[llvm] 6584d1f - [ADT] Add IntervalTree - light tree data structure to hold intervals.

Carlos Alberto Enciso via llvm-commits llvm-commits at lists.llvm.org
Tue Sep 27 00:23:29 PDT 2022


Author: Carlos Alberto Enciso
Date: 2022-09-27T08:22:28+01:00
New Revision: 6584d1f9309b2790e860b636d14a191ad8cf9acb

URL: https://github.com/llvm/llvm-project/commit/6584d1f9309b2790e860b636d14a191ad8cf9acb
DIFF: https://github.com/llvm/llvm-project/commit/6584d1f9309b2790e860b636d14a191ad8cf9acb.diff

LOG: [ADT] Add IntervalTree - light tree data structure to hold intervals.

It allows finding all intervals that overlap with any given point.
At this time, it does not support any deletion or rebalancing
operations.

The IntervalTree is designed to be set up once, and then queried
without any further additions.

Reviewed By: psamolysov, probinson

Differential Revision: https://reviews.llvm.org/D125776

Added: 
    llvm/include/llvm/ADT/IntervalTree.h
    llvm/unittests/ADT/IntervalTreeTest.cpp

Modified: 
    llvm/docs/ProgrammersManual.rst
    llvm/unittests/ADT/CMakeLists.txt

Removed: 
    


################################################################################
diff  --git a/llvm/docs/ProgrammersManual.rst b/llvm/docs/ProgrammersManual.rst
index f0c0d7c4ffa51..b0ceda5623a7b 100644
--- a/llvm/docs/ProgrammersManual.rst
+++ b/llvm/docs/ProgrammersManual.rst
@@ -2314,6 +2314,18 @@ itself to avoid allocations.
 The IntervalMap iterators are quite big, so they should not be passed around as
 STL iterators.  The heavyweight iterators allow a smaller data structure.
 
+.. _dss_intervaltree:
+
+llvm/ADT/IntervalTree.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``llvm::IntervalTree`` is a light tree data structure to hold intervals. It
+allows finding all intervals that overlap with any given point. At this time,
+it does not support any deletion or rebalancing operations.
+
+The IntervalTree is designed to be set up once, and then queried without any
+further additions.
+
 .. _dss_map:
 
 <map>

diff  --git a/llvm/include/llvm/ADT/IntervalTree.h b/llvm/include/llvm/ADT/IntervalTree.h
new file mode 100644
index 0000000000000..17524da83da39
--- /dev/null
+++ b/llvm/include/llvm/ADT/IntervalTree.h
@@ -0,0 +1,693 @@
+//===-- IntervalTree.h ------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements an interval tree.
+//
+// Further information:
+// https://en.wikipedia.org/wiki/Interval_tree
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_INTERVALTREE_H
+#define LLVM_ADT_INTERVALTREE_H
+
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+
+// IntervalTree is a light tree data structure to hold intervals. It allows
+// finding all intervals that overlap with any given point. At this time,
+// it does not support any deletion or rebalancing operations.
+//
+// The IntervalTree is designed to be set up once, and then queried without
+// any further additions.
+//
+// Synopsis:
+//   Closed intervals delimited by PointT objects are mapped to ValueT objects.
+//
+// Restrictions:
+//   PointT must be a fundamental type.
+//   ValueT must be a fundamental or pointer type.
+//
+// template <typename PointT, typename ValueT, typename DataT>
+// class IntervalTree {
+// public:
+//
+//   IntervalTree();
+//   ~IntervalTree():
+//
+//   using IntervalReferences = SmallVector<IntervalData *>;
+//
+//   void create();
+//   void insert(PointT Left, PointT Right, ValueT Value);
+//
+//   IntervalReferences getContaining(PointT Point);
+//   static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
+//
+//   find_iterator begin(PointType Point) const;
+//   find_iterator end() const;
+//
+//   bool empty() const;
+//   void clear();
+//
+//   void print(raw_ostream &OS, bool HexFormat = true);
+// };
+//
+//===----------------------------------------------------------------------===//
+//
+// In the below given dataset
+//
+//   [a, b] <- (x)
+//
+// 'a' and 'b' describe a range and 'x' the value for that interval.
+//
+// The following data are purely for illustrative purposes:
+//
+// [30, 35] <- (3035),    [39, 50] <- (3950),    [55, 61] <- (5561),
+// [31, 56] <- (3156),    [12, 21] <- (1221),    [25, 41] <- (2541),
+// [49, 65] <- (4965),    [71, 79] <- (7179),    [11, 16] <- (1116),
+// [20, 30] <- (2030),    [36, 54] <- (3654),    [60, 70] <- (6070),
+// [74, 80] <- (7480),    [15, 40] <- (1540),    [43, 43] <- (4343),
+// [50, 75] <- (5075),    [10, 85] <- (1085)
+//
+// The data represents a set of overlapping intervals:
+//
+//                    30--35  39------------50  55----61
+//                      31------------------------56
+//     12--------21 25------------41      49-------------65   71-----79
+//   11----16  20-----30    36----------------54    60------70  74---- 80
+//       15---------------------40  43--43  50--------------------75
+// 10----------------------------------------------------------------------85
+//
+// The items are stored in a binary tree with each node storing:
+//
+// MP: A middle point.
+// IL: All intervals whose left value are completely to the left of the middle
+//     point. They are sorted in ascending order by their beginning point.
+// IR: All intervals whose right value are completely to the right of the
+//     middle point. They are sorted in descending order by their ending point.
+// LS: Left subtree.
+// RS: Right subtree.
+//
+// As IL and IR will contain the same intervals, in order to optimize space,
+// instead of storing intervals on each node, we use two vectors that will
+// contain the intervals described by IL and IR. Each node will contain an
+// index into that vector (global bucket), to indicate the beginning of the
+// intervals assigned to the node.
+//
+// The following is the output from print():
+//
+// 0: MP:43 IR [10,85] [31,56] [36,54] [39,50] [43,43]
+// 0: MP:43 IL [10,85] [31,56] [36,54] [39,50] [43,43]
+// 1:   MP:25 IR [25,41] [15,40] [20,30]
+// 1:   MP:25 IL [15,40] [20,30] [25,41]
+// 2:     MP:15 IR [12,21] [11,16]
+// 2:     MP:15 IL [11,16] [12,21]
+// 2:     MP:36 IR []
+// 2:     MP:36 IL []
+// 3:       MP:31 IR [30,35]
+// 3:       MP:31 IL [30,35]
+// 1:   MP:61 IR [50,75] [60,70] [49,65] [55,61]
+// 1:   MP:61 IL [49,65] [50,75] [55,61] [60,70]
+// 2:     MP:74 IR [74,80] [71,79]
+// 2:     MP:74 IL [71,79] [74,80]
+//
+// with:
+//    0: Root Node.
+//   MP: Middle point.
+//   IL: Intervals to the left (in ascending order by beginning point).
+//   IR: Intervals to the right (in descending order by ending point).
+//
+//                                    Root
+//                                      |
+//                                      V
+//                       +------------MP:43------------+
+//                       |            IL IR            |
+//                       |       [10,85] [10,85]       |
+//                    LS |       [31,56] [31,56]       | RS
+//                       |       [36,54] [36,54]       |
+//                       |       [39,50] [39,50]       |
+//                       |       [43,43] [43,43]       |
+//                       V                             V
+//        +------------MP:25------------+            MP:61------------+
+//        |            IL IR            |            IL IR            |
+//        |       [15,40] [25,41]       |       [49,65] [50,75]       |
+//     LS |       [20,30] [15,40]       | RS    [50,75] [60,70]       | RS
+//        |       [25,41] [20,30]       |       [55,61] [49,65]       |
+//        |                             |       [60,70] [55,61]       |
+//        V                             V                             V
+//      MP:15                 +-------MP:36                         MP:74
+//      IL IR                 |       IL IR                         IL IR
+// [11,16] [12,21]         LS |       [] []                    [71,79] [74,80]
+// [12,21] [11,16]            |                                [74,80] [71,79]
+//                            V
+//                          MP:31
+//                          IL IR
+//                     [30,35] [30,35]
+//
+// The creation of an interval tree is done in 2 steps:
+// 1) Insert the interval items by calling
+//    void insert(PointT Left, PointT Right, ValueT Value);
+//    Left, Right: the interval left and right limits.
+//    Value: the data associated with that specific interval.
+//
+// 2) Create the interval tree by calling
+//    void create();
+//
+// Once the tree is created, it is switched to query mode.
+// Query the tree by using iterators or container.
+//
+// a) Iterators over intervals overlapping the given point with very weak
+//    ordering guarantees.
+//    find_iterator begin(PointType Point) const;
+//    find_iterator end() const;
+//    Point: a target point to be tested for inclusion in any interval.
+//
+// b) Container:
+//    IntervalReferences getContaining(PointT Point);
+//    Point: a target point to be tested for inclusion in any interval.
+//    Returns vector with all the intervals containing the target point.
+//
+// The returned intervals are in their natural tree location. They can
+// be sorted:
+//
+// static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
+//
+// Ability to print the constructed interval tree:
+//   void print(raw_ostream &OS, bool HexFormat = true);
+// Display the associated data in hexadecimal format.
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+//---                          IntervalData                               ----//
+//===----------------------------------------------------------------------===//
+/// An interval data composed by a \a Left and \a Right points and an
+/// associated \a Value.
+/// \a PointT corresponds to the interval endpoints type.
+/// \a ValueT corresponds to the interval value type.
+template <typename PointT, typename ValueT> class IntervalData {
+protected:
+  using PointType = PointT;
+  using ValueType = ValueT;
+
+private:
+  PointType Left;
+  PointType Right;
+  ValueType Value;
+
+public:
+  IntervalData() = delete;
+  IntervalData(PointType Left, PointType Right, ValueType Value)
+      : Left(Left), Right(Right), Value(Value) {
+    assert(Left <= Right && "'Left' must be less or equal to 'Right'");
+  }
+  virtual ~IntervalData() = default;
+  PointType left() const { return Left; }
+  PointType right() const { return Right; }
+  ValueType value() const { return Value; }
+
+  /// Return true if \a Point is inside the left bound of closed interval \a
+  /// [Left;Right]. This is Left <= Point for closed intervals.
+  bool left(const PointType &Point) const { return left() <= Point; }
+
+  /// Return true if \a Point is inside the right bound of closed interval \a
+  /// [Left;Right]. This is Point <= Right for closed intervals.
+  bool right(const PointType &Point) const { return Point <= right(); }
+
+  /// Return true when \a Point is contained in interval \a [Left;Right].
+  /// This is Left <= Point <= Right for closed intervals.
+  bool contains(const PointType &Point) const {
+    return left(Point) && right(Point);
+  }
+};
+
+//===----------------------------------------------------------------------===//
+//---                          IntervalTree                               ----//
+//===----------------------------------------------------------------------===//
+// Helper class template that is used by the IntervalTree to ensure that one
+// does instantiate using only fundamental and/or pointer types.
+template <typename T>
+using PointTypeIsValid = std::bool_constant<std::is_fundamental<T>::value>;
+
+template <typename T>
+using ValueTypeIsValid = std::bool_constant<std::is_fundamental<T>::value ||
+                                            std::is_pointer<T>::value>;
+
+template <typename PointT, typename ValueT,
+          typename DataT = IntervalData<PointT, ValueT>>
+class IntervalTree {
+  static_assert(PointTypeIsValid<PointT>::value,
+                "PointT must be a fundamental type");
+  static_assert(ValueTypeIsValid<ValueT>::value,
+                "ValueT must be a fundamental or pointer type");
+
+public:
+  using PointType = PointT;
+  using ValueType = ValueT;
+  using DataType = DataT;
+  using Allocator = BumpPtrAllocator;
+
+  enum class Sorting { Ascending, Descending };
+  using IntervalReferences = SmallVector<const DataType *, 4>;
+
+private:
+  using IntervalVector = SmallVector<DataType, 4>;
+  using PointsVector = SmallVector<PointType, 4>;
+
+  class IntervalNode {
+    PointType MiddlePoint;             // MP - Middle point.
+    IntervalNode *Left = nullptr;      // LS - Left subtree.
+    IntervalNode *Right = nullptr;     // RS - Right subtree.
+    unsigned BucketIntervalsStart = 0; // Starting index in global bucket.
+    unsigned BucketIntervalsSize = 0;  // Size of bucket.
+
+  public:
+    PointType middle() const { return MiddlePoint; }
+    unsigned start() const { return BucketIntervalsStart; }
+    unsigned size() const { return BucketIntervalsSize; }
+
+    IntervalNode(PointType Point, unsigned Start)
+        : MiddlePoint(Point), BucketIntervalsStart(Start) {}
+
+    friend IntervalTree;
+  };
+
+  Allocator &NodeAllocator;     // Allocator used for creating interval nodes.
+  IntervalNode *Root = nullptr; // Interval tree root.
+  IntervalVector Intervals; // Storage for each interval and all of the fields
+                            // point back into it.
+  PointsVector EndPoints; // Sorted left and right points of all the intervals.
+
+  // These vectors provide storage that nodes carve buckets of overlapping
+  // intervals out of. All intervals are recorded on each vector.
+  // The bucket with the intervals associated to a node, is determined by
+  // the fields 'BucketIntervalStart' and 'BucketIntervalSize' in the node.
+  // The buckets in the first vector are sorted in ascending order using
+  // the left value and the buckets in the second vector are sorted in
+  // descending order using the right value. Every interval in a bucket
+  // contains the middle point for the node.
+  IntervalReferences IntervalsLeft;  // Intervals to the left of middle point.
+  IntervalReferences IntervalsRight; // Intervals to the right of middle point.
+
+  // Working vector used during the tree creation to sort the intervals. It is
+  // cleared once the tree is created.
+  IntervalReferences References;
+
+  /// Recursively delete the constructed tree.
+  void deleteTree(IntervalNode *Node) {
+    if (Node) {
+      deleteTree(Node->Left);
+      deleteTree(Node->Right);
+      Node->~IntervalNode();
+      NodeAllocator.Deallocate(Node);
+    }
+  }
+
+  /// Print the interval list (left and right) for a given \a Node.
+  static void printList(raw_ostream &OS, IntervalReferences &IntervalSet,
+                        unsigned Start, unsigned Size, bool HexFormat = true) {
+    assert(Start + Size <= IntervalSet.size() &&
+           "Start + Size must be in bounds of the IntervalSet");
+    const char *Format = HexFormat ? "[0x%08x,0x%08x] " : "[%2d,%2d] ";
+    if (Size) {
+      for (unsigned Position = Start; Position < Start + Size; ++Position)
+        OS << format(Format, IntervalSet[Position]->left(),
+                     IntervalSet[Position]->right());
+    } else {
+      OS << "[]";
+    }
+    OS << "\n";
+  }
+
+  /// Print an interval tree \a Node.
+  void printNode(raw_ostream &OS, unsigned Level, IntervalNode *Node,
+                 bool HexFormat = true) {
+    const char *Format = HexFormat ? "MP:0x%08x " : "MP:%2d ";
+    auto PrintNodeData = [&](StringRef Text, IntervalReferences &IntervalSet) {
+      OS << format("%5d: ", Level);
+      OS.indent(Level * 2);
+      OS << format(Format, Node->middle()) << Text << " ";
+      printList(OS, IntervalSet, Node->start(), Node->size(), HexFormat);
+    };
+
+    PrintNodeData("IR", IntervalsRight);
+    PrintNodeData("IL", IntervalsLeft);
+  }
+
+  /// Recursively print all the interval nodes.
+  void printTree(raw_ostream &OS, unsigned Level, IntervalNode *Node,
+                 bool HexFormat = true) {
+    if (Node) {
+      printNode(OS, Level, Node, HexFormat);
+      ++Level;
+      printTree(OS, Level, Node->Left, HexFormat);
+      printTree(OS, Level, Node->Right, HexFormat);
+    }
+  }
+
+  /// Recursively construct the interval tree.
+  /// IntervalsSize: Number of intervals that have been processed and it will
+  /// be used as the start for the intervals bucket for a node.
+  /// PointsBeginIndex, PointsEndIndex: Determine the range into the EndPoints
+  /// vector of end points to be processed.
+  /// ReferencesBeginIndex, ReferencesSize: Determine the range into the
+  /// intervals being processed.
+  IntervalNode *createTree(unsigned &IntervalsSize, int PointsBeginIndex,
+                           int PointsEndIndex, int ReferencesBeginIndex,
+                           int ReferencesSize) {
+    // We start by taking the entire range of all the intervals and dividing
+    // it in half at x_middle (in practice, x_middle should be picked to keep
+    // the tree relatively balanced).
+    // This gives three sets of intervals, those completely to the left of
+    // x_middle which we'll call S_left, those completely to the right of
+    // x_middle which we'll call S_right, and those overlapping x_middle
+    // which we'll call S_middle.
+    // The intervals in S_left and S_right are recursively divided in the
+    // same manner until there are no intervals remaining.
+
+    if (PointsBeginIndex > PointsEndIndex ||
+        ReferencesBeginIndex >= ReferencesSize)
+      return nullptr;
+
+    int MiddleIndex = (PointsBeginIndex + PointsEndIndex) / 2;
+    PointType MiddlePoint = EndPoints[MiddleIndex];
+
+    unsigned NewBucketStart = IntervalsSize;
+    unsigned NewBucketSize = 0;
+    int ReferencesRightIndex = ReferencesSize;
+
+    IntervalNode *Root =
+        new (NodeAllocator) IntervalNode(MiddlePoint, NewBucketStart);
+
+    // A quicksort implementation where all the intervals that overlap
+    // with the pivot are put into the "bucket", and "References" is the
+    // partition space where we recursively sort the remaining intervals.
+    for (int Index = ReferencesBeginIndex; Index < ReferencesRightIndex;) {
+
+      // Current interval contains the middle point.
+      if (References[Index]->contains(MiddlePoint)) {
+        IntervalsLeft[IntervalsSize] = References[Index];
+        IntervalsRight[IntervalsSize] = References[Index];
+        ++IntervalsSize;
+        Root->BucketIntervalsSize = ++NewBucketSize;
+
+        if (Index < --ReferencesRightIndex)
+          std::swap(References[Index], References[ReferencesRightIndex]);
+        if (ReferencesRightIndex < --ReferencesSize)
+          std::swap(References[ReferencesRightIndex],
+                    References[ReferencesSize]);
+        continue;
+      }
+
+      if (References[Index]->left() > MiddlePoint) {
+        if (Index < --ReferencesRightIndex)
+          std::swap(References[Index], References[ReferencesRightIndex]);
+        continue;
+      }
+      ++Index;
+    }
+
+    // Sort intervals on the left and right of the middle point.
+    if (NewBucketSize > 1) {
+      // Sort the intervals in ascending order by their beginning point.
+      std::sort(IntervalsLeft.begin() + NewBucketStart,
+                IntervalsLeft.begin() + NewBucketStart + NewBucketSize,
+                [](const DataType *LHS, const DataType *RHS) {
+                  return LHS->left() < RHS->left();
+                });
+      // Sort the intervals in descending order by their ending point.
+      std::sort(IntervalsRight.begin() + NewBucketStart,
+                IntervalsRight.begin() + NewBucketStart + NewBucketSize,
+                [](const DataType *LHS, const DataType *RHS) {
+                  return LHS->right() > RHS->right();
+                });
+    }
+
+    if (PointsBeginIndex <= MiddleIndex - 1) {
+      Root->Left = createTree(IntervalsSize, PointsBeginIndex, MiddleIndex - 1,
+                              ReferencesBeginIndex, ReferencesRightIndex);
+    }
+
+    if (MiddleIndex + 1 <= PointsEndIndex) {
+      Root->Right = createTree(IntervalsSize, MiddleIndex + 1, PointsEndIndex,
+                               ReferencesRightIndex, ReferencesSize);
+    }
+
+    return Root;
+  }
+
+public:
+  class find_iterator {
+  public:
+    using iterator_category = std::forward_iterator_tag;
+    using value_type = DataType;
+    using 
diff erence_type = DataType;
+    using pointer = DataType *;
+    using reference = DataType &;
+
+  private:
+    const IntervalReferences *AscendingBuckets = nullptr;
+    const IntervalReferences *DescendingBuckets = nullptr;
+
+    // Current node and index while traversing the intervals that contain
+    // the reference point.
+    IntervalNode *Node = nullptr;
+    PointType Point;
+    unsigned Index = 0;
+
+    // For the current node, check if we have intervals that contain the
+    // reference point. We return when the node does have intervals that
+    // contain such point. Otherwise we keep descending on that branch.
+    void initNode() {
+      Index = 0;
+      while (Node) {
+        // Return if the reference point is the same as the middle point or
+        // the current node doesn't have any intervals at all.
+        if (Point == Node->middle()) {
+          if (Node->size() == 0) {
+            // No intervals that contain the reference point.
+            Node = nullptr;
+          }
+          return;
+        }
+
+        if (Point < Node->middle()) {
+          // The reference point can be at the left or right of the middle
+          // point. Return if the current node has intervals that contain the
+          // reference point; otherwise descend on the respective branch.
+          if (Node->size() && (*AscendingBuckets)[Node->start()]->left(Point)) {
+            return;
+          }
+          Node = Node->Left;
+        } else {
+          if (Node->size() &&
+              (*DescendingBuckets)[Node->start()]->right(Point)) {
+            return;
+          }
+          Node = Node->Right;
+        }
+      }
+    }
+
+    // Given the current node (which was initialized by initNode), move to
+    // the next interval in the list of intervals that contain the reference
+    // point. Otherwise move to the next node, as the intervals contained
+    // in that node, can contain the reference point.
+    void nextInterval() {
+      // If there are available intervals that contain the reference point,
+      // traverse them; otherwise move to the left or right node, depending
+      // on the middle point value.
+      if (++Index < Node->size()) {
+        if (Node->middle() == Point)
+          return;
+        if (Point < Node->middle()) {
+          // Reference point is on the left.
+          if (!(*AscendingBuckets)[Node->start() + Index]->left(Point)) {
+            // The intervals don't contain the reference point. Move to the
+            // next node, preserving the descending order.
+            Node = Node->Left;
+            initNode();
+          }
+        } else {
+          // Reference point is on the right.
+          if (!(*DescendingBuckets)[Node->start() + Index]->right(Point)) {
+            // The intervals don't contain the reference point. Move to the
+            // next node, preserving the ascending order.
+            Node = Node->Right;
+            initNode();
+          }
+        }
+      } else {
+        // We have traversed all the intervals in the current node.
+        if (Point == Node->middle()) {
+          Node = nullptr;
+          Index = 0;
+          return;
+        }
+        // Select a branch based on the middle point.
+        Node = Point < Node->middle() ? Node->Left : Node->Right;
+        initNode();
+      }
+    }
+
+    find_iterator() = default;
+    explicit find_iterator(const IntervalReferences *Left,
+                           const IntervalReferences *Right, IntervalNode *Node,
+                           PointType Point)
+        : AscendingBuckets(Left), DescendingBuckets(Right), Node(Node),
+          Point(Point), Index(0) {
+      initNode();
+    }
+
+    const DataType *current() const {
+      return (Point <= Node->middle())
+                 ? (*AscendingBuckets)[Node->start() + Index]
+                 : (*DescendingBuckets)[Node->start() + Index];
+    }
+
+  public:
+    find_iterator &operator++() {
+      nextInterval();
+      return *this;
+    }
+
+    find_iterator operator++(int) {
+      find_iterator Iter(*this);
+      nextInterval();
+      return Iter;
+    }
+
+    /// Dereference operators.
+    const DataType *operator->() const { return current(); }
+    const DataType &operator*() const { return *(current()); }
+
+    /// Comparison operators.
+    friend bool operator==(const find_iterator &LHS, const find_iterator &RHS) {
+      return (!LHS.Node && !RHS.Node && !LHS.Index && !RHS.Index) ||
+             (LHS.Point == RHS.Point && LHS.Node == RHS.Node &&
+              LHS.Index == RHS.Index);
+    }
+    friend bool operator!=(const find_iterator &LHS, const find_iterator &RHS) {
+      return !(LHS == RHS);
+    }
+
+    friend IntervalTree;
+  };
+
+private:
+  find_iterator End;
+
+public:
+  explicit IntervalTree(Allocator &NodeAllocator)
+      : NodeAllocator(NodeAllocator) {}
+  ~IntervalTree() { clear(); }
+
+  /// Return true when no intervals are mapped.
+  bool empty() const { return Root == nullptr; }
+
+  /// Remove all entries.
+  void clear() {
+    deleteTree(Root);
+    Root = nullptr;
+    Intervals.clear();
+    IntervalsLeft.clear();
+    IntervalsRight.clear();
+    EndPoints.clear();
+  }
+
+  /// Add a mapping of [Left;Right] to \a Value.
+  void insert(PointType Left, PointType Right, ValueType Value) {
+    assert(empty() && "Invalid insertion. Interval tree already constructed.");
+    Intervals.emplace_back(Left, Right, Value);
+  }
+
+  /// Return all the intervals in their natural tree location, that
+  /// contain the given point.
+  IntervalReferences getContaining(PointType Point) const {
+    assert(!empty() && "Interval tree it is not constructed.");
+    IntervalReferences IntervalSet;
+    for (find_iterator Iter = find(Point), E = find_end(); Iter != E; ++Iter)
+      IntervalSet.push_back(const_cast<DataType *>(&(*Iter)));
+    return IntervalSet;
+  }
+
+  /// Sort the given intervals using the following sort options:
+  /// Ascending: return the intervals with the smallest at the front.
+  /// Descending: return the intervals with the biggest at the front.
+  static void sortIntervals(IntervalReferences &IntervalSet, Sorting Sort) {
+    std::sort(IntervalSet.begin(), IntervalSet.end(),
+              [Sort](const DataType *RHS, const DataType *LHS) {
+                return Sort == Sorting::Ascending
+                           ? (LHS->right() - LHS->left()) >
+                                 (RHS->right() - RHS->left())
+                           : (LHS->right() - LHS->left()) <
+                                 (RHS->right() - RHS->left());
+              });
+  }
+
+  /// Print the interval tree.
+  /// When \a HexFormat is true, the interval tree interval ranges and
+  /// associated values are printed in hexadecimal format.
+  void print(raw_ostream &OS, bool HexFormat = true) {
+    printTree(OS, 0, Root, HexFormat);
+  }
+
+  /// Create the interval tree.
+  void create() {
+    assert(empty() && "Interval tree already constructed.");
+    // Sorted vector of unique end points values of all the intervals.
+    // Records references to the collected intervals.
+    SmallVector<PointType, 4> Points;
+    for (const DataType &Data : Intervals) {
+      Points.push_back(Data.left());
+      Points.push_back(Data.right());
+      References.push_back(std::addressof(Data));
+    }
+    std::sort(Points.begin(), Points.end());
+    auto Last = std::unique(Points.begin(), Points.end());
+    Points.erase(Last, Points.end());
+
+    EndPoints.assign(Points.begin(), Points.end());
+
+    IntervalsLeft.resize(Intervals.size());
+    IntervalsRight.resize(Intervals.size());
+
+    // Given a set of n intervals, construct a data structure so that
+    // we can efficiently retrieve all intervals overlapping another
+    // interval or point.
+    unsigned IntervalsSize = 0;
+    Root =
+        createTree(IntervalsSize, /*PointsBeginIndex=*/0, EndPoints.size() - 1,
+                   /*ReferencesBeginIndex=*/0, References.size());
+
+    // Save to clear this storage, as it used only to sort the intervals.
+    References.clear();
+  }
+
+  /// Iterator to start a find operation; it returns find_end() if the
+  /// tree has not been built.
+  /// There is no support to iterate over all the elements of the tree.
+  find_iterator find(PointType Point) const {
+    return empty()
+               ? find_end()
+               : find_iterator(&IntervalsLeft, &IntervalsRight, Root, Point);
+  }
+
+  /// Iterator to end find operation.
+  find_iterator find_end() const { return End; }
+};
+
+} // namespace llvm
+
+#endif // LLVM_ADT_INTERVALTREE_H

diff  --git a/llvm/unittests/ADT/CMakeLists.txt b/llvm/unittests/ADT/CMakeLists.txt
index cac7280717496..b3b375ef7091f 100644
--- a/llvm/unittests/ADT/CMakeLists.txt
+++ b/llvm/unittests/ADT/CMakeLists.txt
@@ -43,6 +43,7 @@ add_llvm_unittest(ADTTests
   ImmutableSetTest.cpp
   IntEqClassesTest.cpp
   IntervalMapTest.cpp
+  IntervalTreeTest.cpp
   IntrusiveRefCntPtrTest.cpp
   IteratorTest.cpp
   MappedIteratorTest.cpp

diff  --git a/llvm/unittests/ADT/IntervalTreeTest.cpp b/llvm/unittests/ADT/IntervalTreeTest.cpp
new file mode 100644
index 0000000000000..478f9aac94b6f
--- /dev/null
+++ b/llvm/unittests/ADT/IntervalTreeTest.cpp
@@ -0,0 +1,1607 @@
+//===---- ADT/IntervalTreeTest.cpp - IntervalTree unit tests --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/IntervalTree.h"
+#include "gtest/gtest.h"
+
+// The test cases for the IntervalTree implementation, follow the below steps:
+// a) Insert a series of intervals with their associated mapped value.
+// b) Create the interval tree.
+// c) Query for specific interval point, covering points inside and outside
+//    of any given intervals.
+// d) Traversal for specific interval point, using the iterators.
+//
+// When querying for a set of intervals containing a given value, the query is
+// done three times, by calling:
+// 1) Intervals = getContaining(...).
+// 2) Intervals = getContaining(...).
+//    sortIntervals(Intervals, Sorting=Ascending).
+// 3) Intervals = getContaining(...).
+//    sortIntervals(Intervals, Sorting=Ascending).
+//
+// The returned intervals are:
+// 1) In their location order within the tree.
+// 2) Smaller intervals first.
+// 3) Bigger intervals first.
+
+using namespace llvm;
+
+namespace {
+
+// Helper function to test a specific item or iterator.
+template <typename TPoint, typename TItem, typename TValue>
+void checkItem(TPoint Point, TItem Item, TPoint Left, TPoint Right,
+               TValue Value) {
+  EXPECT_TRUE(Item->contains(Point));
+  EXPECT_EQ(Item->left(), Left);
+  EXPECT_EQ(Item->right(), Right);
+  EXPECT_EQ(Item->value(), Value);
+}
+
+// User class tree tests.
+TEST(IntervalTreeTest, UserClass) {
+  using UUPoint = unsigned;
+  using UUValue = double;
+  class MyData : public IntervalData<UUPoint, UUValue> {
+    using UUData = IntervalData<UUPoint, UUValue>;
+
+  public:
+    // Inherit Base's constructors.
+    using UUData::UUData;
+    PointType left() const { return UUData::left(); }
+    PointType right() const { return UUData::right(); }
+    ValueType value() const { return UUData::value(); }
+
+    bool left(const PointType &Point) const { return UUData::left(Point); }
+    bool right(const PointType &Point) const { return UUData::right(Point); }
+    bool contains(const PointType &Point) const {
+      return UUData::contains(Point);
+    }
+  };
+
+  using UUTree = IntervalTree<UUPoint, UUValue, MyData>;
+  using UUReferences = UUTree::IntervalReferences;
+  using UUData = UUTree::DataType;
+  using UUAlloc = UUTree::Allocator;
+
+  auto CheckData = [](UUPoint Point, const UUData *Data, UUPoint Left,
+                      UUPoint Right, UUValue Value) {
+    checkItem<UUPoint, const UUData *, UUValue>(Point, Data, Left, Right,
+                                                Value);
+  };
+
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  EXPECT_TRUE(Tree.empty());
+  Tree.clear();
+  EXPECT_TRUE(Tree.empty());
+
+  // [10, 20] <- (10.20)
+  // [30, 40] <- (30.40)
+  //
+  //    [10...20]   [30...40]
+  Tree.insert(10, 20, 10.20);
+  Tree.insert(30, 40, 30.40);
+  Tree.create();
+
+  // Invalid interval values: x < [10
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [10...20]
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 10, 20, 10.20);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 10, 20, 10.20);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 10, 20, 10.20);
+
+  // Invalid interval values: 20] < x < [30
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [30...40]
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 30, 40, 30.40);
+
+  Point = 35;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 30, 40, 30.40);
+
+  Point = 40;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  CheckData(Point, Intervals[0], 30, 40, 30.40);
+
+  // Invalid interval values: 40] < x
+  Point = 45;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+using UUPoint = unsigned; // Interval endpoint type.
+using UUValue = unsigned; // Mapped value type.
+
+using UUTree = IntervalTree<UUPoint, UUValue>;
+using UUReferences = UUTree::IntervalReferences;
+using UUData = UUTree::DataType;
+using UUSorting = UUTree::Sorting;
+using UUPoint = UUTree::PointType;
+using UUValue = UUTree::ValueType;
+using UUIter = UUTree::find_iterator;
+using UUAlloc = UUTree::Allocator;
+
+void checkData(UUPoint Point, const UUData *Data, UUPoint Left, UUPoint Right,
+               UUValue Value) {
+  checkItem<UUPoint, const UUData *, UUValue>(Point, Data, Left, Right, Value);
+}
+
+void checkData(UUPoint Point, UUIter Iter, UUPoint Left, UUPoint Right,
+               UUValue Value) {
+  checkItem<UUPoint, UUIter, UUValue>(Point, Iter, Left, Right, Value);
+}
+
+// Empty tree tests.
+TEST(IntervalTreeTest, NoIntervals) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  EXPECT_TRUE(Tree.empty());
+  Tree.clear();
+  EXPECT_TRUE(Tree.empty());
+
+  // Create the tree and switch to query mode.
+  Tree.create();
+  EXPECT_TRUE(Tree.empty());
+  EXPECT_EQ(Tree.find(1), Tree.find_end());
+}
+
+// One item tree tests.
+TEST(IntervalTreeTest, OneInterval) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [10, 20] <- (1020)
+  //
+  //    [10...20]
+  Tree.insert(10, 20, 1020);
+
+  EXPECT_TRUE(Tree.empty());
+  Tree.create();
+  EXPECT_FALSE(Tree.empty());
+
+  // Invalid interval values: x < [10.
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [10...20].
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  // Invalid interval values: 20] < x
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// Two items tree tests. No overlapping.
+TEST(IntervalTreeTest, TwoIntervals) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [10, 20] <- (1020)
+  // [30, 40] <- (3040)
+  //
+  //    [10...20]   [30...40]
+  Tree.insert(10, 20, 1020);
+  Tree.insert(30, 40, 3040);
+  Tree.create();
+
+  // Invalid interval values: x < [10
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [10...20]
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  // Invalid interval values: 20] < x < [30
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [30...40]
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  Point = 35;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  Point = 40;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  // Invalid interval values: 40] < x
+  Point = 45;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// Three items tree tests. No overlapping.
+TEST(IntervalTreeTest, ThreeIntervals) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [10, 20] <- (1020)
+  // [30, 40] <- (3040)
+  // [50, 60] <- (5060)
+  //
+  //    [10...20]   [30...40]   [50...60]
+  Tree.insert(10, 20, 1020);
+  Tree.insert(30, 40, 3040);
+  Tree.insert(50, 60, 5060);
+  Tree.create();
+
+  // Invalid interval values: x < [10
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [10...20]
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 20, 1020);
+
+  // Invalid interval values: 20] < x < [30
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [30...40]
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  Point = 35;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  Point = 40;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 30, 40, 3040);
+
+  // Invalid interval values: 40] < x < [50
+  Point = 45;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [50...60]
+  Point = 50;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 50, 60, 5060);
+
+  Point = 55;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 50, 60, 5060);
+
+  Point = 60;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 50, 60, 5060);
+
+  // Invalid interval values: 60] < x
+  Point = 65;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// One item tree tests.
+TEST(IntervalTreeTest, EmptyIntervals) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [40, 60] <- (4060)
+  // [50, 50] <- (5050)
+  // [10, 10] <- (1010)
+  // [70, 70] <- (7070)
+  //
+  //                [40...............60]
+  //                      [50...50]
+  //    [10...10]
+  //                                        [70...70]
+  Tree.insert(40, 60, 4060);
+  Tree.insert(50, 50, 5050);
+  Tree.insert(10, 10, 1010);
+  Tree.insert(70, 70, 7070);
+
+  EXPECT_TRUE(Tree.empty());
+  Tree.create();
+  EXPECT_FALSE(Tree.empty());
+
+  // Invalid interval values: x < [10.
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [10...10].
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 10, 1010);
+
+  // Invalid interval values: 10] < x
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Invalid interval values: x < [50.
+  Point = 45;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+
+  // Valid interval values: [50...50].
+  Point = 50;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+  checkData(Point, Intervals[1], 50, 50, 5050);
+
+  // Invalid interval values: 50] < x
+  Point = 55;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+
+  // Invalid interval values: x < [70.
+  Point = 65;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values: [70...70].
+  Point = 70;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 70, 70, 7070);
+
+  // Invalid interval values: 70] < x
+  Point = 75;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// Simple overlapping tests.
+TEST(IntervalTreeTest, SimpleIntervalsOverlapping) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [40, 60] <- (4060)
+  // [30, 70] <- (3070)
+  // [20, 80] <- (2080)
+  // [10, 90] <- (1090)
+  //
+  //                      [40...60]
+  //                [30...............70]
+  //          [20...........................80]
+  //    [10.......................................90]
+  Tree.insert(40, 60, 4060);
+  Tree.insert(30, 70, 3070);
+  Tree.insert(20, 80, 2080);
+  Tree.insert(10, 90, 1090);
+  Tree.create();
+
+  // Invalid interval values: x < [10
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+
+  // Valid interval values:
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 20, 80, 2080);
+  checkData(Point, Intervals[1], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 20, 80, 2080);
+  checkData(Point, Intervals[1], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 30, 70, 3070);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+
+  Point = 35;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 30, 70, 3070);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+
+  Point = 40;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+  checkData(Point, Intervals[1], 30, 70, 3070);
+  checkData(Point, Intervals[2], 20, 80, 2080);
+  checkData(Point, Intervals[3], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+
+  Point = 50;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+  checkData(Point, Intervals[1], 30, 70, 3070);
+  checkData(Point, Intervals[2], 20, 80, 2080);
+  checkData(Point, Intervals[3], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+
+  Point = 60;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 40, 60, 4060);
+  checkData(Point, Intervals[1], 30, 70, 3070);
+  checkData(Point, Intervals[2], 20, 80, 2080);
+  checkData(Point, Intervals[3], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  checkData(Point, Intervals[3], 40, 60, 4060);
+
+  Point = 65;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 30, 70, 3070);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+
+  Point = 70;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 30, 70, 3070);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  checkData(Point, Intervals[2], 30, 70, 3070);
+
+  Point = 75;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 20, 80, 2080);
+  checkData(Point, Intervals[1], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+
+  Point = 80;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 20, 80, 2080);
+  checkData(Point, Intervals[1], 10, 90, 1090);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+  checkData(Point, Intervals[1], 20, 80, 2080);
+
+  Point = 85;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+
+  Point = 90;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 90, 1090);
+
+  // Invalid interval values: 90] < x
+  Point = 95;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// Complex Overlapping.
+TEST(IntervalTreeTest, ComplexIntervalsOverlapping) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUReferences Intervals;
+  UUPoint Point;
+
+  // [30, 35] <- (3035)
+  // [39, 50] <- (3950)
+  // [55, 61] <- (5561)
+  // [31, 56] <- (3156)
+  // [12, 21] <- (1221)
+  // [25, 41] <- (2541)
+  // [49, 65] <- (4965)
+  // [71, 79] <- (7179)
+  // [11, 16] <- (1116)
+  // [20, 30] <- (2030)
+  // [36, 54] <- (3654)
+  // [60, 70] <- (6070)
+  // [74, 80] <- (7480)
+  // [15, 40] <- (1540)
+  // [43, 45] <- (4345)
+  // [50, 75] <- (5075)
+  // [10, 85] <- (1085)
+
+  //                    30--35  39------------50  55----61
+  //                      31------------------------56
+  //     12--------21 25------------41      49-------------65   71-----79
+  //   11----16  20-----30    36----------------54    60------70  74---- 80
+  //       15---------------------40  43--45  50--------------------75
+  // 10----------------------------------------------------------------------85
+
+  Tree.insert(30, 35, 3035);
+  Tree.insert(39, 50, 3950);
+  Tree.insert(55, 61, 5561);
+  Tree.insert(31, 56, 3156);
+  Tree.insert(12, 21, 1221);
+  Tree.insert(25, 41, 2541);
+  Tree.insert(49, 65, 4965);
+  Tree.insert(71, 79, 7179);
+  Tree.insert(11, 16, 1116);
+  Tree.insert(20, 30, 2030);
+  Tree.insert(36, 54, 3654);
+  Tree.insert(60, 70, 6070);
+  Tree.insert(74, 80, 7480);
+  Tree.insert(15, 40, 1540);
+  Tree.insert(43, 45, 4345);
+  Tree.insert(50, 75, 5075);
+  Tree.insert(10, 85, 1085);
+  Tree.create();
+
+  // Find valid interval values.
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 20, 30, 2030);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 30, 35, 3035);
+  checkData(Point, Intervals[1], 20, 30, 2030);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 20, 30, 2030);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+
+  Point = 35;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 30, 35, 3035);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 25, 41, 2541);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+
+  Point = 39;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+  checkData(Point, Intervals[5], 15, 40, 1540);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 15, 40, 1540);
+  checkData(Point, Intervals[5], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+  checkData(Point, Intervals[5], 39, 50, 3950);
+
+  Point = 50;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+  checkData(Point, Intervals[5], 50, 75, 5075);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 50, 75, 5075);
+  checkData(Point, Intervals[5], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+  checkData(Point, Intervals[5], 39, 50, 3950);
+
+  Point = 55;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 55, 61, 5561);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 49, 65, 4965);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+
+  Point = 61;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 55, 61, 5561);
+  checkData(Point, Intervals[4], 60, 70, 6070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 55, 61, 5561);
+  checkData(Point, Intervals[1], 60, 70, 6070);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 60, 70, 6070);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+
+  Point = 31;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 30, 35, 3035);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 25, 41, 2541);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+
+  Point = 56;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 55, 61, 5561);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 49, 65, 4965);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+
+  Point = 12;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 11, 16, 1116);
+  checkData(Point, Intervals[2], 12, 21, 1221);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 11, 16, 1116);
+  checkData(Point, Intervals[1], 12, 21, 1221);
+  checkData(Point, Intervals[2], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 12, 21, 1221);
+  checkData(Point, Intervals[2], 11, 16, 1116);
+
+  Point = 21;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 20, 30, 2030);
+  checkData(Point, Intervals[3], 12, 21, 1221);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 12, 21, 1221);
+  checkData(Point, Intervals[1], 20, 30, 2030);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 20, 30, 2030);
+  checkData(Point, Intervals[3], 12, 21, 1221);
+
+  Point = 25;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 20, 30, 2030);
+  checkData(Point, Intervals[3], 25, 41, 2541);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 20, 30, 2030);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 20, 30, 2030);
+
+  Point = 41;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 25, 41, 2541);
+  checkData(Point, Intervals[4], 39, 50, 3950);
+
+  Point = 49;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 49, 65, 4965);
+  checkData(Point, Intervals[4], 39, 50, 3950);
+
+  Point = 65;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 60, 70, 6070);
+  checkData(Point, Intervals[3], 49, 65, 4965);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 60, 70, 6070);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 60, 70, 6070);
+
+  Point = 71;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 71, 79, 7179);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+
+  Point = 79;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 74, 80, 7480);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 74, 80, 7480);
+  checkData(Point, Intervals[1], 71, 79, 7179);
+  checkData(Point, Intervals[2], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 71, 79, 7179);
+  checkData(Point, Intervals[2], 74, 80, 7480);
+
+  Point = 11;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 11, 16, 1116);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 11, 16, 1116);
+  checkData(Point, Intervals[1], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 11, 16, 1116);
+
+  Point = 16;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 12, 21, 1221);
+  checkData(Point, Intervals[3], 11, 16, 1116);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 11, 16, 1116);
+  checkData(Point, Intervals[1], 12, 21, 1221);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 12, 21, 1221);
+  checkData(Point, Intervals[3], 11, 16, 1116);
+
+  Point = 20;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 20, 30, 2030);
+  checkData(Point, Intervals[3], 12, 21, 1221);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 12, 21, 1221);
+  checkData(Point, Intervals[1], 20, 30, 2030);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 20, 30, 2030);
+  checkData(Point, Intervals[3], 12, 21, 1221);
+
+  Point = 30;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 20, 30, 2030);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 30, 35, 3035);
+  checkData(Point, Intervals[1], 20, 30, 2030);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 25, 41, 2541);
+  checkData(Point, Intervals[3], 20, 30, 2030);
+  checkData(Point, Intervals[4], 30, 35, 3035);
+
+  Point = 36;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 25, 41, 2541);
+  checkData(Point, Intervals[4], 15, 40, 1540);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 25, 41, 2541);
+  checkData(Point, Intervals[1], 36, 54, 3654);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 15, 40, 1540);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+
+  Point = 54;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 49, 65, 4965);
+  checkData(Point, Intervals[4], 50, 75, 5075);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 49, 65, 4965);
+  checkData(Point, Intervals[1], 36, 54, 3654);
+  checkData(Point, Intervals[2], 31, 56, 3156);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+
+  Point = 60;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 55, 61, 5561);
+  checkData(Point, Intervals[4], 60, 70, 6070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 55, 61, 5561);
+  checkData(Point, Intervals[1], 60, 70, 6070);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 50, 75, 5075);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 49, 65, 4965);
+  checkData(Point, Intervals[3], 60, 70, 6070);
+  checkData(Point, Intervals[4], 55, 61, 5561);
+
+  Point = 70;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 60, 70, 6070);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 60, 70, 6070);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 3);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 60, 70, 6070);
+
+  Point = 74;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+  checkData(Point, Intervals[3], 74, 80, 7480);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 74, 80, 7480);
+  checkData(Point, Intervals[1], 71, 79, 7179);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+  checkData(Point, Intervals[3], 74, 80, 7480);
+
+  Point = 80;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 74, 80, 7480);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 74, 80, 7480);
+  checkData(Point, Intervals[1], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 2);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 74, 80, 7480);
+
+  Point = 15;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 11, 16, 1116);
+  checkData(Point, Intervals[3], 12, 21, 1221);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 11, 16, 1116);
+  checkData(Point, Intervals[1], 12, 21, 1221);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 15, 40, 1540);
+  checkData(Point, Intervals[2], 12, 21, 1221);
+  checkData(Point, Intervals[3], 11, 16, 1116);
+
+  Point = 40;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+  checkData(Point, Intervals[5], 15, 40, 1540);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 25, 41, 2541);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 15, 40, 1540);
+  checkData(Point, Intervals[5], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 15, 40, 1540);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 25, 41, 2541);
+  checkData(Point, Intervals[5], 39, 50, 3950);
+
+  Point = 43;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 43, 45, 4345);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 43, 45, 4345);
+  checkData(Point, Intervals[1], 39, 50, 3950);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 43, 45, 4345);
+
+  Point = 45;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 43, 45, 4345);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 43, 45, 4345);
+  checkData(Point, Intervals[1], 39, 50, 3950);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 5);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 43, 45, 4345);
+
+  Point = 50;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 39, 50, 3950);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+  checkData(Point, Intervals[5], 50, 75, 5075);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 39, 50, 3950);
+  checkData(Point, Intervals[1], 49, 65, 4965);
+  checkData(Point, Intervals[2], 36, 54, 3654);
+  checkData(Point, Intervals[3], 31, 56, 3156);
+  checkData(Point, Intervals[4], 50, 75, 5075);
+  checkData(Point, Intervals[5], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 6);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 31, 56, 3156);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 36, 54, 3654);
+  checkData(Point, Intervals[4], 49, 65, 4965);
+  checkData(Point, Intervals[5], 39, 50, 3950);
+
+  Point = 75;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 74, 80, 7480);
+  checkData(Point, Intervals[3], 71, 79, 7179);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Ascending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 74, 80, 7480);
+  checkData(Point, Intervals[1], 71, 79, 7179);
+  checkData(Point, Intervals[2], 50, 75, 5075);
+  checkData(Point, Intervals[3], 10, 85, 1085);
+  Intervals = Tree.getContaining(Point);
+  Tree.sortIntervals(Intervals, UUSorting::Descending);
+  ASSERT_EQ(Intervals.size(), 4);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+  checkData(Point, Intervals[1], 50, 75, 5075);
+  checkData(Point, Intervals[2], 71, 79, 7179);
+  checkData(Point, Intervals[3], 74, 80, 7480);
+
+  Point = 10;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+
+  Point = 85;
+  Intervals = Tree.getContaining(Point);
+  ASSERT_EQ(Intervals.size(), 1);
+  checkData(Point, Intervals[0], 10, 85, 1085);
+
+  // Invalid interval values.
+  Point = 5;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+  Point = 90;
+  Intervals = Tree.getContaining(Point);
+  EXPECT_TRUE(Intervals.empty());
+}
+
+// Four items tree tests. Overlapping. Check mapped values and iterators.
+TEST(IntervalTreeTest, MappedValuesIteratorsTree) {
+  UUAlloc Allocator;
+  UUTree Tree(Allocator);
+  UUPoint Point;
+
+  // [10, 20] <- (1020)
+  // [15, 25] <- (1525)
+  // [50, 60] <- (5060)
+  // [55, 65] <- (5565)
+  //
+  //    [10.........20]
+  //          [15.........25]
+  //                            [50.........60]
+  //                                  [55.........65]
+  Tree.insert(10, 20, 1020);
+  Tree.insert(15, 25, 1525);
+  Tree.insert(50, 60, 5060);
+  Tree.insert(55, 65, 5565);
+  Tree.create();
+
+  // Iterators.
+  {
+    // Start searching for '10'.
+    Point = 10;
+    UUIter Iter = Tree.find(Point);
+    EXPECT_NE(Iter, Tree.find_end());
+    checkData(Point, Iter, 10, 20, 1020);
+    ++Iter;
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  {
+    // Start searching for '15'.
+    Point = 15;
+    UUIter Iter = Tree.find(Point);
+    ASSERT_TRUE(Iter != Tree.find_end());
+    checkData(Point, Iter, 15, 25, 1525);
+    ++Iter;
+    ASSERT_TRUE(Iter != Tree.find_end());
+    checkData(Point, Iter, 10, 20, 1020);
+    ++Iter;
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  {
+    // Start searching for '20'.
+    Point = 20;
+    UUIter Iter = Tree.find(Point);
+    ASSERT_TRUE(Iter != Tree.find_end());
+    checkData(Point, Iter, 15, 25, 1525);
+    ++Iter;
+    ASSERT_TRUE(Iter != Tree.find_end());
+    checkData(Point, Iter, 10, 20, 1020);
+    ++Iter;
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  {
+    // Start searching for '25'.
+    Point = 25;
+    UUIter Iter = Tree.find(Point);
+    ASSERT_TRUE(Iter != Tree.find_end());
+    checkData(Point, Iter, 15, 25, 1525);
+    ++Iter;
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  // Invalid interval values.
+  {
+    Point = 5;
+    UUIter Iter = Tree.find(Point);
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  {
+    Point = 45;
+    UUIter Iter = Tree.find(Point);
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+  {
+    Point = 70;
+    UUIter Iter = Tree.find(Point);
+    EXPECT_EQ(Iter, Tree.find_end());
+  }
+}
+
+} // namespace


        


More information about the llvm-commits mailing list