[llvm] 95d584c - [InstCombine] Convert or concat to fshl if opposite or concat exists (#68502)

via llvm-commits llvm-commits at lists.llvm.org
Sun Nov 19 21:12:59 PST 2023


Author: HaohaiWen
Date: 2023-11-20T13:12:55+08:00
New Revision: 95d584c6ac5b518a66992293b4ff63fc05a81685

URL: https://github.com/llvm/llvm-project/commit/95d584c6ac5b518a66992293b4ff63fc05a81685
DIFF: https://github.com/llvm/llvm-project/commit/95d584c6ac5b518a66992293b4ff63fc05a81685.diff

LOG: [InstCombine] Convert or concat to fshl if opposite or concat exists (#68502)

If there are two 'or' instructions concat variables in opposite order
and the first 'or' dominates the second one, the second 'or' can be
optimized to fshl to rotate shift first 'or'. This can eliminate an shl
and expose more optimization opportunity for bswap/bitreverse.

Added: 
    

Modified: 
    llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
    llvm/test/Transforms/InstCombine/funnel.ll

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 46af9bf5eed003a..1910ebca4004ccc 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -2699,7 +2699,8 @@ Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
 }
 
 /// Match UB-safe variants of the funnel shift intrinsic.
-static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
+static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC,
+                                     const DominatorTree &DT) {
   // TODO: Can we reduce the code duplication between this and the related
   // rotate matching code under visitSelect and visitTrunc?
   unsigned Width = Or.getType()->getScalarSizeInBits();
@@ -2804,6 +2805,64 @@ static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
       return nullptr;
 
     FShiftArgs = {ShVal0, ShVal1, ShAmt};
+  } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
+    // If there are two 'or' instructions concat variables in opposite order:
+    //
+    // Slot1 and Slot2 are all zero bits.
+    // | Slot1 | Low | Slot2 | High |
+    // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
+    // | Slot2 | High | Slot1 | Low |
+    // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
+    //
+    // the latter 'or' can be safely convert to
+    // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
+    // if ZextLowShlAmt + ZextHighShlAmt == Width.
+    if (!isa<ZExtInst>(Or1))
+      std::swap(Or0, Or1);
+
+    Value *High, *ZextHigh, *Low;
+    const APInt *ZextHighShlAmt;
+    if (!match(Or0,
+               m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
+      return nullptr;
+
+    if (!match(Or1, m_ZExt(m_Value(Low))) ||
+        !match(ZextHigh, m_ZExt(m_Value(High))))
+      return nullptr;
+
+    unsigned HighSize = High->getType()->getScalarSizeInBits();
+    unsigned LowSize = Low->getType()->getScalarSizeInBits();
+    // Make sure High does not overlap with Low and most significant bits of
+    // High aren't shifted out.
+    if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
+      return nullptr;
+
+    for (User *U : ZextHigh->users()) {
+      Value *X, *Y;
+      if (!match(U, m_Or(m_Value(X), m_Value(Y))))
+        continue;
+
+      if (!isa<ZExtInst>(Y))
+        std::swap(X, Y);
+
+      const APInt *ZextLowShlAmt;
+      if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
+          !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
+        continue;
+
+      // HighLow is good concat. If sum of two shifts amount equals to Width,
+      // LowHigh must also be a good concat.
+      if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
+        continue;
+
+      // Low must not overlap with High and most significant bits of Low must
+      // not be shifted out.
+      assert(ZextLowShlAmt->uge(HighSize) &&
+             ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
+
+      FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
+      break;
+    }
   }
 
   if (FShiftArgs.empty())
@@ -3305,7 +3364,7 @@ Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
                                                   /*MatchBitReversals*/ true))
     return BitOp;
 
-  if (Instruction *Funnel = matchFunnelShift(I, *this))
+  if (Instruction *Funnel = matchFunnelShift(I, *this, DT))
     return Funnel;
 
   if (Instruction *Concat = matchOrConcat(I, Builder))

diff  --git a/llvm/test/Transforms/InstCombine/funnel.ll b/llvm/test/Transforms/InstCombine/funnel.ll
index 60ce49a1635623f..dd8cb2d153fdac6 100644
--- a/llvm/test/Transforms/InstCombine/funnel.ll
+++ b/llvm/test/Transforms/InstCombine/funnel.ll
@@ -354,6 +354,150 @@ define <2 x i64> @fshl_select_vector(<2 x i64> %x, <2 x i64> %y, <2 x i64> %sham
   ret <2 x i64> %r
 }
 
+; Convert 'or concat' to fshl if opposite 'or concat' exists.
+
+define i32 @fshl_concat_i8_i24(i8 %x, i24 %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_i8_i24(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext i8 [[X:%.*]] to i32
+; CHECK-NEXT:    [[SLX:%.*]] = shl nuw i32 [[ZEXT_X]], 24
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext i24 [[Y:%.*]] to i32
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[YX:%.*]] = call i32 @llvm.fshl.i32(i32 [[XY]], i32 [[XY]], i32 8)
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  %zext.x = zext i8 %x to i32
+  %slx = shl i32 %zext.x, 24
+  %zext.y = zext i24 %y to i32
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 8
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define i32 @fshl_concat_i8_i8(i8 %x, i8 %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_i8_i8(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext i8 [[X:%.*]] to i32
+; CHECK-NEXT:    [[SLX:%.*]] = shl nuw nsw i32 [[ZEXT_X]], 13
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext i8 [[Y:%.*]] to i32
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[YX:%.*]] = call i32 @llvm.fshl.i32(i32 [[XY]], i32 [[XY]], i32 19)
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  %zext.x = zext i8 %x to i32
+  %slx = shl i32 %zext.x, 13
+  %zext.y = zext i8 %y to i32
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 19
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define i32 @fshl_concat_i8_i8_overlap(i8 %x, i8 %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_i8_i8_overlap(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext i8 [[X:%.*]] to i32
+; CHECK-NEXT:    [[SLX:%.*]] = shl i32 [[ZEXT_X]], 25
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext i8 [[Y:%.*]] to i32
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[SLY:%.*]] = shl nuw nsw i32 [[ZEXT_Y]], 7
+; CHECK-NEXT:    [[YX:%.*]] = or i32 [[SLY]], [[ZEXT_X]]
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  ; Test sly overlap.
+  %zext.x = zext i8 %x to i32
+  %slx = shl i32 %zext.x, 25
+  %zext.y = zext i8 %y to i32
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 7
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define i32 @fshl_concat_i8_i8_drop(i8 %x, i8 %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_i8_i8_drop(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext i8 [[X:%.*]] to i32
+; CHECK-NEXT:    [[SLX:%.*]] = shl nuw nsw i32 [[ZEXT_X]], 7
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext i8 [[Y:%.*]] to i32
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[SLY:%.*]] = shl i32 [[ZEXT_Y]], 25
+; CHECK-NEXT:    [[YX:%.*]] = or i32 [[SLY]], [[ZEXT_X]]
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  ; Test sly drop.
+  %zext.x = zext i8 %x to i32
+  %slx = shl i32 %zext.x, 7
+  %zext.y = zext i8 %y to i32
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 25
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define i32 @fshl_concat_i8_i8_
diff erent_slot(i8 %x, i8 %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_i8_i8_
diff erent_slot(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext i8 [[X:%.*]] to i32
+; CHECK-NEXT:    [[SLX:%.*]] = shl nuw nsw i32 [[ZEXT_X]], 9
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext i8 [[Y:%.*]] to i32
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[SLY:%.*]] = shl nuw nsw i32 [[ZEXT_Y]], 22
+; CHECK-NEXT:    [[YX:%.*]] = or i32 [[SLY]], [[ZEXT_X]]
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  %zext.x = zext i8 %x to i32
+  %slx = shl i32 %zext.x, 9
+  %zext.y = zext i8 %y to i32
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 22
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define i32 @fshl_concat_unknown_source(i32 %zext.x, i32 %zext.y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_unknown_source(
+; CHECK-NEXT:    [[SLX:%.*]] = shl i32 [[ZEXT_X:%.*]], 16
+; CHECK-NEXT:    [[XY:%.*]] = or i32 [[SLX]], [[ZEXT_Y:%.*]]
+; CHECK-NEXT:    store i32 [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[SLY:%.*]] = shl i32 [[ZEXT_Y]], 16
+; CHECK-NEXT:    [[YX:%.*]] = or i32 [[SLY]], [[ZEXT_X]]
+; CHECK-NEXT:    ret i32 [[YX]]
+;
+  %slx = shl i32 %zext.x, 16
+  %xy = or i32 %zext.y, %slx
+  store i32 %xy, ptr %addr, align 4
+  %sly = shl i32 %zext.y, 16
+  %yx = or i32 %zext.x, %sly
+  ret i32 %yx
+}
+
+define <2 x i32> @fshl_concat_vector(<2 x i8> %x, <2 x i24> %y, ptr %addr) {
+; CHECK-LABEL: @fshl_concat_vector(
+; CHECK-NEXT:    [[ZEXT_X:%.*]] = zext <2 x i8> [[X:%.*]] to <2 x i32>
+; CHECK-NEXT:    [[SLX:%.*]] = shl nuw <2 x i32> [[ZEXT_X]], <i32 24, i32 24>
+; CHECK-NEXT:    [[ZEXT_Y:%.*]] = zext <2 x i24> [[Y:%.*]] to <2 x i32>
+; CHECK-NEXT:    [[XY:%.*]] = or <2 x i32> [[SLX]], [[ZEXT_Y]]
+; CHECK-NEXT:    store <2 x i32> [[XY]], ptr [[ADDR:%.*]], align 4
+; CHECK-NEXT:    [[YX:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[XY]], <2 x i32> [[XY]], <2 x i32> <i32 8, i32 8>)
+; CHECK-NEXT:    ret <2 x i32> [[YX]]
+;
+  %zext.x = zext <2 x i8> %x to <2 x i32>
+  %slx = shl <2 x i32> %zext.x, <i32 24, i32 24>
+  %zext.y = zext <2 x i24> %y to <2 x i32>
+  %xy = or <2 x i32> %slx, %zext.y
+  store <2 x i32> %xy, ptr %addr, align 4
+  %sly = shl <2 x i32> %zext.y, <i32 8, i32 8>
+  %yx = or <2 x i32> %sly, %zext.x
+  ret <2 x i32> %yx
+}
+
 ; Negative test - an oversized shift in the narrow type would produce the wrong value.
 
 define i8 @unmasked_shlop_unmasked_shift_amount(i32 %x, i32 %y, i32 %shamt) {


        


More information about the llvm-commits mailing list