_K;
+ case X86II::MRMSrcMemOp4:
+ // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
+ return 3;
+ case X86II::MRMSrcMemCC:
+ case X86II::MRMDestMem4VOp3CC:
+ // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+ // mask register.
+ return 1;
+ case X86II::MRMDestReg:
+ case X86II::MRMSrcReg:
+ case X86II::MRMSrcReg4VOp3:
+ case X86II::MRMSrcRegOp4:
+ case X86II::MRMSrcRegCC:
+ case X86II::MRMXrCC:
+ case X86II::MRMr0:
+ case X86II::MRMXr:
+ case X86II::MRM0r:
+ case X86II::MRM1r:
+ case X86II::MRM2r:
+ case X86II::MRM3r:
+ case X86II::MRM4r:
+ case X86II::MRM5r:
+ case X86II::MRM6r:
+ case X86II::MRM7r:
+ return -1;
+ case X86II::MRM0X:
+ case X86II::MRM1X:
+ case X86II::MRM2X:
+ case X86II::MRM3X:
+ case X86II::MRM4X:
+ case X86II::MRM5X:
+ case X86II::MRM6X:
+ case X86II::MRM7X:
+ return -1;
+ case X86II::MRMXmCC:
+ case X86II::MRMXm:
+ case X86II::MRM0m:
+ case X86II::MRM1m:
+ case X86II::MRM2m:
+ case X86II::MRM3m:
+ case X86II::MRM4m:
+ case X86II::MRM5m:
+ case X86II::MRM6m:
+ case X86II::MRM7m:
+ // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
+ return 0 + HasVEX_4V + HasEVEX_K;
+ case X86II::MRM_C0:
+ case X86II::MRM_C1:
+ case X86II::MRM_C2:
+ case X86II::MRM_C3:
+ case X86II::MRM_C4:
+ case X86II::MRM_C5:
+ case X86II::MRM_C6:
+ case X86II::MRM_C7:
+ case X86II::MRM_C8:
+ case X86II::MRM_C9:
+ case X86II::MRM_CA:
+ case X86II::MRM_CB:
+ case X86II::MRM_CC:
+ case X86II::MRM_CD:
+ case X86II::MRM_CE:
+ case X86II::MRM_CF:
+ case X86II::MRM_D0:
+ case X86II::MRM_D1:
+ case X86II::MRM_D2:
+ case X86II::MRM_D3:
+ case X86II::MRM_D4:
+ case X86II::MRM_D5:
+ case X86II::MRM_D6:
+ case X86II::MRM_D7:
+ case X86II::MRM_D8:
+ case X86II::MRM_D9:
+ case X86II::MRM_DA:
+ case X86II::MRM_DB:
+ case X86II::MRM_DC:
+ case X86II::MRM_DD:
+ case X86II::MRM_DE:
+ case X86II::MRM_DF:
+ case X86II::MRM_E0:
+ case X86II::MRM_E1:
+ case X86II::MRM_E2:
+ case X86II::MRM_E3:
+ case X86II::MRM_E4:
+ case X86II::MRM_E5:
+ case X86II::MRM_E6:
+ case X86II::MRM_E7:
+ case X86II::MRM_E8:
+ case X86II::MRM_E9:
+ case X86II::MRM_EA:
+ case X86II::MRM_EB:
+ case X86II::MRM_EC:
+ case X86II::MRM_ED:
+ case X86II::MRM_EE:
+ case X86II::MRM_EF:
+ case X86II::MRM_F0:
+ case X86II::MRM_F1:
+ case X86II::MRM_F2:
+ case X86II::MRM_F3:
+ case X86II::MRM_F4:
+ case X86II::MRM_F5:
+ case X86II::MRM_F6:
+ case X86II::MRM_F7:
+ case X86II::MRM_F8:
+ case X86II::MRM_F9:
+ case X86II::MRM_FA:
+ case X86II::MRM_FB:
+ case X86II::MRM_FC:
+ case X86II::MRM_FD:
+ case X86II::MRM_FE:
+ case X86II::MRM_FF:
+ return -1;
}
+}
+/// \returns true if the register is a XMM.
+inline bool isXMMReg(unsigned RegNo) {
+ assert(X86::XMM15 - X86::XMM0 == 15 &&
+ "XMM0-15 registers are not continuous");
+ assert(X86::XMM31 - X86::XMM16 == 15 &&
+ "XMM16-31 registers are not continuous");
+ return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
+ (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
+}
- inline bool isX86_64NonExtLowByteReg(unsigned reg) {
- return (reg == X86::SPL || reg == X86::BPL ||
- reg == X86::SIL || reg == X86::DIL);
- }
+/// \returns true if the register is a YMM.
+inline bool isYMMReg(unsigned RegNo) {
+ assert(X86::YMM15 - X86::YMM0 == 15 &&
+ "YMM0-15 registers are not continuous");
+ assert(X86::YMM31 - X86::YMM16 == 15 &&
+ "YMM16-31 registers are not continuous");
+ return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
+ (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
+}
+
+/// \returns true if the register is a ZMM.
+inline bool isZMMReg(unsigned RegNo) {
+ assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous");
+ return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
+}
+
+/// \returns true if \p RegNo is an apx extended register.
+inline bool isApxExtendedReg(unsigned RegNo) {
+ assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous");
+ return RegNo >= X86::R16 && RegNo <= X86::R31WH;
+}
- /// \returns true if this is a masked instruction.
- inline bool isKMasked(uint64_t TSFlags) {
- return (TSFlags & X86II::EVEX_K) != 0;
+/// \returns true if the MachineOperand is a x86-64 extended (r8 or
+/// higher) register, e.g. r8, xmm8, xmm13, etc.
+inline bool isX86_64ExtendedReg(unsigned RegNo) {
+ if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
+ (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
+ (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
+ (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
+ (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
+ return true;
+
+ if (isApxExtendedReg(RegNo))
+ return true;
+
+ switch (RegNo) {
+ default:
+ break;
+ case X86::R8:
+ case X86::R9:
+ case X86::R10:
+ case X86::R11:
+ case X86::R12:
+ case X86::R13:
+ case X86::R14:
+ case X86::R15:
+ case X86::R8D:
+ case X86::R9D:
+ case X86::R10D:
+ case X86::R11D:
+ case X86::R12D:
+ case X86::R13D:
+ case X86::R14D:
+ case X86::R15D:
+ case X86::R8W:
+ case X86::R9W:
+ case X86::R10W:
+ case X86::R11W:
+ case X86::R12W:
+ case X86::R13W:
+ case X86::R14W:
+ case X86::R15W:
+ case X86::R8B:
+ case X86::R9B:
+ case X86::R10B:
+ case X86::R11B:
+ case X86::R12B:
+ case X86::R13B:
+ case X86::R14B:
+ case X86::R15B:
+ case X86::CR8:
+ case X86::CR9:
+ case X86::CR10:
+ case X86::CR11:
+ case X86::CR12:
+ case X86::CR13:
+ case X86::CR14:
+ case X86::CR15:
+ case X86::DR8:
+ case X86::DR9:
+ case X86::DR10:
+ case X86::DR11:
+ case X86::DR12:
+ case X86::DR13:
+ case X86::DR14:
+ case X86::DR15:
+ return true;
}
+ return false;
+}
+
+inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
+ uint64_t TSFlags = Desc.TSFlags;
+ uint64_t Encoding = TSFlags & EncodingMask;
+ // EVEX can always use egpr.
+ if (Encoding == X86II::EVEX)
+ return true;
+
+ // To be conservative, egpr is not used for all pseudo instructions
+ // because we are not sure what instruction it will become.
+ // FIXME: Could we improve it in X86ExpandPseudo?
+ if (isPseudo(TSFlags))
+ return false;
- /// \returns true if this is a merge masked instruction.
- inline bool isKMergeMasked(uint64_t TSFlags) {
- return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
+ // MAP OB/TB in legacy encoding space can always use egpr except
+ // XSAVE*/XRSTOR*.
+ unsigned Opcode = Desc.Opcode;
+ switch (Opcode) {
+ default:
+ break;
+ case X86::XSAVE:
+ case X86::XSAVE64:
+ case X86::XSAVEOPT:
+ case X86::XSAVEOPT64:
+ case X86::XSAVEC:
+ case X86::XSAVEC64:
+ case X86::XSAVES:
+ case X86::XSAVES64:
+ case X86::XRSTOR:
+ case X86::XRSTOR64:
+ case X86::XRSTORS:
+ case X86::XRSTORS64:
+ return false;
}
+ uint64_t OpMap = TSFlags & X86II::OpMapMask;
+ return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
+}
+
+/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
+/// registers, e.g. zmm21, etc.
+static inline bool is32ExtendedReg(unsigned RegNo) {
+ return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
+ (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
+ (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
+}
+
+inline bool isX86_64NonExtLowByteReg(unsigned reg) {
+ return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL ||
+ reg == X86::DIL);
+}
+
+/// \returns true if this is a masked instruction.
+inline bool isKMasked(uint64_t TSFlags) {
+ return (TSFlags & X86II::EVEX_K) != 0;
+}
+
+/// \returns true if this is a merge masked instruction.
+inline bool isKMergeMasked(uint64_t TSFlags) {
+ return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
}
+} // namespace X86II
-} // end namespace llvm;
+} // namespace llvm
#endif
>From 7bbc88c50fde77f30b8c1ad2f40d4af74b067f88 Mon Sep 17 00:00:00 2001
From: Shengchen Kan <shengchen.kan at intel.com>
Date: Fri, 24 Nov 2023 10:43:36 +0800
Subject: [PATCH 2/3] refine comments
---
.../lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 376 ++++++------------
1 file changed, 120 insertions(+), 256 deletions(-)
diff --git a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index ece8cd9cc78047a..d83fa9e705c3f30 100644
--- a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -24,24 +24,20 @@
namespace llvm {
namespace X86 {
-// Enums for memory operand decoding. Each memory operand is represented with
-// a 5 operand sequence in the form:
-// [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
-// These enums help decode this.
+// Enums for memory operand decoding. Each memory operand is represented with
+// a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
enum {
AddrBaseReg = 0,
AddrScaleAmt = 1,
AddrIndexReg = 2,
AddrDisp = 3,
-
- /// AddrSegmentReg - The operand # of the segment in the memory operand.
+ // The operand # of the segment in the memory operand.
AddrSegmentReg = 4,
-
- /// AddrNumOperands - Total number of operands in a memory reference.
+ // Total number of operands in a memory reference.
AddrNumOperands = 5
};
-/// AVX512 static rounding constants. These need to match the values in
+/// AVX512 static rounding constants. These need to match the values in
/// avx512fintrin.h.
enum STATIC_ROUNDING {
TO_NEAREST_INT = 0,
@@ -70,7 +66,7 @@ enum IPREFIXES {
};
enum OperandType : unsigned {
- /// AVX512 embedded rounding control. This should only have values 0-3.
+ // AVX512 embedded rounding control. This should only have values 0-3.
OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
OPERAND_COND_CODE,
};
@@ -95,7 +91,6 @@ enum CondCode {
COND_LE = 14,
COND_G = 15,
LAST_VALID_COND = COND_G,
-
// Artificial condition codes. These are used by analyzeBranch
// to indicate a block terminated with two conditional branches that together
// form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
@@ -103,39 +98,29 @@ enum CondCode {
// are never used in MachineInstrs and are inverses of one another.
COND_NE_OR_P,
COND_E_AND_NP,
-
COND_INVALID
};
// The classification for the first instruction in macro fusion.
+// FIXME: Zen 3 support branch fusion for OR/XOR.
enum class FirstMacroFusionInstKind {
- // TEST
- Test,
- // CMP
- Cmp,
- // AND
- And,
- // FIXME: Zen 3 support branch fusion for OR/XOR.
- // ADD, SUB
- AddSub,
- // INC, DEC
- IncDec,
- // Not valid as a first macro fusion instruction
- Invalid
+ Test, // TEST
+ Cmp, // CMP
+ And, // AND
+ AddSub, // ADD, SUB
+ IncDec, // INC, DEC
+ Invalid // Not valid as a first macro fusion instruction
};
enum class SecondMacroFusionInstKind {
- // JA, JB and variants.
- AB,
- // JE, JL, JG and variants.
- ELG,
- // JS, JP, JO and variants
- SPO,
- // Not a fusible jump.
- Invalid,
+ AB, // JA, JB and variants
+ ELG, // JE, JL, JG and variants
+ SPO, // JS, JP, JO and variants
+ Invalid, // Not a fusible jump.
};
/// \returns the type of the first instruction in macro-fusion.
+// FIXME: Zen 3 support branch fusion for OR/XOR.
inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
switch (Opcode) {
@@ -184,7 +169,6 @@ classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
case X86::AND8rr:
case X86::AND8rr_REV:
return FirstMacroFusionInstKind::And;
- // FIXME: Zen 3 support branch fusion for OR/XOR.
// CMP
case X86::CMP16i16:
case X86::CMP16mr:
@@ -289,44 +273,27 @@ inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
if (CC == X86::COND_INVALID)
return SecondMacroFusionInstKind::Invalid;
-
switch (CC) {
default:
return SecondMacroFusionInstKind::Invalid;
- // JE,JZ
- case X86::COND_E:
- // JNE,JNZ
- case X86::COND_NE:
- // JL,JNGE
- case X86::COND_L:
- // JLE,JNG
- case X86::COND_LE:
- // JG,JNLE
- case X86::COND_G:
- // JGE,JNL
- case X86::COND_GE:
+ case X86::COND_E: // JE,JZ
+ case X86::COND_NE: // JNE,JNZ
+ case X86::COND_L: // JL,JNGE
+ case X86::COND_LE: // JLE,JNG
+ case X86::COND_G: // JG,JNLE
+ case X86::COND_GE: // JGE,JNL
return SecondMacroFusionInstKind::ELG;
- // JB,JC
- case X86::COND_B:
- // JNA,JBE
- case X86::COND_BE:
- // JA,JNBE
- case X86::COND_A:
- // JAE,JNC,JNB
- case X86::COND_AE:
+ case X86::COND_B: // JB,JC
+ case X86::COND_BE: // JNA,JBE
+ case X86::COND_A: // JA,JNBE
+ case X86::COND_AE: // JAE,JNC,JNB
return SecondMacroFusionInstKind::AB;
- // JS
- case X86::COND_S:
- // JNS
- case X86::COND_NS:
- // JP,JPE
- case X86::COND_P:
- // JNP,JPO
- case X86::COND_NP:
- // JO
- case X86::COND_O:
- // JNO
- case X86::COND_NO:
+ case X86::COND_S: // JS
+ case X86::COND_NS: // JNS
+ case X86::COND_P: // JP,JPE
+ case X86::COND_NP: // JNP,JPO
+ case X86::COND_O: // JO
+ case X86::COND_NO: // JNO
return SecondMacroFusionInstKind::SPO;
}
}
@@ -406,7 +373,6 @@ namespace X86II {
enum TOF {
//===------------------------------------------------------------------===//
// X86 Specific MachineOperand flags.
-
MO_NO_FLAG,
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
@@ -580,177 +546,129 @@ enum : uint64_t {
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
//
-
// PseudoFrm - This represents an instruction that is a pseudo instruction
// or one that has not been implemented yet. It is illegal to code generate
// it, but tolerated for intermediate implementation stages.
Pseudo = 0,
-
/// Raw - This form is for instructions that don't have any operands, so
/// they are just a fixed opcode value, like 'leave'.
RawFrm = 1,
-
/// AddRegFrm - This form is used for instructions like 'push r32' that have
/// their one register operand added to their opcode.
AddRegFrm = 2,
-
/// RawFrmMemOffs - This form is for instructions that store an absolute
/// memory offset as an immediate with a possible segment override.
RawFrmMemOffs = 3,
-
/// RawFrmSrc - This form is for instructions that use the source index
/// register SI/ESI/RSI with a possible segment override.
RawFrmSrc = 4,
-
/// RawFrmDst - This form is for instructions that use the destination index
/// register DI/EDI/RDI.
RawFrmDst = 5,
-
/// RawFrmDstSrc - This form is for instructions that use the source index
/// register SI/ESI/RSI with a possible segment override, and also the
/// destination index register DI/EDI/RDI.
RawFrmDstSrc = 6,
-
/// RawFrmImm8 - This is used for the ENTER instruction, which has two
/// immediates, the first of which is a 16-bit immediate (specified by
/// the imm encoding) and the second is a 8-bit fixed value.
RawFrmImm8 = 7,
-
/// RawFrmImm16 - This is used for CALL FAR instructions, which have two
/// immediates, the first of which is a 16 or 32-bit immediate (specified by
/// the imm encoding) and the second is a 16-bit fixed value. In the AMD
/// manual, this operand is described as pntr16:32 and pntr16:16
RawFrmImm16 = 8,
-
/// AddCCFrm - This form is used for Jcc that encode the condition code
/// in the lower 4 bits of the opcode.
AddCCFrm = 9,
-
/// PrefixByte - This form is used for instructions that represent a prefix
/// byte like data16 or rep.
PrefixByte = 10,
-
/// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
/// byte to specify a destination which in this case is memory and operand 3
/// with VEX.VVVV, and also encodes a condition code.
MRMDestMem4VOp3CC = 20,
-
/// MRM[0-7][rm] - These forms are used to represent instructions that use
/// a Mod/RM byte, and use the middle field to hold extended opcode
/// information. In the intel manual these are represented as /0, /1, ...
///
-
// Instructions operate on a register Reg/Opcode operand not the r/m field.
MRMr0 = 21,
-
/// MRMSrcMem - But force to use the SIB field.
MRMSrcMemFSIB = 22,
-
/// MRMDestMem - But force to use the SIB field.
MRMDestMemFSIB = 23,
-
/// MRMDestMem - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is memory.
- ///
MRMDestMem = 24,
-
/// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is memory.
- ///
MRMSrcMem = 25,
-
/// MRMSrcMem4VOp3 - This form is used for instructions that encode
/// operand 3 with VEX.VVVV and load from memory.
- ///
MRMSrcMem4VOp3 = 26,
-
/// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
/// byte to specify the fourth source, which in this case is memory.
- ///
MRMSrcMemOp4 = 27,
-
/// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
/// byte to specify the operands and also encodes a condition code.
- ///
MRMSrcMemCC = 28,
-
/// MRMXm - This form is used for instructions that use the Mod/RM byte
/// to specify a memory source, but doesn't use the middle field. And has
/// a condition code.
- ///
MRMXmCC = 30,
-
/// MRMXm - This form is used for instructions that use the Mod/RM byte
/// to specify a memory source, but doesn't use the middle field.
- ///
MRMXm = 31,
-
// Next, instructions that operate on a memory r/m operand...
- MRM0m = 32,
- MRM1m = 33,
- MRM2m = 34,
- MRM3m = 35, // Format /0 /1 /2 /3
- MRM4m = 36,
- MRM5m = 37,
- MRM6m = 38,
- MRM7m = 39, // Format /4 /5 /6 /7
-
+ MRM0m = 32, // Format /0
+ MRM1m = 33, // Format /1
+ MRM2m = 34, // Format /2
+ MRM3m = 35, // Format /3
+ MRM4m = 36, // Format /4
+ MRM5m = 37, // Format /5
+ MRM6m = 38, // Format /6
+ MRM7m = 39, // Format /7
/// MRMDestReg - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is a register.
- ///
MRMDestReg = 40,
-
/// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is a register.
- ///
MRMSrcReg = 41,
-
/// MRMSrcReg4VOp3 - This form is used for instructions that encode
/// operand 3 with VEX.VVVV and do not load from memory.
- ///
MRMSrcReg4VOp3 = 42,
-
/// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
/// byte to specify the fourth source, which in this case is a register.
- ///
MRMSrcRegOp4 = 43,
-
/// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
/// byte to specify the operands and also encodes a condition code
- ///
MRMSrcRegCC = 44,
-
/// MRMXCCr - This form is used for instructions that use the Mod/RM byte
/// to specify a register source, but doesn't use the middle field. And has
/// a condition code.
- ///
MRMXrCC = 46,
-
/// MRMXr - This form is used for instructions that use the Mod/RM byte
/// to specify a register source, but doesn't use the middle field.
- ///
MRMXr = 47,
-
// Instructions that operate on a register r/m operand...
- MRM0r = 48,
- MRM1r = 49,
- MRM2r = 50,
- MRM3r = 51, // Format /0 /1 /2 /3
- MRM4r = 52,
- MRM5r = 53,
- MRM6r = 54,
- MRM7r = 55, // Format /4 /5 /6 /7
-
+ MRM0r = 48, // Format /0
+ MRM1r = 49, // Format /1
+ MRM2r = 50, // Format /2
+ MRM3r = 51, // Format /3
+ MRM4r = 52, // Format /4
+ MRM5r = 53, // Format /5
+ MRM6r = 54, // Format /6
+ MRM7r = 55, // Format /7
// Instructions that operate that have mod=11 and an opcode but ignore r/m.
- MRM0X = 56,
- MRM1X = 57,
- MRM2X = 58,
- MRM3X = 59, // Format /0 /1 /2 /3
- MRM4X = 60,
- MRM5X = 61,
- MRM6X = 62,
- MRM7X = 63, // Format /4 /5 /6 /7
-
+ MRM0X = 56, // Format /0
+ MRM1X = 57, // Format /1
+ MRM2X = 58, // Format /2
+ MRM3X = 59, // Format /3
+ MRM4X = 60, // Format /4
+ MRM5X = 61, // Format /5
+ MRM6X = 62, // Format /6
+ MRM7X = 63, // Format /7
/// MRM_XX - A mod/rm byte of exactly 0xXX.
MRM_C0 = 64,
MRM_C1 = 65,
@@ -816,79 +734,60 @@ enum : uint64_t {
MRM_FD = 125,
MRM_FE = 126,
MRM_FF = 127,
-
FormMask = 127,
-
//===------------------------------------------------------------------===//
// Actual flags...
-
- // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
- // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
- // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
- // prefix in 16-bit mode.
+ /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+ /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+ /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+ /// prefix in 16-bit mode.
OpSizeShift = 7,
OpSizeMask = 0x3 << OpSizeShift,
-
OpSizeFixed = 0 << OpSizeShift,
OpSize16 = 1 << OpSizeShift,
OpSize32 = 2 << OpSizeShift,
-
- // AsSize - AdSizeX implies this instruction determines its need of 0x67
- // prefix from a normal ModRM memory operand. The other types indicate that
- // an operand is encoded with a specific width and a prefix is needed if
- // it differs from the current mode.
+ /// AsSize - AdSizeX implies this instruction determines its need of 0x67
+ /// prefix from a normal ModRM memory operand. The other types indicate that
+ /// an operand is encoded with a specific width and a prefix is needed if
+ /// it differs from the current mode.
AdSizeShift = OpSizeShift + 2,
AdSizeMask = 0x3 << AdSizeShift,
-
AdSizeX = 0 << AdSizeShift,
AdSize16 = 1 << AdSizeShift,
AdSize32 = 2 << AdSizeShift,
AdSize64 = 3 << AdSizeShift,
-
//===------------------------------------------------------------------===//
- // OpPrefix - There are several prefix bytes that are used as opcode
- // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
- // no prefix.
- //
+ /// OpPrefix - There are several prefix bytes that are used as opcode
+ /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+ /// no prefix.
OpPrefixShift = AdSizeShift + 2,
OpPrefixMask = 0x3 << OpPrefixShift,
-
- // PD - Prefix code for packed double precision vector floating point
- // operations performed in the SSE registers.
+ /// PD - Prefix code for packed double precision vector floating point
+ /// operations performed in the SSE registers.
PD = 1 << OpPrefixShift,
-
- // XS, XD - These prefix codes are for single and double precision scalar
- // floating point operations performed in the SSE registers.
+ /// XS, XD - These prefix codes are for single and double precision scalar
+ /// floating point operations performed in the SSE registers.
XS = 2 << OpPrefixShift,
XD = 3 << OpPrefixShift,
-
//===------------------------------------------------------------------===//
- // OpMap - This field determines which opcode map this instruction
- // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
- //
+ /// OpMap - This field determines which opcode map this instruction
+ /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
OpMapShift = OpPrefixShift + 2,
OpMapMask = 0xF << OpMapShift,
-
- // OB - OneByte - Set if this instruction has a one byte opcode.
+ /// OB - OneByte - Set if this instruction has a one byte opcode.
OB = 0 << OpMapShift,
-
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
+ /// TB - TwoByte - Set if this instruction has a two byte opcode, which
+ /// starts with a 0x0F byte before the real opcode.
TB = 1 << OpMapShift,
-
- // T8, TA - Prefix after the 0x0F prefix.
+ /// T8, TA - Prefix after the 0x0F prefix.
T8 = 2 << OpMapShift,
TA = 3 << OpMapShift,
-
- // XOP8 - Prefix to include use of imm byte.
+ /// XOP8 - Prefix to include use of imm byte.
XOP8 = 4 << OpMapShift,
-
- // XOP9 - Prefix to exclude use of imm byte.
+ /// XOP9 - Prefix to exclude use of imm byte.
XOP9 = 5 << OpMapShift,
-
- // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+ /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
XOPA = 6 << OpMapShift,
-
/// ThreeDNow - This indicates that the instruction uses the
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
/// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
@@ -896,23 +795,19 @@ enum : uint64_t {
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
ThreeDNow = 7 << OpMapShift,
-
- // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
+ /// MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
T_MAP5 = 8 << OpMapShift,
T_MAP6 = 9 << OpMapShift,
T_MAP7 = 10 << OpMapShift,
-
//===------------------------------------------------------------------===//
- // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
- // They are used to specify GPRs and SSE registers, 64-bit operand size,
- // etc. We only cares about REX.W and REX.R bits and only the former is
- // statically determined.
- //
+ /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ /// They are used to specify GPRs and SSE registers, 64-bit operand size,
+ /// etc. We only cares about REX.W and REX.R bits and only the former is
+ /// statically determined.
REXShift = OpMapShift + 4,
REX_W = 1 << REXShift,
-
//===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
+ // This three-bit field describes the size of an immediate operand. Zero is
// unused so that we can tell if we forgot to set a value.
ImmShift = REXShift + 1,
ImmMask = 15 << ImmShift,
@@ -925,123 +820,94 @@ enum : uint64_t {
Imm32PCRel = 7 << ImmShift,
Imm32S = 8 << ImmShift,
Imm64 = 9 << ImmShift,
-
//===------------------------------------------------------------------===//
- // FP Instruction Classification... Zero is non-fp instruction.
-
- // FPTypeMask - Mask for all of the FP types...
+ /// FP Instruction Classification... Zero is non-fp instruction.
+ /// FPTypeMask - Mask for all of the FP types...
FPTypeShift = ImmShift + 4,
FPTypeMask = 7 << FPTypeShift,
-
- // NotFP - The default, set for instructions that do not use FP registers.
+ /// NotFP - The default, set for instructions that do not use FP registers.
NotFP = 0 << FPTypeShift,
-
- // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
ZeroArgFP = 1 << FPTypeShift,
-
- // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
OneArgFP = 2 << FPTypeShift,
-
- // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
- // result back to ST(0). For example, fcos, fsqrt, etc.
- //
+ /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ /// result back to ST(0). For example, fcos, fsqrt, etc.
OneArgFPRW = 3 << FPTypeShift,
-
- // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
- // explicit argument, storing the result to either ST(0) or the implicit
- // argument. For example: fadd, fsub, fmul, etc...
+ /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ /// explicit argument, storing the result to either ST(0) or the implicit
+ /// argument. For example: fadd, fsub, fmul, etc...
TwoArgFP = 4 << FPTypeShift,
-
- // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
- // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ /// explicit argument, but have no destination. Example: fucom, fucomi, ...
CompareFP = 5 << FPTypeShift,
-
- // CondMovFP - "2 operand" floating point conditional move instructions.
+ /// CondMovFP - "2 operand" floating point conditional move instructions.
CondMovFP = 6 << FPTypeShift,
-
- // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
SpecialFP = 7 << FPTypeShift,
-
// Lock prefix
LOCKShift = FPTypeShift + 3,
LOCK = 1 << LOCKShift,
-
// REP prefix
REPShift = LOCKShift + 1,
REP = 1 << REPShift,
-
- // Execution domain for SSE instructions.
- // 0 means normal, non-SSE instruction.
+ /// Execution domain for SSE instructions.
+ /// 0 means normal, non-SSE instruction.
SSEDomainShift = REPShift + 1,
-
// Encoding
EncodingShift = SSEDomainShift + 2,
EncodingMask = 0x3 << EncodingShift,
-
- // VEX - encoding using 0xC4/0xC5
+ /// VEX - encoding using 0xC4/0xC5
VEX = 1 << EncodingShift,
-
/// XOP - Opcode prefix used by XOP instructions.
XOP = 2 << EncodingShift,
-
- // VEX_EVEX - Specifies that this instruction use EVEX form which provides
- // syntax support up to 32 512-bit register operands and up to 7 16-bit
- // mask operands as well as source operand data swizzling/memory operand
- // conversion, eviction hint, and rounding mode.
+ /// EVEX - Specifies that this instruction use EVEX form which provides
+ /// syntax support up to 32 512-bit register operands and up to 7 16-bit
+ /// mask operands as well as source operand data swizzling/memory operand
+ /// conversion, eviction hint, and rounding mode.
EVEX = 3 << EncodingShift,
-
// Opcode
OpcodeShift = EncodingShift + 2,
-
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
VEX_4VShift = OpcodeShift + 8,
VEX_4V = 1ULL << VEX_4VShift,
-
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
VEX_LShift = VEX_4VShift + 1,
VEX_L = 1ULL << VEX_LShift,
-
- // EVEX_K - Set if this instruction requires masking
+ /// EVEX_K - Set if this instruction requires masking
EVEX_KShift = VEX_LShift + 1,
EVEX_K = 1ULL << EVEX_KShift,
-
- // EVEX_Z - Set if this instruction has EVEX.Z field set.
+ /// EVEX_Z - Set if this instruction has EVEX.Z field set.
EVEX_ZShift = EVEX_KShift + 1,
EVEX_Z = 1ULL << EVEX_ZShift,
-
- // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+ /// EVEX_L2 - Set if this instruction has EVEX.L' field set.
EVEX_L2Shift = EVEX_ZShift + 1,
EVEX_L2 = 1ULL << EVEX_L2Shift,
-
- // EVEX_B - Set if this instruction has EVEX.B field set.
+ /// EVEX_B - Set if this instruction has EVEX.B field set.
EVEX_BShift = EVEX_L2Shift + 1,
EVEX_B = 1ULL << EVEX_BShift,
-
- // The scaling factor for the AVX512's 8-bit compressed displacement.
+ /// The scaling factor for the AVX512's 8-bit compressed displacement.
CD8_Scale_Shift = EVEX_BShift + 1,
CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
-
/// Explicitly specified rounding control
EVEX_RCShift = CD8_Scale_Shift + 3,
EVEX_RC = 1ULL << EVEX_RCShift,
-
- // NOTRACK prefix
+ /// NOTRACK prefix
NoTrackShift = EVEX_RCShift + 1,
NOTRACK = 1ULL << NoTrackShift,
-
- // Force REX2/VEX/EVEX encoding
+ /// Force REX2/VEX/EVEX encoding
ExplicitOpPrefixShift = NoTrackShift + 1,
- // For instructions that require REX2 prefix even if EGPR is not used.
+ /// For instructions that require REX2 prefix even if EGPR is not used.
ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
- // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
- // is present.
+ /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
+ /// is present.
ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
- // For instructions that are promoted to EVEX space for EGPR.
+ /// For instructions that are promoted to EVEX space for EGPR.
ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
};
@@ -1478,7 +1344,5 @@ inline bool isKMergeMasked(uint64_t TSFlags) {
return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
}
} // namespace X86II
-
} // namespace llvm
-
#endif
>From 901f6cd1bf58b7a867f6d3619117a8a2c02c0f77 Mon Sep 17 00:00:00 2001
From: Shengchen Kan <shengchen.kan at intel.com>
Date: Fri, 24 Nov 2023 10:58:31 +0800
Subject: [PATCH 3/3] fix comments
---
.../lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 70 +++++--------------
1 file changed, 16 insertions(+), 54 deletions(-)
diff --git a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index d83fa9e705c3f30..fccd70fd2ec254d 100644
--- a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -22,7 +22,6 @@
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
-
namespace X86 {
// Enums for memory operand decoding. Each memory operand is represented with
// a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
@@ -373,168 +372,130 @@ namespace X86II {
enum TOF {
//===------------------------------------------------------------------===//
// X86 Specific MachineOperand flags.
+ //
+ /// MO_NO_FLAG - No flag for the operand
MO_NO_FLAG,
-
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
/// relocation of:
/// SYMBOL_LABEL + [. - PICBASELABEL]
MO_GOT_ABSOLUTE_ADDRESS,
-
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
/// immediate should get the value of the symbol minus the PIC base label:
/// SYMBOL_LABEL - PICBASELABEL
MO_PIC_BASE_OFFSET,
-
/// MO_GOT - On a symbol operand this indicates that the immediate is the
/// offset to the GOT entry for the symbol name from the base of the GOT.
- ///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOT
MO_GOT,
-
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
/// the offset to the location of the symbol name from the base of the GOT.
- ///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTOFF
MO_GOTOFF,
-
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
/// offset to the GOT entry for the symbol name from the current code
/// location.
- ///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTPCREL
MO_GOTPCREL,
-
/// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
/// relocations are guaranteed to be emitted by the integrated assembler
/// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
MO_GOTPCREL_NORELAX,
-
/// MO_PLT - On a symbol operand this indicates that the immediate is
/// offset to the PLT entry of symbol name from the current code location.
- ///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @PLT
MO_PLT,
-
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index structure that contains
/// the module number and variable offset for the symbol. Used in the
/// general dynamic TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSGD
MO_TLSGD,
-
/// MO_TLSLD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// __tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the x86-64 local dynamic TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLD
MO_TLSLD,
-
/// MO_TLSLDM - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// ___tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the IA32 local dynamic TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLDM
MO_TLSLDM,
-
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the thread-pointer offset for the
/// symbol. Used in the x86-64 initial exec TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTTPOFF
MO_GOTTPOFF,
-
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
/// the absolute address of the GOT entry with the negative thread-pointer
/// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
/// model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @INDNTPOFF
MO_INDNTPOFF,
-
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
/// the thread-pointer offset for the symbol. Used in the x86-64 local
/// exec TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TPOFF
MO_TPOFF,
-
/// MO_DTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS offset of the symbol. Used
/// in the local dynamic TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @DTPOFF
MO_DTPOFF,
-
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
/// the negative thread-pointer offset for the symbol. Used in the IA32
/// local exec TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @NTPOFF
MO_NTPOFF,
-
/// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the negative thread-pointer offset for
/// the symbol. Used in the PIC IA32 initial exec TLS access model.
- ///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTNTPOFF
MO_GOTNTPOFF,
-
/// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "__imp_FOO" symbol. This is used for
/// dllimport linkage on windows.
MO_DLLIMPORT,
-
/// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
/// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY,
-
/// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
/// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
/// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY_PIC_BASE,
-
/// MO_TLVP - On a symbol operand this indicates that the immediate is
/// some TLS offset.
- ///
/// This is the TLS offset for the Darwin TLS mechanism.
MO_TLVP,
-
/// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
/// is some TLS offset from the picbase.
- ///
/// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
MO_TLVP_PIC_BASE,
-
/// MO_SECREL - On a symbol operand this indicates that the immediate is
/// the offset from beginning of section.
- ///
/// This is the TLS offset for the COFF/Windows TLS mechanism.
MO_SECREL,
-
/// MO_ABS8 - On a symbol operand this indicates that the symbol is known
/// to be an absolute symbol in range [0,128), so we can use the @ABS8
/// symbol modifier.
MO_ABS8,
-
/// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
/// reference is actually to the ".refptr.FOO" symbol. This is used for
/// stub symbols on windows.
@@ -546,9 +507,9 @@ enum : uint64_t {
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
//
- // PseudoFrm - This represents an instruction that is a pseudo instruction
- // or one that has not been implemented yet. It is illegal to code generate
- // it, but tolerated for intermediate implementation stages.
+ /// PseudoFrm - This represents an instruction that is a pseudo instruction
+ /// or one that has not been implemented yet. It is illegal to code generate
+ /// it, but tolerated for intermediate implementation stages.
Pseudo = 0,
/// Raw - This form is for instructions that don't have any operands, so
/// they are just a fixed opcode value, like 'leave'.
@@ -620,7 +581,7 @@ enum : uint64_t {
/// MRMXm - This form is used for instructions that use the Mod/RM byte
/// to specify a memory source, but doesn't use the middle field.
MRMXm = 31,
- // Next, instructions that operate on a memory r/m operand...
+ /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand.
MRM0m = 32, // Format /0
MRM1m = 33, // Format /1
MRM2m = 34, // Format /2
@@ -651,7 +612,7 @@ enum : uint64_t {
/// MRMXr - This form is used for instructions that use the Mod/RM byte
/// to specify a register source, but doesn't use the middle field.
MRMXr = 47,
- // Instructions that operate on a register r/m operand...
+ /// MRM0r-MRM7r - Instructions that operate on a register r/m operand.
MRM0r = 48, // Format /0
MRM1r = 49, // Format /1
MRM2r = 50, // Format /2
@@ -660,7 +621,8 @@ enum : uint64_t {
MRM5r = 53, // Format /5
MRM6r = 54, // Format /6
MRM7r = 55, // Format /7
- // Instructions that operate that have mod=11 and an opcode but ignore r/m.
+ /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but
+ /// ignore r/m.
MRM0X = 56, // Format /0
MRM1X = 57, // Format /1
MRM2X = 58, // Format /2
@@ -669,7 +631,7 @@ enum : uint64_t {
MRM5X = 61, // Format /5
MRM6X = 62, // Format /6
MRM7X = 63, // Format /7
- /// MRM_XX - A mod/rm byte of exactly 0xXX.
+ /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX.
MRM_C0 = 64,
MRM_C1 = 65,
MRM_C2 = 66,
@@ -807,10 +769,9 @@ enum : uint64_t {
REXShift = OpMapShift + 4,
REX_W = 1 << REXShift,
//===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
+ // This 4-bit field describes the size of an immediate operand. Zero is
// unused so that we can tell if we forgot to set a value.
ImmShift = REXShift + 1,
- ImmMask = 15 << ImmShift,
Imm8 = 1 << ImmShift,
Imm8PCRel = 2 << ImmShift,
Imm8Reg = 3 << ImmShift,
@@ -820,6 +781,7 @@ enum : uint64_t {
Imm32PCRel = 7 << ImmShift,
Imm32S = 8 << ImmShift,
Imm64 = 9 << ImmShift,
+ ImmMask = 15 << ImmShift,
//===------------------------------------------------------------------===//
/// FP Instruction Classification... Zero is non-fp instruction.
/// FPTypeMask - Mask for all of the FP types...
@@ -845,16 +807,16 @@ enum : uint64_t {
CondMovFP = 6 << FPTypeShift,
/// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
SpecialFP = 7 << FPTypeShift,
- // Lock prefix
+ /// Lock prefix
LOCKShift = FPTypeShift + 3,
LOCK = 1 << LOCKShift,
- // REP prefix
+ /// REP prefix
REPShift = LOCKShift + 1,
REP = 1 << REPShift,
/// Execution domain for SSE instructions.
/// 0 means normal, non-SSE instruction.
SSEDomainShift = REPShift + 1,
- // Encoding
+ /// Encoding
EncodingShift = SSEDomainShift + 2,
EncodingMask = 0x3 << EncodingShift,
/// VEX - encoding using 0xC4/0xC5
@@ -866,7 +828,7 @@ enum : uint64_t {
/// mask operands as well as source operand data swizzling/memory operand
/// conversion, eviction hint, and rounding mode.
EVEX = 3 << EncodingShift,
- // Opcode
+ /// Opcode
OpcodeShift = EncodingShift + 2,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
More information about the llvm-commits
mailing list