[llvm] 6b694d6 - [LoopVectorize] Change PredicatedBBsAfterVectorization to be per VF
David Sherwood via llvm-commits
llvm-commits at lists.llvm.org
Tue Jul 12 07:24:30 PDT 2022
Author: David Sherwood
Date: 2022-07-12T14:53:20+01:00
New Revision: 6b694d600aeaaf30780e48cac0b784b8bc755b56
URL: https://github.com/llvm/llvm-project/commit/6b694d600aeaaf30780e48cac0b784b8bc755b56
DIFF: https://github.com/llvm/llvm-project/commit/6b694d600aeaaf30780e48cac0b784b8bc755b56.diff
LOG: [LoopVectorize] Change PredicatedBBsAfterVectorization to be per VF
When calculating the cost of Instruction::Br in getInstructionCost
we query PredicatedBBsAfterVectorization to see if there is a
scalar predicated block. However, this meant that the decisions
being made for a given fixed-width VF were affecting the cost for a
scalable VF. As a result we were returning InstructionCost::Invalid
pointlessly for a scalable VF that should have a low cost. I
encountered this for some loops when enabling tail-folding for
scalable VFs.
Test added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll
Differential Revision: https://reviews.llvm.org/D128272
Added:
llvm/test/Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll
Modified:
llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
Removed:
################################################################################
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 5c23cbae01f8a..2db7de79e6292 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1677,7 +1677,8 @@ class LoopVectorizationCostModel {
/// A set containing all BasicBlocks that are known to present after
/// vectorization as a predicated block.
- SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
+ DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
+ PredicatedBBsAfterVectorization;
/// Records whether it is allowed to have the original scalar loop execute at
/// least once. This may be needed as a fallback loop in case runtime
@@ -6088,6 +6089,8 @@ void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
// map will indicate that we've analyzed it already.
ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
+ PredicatedBBsAfterVectorization[VF].clear();
+
// Find all the instructions that are scalar with predication in the loop and
// determine if it would be better to not if-convert the blocks they are in.
// If so, we also record the instructions to scalarize.
@@ -6105,7 +6108,7 @@ void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
// Remember that BB will remain after vectorization.
- PredicatedBBsAfterVectorization.insert(BB);
+ PredicatedBBsAfterVectorization[VF].insert(BB);
}
}
}
@@ -6970,8 +6973,8 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
bool ScalarPredicatedBB = false;
BranchInst *BI = cast<BranchInst>(I);
if (VF.isVector() && BI->isConditional() &&
- (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
- PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
+ (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
+ PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
ScalarPredicatedBB = true;
if (ScalarPredicatedBB) {
diff --git a/llvm/test/Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll b/llvm/test/Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll
new file mode 100644
index 0000000000000..7bd0e4125878e
--- /dev/null
+++ b/llvm/test/Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll
@@ -0,0 +1,35 @@
+; RUN: opt -S -loop-vectorize -prefer-predicate-over-epilogue=predicate-dont-vectorize <%s | FileCheck %s
+
+target triple = "aarch64-unknown-linux-gnu"
+
+; The uniform load of %d in the following loop triggers the special
+; branch costing code in LoopVectorizationCostModel::getInstructionCost.
+; However, this should only affect the fixed-width cost because for
+; NEON it needs to scalarize the load, whereas for SVE it can use a predicated load.
+; Because of how the LoopVectorizer annotates the load to need scalarization with
+; predicated blocks, this leads to
diff erent costs for the branch instruction.
+;
+; NOTE: This test assumes we will never use a fixed-width VF due to
+; the high cost of scalarizing the masked store, however this assumption may
+; break in future if we permit the use of SVE loads and stores to perform the
+; fixed-width operations.
+define i32 @uniform_load(i64 %n, ptr readnone %c, ptr %d) #0 {
+; CHECK-LABEL: @uniform_load(
+; CHECK: call void @llvm.masked.store.nxv4f32.p0(<vscale x 4 x float>
+entry:
+ br label %for.body
+
+for.body: ; preds = %entry, %for.body
+ %indvars.iv = phi i64 [ 1, %entry ], [ %indvars.iv.next, %for.body ]
+ %load2 = load float, ptr %d, align 4
+ %arrayidx2 = getelementptr inbounds float, ptr %c, i64 %indvars.iv
+ store float %load2, ptr %arrayidx2, align 4
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
+ %exitcond.not = icmp eq i64 %indvars.iv.next, %n
+ br i1 %exitcond.not, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret i32 0
+}
+
+attributes #0 = { vscale_range(1,16) "target-features"="+sve" }
More information about the llvm-commits
mailing list