[llvm] 16c1c9f - Revert D140263 "[NFC] Vastly simplifies TypeSize"

Guillaume Chatelet via llvm-commits llvm-commits at lists.llvm.org
Fri Jan 6 07:33:11 PST 2023


Author: Guillaume Chatelet
Date: 2023-01-06T15:33:00Z
New Revision: 16c1c9fdcc481b036df8921750433e714eafd805

URL: https://github.com/llvm/llvm-project/commit/16c1c9fdcc481b036df8921750433e714eafd805
DIFF: https://github.com/llvm/llvm-project/commit/16c1c9fdcc481b036df8921750433e714eafd805.diff

LOG: Revert D140263 "[NFC] Vastly simplifies TypeSize"

This broke some build bots : https://lab.llvm.org/buildbot/#/builders/16/builds/41419/steps/5/logs/stdio

This reverts commit 4670d5ece57d9b030597da679072f78bb3f4d419.

Added: 
    llvm/unittests/Support/LinearPolyBaseTest.cpp

Modified: 
    llvm/include/llvm/Support/TypeSize.h
    llvm/unittests/Support/CMakeLists.txt
    llvm/unittests/Support/TypeSizeTest.cpp
    llvm/utils/TableGen/CodeGenDAGPatterns.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/Support/TypeSize.h b/llvm/include/llvm/Support/TypeSize.h
index 53c888e0a2e9b..ae871cf478733 100644
--- a/llvm/include/llvm/Support/TypeSize.h
+++ b/llvm/include/llvm/Support/TypeSize.h
@@ -31,97 +31,176 @@ namespace llvm {
 /// done on a scalable vector. This function may not return.
 void reportInvalidSizeRequest(const char *Msg);
 
-/// StackOffset holds a fixed and a scalable offset in bytes.
-class StackOffset {
-  int64_t Fixed = 0;
-  int64_t Scalable = 0;
+template <typename LeafTy> struct LinearPolyBaseTypeTraits {};
 
-  StackOffset(int64_t Fixed, int64_t Scalable)
-      : Fixed(Fixed), Scalable(Scalable) {}
+//===----------------------------------------------------------------------===//
+// LinearPolyBase - a base class for linear polynomials with multiple
+// dimensions. This can e.g. be used to describe offsets that are have both a
+// fixed and scalable component.
+//===----------------------------------------------------------------------===//
 
+/// LinearPolyBase describes a linear polynomial:
+///  c0 * scale0 + c1 * scale1 + ... + cK * scaleK
+/// where the scale is implicit, so only the coefficients are encoded.
+template <typename LeafTy>
+class LinearPolyBase {
 public:
-  StackOffset() = default;
-  static StackOffset getFixed(int64_t Fixed) { return {Fixed, 0}; }
-  static StackOffset getScalable(int64_t Scalable) { return {0, Scalable}; }
-  static StackOffset get(int64_t Fixed, int64_t Scalable) {
-    return {Fixed, Scalable};
+  using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
+  static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
+  static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
+                "Dimensions out of range");
+
+private:
+  std::array<ScalarTy, Dimensions> Coefficients;
+
+protected:
+  constexpr LinearPolyBase(ArrayRef<ScalarTy> Values) {
+    std::copy(Values.begin(), Values.end(), Coefficients.begin());
+  }
+
+public:
+  friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
+    for (unsigned I=0; I<Dimensions; ++I)
+      LHS.Coefficients[I] += RHS.Coefficients[I];
+    return LHS;
   }
 
-  /// Returns the fixed component of the stack.
-  int64_t getFixed() const { return Fixed; }
+  friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
+    for (unsigned I=0; I<Dimensions; ++I)
+      LHS.Coefficients[I] -= RHS.Coefficients[I];
+    return LHS;
+  }
+
+  friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
+    for (auto &C : LHS.Coefficients)
+      C *= RHS;
+    return LHS;
+  }
 
-  /// Returns the scalable component of the stack.
-  int64_t getScalable() const { return Scalable; }
+  friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
+    LeafTy Copy = LHS;
+    return Copy += RHS;
+  }
 
-  // Arithmetic operations.
-  StackOffset operator+(const StackOffset &RHS) const {
-    return {Fixed + RHS.Fixed, Scalable + RHS.Scalable};
+  friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
+    LeafTy Copy = LHS;
+    return Copy -= RHS;
   }
-  StackOffset operator-(const StackOffset &RHS) const {
-    return {Fixed - RHS.Fixed, Scalable - RHS.Scalable};
+
+  friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) {
+    LeafTy Copy = LHS;
+    return Copy *= RHS;
   }
-  StackOffset &operator+=(const StackOffset &RHS) {
-    Fixed += RHS.Fixed;
-    Scalable += RHS.Scalable;
-    return *this;
+
+  template <typename U = ScalarTy>
+  friend std::enable_if_t<std::is_signed<U>::value, LeafTy>
+  operator-(const LeafTy &LHS) {
+    LeafTy Copy = LHS;
+    return Copy *= -1;
   }
-  StackOffset &operator-=(const StackOffset &RHS) {
-    Fixed -= RHS.Fixed;
-    Scalable -= RHS.Scalable;
-    return *this;
+
+  constexpr bool operator==(const LinearPolyBase &RHS) const {
+    return std::equal(Coefficients.begin(), Coefficients.end(),
+                      RHS.Coefficients.begin());
   }
-  StackOffset operator-() const { return {-Fixed, -Scalable}; }
 
-  // Equality comparisons.
-  bool operator==(const StackOffset &RHS) const {
-    return Fixed == RHS.Fixed && Scalable == RHS.Scalable;
+  constexpr bool operator!=(const LinearPolyBase &RHS) const {
+    return !(*this == RHS);
   }
-  bool operator!=(const StackOffset &RHS) const {
-    return Fixed != RHS.Fixed || Scalable != RHS.Scalable;
+
+  constexpr bool isZero() const {
+    return all_of(Coefficients, [](const ScalarTy &C) { return C == 0; });
   }
+  constexpr bool isNonZero() const { return !isZero(); }
+  constexpr explicit operator bool() const { return isNonZero(); }
 
-  // The bool operator returns true iff any of the components is non zero.
-  explicit operator bool() const { return Fixed != 0 || Scalable != 0; }
+  constexpr ScalarTy getValue(unsigned Dim) const { return Coefficients[Dim]; }
 };
 
-namespace details {
+//===----------------------------------------------------------------------===//
+// StackOffset - Represent an offset with named fixed and scalable components.
+//===----------------------------------------------------------------------===//
+
+class StackOffset;
+template <> struct LinearPolyBaseTypeTraits<StackOffset> {
+  using ScalarTy = int64_t;
+  static constexpr unsigned Dimensions = 2;
+};
+
+/// StackOffset is a class to represent an offset with 2 dimensions,
+/// named fixed and scalable, respectively. This class allows a value for both
+/// dimensions to depict e.g. "8 bytes and 16 scalable bytes", which is needed
+/// to represent stack offsets.
+class StackOffset : public LinearPolyBase<StackOffset> {
+protected:
+  StackOffset(ScalarTy Fixed, ScalarTy Scalable)
+      : LinearPolyBase<StackOffset>({Fixed, Scalable}) {}
 
-// Base class for ElementCount and TypeSize below.
-template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
 public:
-  using ScalarTy = ValueTy;
+  StackOffset() : StackOffset({0, 0}) {}
+  StackOffset(const LinearPolyBase<StackOffset> &Other)
+      : LinearPolyBase<StackOffset>(Other) {}
+  static StackOffset getFixed(ScalarTy Fixed) { return {Fixed, 0}; }
+  static StackOffset getScalable(ScalarTy Scalable) { return {0, Scalable}; }
+  static StackOffset get(ScalarTy Fixed, ScalarTy Scalable) {
+    return {Fixed, Scalable};
+  }
+
+  ScalarTy getFixed() const { return this->getValue(0); }
+  ScalarTy getScalable() const { return this->getValue(1); }
+};
+
+//===----------------------------------------------------------------------===//
+// UnivariateLinearPolyBase - a base class for linear polynomials with multiple
+// dimensions, but where only one dimension can be set at any time.
+// This can e.g. be used to describe sizes that are either fixed or scalable.
+//===----------------------------------------------------------------------===//
+
+/// UnivariateLinearPolyBase is a base class for ElementCount and TypeSize.
+/// Like LinearPolyBase it tries to represent a linear polynomial
+/// where only one dimension can be set at any time, e.g.
+///   0 * scale0 + 0 * scale1 + ... + cJ * scaleJ + ... + 0 * scaleK
+/// The dimension that is set is the univariate dimension.
+template <typename LeafTy>
+class UnivariateLinearPolyBase {
+public:
+  using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
+  static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
+  static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
+                "Dimensions out of range");
 
 protected:
-  ScalarTy Quantity = 0;
-  bool Scalable = false;
+  ScalarTy Value;         // The value at the univeriate dimension.
+  unsigned UnivariateDim; // The univeriate dimension.
 
-  constexpr FixedOrScalableQuantity() = default;
-  constexpr FixedOrScalableQuantity(ScalarTy Quantity, bool Scalable)
-      : Quantity(Quantity), Scalable(Scalable) {}
+  constexpr UnivariateLinearPolyBase(ScalarTy Val, unsigned UnivariateDim)
+      : Value(Val), UnivariateDim(UnivariateDim) {
+    assert(UnivariateDim < Dimensions && "Dimension out of range");
+  }
 
-  friend constexpr LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
-    assert(LHS.Scalable == RHS.Scalable && "Incompatible types");
-    LHS.Quantity += RHS.Quantity;
+  friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
+    assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions");
+    LHS.Value += RHS.Value;
     return LHS;
   }
 
-  friend constexpr LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
-    assert(LHS.Scalable == RHS.Scalable && "Incompatible types");
-    LHS.Quantity -= RHS.Quantity;
+  friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
+    assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions");
+    LHS.Value -= RHS.Value;
     return LHS;
   }
 
   friend constexpr LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
-    LHS.Quantity *= RHS;
+    LHS.Value *= RHS;
     return LHS;
   }
 
-  friend constexpr LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
+  friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
     LeafTy Copy = LHS;
     return Copy += RHS;
   }
 
-  friend constexpr LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
+  friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
     LeafTy Copy = LHS;
     return Copy -= RHS;
   }
@@ -132,43 +211,96 @@ template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
   }
 
   template <typename U = ScalarTy>
-  friend constexpr std::enable_if_t<std::is_signed<U>::value, LeafTy>
+  friend std::enable_if_t<std::is_signed<U>::value, LeafTy>
   operator-(const LeafTy &LHS) {
     LeafTy Copy = LHS;
     return Copy *= -1;
   }
 
 public:
-  constexpr bool operator==(const FixedOrScalableQuantity &RHS) const {
-    return Quantity == RHS.Quantity && Scalable == RHS.Scalable;
+  constexpr bool operator==(const UnivariateLinearPolyBase &RHS) const {
+    return Value == RHS.Value && UnivariateDim == RHS.UnivariateDim;
   }
 
-  constexpr bool operator!=(const FixedOrScalableQuantity &RHS) const {
-    return Quantity != RHS.Quantity || Scalable != RHS.Scalable;
+  constexpr bool operator!=(const UnivariateLinearPolyBase &RHS) const {
+    return !(*this == RHS);
   }
 
-  constexpr bool isZero() const { return Quantity == 0; }
-
-  constexpr bool isNonZero() const { return Quantity != 0; }
-
-  explicit operator bool() const { return isNonZero(); }
+  constexpr bool isZero() const { return !Value; }
+  constexpr bool isNonZero() const { return !isZero(); }
+  explicit constexpr operator bool() const { return isNonZero(); }
+  constexpr ScalarTy getValue(unsigned Dim) const {
+    return Dim == UnivariateDim ? Value : 0;
+  }
 
-  /// Add \p RHS to the underlying quantity.
+  /// Add \p RHS to the value at the univariate dimension.
   constexpr LeafTy getWithIncrement(ScalarTy RHS) const {
-    return LeafTy::get(Quantity + RHS, Scalable);
+    return static_cast<LeafTy>(
+        UnivariateLinearPolyBase(Value + RHS, UnivariateDim));
+  }
+
+  /// Subtract \p RHS from the value at the univariate dimension.
+  constexpr LeafTy getWithDecrement(ScalarTy RHS) const {
+    return static_cast<LeafTy>(
+        UnivariateLinearPolyBase(Value - RHS, UnivariateDim));
   }
+};
+
+
+//===----------------------------------------------------------------------===//
+// LinearPolySize - base class for fixed- or scalable sizes.
+//  ^  ^
+//  |  |
+//  |  +----- ElementCount - Leaf class to represent an element count
+//  |                        (vscale x unsigned)
+//  |
+//  +-------- TypeSize - Leaf class to represent a type size
+//                       (vscale x uint64_t)
+//===----------------------------------------------------------------------===//
+
+/// LinearPolySize is a base class to represent sizes. It is either
+/// fixed-sized or it is scalable-sized, but it cannot be both.
+template <typename LeafTy>
+class LinearPolySize : public UnivariateLinearPolyBase<LeafTy> {
+  // Make the parent class a friend, so that it can access the protected
+  // conversion/copy-constructor for UnivariatePolyBase<LeafTy> ->
+  // LinearPolySize<LeafTy>.
+  friend class UnivariateLinearPolyBase<LeafTy>;
 
-  /// Returns the minimum value this quantity can represent.
-  constexpr ScalarTy getKnownMinValue() const { return Quantity; }
+public:
+  using ScalarTy = typename UnivariateLinearPolyBase<LeafTy>::ScalarTy;
+  enum Dims : unsigned { FixedDim = 0, ScalableDim = 1 };
+
+protected:
+  constexpr LinearPolySize(ScalarTy MinVal, Dims D)
+      : UnivariateLinearPolyBase<LeafTy>(MinVal, D) {}
 
-  /// Returns whether the quantity is scaled by a runtime quantity (vscale).
-  constexpr bool isScalable() const { return Scalable; }
+  constexpr LinearPolySize(const UnivariateLinearPolyBase<LeafTy> &V)
+      : UnivariateLinearPolyBase<LeafTy>(V) {}
 
+public:
+  static constexpr LeafTy getFixed(ScalarTy MinVal) {
+    return static_cast<LeafTy>(LinearPolySize(MinVal, FixedDim));
+  }
+  static constexpr LeafTy getScalable(ScalarTy MinVal) {
+    return static_cast<LeafTy>(LinearPolySize(MinVal, ScalableDim));
+  }
+  static constexpr LeafTy get(ScalarTy MinVal, bool Scalable) {
+    return static_cast<LeafTy>(
+        LinearPolySize(MinVal, Scalable ? ScalableDim : FixedDim));
+  }
+  static constexpr LeafTy getNull() { return get(0, false); }
+
+  /// Returns the minimum value this size can represent.
+  constexpr ScalarTy getKnownMinValue() const { return this->Value; }
+  /// Returns whether the size is scaled by a runtime quantity (vscale).
+  constexpr bool isScalable() const {
+    return this->UnivariateDim == ScalableDim;
+  }
   /// A return value of true indicates we know at compile time that the number
   /// of elements (vscale * Min) is definitely even. However, returning false
   /// does not guarantee that the total number of elements is odd.
   constexpr bool isKnownEven() const { return (getKnownMinValue() & 0x1) == 0; }
-
   /// This function tells the caller whether the element count is known at
   /// compile time to be a multiple of the scalar value RHS.
   constexpr bool isKnownMultipleOf(ScalarTy RHS) const {
@@ -184,8 +316,8 @@ template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
     return getKnownMinValue();
   }
 
-  // For some cases, quantity ordering between scalable and fixed quantity types
-  // cannot be determined at compile time, so such comparisons aren't allowed.
+  // For some cases, size ordering between scalable and fixed size types cannot
+  // be determined at compile time, so such comparisons aren't allowed.
   //
   // e.g. <vscale x 2 x i16> could be bigger than <4 x i32> with a runtime
   // vscale >= 5, equal sized with a vscale of 4, and smaller with
@@ -194,29 +326,29 @@ template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
   // All the functions below make use of the fact vscale is always >= 1, which
   // means that <vscale x 4 x i32> is guaranteed to be >= <4 x i32>, etc.
 
-  static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS,
-                                  const FixedOrScalableQuantity &RHS) {
+  static constexpr bool isKnownLT(const LinearPolySize &LHS,
+                                  const LinearPolySize &RHS) {
     if (!LHS.isScalable() || RHS.isScalable())
       return LHS.getKnownMinValue() < RHS.getKnownMinValue();
     return false;
   }
 
-  static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS,
-                                  const FixedOrScalableQuantity &RHS) {
+  static constexpr bool isKnownGT(const LinearPolySize &LHS,
+                                  const LinearPolySize &RHS) {
     if (LHS.isScalable() || !RHS.isScalable())
       return LHS.getKnownMinValue() > RHS.getKnownMinValue();
     return false;
   }
 
-  static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS,
-                                  const FixedOrScalableQuantity &RHS) {
+  static constexpr bool isKnownLE(const LinearPolySize &LHS,
+                                  const LinearPolySize &RHS) {
     if (!LHS.isScalable() || RHS.isScalable())
       return LHS.getKnownMinValue() <= RHS.getKnownMinValue();
     return false;
   }
 
-  static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS,
-                                  const FixedOrScalableQuantity &RHS) {
+  static constexpr bool isKnownGE(const LinearPolySize &LHS,
+                                  const LinearPolySize &RHS) {
     if (LHS.isScalable() || !RHS.isScalable())
       return LHS.getKnownMinValue() >= RHS.getKnownMinValue();
     return false;
@@ -231,31 +363,31 @@ template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
   /// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
   /// perform a lossless divide by RHS.
   constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const {
-    return LeafTy::get(getKnownMinValue() / RHS, isScalable());
+    return static_cast<LeafTy>(
+        LinearPolySize::get(getKnownMinValue() / RHS, isScalable()));
   }
 
   constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const {
-    return LeafTy::get(getKnownMinValue() * RHS, isScalable());
+    return static_cast<LeafTy>(
+        LinearPolySize::get(getKnownMinValue() * RHS, isScalable()));
   }
 
   constexpr LeafTy coefficientNextPowerOf2() const {
-    return LeafTy::get(
+    return static_cast<LeafTy>(LinearPolySize::get(
         static_cast<ScalarTy>(llvm::NextPowerOf2(getKnownMinValue())),
-        isScalable());
+        isScalable()));
   }
 
   /// Returns true if there exists a value X where RHS.multiplyCoefficientBy(X)
-  /// will result in a value whose quantity matches our own.
-  constexpr bool
-  hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const {
+  /// will result in a value whose size matches our own.
+  constexpr bool hasKnownScalarFactor(const LinearPolySize &RHS) const {
     return isScalable() == RHS.isScalable() &&
            getKnownMinValue() % RHS.getKnownMinValue() == 0;
   }
 
   /// Returns a value X where RHS.multiplyCoefficientBy(X) will result in a
-  /// value whose quantity matches our own.
-  constexpr ScalarTy
-  getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const {
+  /// value whose size matches our own.
+  constexpr ScalarTy getKnownScalarFactor(const LinearPolySize &RHS) const {
     assert(hasKnownScalarFactor(RHS) && "Expected RHS to be a known factor!");
     return getKnownMinValue() / RHS.getKnownMinValue();
   }
@@ -268,35 +400,22 @@ template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
   }
 };
 
-} // namespace details
-
-// Stores the number of elements for a type and whether this type is fixed
-// (N-Elements) or scalable (e.g., SVE).
-//  - ElementCount::getFixed(1) : A scalar value.
-//  - ElementCount::getFixed(2) : A vector type holding 2 values.
-//  - ElementCount::getScalable(4) : A scalable vector type holding 4 values.
-class ElementCount
-    : public details::FixedOrScalableQuantity<ElementCount, unsigned> {
-  constexpr ElementCount(ScalarTy MinVal, bool Scalable)
-      : FixedOrScalableQuantity(MinVal, Scalable) {}
-
-  constexpr ElementCount(
-      const FixedOrScalableQuantity<ElementCount, unsigned> &V)
-      : FixedOrScalableQuantity(V) {}
+class ElementCount;
+template <> struct LinearPolyBaseTypeTraits<ElementCount> {
+  using ScalarTy = unsigned;
+  static constexpr unsigned Dimensions = 2;
+};
 
+class ElementCount : public LinearPolySize<ElementCount> {
 public:
-  constexpr ElementCount() : FixedOrScalableQuantity() {}
+  constexpr ElementCount() : LinearPolySize(LinearPolySize::getNull()) {}
 
-  static constexpr ElementCount getFixed(ScalarTy MinVal) {
-    return ElementCount(MinVal, false);
-  }
-  static constexpr ElementCount getScalable(ScalarTy MinVal) {
-    return ElementCount(MinVal, true);
-  }
-  static constexpr ElementCount get(ScalarTy MinVal, bool Scalable) {
-    return ElementCount(MinVal, Scalable);
-  }
+  constexpr ElementCount(const LinearPolySize<ElementCount> &V)
+      : LinearPolySize(V) {}
 
+  /// Counting predicates.
+  ///
+  ///@{ Number of elements..
   /// Exactly one element.
   constexpr bool isScalar() const {
     return !isScalable() && getKnownMinValue() == 1;
@@ -305,33 +424,33 @@ class ElementCount
   constexpr bool isVector() const {
     return (isScalable() && getKnownMinValue() != 0) || getKnownMinValue() > 1;
   }
+  ///@}
 };
 
-// Stores the size of a type. If the type is of fixed size, it will represent
-// the exact size. If the type is a scalable vector, it will represent the known
-// minimum size.
-class TypeSize : public details::FixedOrScalableQuantity<TypeSize, uint64_t> {
-  TypeSize(const FixedOrScalableQuantity<TypeSize, uint64_t> &V)
-      : FixedOrScalableQuantity(V) {}
+// This class is used to represent the size of types. If the type is of fixed
+class TypeSize;
+template <> struct LinearPolyBaseTypeTraits<TypeSize> {
+  using ScalarTy = uint64_t;
+  static constexpr unsigned Dimensions = 2;
+};
 
+// TODO: Most functionality in this class will gradually be phased out
+// so it will resemble LinearPolySize as much as possible.
+//
+// TypeSize is used to represent the size of types. If the type is of fixed
+// size, it will represent the exact size. If the type is a scalable vector,
+// it will represent the known minimum size.
+class TypeSize : public LinearPolySize<TypeSize> {
 public:
-  constexpr TypeSize(ScalarTy Quantity, bool Scalable)
-      : FixedOrScalableQuantity(Quantity, Scalable) {}
+  constexpr TypeSize(const LinearPolySize<TypeSize> &V) : LinearPolySize(V) {}
+  constexpr TypeSize(ScalarTy MinVal, bool IsScalable)
+      : LinearPolySize(LinearPolySize::get(MinVal, IsScalable)) {}
 
-  static constexpr TypeSize getFixed(ScalarTy ExactSize) {
-    return TypeSize(ExactSize, false);
+  static constexpr TypeSize Fixed(ScalarTy MinVal) {
+    return TypeSize(MinVal, false);
   }
-  static constexpr TypeSize getScalable(ScalarTy MinimunSize) {
-    return TypeSize(MinimunSize, true);
-  }
-  static constexpr TypeSize get(ScalarTy Quantity, bool Scalable) {
-    return TypeSize(Quantity, Scalable);
-  }
-  static constexpr TypeSize Fixed(ScalarTy ExactSize) {
-    return TypeSize(ExactSize, false);
-  }
-  static constexpr TypeSize Scalable(ScalarTy MinimumSize) {
-    return TypeSize(MinimumSize, true);
+  static constexpr TypeSize Scalable(ScalarTy MinVal) {
+    return TypeSize(MinVal, true);
   }
 
   constexpr ScalarTy getFixedSize() const { return getFixedValue(); }
@@ -393,7 +512,7 @@ class TypeSize : public details::FixedOrScalableQuantity<TypeSize, uint64_t> {
 //===----------------------------------------------------------------------===//
 
 /// Returns a TypeSize with a known minimum size that is the next integer
-/// (mod 2**64) that is greater than or equal to \p Quantity and is a multiple
+/// (mod 2**64) that is greater than or equal to \p Value and is a multiple
 /// of \p Align. \p Align must be non-zero.
 ///
 /// Similar to the alignTo functions in MathExtras.h
@@ -403,11 +522,10 @@ inline constexpr TypeSize alignTo(TypeSize Size, uint64_t Align) {
           Size.isScalable()};
 }
 
-/// Stream operator function for `FixedOrScalableQuantity`.
-template <typename LeafTy, typename ScalarTy>
-inline raw_ostream &
-operator<<(raw_ostream &OS,
-           const details::FixedOrScalableQuantity<LeafTy, ScalarTy> &PS) {
+/// Stream operator function for `LinearPolySize`.
+template <typename LeafTy>
+inline raw_ostream &operator<<(raw_ostream &OS,
+                               const LinearPolySize<LeafTy> &PS) {
   PS.print(OS);
   return OS;
 }
@@ -426,6 +544,7 @@ template <> struct DenseMapInfo<ElementCount, void> {
 
     return HashVal;
   }
+
   static bool isEqual(const ElementCount &LHS, const ElementCount &RHS) {
     return LHS == RHS;
   }

diff  --git a/llvm/unittests/Support/CMakeLists.txt b/llvm/unittests/Support/CMakeLists.txt
index ccffb42e267eb..91c6c98748706 100644
--- a/llvm/unittests/Support/CMakeLists.txt
+++ b/llvm/unittests/Support/CMakeLists.txt
@@ -51,6 +51,7 @@ add_llvm_unittest(SupportTests
   JSONTest.cpp
   KnownBitsTest.cpp
   LEB128Test.cpp
+  LinearPolyBaseTest.cpp
   LineIteratorTest.cpp
   LockFileManagerTest.cpp
   MatchersTest.cpp

diff  --git a/llvm/unittests/Support/LinearPolyBaseTest.cpp b/llvm/unittests/Support/LinearPolyBaseTest.cpp
new file mode 100644
index 0000000000000..15b366210bca4
--- /dev/null
+++ b/llvm/unittests/Support/LinearPolyBaseTest.cpp
@@ -0,0 +1,176 @@
+//===- TestPoly3D.cpp - Poly3D unit tests------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/TypeSize.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+class Poly3D;
+
+namespace llvm {
+template <> struct LinearPolyBaseTypeTraits<Poly3D> {
+  using ScalarTy = int64_t;
+  static const unsigned Dimensions = 3;
+};
+}
+
+using Poly3DBase = LinearPolyBase<Poly3D>;
+class Poly3D : public Poly3DBase {
+public:
+  using ScalarTy = Poly3DBase::ScalarTy;
+  Poly3D(ScalarTy x, ScalarTy y, ScalarTy z) : Poly3DBase({x, y, z}) {}
+  Poly3D(const Poly3DBase &Convert) : Poly3DBase(Convert) {}
+};
+
+TEST(LinearPolyBase, Poly3D_isZero) {
+  EXPECT_TRUE(Poly3D(0, 0, 0).isZero());
+  EXPECT_TRUE(Poly3D(0, 0, 1).isNonZero());
+  EXPECT_TRUE(Poly3D(0, 0, 1));
+}
+
+TEST(LinearPolyBase, Poly3D_Equality) {
+  EXPECT_EQ(Poly3D(1, 2, 3), Poly3D(1, 2, 3));
+  EXPECT_NE(Poly3D(1, 2, 3), Poly3D(1, 2, 4));
+}
+
+TEST(LinearPolyBase, Poly3D_GetValue) {
+  EXPECT_EQ(Poly3D(1, 2, 3).getValue(0), 1);
+  EXPECT_EQ(Poly3D(1, 2, 3).getValue(1), 2);
+  EXPECT_EQ(Poly3D(1, 2, 3).getValue(2), 3);
+}
+
+TEST(LinearPolyBase, Poly3D_Add) {
+  // Test operator+
+  EXPECT_EQ(Poly3D(42, 0, 0) + Poly3D(0, 42, 0) + Poly3D(0, 0, 42),
+            Poly3D(42, 42, 42));
+
+  // Test operator+=
+  Poly3D X(42, 0, 0);
+  X += Poly3D(0, 42, 0);
+  X += Poly3D(0, 0, 42);
+  EXPECT_EQ(X, Poly3D(42, 42, 42));
+}
+
+TEST(LinearPolyBase, Poly3D_Sub) {
+  // Test operator-
+  EXPECT_EQ(Poly3D(42, 42, 42) - Poly3D(42, 0, 0) - Poly3D(0, 42, 0) -
+                Poly3D(0, 0, 42),
+            Poly3D(0, 0, 0));
+
+  // Test operator-=
+  Poly3D X(42, 42, 42);
+  X -= Poly3D(42, 0, 0);
+  X -= Poly3D(0, 42, 0);
+  X -= Poly3D(0, 0, 42);
+  EXPECT_EQ(X, Poly3D(0, 0, 0));
+}
+
+TEST(LinearPolyBase, Poly3D_Scale) {
+  // Test operator*
+  EXPECT_EQ(Poly3D(1, 2, 4) * 2, Poly3D(2, 4, 8));
+  EXPECT_EQ(Poly3D(1, 2, 4) * -2, Poly3D(-2, -4, -8));
+}
+
+TEST(LinearPolyBase, Poly3D_Invert) {
+  // Test operator-
+  EXPECT_EQ(-Poly3D(2, 4, 8), Poly3D(-2, -4, -8));
+}
+
+class Univariate3D;
+namespace llvm {
+template <> struct LinearPolyBaseTypeTraits<Univariate3D> {
+  using ScalarTy = int64_t;
+  static const unsigned Dimensions = 3;
+};
+}
+
+using Univariate3DBase = UnivariateLinearPolyBase<Univariate3D>;
+class Univariate3D : public Univariate3DBase {
+public:
+  using ScalarTy = Univariate3DBase::ScalarTy;
+  constexpr Univariate3D(ScalarTy x, unsigned Dim) : Univariate3DBase(x, Dim) {}
+  Univariate3D(const Univariate3DBase &Convert) : Univariate3DBase(Convert) {}
+};
+
+TEST(UnivariateLinearPolyBase, Univariate3D_isZero) {
+  EXPECT_TRUE(Univariate3D(0, 0).isZero());
+  EXPECT_TRUE(Univariate3D(0, 1).isZero());
+  EXPECT_TRUE(Univariate3D(0, 2).isZero());
+  EXPECT_TRUE(Univariate3D(1, 0).isNonZero());
+  EXPECT_TRUE(Univariate3D(1, 1).isNonZero());
+  EXPECT_TRUE(Univariate3D(1, 2).isNonZero());
+  EXPECT_TRUE(Univariate3D(1, 0));
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_Equality) {
+  EXPECT_EQ(Univariate3D(1, 0), Univariate3D(1, 0));
+  EXPECT_NE(Univariate3D(1, 0), Univariate3D(1, 2));
+  EXPECT_NE(Univariate3D(1, 0), Univariate3D(1, 1));
+  EXPECT_NE(Univariate3D(1, 0), Univariate3D(2, 0));
+  EXPECT_NE(Univariate3D(1, 0), Univariate3D(0, 0));
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_GetValue) {
+  EXPECT_EQ(Univariate3D(42, 0).getValue(0), 42);
+  EXPECT_EQ(Univariate3D(42, 0).getValue(1), 0);
+  EXPECT_EQ(Univariate3D(42, 0).getValue(2), 0);
+
+  EXPECT_EQ(Univariate3D(42, 1).getValue(0), 0);
+  EXPECT_EQ(Univariate3D(42, 1).getValue(1), 42);
+  EXPECT_EQ(Univariate3D(42, 1).getValue(2), 0);
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_Add) {
+  // Test operator+
+  EXPECT_EQ(Univariate3D(42, 0) + Univariate3D(42, 0), Univariate3D(84, 0));
+  EXPECT_EQ(Univariate3D(42, 1) + Univariate3D(42, 1), Univariate3D(84, 1));
+  EXPECT_DEBUG_DEATH(Univariate3D(42, 0) + Univariate3D(42, 1),
+                     "Invalid dimensions");
+
+  // Test operator+=
+  Univariate3D X(42, 0);
+  X += Univariate3D(42, 0);
+  EXPECT_EQ(X, Univariate3D(84, 0));
+
+  // Test 'getWithIncrement' method
+  EXPECT_EQ(Univariate3D(42, 0).getWithIncrement(1), Univariate3D(43, 0));
+  EXPECT_EQ(Univariate3D(42, 1).getWithIncrement(2), Univariate3D(44, 1));
+  EXPECT_EQ(Univariate3D(42, 2).getWithIncrement(3), Univariate3D(45, 2));
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_Sub) {
+  // Test operator+
+  EXPECT_EQ(Univariate3D(84, 0) - Univariate3D(42, 0), Univariate3D(42, 0));
+  EXPECT_EQ(Univariate3D(84, 1) - Univariate3D(42, 1), Univariate3D(42, 1));
+  EXPECT_DEBUG_DEATH(Univariate3D(84, 0) - Univariate3D(42, 1),
+                     "Invalid dimensions");
+
+  // Test operator+=
+  Univariate3D X(84, 0);
+  X -= Univariate3D(42, 0);
+  EXPECT_EQ(X, Univariate3D(42, 0));
+
+  // Test 'getWithDecrement' method
+  EXPECT_EQ(Univariate3D(43, 0).getWithDecrement(1), Univariate3D(42, 0));
+  EXPECT_EQ(Univariate3D(44, 1).getWithDecrement(2), Univariate3D(42, 1));
+  EXPECT_EQ(Univariate3D(45, 2).getWithDecrement(3), Univariate3D(42, 2));
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_Scale) {
+  // Test operator*
+  EXPECT_EQ(Univariate3D(4, 0) * 2, Univariate3D(8, 0));
+  EXPECT_EQ(Univariate3D(4, 1) * -2, Univariate3D(-8, 1));
+}
+
+TEST(UnivariateLinearPolyBase, Univariate3D_Invert) {
+  // Test operator-
+  EXPECT_EQ(-Univariate3D(4, 0), Univariate3D(-4, 0));
+  EXPECT_EQ(-Univariate3D(4, 1), Univariate3D(-4, 1));
+}
+

diff  --git a/llvm/unittests/Support/TypeSizeTest.cpp b/llvm/unittests/Support/TypeSizeTest.cpp
index 6e566be375817..3552c7949a9a0 100644
--- a/llvm/unittests/Support/TypeSizeTest.cpp
+++ b/llvm/unittests/Support/TypeSizeTest.cpp
@@ -35,7 +35,7 @@ static_assert(!CEElementCountFixed3.isScalable());
 constexpr ElementCount CEElementCountScalable4 = ElementCount::getScalable(4);
 
 static_assert(CEElementCountScalable4.isScalable());
-static_assert(!ElementCount().isScalable());
+static_assert(!ElementCount::getNull().isScalable());
 static_assert(
     CEElementCountScalable4.hasKnownScalarFactor(ElementCount::getScalable(2)));
 static_assert(ElementCount::getScalable(8).getKnownScalarFactor(

diff  --git a/llvm/utils/TableGen/CodeGenDAGPatterns.cpp b/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
index bbe04fc769f3d..8c1b0997d8698 100644
--- a/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
+++ b/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -740,7 +740,7 @@ bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
                      MVT T) -> bool {
     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
-                                       : ElementCount());
+                                       : ElementCount::getNull());
   };
 
   SmallVector<unsigned, 4> Modes;
@@ -751,9 +751,11 @@ bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
 
     SmallDenseSet<ElementCount> VN, WN;
     for (MVT T : VS)
-      VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
+      VN.insert(T.isVector() ? T.getVectorElementCount()
+                             : ElementCount::getNull());
     for (MVT T : WS)
-      WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
+      WN.insert(T.isVector() ? T.getVectorElementCount()
+                             : ElementCount::getNull());
 
     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));


        


More information about the llvm-commits mailing list