[llvm] [InstCombine] Fix the correctness of missing check reassoc attribute (PR #71277)
via llvm-commits
llvm-commits at lists.llvm.org
Sat Nov 4 03:49:03 PDT 2023
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-llvm-ir
Author: Allen (vfdff)
<details>
<summary>Changes</summary>
The potential issue is based on the discussion of [PR69998](https://github.com/llvm/llvm-project/pull/69998) . The Transfrom is reasonable
when the I and all of its operands have the reassoc attribute.
The IR node may have different attribute within a function if you're doing LTO.
---
Patch is 36.16 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/71277.diff
10 Files Affected:
- (modified) llvm/include/llvm/IR/Instruction.h (+4)
- (modified) llvm/lib/IR/Instruction.cpp (+9)
- (modified) llvm/lib/Transforms/InstCombine/InstCombineInternal.h (+1)
- (modified) llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (+177-170)
- (modified) llvm/test/Transforms/InstCombine/fmul-exp.ll (+10-10)
- (modified) llvm/test/Transforms/InstCombine/fmul-exp2.ll (+10-10)
- (modified) llvm/test/Transforms/InstCombine/fmul-pow.ll (+25-25)
- (modified) llvm/test/Transforms/InstCombine/fmul-sqrt.ll (+6-6)
- (modified) llvm/test/Transforms/InstCombine/fmul.ll (+1-1)
- (modified) llvm/test/Transforms/InstCombine/powi.ll (+11-11)
``````````diff
diff --git a/llvm/include/llvm/IR/Instruction.h b/llvm/include/llvm/IR/Instruction.h
index b5ccdf020a4c006..e166cc0e43fda9b 100644
--- a/llvm/include/llvm/IR/Instruction.h
+++ b/llvm/include/llvm/IR/Instruction.h
@@ -416,6 +416,10 @@ class Instruction : public User,
/// instruction.
void setNonNeg(bool b = true);
+ /// It checks all of its operands have attribute Reassoc if they are
+ /// instruction.
+ bool hasAllowReassocOfAllOperand() const LLVM_READONLY;
+
/// Determine whether the no unsigned wrap flag is set.
bool hasNoUnsignedWrap() const LLVM_READONLY;
diff --git a/llvm/lib/IR/Instruction.cpp b/llvm/lib/IR/Instruction.cpp
index 1b3c03348f41a70..895df100f6ff46d 100644
--- a/llvm/lib/IR/Instruction.cpp
+++ b/llvm/lib/IR/Instruction.cpp
@@ -177,6 +177,15 @@ void Instruction::setNonNeg(bool b) {
(b * PossiblyNonNegInst::NonNeg);
}
+bool Instruction::hasAllowReassocOfAllOperand() const {
+ return all_of(operands(), [](Value *V) {
+ if (!isa<IntrinsicInst>(V))
+ return true;
+ IntrinsicInst *OptI = cast<IntrinsicInst>(V);
+ return OptI->hasAllowReassoc();
+ });
+}
+
bool Instruction::hasNoUnsignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
index 34b10220ec88aba..68a8fb676d8d909 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
+++ b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
@@ -98,6 +98,7 @@ class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
+ Instruction *foldFMulReassoc(BinaryOperator &I);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index bc784390c23be49..d2ac7abc42b9ce6 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -560,6 +560,180 @@ Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
return nullptr;
}
+Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *X, *Y;
+ Constant *C;
+
+ // Reassociate constant RHS with another constant to form constant
+ // expression.
+ if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
+ // (C1 / X) * C --> (C * C1) / X
+ Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
+ if (CC1 && CC1->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(CC1, X, &I);
+ }
+ if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
+ // (X / C1) * C --> X * (C / C1)
+ Constant *CDivC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
+ if (CDivC1 && CDivC1->isNormalFP())
+ return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
+
+ // If the constant was a denormal, try reassociating differently.
+ // (X / C1) * C --> X / (C1 / C)
+ Constant *C1DivC =
+ ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
+ if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
+ }
+
+ // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
+ // canonicalized to 'fadd X, C'. Distributing the multiply may allow
+ // further folds and (X * C) + C2 is 'fma'.
+ if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
+ // (X + C1) * C --> (X * C) + (C * C1)
+ if (Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
+ }
+ }
+ if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
+ // (C1 - X) * C --> (C * C1) - (X * C)
+ if (Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
+ }
+ }
+ }
+
+ Value *Z;
+ if (match(&I,
+ m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) {
+ // Sink division: (X / Y) * Z --> (X * Z) / Y
+ Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
+ return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
+ }
+
+ // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
+ // nnan disallows the possibility of returning a number if both operands are
+ // negative (in that case, we should return NaN).
+ if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
+ match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
+ Value *XY = Builder.CreateFMulFMF(X, Y, &I);
+ Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
+ return replaceInstUsesWith(I, Sqrt);
+ }
+
+ // The following transforms are done irrespective of the number of uses
+ // for the expression "1.0/sqrt(X)".
+ // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
+ // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
+ // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
+ // has the necessary (reassoc) fast-math-flags.
+ if (I.hasNoSignedZeros() &&
+ match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+ if (I.hasNoSignedZeros() &&
+ match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+
+ // Like the similar transform in instsimplify, this requires 'nsz' because
+ // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
+ if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
+ // Peek through fdiv to find squaring of square root:
+ // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
+ if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(XX, Y, &I);
+ }
+ // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
+ if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(Y, XX, &I);
+ }
+ }
+
+ // pow(X, Y) * X --> pow(X, Y+1)
+ // X * pow(X, Y) --> pow(X, Y+1)
+ if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
+ m_Value(Y))),
+ m_Deferred(X)))) {
+ Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
+ Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
+ return replaceInstUsesWith(I, Pow);
+ }
+
+ if (I.isOnlyUserOfAnyOperand()) {
+ // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
+ if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
+ auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
+ auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+ // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
+ auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
+ auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // powi(x, y) * powi(x, z) -> powi(x, y + z)
+ if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
+ Y->getType() == Z->getType()) {
+ auto *YZ = Builder.CreateAdd(Y, Z);
+ auto *NewPow = Builder.CreateIntrinsic(
+ Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // exp(X) * exp(Y) -> exp(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
+ return replaceInstUsesWith(I, Exp);
+ }
+
+ // exp2(X) * exp2(Y) -> exp2(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
+ return replaceInstUsesWith(I, Exp2);
+ }
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
@@ -607,176 +781,9 @@ Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc()) {
- // Reassociate constant RHS with another constant to form constant
- // expression.
- if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
- Constant *C1;
- if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
- // (C1 / X) * C --> (C * C1) / X
- Constant *CC1 =
- ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
- if (CC1 && CC1->isNormalFP())
- return BinaryOperator::CreateFDivFMF(CC1, X, &I);
- }
- if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X / C1) * C --> X * (C / C1)
- Constant *CDivC1 =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
- if (CDivC1 && CDivC1->isNormalFP())
- return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
-
- // If the constant was a denormal, try reassociating differently.
- // (X / C1) * C --> X / (C1 / C)
- Constant *C1DivC =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
- if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
- return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
- }
-
- // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
- // canonicalized to 'fadd X, C'. Distributing the multiply may allow
- // further folds and (X * C) + C2 is 'fma'.
- if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
- // (X + C1) * C --> (X * C) + (C * C1)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
- }
- }
- if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
- // (C1 - X) * C --> (C * C1) - (X * C)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
- }
- }
- }
-
- Value *Z;
- if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
- m_Value(Z)))) {
- // Sink division: (X / Y) * Z --> (X * Z) / Y
- Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
- return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
- }
-
- // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
- // nnan disallows the possibility of returning a number if both operands are
- // negative (in that case, we should return NaN).
- if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
- match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
- return replaceInstUsesWith(I, Sqrt);
- }
-
- // The following transforms are done irrespective of the number of uses
- // for the expression "1.0/sqrt(X)".
- // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
- // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
- // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
- // has the necessary (reassoc) fast-math-flags.
- if (I.hasNoSignedZeros() &&
- match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- if (I.hasNoSignedZeros() &&
- match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
-
- // Like the similar transform in instsimplify, this requires 'nsz' because
- // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
- if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
- Op0->hasNUses(2)) {
- // Peek through fdiv to find squaring of square root:
- // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
- if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(XX, Y, &I);
- }
- // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
- if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(Y, XX, &I);
- }
- }
-
- // pow(X, Y) * X --> pow(X, Y+1)
- // X * pow(X, Y) --> pow(X, Y+1)
- if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
- m_Value(Y))),
- m_Deferred(X)))) {
- Value *Y1 =
- Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
- Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
- return replaceInstUsesWith(I, Pow);
- }
-
- if (I.isOnlyUserOfAnyOperand()) {
- // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
- auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
- auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
- return replaceInstUsesWith(I, NewPow);
- }
-
- // powi(x, y) * powi(x, z) -> powi(x, y + z)
- if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
- Y->getType() == Z->getType()) {
- auto *YZ = Builder.CreateAdd(Y, Z);
- auto *NewPow = Builder.CreateIntrinsic(
- Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
- return replaceInstUsesWith(I, NewPow);
- }
-
- // exp(X) * exp(Y) -> exp(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
- return replaceInstUsesWith(I, Exp);
- }
-
- // exp2(X) * exp2(Y) -> exp2(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
- return replaceInstUsesWith(I, Exp2);
- }
- }
-
- // (X*Y) * X => (X*X) * Y where Y != X
- // The purpose is two-fold:
- // 1) to form a power expression (of X).
- // 2) potentially shorten the critical path: After transformation, the
- // latency of the instruction Y is amortized by the expression of X*X,
- // and therefore Y is in a "less critical" position compared to what it
- // was before the transformation.
- if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
- Op1 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
- Op0 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- }
+ if (I.hasAllowReassoc() && I.hasAllowReassocOfAllOperand())
+ if (Instruction *FoldedMul = foldFMulReassoc(I))
+ return FoldedMul;
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
diff --git a/llvm/test/Transforms/InstCombine/fmul-exp.ll b/llvm/test/Transforms/InstCombine/fmul-exp.ll
index 62d22b8c085c267..16066b5d5bc5168 100644
--- a/llvm/test/Transforms/InstCombine/fmul-exp.ll
+++ b/llvm/test/Transforms/InstCombine/fmul-exp.ll
@@ -21,14 +21,14 @@ define double @exp_a_exp_b(double %a, double %b) {
; exp(a) * exp(b) reassoc, multiple uses
define double @exp_a_exp_b_multiple_uses(double %a, double %b) {
; CHECK-LABEL: @exp_a_exp_b_multiple_uses(
-; CHECK-NEXT: [[T1:%.*]] = call double @llvm.exp.f64(double [[B:%.*]])
+; CHECK-NEXT: [[T1:%.*]] = call reassoc double @llvm.exp.f64(double [[B:%.*]])
; CHECK-NEXT: [[TMP1:%.*]] = fadd reassoc double [[A:%.*]], [[B]]
; CHECK-NEXT: [[MUL:%.*]] = call reassoc double @llvm.exp.f64(double [[TMP1]])
; CHECK-NEXT: call void @use(double [[T1]])
; CHECK-NEXT: ret double [[MUL]]
;
- %t = call double @llvm.exp.f64(double %a)
- %t1 = call double @llvm.exp.f64(double %b)
+ %t = call reassoc double @llvm.exp.f64(double %a)
+ %t1 = call reassoc double @llvm.exp.f64(double %b)
%mul = fmul reassoc double %t, %t1
call void @use(double %t1)
ret double %mul
@@ -59,8 +59,8 @@ define double @exp_a_exp_b_reassoc(double %a, double %b) {
; CHECK-NEXT: [[MUL:%.*]] = call reassoc double @llvm.exp.f64(double [[TMP1]])
; CHECK-NEXT: ret double [[MUL]]
;
- %t = call double @llvm.exp.f64(double %a)
- %t1 = call double @llvm.exp.f64(double %b)
+ %t = call reassoc double @llvm.exp.f64(double %a)
+ %t1 = call reassoc double @llvm.exp.f64(double %b)
%mul = fmul reassoc double %t, %t1
ret double %mul
}
@@ -71,7 +71,7 @@ define double @exp_a_a(double %a) {
; CHECK-NEXT: [[M:%.*]] = call reassoc double @llvm.exp.f64(double [[TMP1]])
; CHECK-NEXT: ret double [[M]]
;
- %t = call double @llvm.exp.f64(double %a)
+ %t = call reassoc double @llvm.exp.f64(double %a)
%m = fmul reassoc double %t, %t
ret double %m
}
@@ -100,12 +100,12 @@ define double @exp_a_exp_b_exp_c_ex...
[truncated]
``````````
</details>
https://github.com/llvm/llvm-project/pull/71277
More information about the llvm-commits
mailing list