[llvm] f2526c1 - Add DXIL Bitcode Writer and DXIL testing

Chris Bieneman via llvm-commits llvm-commits at lists.llvm.org
Fri Apr 15 16:50:35 PDT 2022


Author: Chris Bieneman
Date: 2022-04-15T18:50:26-05:00
New Revision: f2526c1a5c6fe6d2740b68e2d73b85c958fd2719

URL: https://github.com/llvm/llvm-project/commit/f2526c1a5c6fe6d2740b68e2d73b85c958fd2719
DIFF: https://github.com/llvm/llvm-project/commit/f2526c1a5c6fe6d2740b68e2d73b85c958fd2719.diff

LOG: Add DXIL Bitcode Writer and DXIL testing

This change is a big blob of code that isn't easy to break up. It
either comes in all together as a blob, works and has tests, or it
doesn't do anything.

Logically you can think of this patch as three things:
(1) Adding virtual interfaces so the bitcode writer can be overridden
(2) Adding a new bitcode writer implementation for DXIL
(3) Adding some (optional) crazy CMake goop to build the
DirectXShaderCompiler's llvm-dis as dxil-dis for testing

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D122082

Added: 
    llvm/lib/Target/DirectX/DXILWriter/CMakeLists.txt
    llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
    llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h
    llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
    llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h
    llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp
    llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h
    llvm/test/tools/dxil-dis/BasicIR.ll
    llvm/test/tools/dxil-dis/attribute-filter.ll
    llvm/test/tools/dxil-dis/debug-info.ll
    llvm/test/tools/dxil-dis/di-compile-unit.ll
    llvm/test/tools/dxil-dis/di-subprogram.ll
    llvm/test/tools/dxil-dis/di-subrotine.ll
    llvm/test/tools/dxil-dis/lit.local.cfg
    llvm/test/tools/dxil-dis/metadata.ll
    llvm/tools/dxil-dis/CMakeLists.txt

Modified: 
    llvm/lib/Target/DirectX/CMakeLists.txt
    llvm/lib/Target/DirectX/DirectX.h
    llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
    llvm/test/CMakeLists.txt
    llvm/test/lit.cfg.py
    llvm/test/lit.site.cfg.py.in

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Target/DirectX/CMakeLists.txt b/llvm/lib/Target/DirectX/CMakeLists.txt
index 240c7a518cfe2..2b119a2c8bad3 100644
--- a/llvm/lib/Target/DirectX/CMakeLists.txt
+++ b/llvm/lib/Target/DirectX/CMakeLists.txt
@@ -12,10 +12,10 @@ add_llvm_target(DirectXCodeGen
   DXILPrepare.cpp
 
   LINK_COMPONENTS
-  Bitwriter
   Core
   Support
   DirectXInfo
+  DXILBitWriter
 
   ADD_TO_COMPONENT
   DirectX
@@ -23,3 +23,4 @@ add_llvm_target(DirectXCodeGen
 
 add_subdirectory(MCTargetDesc)
 add_subdirectory(TargetInfo)
+add_subdirectory(DXILWriter)

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/CMakeLists.txt b/llvm/lib/Target/DirectX/DXILWriter/CMakeLists.txt
new file mode 100644
index 0000000000000..fdee200b8abc7
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/CMakeLists.txt
@@ -0,0 +1,15 @@
+add_llvm_component_library(LLVMDXILBitWriter
+  DXILBitcodeWriter.cpp
+  DXILValueEnumerator.cpp
+  DXILWriterPass.cpp
+
+  DEPENDS
+  intrinsics_gen
+
+  LINK_COMPONENTS
+  Bitwriter
+  Core
+  MC
+  Object
+  Support
+  )

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
new file mode 100644
index 0000000000000..5dbfe6f74c86f
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
@@ -0,0 +1,2963 @@
+//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILBitcodeWriter.h"
+#include "DXILValueEnumerator.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Bitcode/BitcodeCommon.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/Bitstream/BitCodes.h"
+#include "llvm/Bitstream/BitstreamWriter.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/UseListOrder.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Object/IRSymtab.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SHA1.h"
+
+namespace llvm {
+namespace dxil {
+
+// Generates an enum to use as an index in the Abbrev array of Metadata record.
+enum MetadataAbbrev : unsigned {
+#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
+#include "llvm/IR/Metadata.def"
+  LastPlusOne
+};
+
+class DXILBitcodeWriter {
+
+  /// These are manifest constants used by the bitcode writer. They do not need
+  /// to be kept in sync with the reader, but need to be consistent within this
+  /// file.
+  enum {
+    // VALUE_SYMTAB_BLOCK abbrev id's.
+    VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+    VST_ENTRY_7_ABBREV,
+    VST_ENTRY_6_ABBREV,
+    VST_BBENTRY_6_ABBREV,
+
+    // CONSTANTS_BLOCK abbrev id's.
+    CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+    CONSTANTS_INTEGER_ABBREV,
+    CONSTANTS_CE_CAST_Abbrev,
+    CONSTANTS_NULL_Abbrev,
+
+    // FUNCTION_BLOCK abbrev id's.
+    FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+    FUNCTION_INST_BINOP_ABBREV,
+    FUNCTION_INST_BINOP_FLAGS_ABBREV,
+    FUNCTION_INST_CAST_ABBREV,
+    FUNCTION_INST_RET_VOID_ABBREV,
+    FUNCTION_INST_RET_VAL_ABBREV,
+    FUNCTION_INST_UNREACHABLE_ABBREV,
+    FUNCTION_INST_GEP_ABBREV,
+  };
+
+  /// The stream created and owned by the client.
+  BitstreamWriter &Stream;
+
+  StringTableBuilder &StrtabBuilder;
+
+  /// The Module to write to bitcode.
+  const Module &M;
+
+  /// Enumerates ids for all values in the module.
+  ValueEnumerator VE;
+
+  /// Map that holds the correspondence between GUIDs in the summary index,
+  /// that came from indirect call profiles, and a value id generated by this
+  /// class to use in the VST and summary block records.
+  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
+
+  /// Tracks the last value id recorded in the GUIDToValueMap.
+  unsigned GlobalValueId;
+
+  /// Saves the offset of the VSTOffset record that must eventually be
+  /// backpatched with the offset of the actual VST.
+  uint64_t VSTOffsetPlaceholder = 0;
+
+  /// Pointer to the buffer allocated by caller for bitcode writing.
+  const SmallVectorImpl<char> &Buffer;
+
+  /// The start bit of the identification block.
+  uint64_t BitcodeStartBit;
+
+public:
+  /// Constructs a ModuleBitcodeWriter object for the given Module,
+  /// writing to the provided \p Buffer.
+  DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
+                    StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
+      : Stream(Stream), StrtabBuilder(StrtabBuilder), M(M),
+        VE(M, true), Buffer(Buffer),
+        BitcodeStartBit(Stream.GetCurrentBitNo()) {
+    GlobalValueId = VE.getValues().size();
+  }
+
+  /// Emit the current module to the bitstream.
+  void write();
+
+  static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
+  static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
+                                StringRef Str, unsigned AbbrevToUse);
+  static void writeIdentificationBlock(BitstreamWriter &Stream);
+  static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
+  static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
+
+  static unsigned getEncodedComdatSelectionKind(const Comdat &C);
+  static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
+  static unsigned getEncodedLinkage(const GlobalValue &GV);
+  static unsigned getEncodedVisibility(const GlobalValue &GV);
+  static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
+  static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
+  static unsigned getEncodedCastOpcode(unsigned Opcode);
+  static unsigned getEncodedUnaryOpcode(unsigned Opcode);
+  static unsigned getEncodedBinaryOpcode(unsigned Opcode);
+  static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
+  static unsigned getEncodedOrdering(AtomicOrdering Ordering);
+  static uint64_t getOptimizationFlags(const Value *V);
+
+private:
+  void writeModuleVersion();
+  void writePerModuleGlobalValueSummary();
+
+  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
+                                           GlobalValueSummary *Summary,
+                                           unsigned ValueID,
+                                           unsigned FSCallsAbbrev,
+                                           unsigned FSCallsProfileAbbrev,
+                                           const Function &F);
+  void writeModuleLevelReferences(const GlobalVariable &V,
+                                  SmallVector<uint64_t, 64> &NameVals,
+                                  unsigned FSModRefsAbbrev,
+                                  unsigned FSModVTableRefsAbbrev);
+
+  void assignValueId(GlobalValue::GUID ValGUID) {
+    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
+  }
+
+  unsigned getValueId(GlobalValue::GUID ValGUID) {
+    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
+    // Expect that any GUID value had a value Id assigned by an
+    // earlier call to assignValueId.
+    assert(VMI != GUIDToValueIdMap.end() &&
+           "GUID does not have assigned value Id");
+    return VMI->second;
+  }
+
+  // Helper to get the valueId for the type of value recorded in VI.
+  unsigned getValueId(ValueInfo VI) {
+    if (!VI.haveGVs() || !VI.getValue())
+      return getValueId(VI.getGUID());
+    return VE.getValueID(VI.getValue());
+  }
+
+  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
+
+  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
+
+  size_t addToStrtab(StringRef Str);
+
+  unsigned createDILocationAbbrev();
+  unsigned createGenericDINodeAbbrev();
+
+  void writeAttributeGroupTable();
+  void writeAttributeTable();
+  void writeTypeTable();
+  void writeComdats();
+  void writeValueSymbolTableForwardDecl();
+  void writeModuleInfo();
+  void writeValueAsMetadata(const ValueAsMetadata *MD,
+                            SmallVectorImpl<uint64_t> &Record);
+  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
+                    unsigned Abbrev);
+  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
+                       unsigned &Abbrev);
+  void writeGenericDINode(const GenericDINode *N,
+                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
+    llvm_unreachable("DXIL cannot contain GenericDI Nodes");
+  }
+  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
+                       unsigned Abbrev);
+  void writeDIGenericSubrange(const DIGenericSubrange *N,
+                              SmallVectorImpl<uint64_t> &Record,
+                              unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
+  }
+  void writeDIEnumerator(const DIEnumerator *N,
+                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
+                        unsigned Abbrev);
+  void writeDIStringType(const DIStringType *N,
+                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DIStringType Nodes");
+  }
+  void writeDIDerivedType(const DIDerivedType *N,
+                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDICompositeType(const DICompositeType *N,
+                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDISubroutineType(const DISubroutineType *N,
+                             SmallVectorImpl<uint64_t> &Record,
+                             unsigned Abbrev);
+  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
+                   unsigned Abbrev);
+  void writeDICompileUnit(const DICompileUnit *N,
+                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDISubprogram(const DISubprogram *N,
+                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDILexicalBlock(const DILexicalBlock *N,
+                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
+                               SmallVectorImpl<uint64_t> &Record,
+                               unsigned Abbrev);
+  void writeDICommonBlock(const DICommonBlock *N,
+                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
+  }
+  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
+                        unsigned Abbrev);
+  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
+                    unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DIMacro Nodes");
+  }
+  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
+                        unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
+  }
+  void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
+                      unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DIArgList Nodes");
+  }
+  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
+                     unsigned Abbrev);
+  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
+                                    SmallVectorImpl<uint64_t> &Record,
+                                    unsigned Abbrev);
+  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
+                                     SmallVectorImpl<uint64_t> &Record,
+                                     unsigned Abbrev);
+  void writeDIGlobalVariable(const DIGlobalVariable *N,
+                             SmallVectorImpl<uint64_t> &Record,
+                             unsigned Abbrev);
+  void writeDILocalVariable(const DILocalVariable *N,
+                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
+                    unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain DILabel Nodes");
+  }
+  void writeDIExpression(const DIExpression *N,
+                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
+                                       SmallVectorImpl<uint64_t> &Record,
+                                       unsigned Abbrev) {
+    llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
+  }
+  void writeDIObjCProperty(const DIObjCProperty *N,
+                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+  void writeDIImportedEntity(const DIImportedEntity *N,
+                             SmallVectorImpl<uint64_t> &Record,
+                             unsigned Abbrev);
+  unsigned createNamedMetadataAbbrev();
+  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
+  unsigned createMetadataStringsAbbrev();
+  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
+                            SmallVectorImpl<uint64_t> &Record);
+  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+                            SmallVectorImpl<uint64_t> &Record,
+                            std::vector<unsigned> *MDAbbrevs = nullptr,
+                            std::vector<uint64_t> *IndexPos = nullptr);
+  void writeModuleMetadata();
+  void writeFunctionMetadata(const Function &F);
+  void writeFunctionMetadataAttachment(const Function &F);
+  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
+                                    const GlobalObject &GO);
+  void writeModuleMetadataKinds();
+  void writeOperandBundleTags();
+  void writeSyncScopeNames();
+  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
+  void writeModuleConstants();
+  bool pushValueAndType(const Value *V, unsigned InstID,
+                        SmallVectorImpl<unsigned> &Vals);
+  void writeOperandBundles(const CallBase &CB, unsigned InstID);
+  void pushValue(const Value *V, unsigned InstID,
+                 SmallVectorImpl<unsigned> &Vals);
+  void pushValueSigned(const Value *V, unsigned InstID,
+                       SmallVectorImpl<uint64_t> &Vals);
+  void writeInstruction(const Instruction &I, unsigned InstID,
+                        SmallVectorImpl<unsigned> &Vals);
+  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
+  void writeGlobalValueSymbolTable(
+      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
+  void writeUseList(UseListOrder &&Order);
+  void writeUseListBlock(const Function *F);
+  void writeFunction(const Function &F);
+  void writeBlockInfo();
+
+  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
+
+  unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
+};
+
+} // namespace dxil
+} // namespace llvm
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
+    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
+  // Emit the file header.
+  Stream->Emit((unsigned)'B', 8);
+  Stream->Emit((unsigned)'C', 8);
+  Stream->Emit(0x0, 4);
+  Stream->Emit(0xC, 4);
+  Stream->Emit(0xE, 4);
+  Stream->Emit(0xD, 4);
+}
+
+dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
+
+/// Write the specified module to the specified output stream.
+void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
+  SmallVector<char, 0> Buffer;
+  Buffer.reserve(256 * 1024);
+
+  // If this is darwin or another generic macho target, reserve space for the
+  // header.
+  Triple TT(M.getTargetTriple());
+  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
+    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
+
+  BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
+  Writer.writeModule(M);
+  Writer.writeSymtab();
+  Writer.writeStrtab();
+
+  // Write the generated bitstream to "Out".
+  if (!Buffer.empty())
+    Out.write((char *)&Buffer.front(), Buffer.size());
+}
+
+void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
+  Stream->EnterSubblock(Block, 3);
+
+  auto Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(Record));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
+
+  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
+
+  Stream->ExitBlock();
+}
+
+void BitcodeWriter::writeSymtab() {
+  assert(!WroteStrtab && !WroteSymtab);
+
+  // If any module has module-level inline asm, we will require a registered asm
+  // parser for the target so that we can create an accurate symbol table for
+  // the module.
+  for (Module *M : Mods) {
+    if (M->getModuleInlineAsm().empty())
+      continue;
+  }
+
+  WroteSymtab = true;
+  SmallVector<char, 0> Symtab;
+  // The irsymtab::build function may be unable to create a symbol table if the
+  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
+  // table is not required for correctness, but we still want to be able to
+  // write malformed modules to bitcode files, so swallow the error.
+  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
+    consumeError(std::move(E));
+    return;
+  }
+
+  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
+            {Symtab.data(), Symtab.size()});
+}
+
+void BitcodeWriter::writeStrtab() {
+  assert(!WroteStrtab);
+
+  std::vector<char> Strtab;
+  StrtabBuilder.finalizeInOrder();
+  Strtab.resize(StrtabBuilder.getSize());
+  StrtabBuilder.write((uint8_t *)Strtab.data());
+
+  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
+            {Strtab.data(), Strtab.size()});
+
+  WroteStrtab = true;
+}
+
+void BitcodeWriter::copyStrtab(StringRef Strtab) {
+  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
+  WroteStrtab = true;
+}
+
+void BitcodeWriter::writeModule(const Module &M) {
+  assert(!WroteStrtab);
+
+  // The Mods vector is used by irsymtab::build, which requires non-const
+  // Modules in case it needs to materialize metadata. But the bitcode writer
+  // requires that the module is materialized, so we can cast to non-const here,
+  // after checking that it is in fact materialized.
+  assert(M.isMaterialized());
+  Mods.push_back(const_cast<Module *>(&M));
+
+  DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
+  ModuleWriter.write();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriterBase Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
+  switch (Opcode) {
+  default:
+    llvm_unreachable("Unknown cast instruction!");
+  case Instruction::Trunc:
+    return bitc::CAST_TRUNC;
+  case Instruction::ZExt:
+    return bitc::CAST_ZEXT;
+  case Instruction::SExt:
+    return bitc::CAST_SEXT;
+  case Instruction::FPToUI:
+    return bitc::CAST_FPTOUI;
+  case Instruction::FPToSI:
+    return bitc::CAST_FPTOSI;
+  case Instruction::UIToFP:
+    return bitc::CAST_UITOFP;
+  case Instruction::SIToFP:
+    return bitc::CAST_SITOFP;
+  case Instruction::FPTrunc:
+    return bitc::CAST_FPTRUNC;
+  case Instruction::FPExt:
+    return bitc::CAST_FPEXT;
+  case Instruction::PtrToInt:
+    return bitc::CAST_PTRTOINT;
+  case Instruction::IntToPtr:
+    return bitc::CAST_INTTOPTR;
+  case Instruction::BitCast:
+    return bitc::CAST_BITCAST;
+  case Instruction::AddrSpaceCast:
+    return bitc::CAST_ADDRSPACECAST;
+  }
+}
+
+unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
+  switch (Opcode) {
+  default:
+    llvm_unreachable("Unknown binary instruction!");
+  case Instruction::FNeg:
+    return bitc::UNOP_FNEG;
+  }
+}
+
+unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
+  switch (Opcode) {
+  default:
+    llvm_unreachable("Unknown binary instruction!");
+  case Instruction::Add:
+  case Instruction::FAdd:
+    return bitc::BINOP_ADD;
+  case Instruction::Sub:
+  case Instruction::FSub:
+    return bitc::BINOP_SUB;
+  case Instruction::Mul:
+  case Instruction::FMul:
+    return bitc::BINOP_MUL;
+  case Instruction::UDiv:
+    return bitc::BINOP_UDIV;
+  case Instruction::FDiv:
+  case Instruction::SDiv:
+    return bitc::BINOP_SDIV;
+  case Instruction::URem:
+    return bitc::BINOP_UREM;
+  case Instruction::FRem:
+  case Instruction::SRem:
+    return bitc::BINOP_SREM;
+  case Instruction::Shl:
+    return bitc::BINOP_SHL;
+  case Instruction::LShr:
+    return bitc::BINOP_LSHR;
+  case Instruction::AShr:
+    return bitc::BINOP_ASHR;
+  case Instruction::And:
+    return bitc::BINOP_AND;
+  case Instruction::Or:
+    return bitc::BINOP_OR;
+  case Instruction::Xor:
+    return bitc::BINOP_XOR;
+  }
+}
+
+unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
+  switch (Op) {
+  default:
+    llvm_unreachable("Unknown RMW operation!");
+  case AtomicRMWInst::Xchg:
+    return bitc::RMW_XCHG;
+  case AtomicRMWInst::Add:
+    return bitc::RMW_ADD;
+  case AtomicRMWInst::Sub:
+    return bitc::RMW_SUB;
+  case AtomicRMWInst::And:
+    return bitc::RMW_AND;
+  case AtomicRMWInst::Nand:
+    return bitc::RMW_NAND;
+  case AtomicRMWInst::Or:
+    return bitc::RMW_OR;
+  case AtomicRMWInst::Xor:
+    return bitc::RMW_XOR;
+  case AtomicRMWInst::Max:
+    return bitc::RMW_MAX;
+  case AtomicRMWInst::Min:
+    return bitc::RMW_MIN;
+  case AtomicRMWInst::UMax:
+    return bitc::RMW_UMAX;
+  case AtomicRMWInst::UMin:
+    return bitc::RMW_UMIN;
+  case AtomicRMWInst::FAdd:
+    return bitc::RMW_FADD;
+  case AtomicRMWInst::FSub:
+    return bitc::RMW_FSUB;
+  }
+}
+
+unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
+  switch (Ordering) {
+  case AtomicOrdering::NotAtomic:
+    return bitc::ORDERING_NOTATOMIC;
+  case AtomicOrdering::Unordered:
+    return bitc::ORDERING_UNORDERED;
+  case AtomicOrdering::Monotonic:
+    return bitc::ORDERING_MONOTONIC;
+  case AtomicOrdering::Acquire:
+    return bitc::ORDERING_ACQUIRE;
+  case AtomicOrdering::Release:
+    return bitc::ORDERING_RELEASE;
+  case AtomicOrdering::AcquireRelease:
+    return bitc::ORDERING_ACQREL;
+  case AtomicOrdering::SequentiallyConsistent:
+    return bitc::ORDERING_SEQCST;
+  }
+  llvm_unreachable("Invalid ordering");
+}
+
+void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
+                                          unsigned Code, StringRef Str,
+                                          unsigned AbbrevToUse) {
+  SmallVector<unsigned, 64> Vals;
+
+  // Code: [strchar x N]
+  for (char C : Str) {
+    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
+      AbbrevToUse = 0;
+    Vals.push_back(C);
+  }
+
+  // Emit the finished record.
+  Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
+  switch (Kind) {
+  case Attribute::Alignment:
+    return bitc::ATTR_KIND_ALIGNMENT;
+  case Attribute::AllocAlign:
+    return bitc::ATTR_KIND_ALLOC_ALIGN;
+  case Attribute::AllocSize:
+    return bitc::ATTR_KIND_ALLOC_SIZE;
+  case Attribute::AlwaysInline:
+    return bitc::ATTR_KIND_ALWAYS_INLINE;
+  case Attribute::ArgMemOnly:
+    return bitc::ATTR_KIND_ARGMEMONLY;
+  case Attribute::Builtin:
+    return bitc::ATTR_KIND_BUILTIN;
+  case Attribute::ByVal:
+    return bitc::ATTR_KIND_BY_VAL;
+  case Attribute::Convergent:
+    return bitc::ATTR_KIND_CONVERGENT;
+  case Attribute::InAlloca:
+    return bitc::ATTR_KIND_IN_ALLOCA;
+  case Attribute::Cold:
+    return bitc::ATTR_KIND_COLD;
+  case Attribute::DisableSanitizerInstrumentation:
+    return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
+  case Attribute::Hot:
+    return bitc::ATTR_KIND_HOT;
+  case Attribute::ElementType:
+    return bitc::ATTR_KIND_ELEMENTTYPE;
+  case Attribute::InaccessibleMemOnly:
+    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
+  case Attribute::InaccessibleMemOrArgMemOnly:
+    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
+  case Attribute::InlineHint:
+    return bitc::ATTR_KIND_INLINE_HINT;
+  case Attribute::InReg:
+    return bitc::ATTR_KIND_IN_REG;
+  case Attribute::JumpTable:
+    return bitc::ATTR_KIND_JUMP_TABLE;
+  case Attribute::MinSize:
+    return bitc::ATTR_KIND_MIN_SIZE;
+  case Attribute::Naked:
+    return bitc::ATTR_KIND_NAKED;
+  case Attribute::Nest:
+    return bitc::ATTR_KIND_NEST;
+  case Attribute::NoAlias:
+    return bitc::ATTR_KIND_NO_ALIAS;
+  case Attribute::NoBuiltin:
+    return bitc::ATTR_KIND_NO_BUILTIN;
+  case Attribute::NoCallback:
+    return bitc::ATTR_KIND_NO_CALLBACK;
+  case Attribute::NoCapture:
+    return bitc::ATTR_KIND_NO_CAPTURE;
+  case Attribute::NoDuplicate:
+    return bitc::ATTR_KIND_NO_DUPLICATE;
+  case Attribute::NoFree:
+    return bitc::ATTR_KIND_NOFREE;
+  case Attribute::NoImplicitFloat:
+    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
+  case Attribute::NoInline:
+    return bitc::ATTR_KIND_NO_INLINE;
+  case Attribute::NoRecurse:
+    return bitc::ATTR_KIND_NO_RECURSE;
+  case Attribute::NoMerge:
+    return bitc::ATTR_KIND_NO_MERGE;
+  case Attribute::NonLazyBind:
+    return bitc::ATTR_KIND_NON_LAZY_BIND;
+  case Attribute::NonNull:
+    return bitc::ATTR_KIND_NON_NULL;
+  case Attribute::Dereferenceable:
+    return bitc::ATTR_KIND_DEREFERENCEABLE;
+  case Attribute::DereferenceableOrNull:
+    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
+  case Attribute::NoRedZone:
+    return bitc::ATTR_KIND_NO_RED_ZONE;
+  case Attribute::NoReturn:
+    return bitc::ATTR_KIND_NO_RETURN;
+  case Attribute::NoSync:
+    return bitc::ATTR_KIND_NOSYNC;
+  case Attribute::NoCfCheck:
+    return bitc::ATTR_KIND_NOCF_CHECK;
+  case Attribute::NoProfile:
+    return bitc::ATTR_KIND_NO_PROFILE;
+  case Attribute::NoUnwind:
+    return bitc::ATTR_KIND_NO_UNWIND;
+  case Attribute::NoSanitizeBounds:
+    return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
+  case Attribute::NoSanitizeCoverage:
+    return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
+  case Attribute::NullPointerIsValid:
+    return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
+  case Attribute::OptForFuzzing:
+    return bitc::ATTR_KIND_OPT_FOR_FUZZING;
+  case Attribute::OptimizeForSize:
+    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
+  case Attribute::OptimizeNone:
+    return bitc::ATTR_KIND_OPTIMIZE_NONE;
+  case Attribute::ReadNone:
+    return bitc::ATTR_KIND_READ_NONE;
+  case Attribute::ReadOnly:
+    return bitc::ATTR_KIND_READ_ONLY;
+  case Attribute::Returned:
+    return bitc::ATTR_KIND_RETURNED;
+  case Attribute::ReturnsTwice:
+    return bitc::ATTR_KIND_RETURNS_TWICE;
+  case Attribute::SExt:
+    return bitc::ATTR_KIND_S_EXT;
+  case Attribute::Speculatable:
+    return bitc::ATTR_KIND_SPECULATABLE;
+  case Attribute::StackAlignment:
+    return bitc::ATTR_KIND_STACK_ALIGNMENT;
+  case Attribute::StackProtect:
+    return bitc::ATTR_KIND_STACK_PROTECT;
+  case Attribute::StackProtectReq:
+    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
+  case Attribute::StackProtectStrong:
+    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
+  case Attribute::SafeStack:
+    return bitc::ATTR_KIND_SAFESTACK;
+  case Attribute::ShadowCallStack:
+    return bitc::ATTR_KIND_SHADOWCALLSTACK;
+  case Attribute::StrictFP:
+    return bitc::ATTR_KIND_STRICT_FP;
+  case Attribute::StructRet:
+    return bitc::ATTR_KIND_STRUCT_RET;
+  case Attribute::SanitizeAddress:
+    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
+  case Attribute::SanitizeHWAddress:
+    return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
+  case Attribute::SanitizeThread:
+    return bitc::ATTR_KIND_SANITIZE_THREAD;
+  case Attribute::SanitizeMemory:
+    return bitc::ATTR_KIND_SANITIZE_MEMORY;
+  case Attribute::SpeculativeLoadHardening:
+    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
+  case Attribute::SwiftError:
+    return bitc::ATTR_KIND_SWIFT_ERROR;
+  case Attribute::SwiftSelf:
+    return bitc::ATTR_KIND_SWIFT_SELF;
+  case Attribute::SwiftAsync:
+    return bitc::ATTR_KIND_SWIFT_ASYNC;
+  case Attribute::UWTable:
+    return bitc::ATTR_KIND_UW_TABLE;
+  case Attribute::VScaleRange:
+    return bitc::ATTR_KIND_VSCALE_RANGE;
+  case Attribute::WillReturn:
+    return bitc::ATTR_KIND_WILLRETURN;
+  case Attribute::WriteOnly:
+    return bitc::ATTR_KIND_WRITEONLY;
+  case Attribute::ZExt:
+    return bitc::ATTR_KIND_Z_EXT;
+  case Attribute::ImmArg:
+    return bitc::ATTR_KIND_IMMARG;
+  case Attribute::SanitizeMemTag:
+    return bitc::ATTR_KIND_SANITIZE_MEMTAG;
+  case Attribute::Preallocated:
+    return bitc::ATTR_KIND_PREALLOCATED;
+  case Attribute::NoUndef:
+    return bitc::ATTR_KIND_NOUNDEF;
+  case Attribute::ByRef:
+    return bitc::ATTR_KIND_BYREF;
+  case Attribute::MustProgress:
+    return bitc::ATTR_KIND_MUSTPROGRESS;
+  case Attribute::EndAttrKinds:
+    llvm_unreachable("Can not encode end-attribute kinds marker.");
+  case Attribute::None:
+    llvm_unreachable("Can not encode none-attribute.");
+  case Attribute::EmptyKey:
+  case Attribute::TombstoneKey:
+    llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
+  }
+
+  llvm_unreachable("Trying to encode unknown attribute");
+}
+
+void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
+                                        uint64_t V) {
+  if ((int64_t)V >= 0)
+    Vals.push_back(V << 1);
+  else
+    Vals.push_back((-V << 1) | 1);
+}
+
+void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
+                                      const APInt &A) {
+  // We have an arbitrary precision integer value to write whose
+  // bit width is > 64. However, in canonical unsigned integer
+  // format it is likely that the high bits are going to be zero.
+  // So, we only write the number of active words.
+  unsigned NumWords = A.getActiveWords();
+  const uint64_t *RawData = A.getRawData();
+  for (unsigned i = 0; i < NumWords; i++)
+    emitSignedInt64(Vals, RawData[i]);
+}
+
+uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
+  uint64_t Flags = 0;
+
+  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
+    if (OBO->hasNoSignedWrap())
+      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+    if (OBO->hasNoUnsignedWrap())
+      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
+    if (PEO->isExact())
+      Flags |= 1 << bitc::PEO_EXACT;
+  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
+    if (FPMO->hasAllowReassoc())
+      Flags |= bitc::AllowReassoc;
+    if (FPMO->hasNoNaNs())
+      Flags |= bitc::NoNaNs;
+    if (FPMO->hasNoInfs())
+      Flags |= bitc::NoInfs;
+    if (FPMO->hasNoSignedZeros())
+      Flags |= bitc::NoSignedZeros;
+    if (FPMO->hasAllowReciprocal())
+      Flags |= bitc::AllowReciprocal;
+    if (FPMO->hasAllowContract())
+      Flags |= bitc::AllowContract;
+    if (FPMO->hasApproxFunc())
+      Flags |= bitc::ApproxFunc;
+  }
+
+  return Flags;
+}
+
+unsigned
+DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
+  switch (Linkage) {
+  case GlobalValue::ExternalLinkage:
+    return 0;
+  case GlobalValue::WeakAnyLinkage:
+    return 16;
+  case GlobalValue::AppendingLinkage:
+    return 2;
+  case GlobalValue::InternalLinkage:
+    return 3;
+  case GlobalValue::LinkOnceAnyLinkage:
+    return 18;
+  case GlobalValue::ExternalWeakLinkage:
+    return 7;
+  case GlobalValue::CommonLinkage:
+    return 8;
+  case GlobalValue::PrivateLinkage:
+    return 9;
+  case GlobalValue::WeakODRLinkage:
+    return 17;
+  case GlobalValue::LinkOnceODRLinkage:
+    return 19;
+  case GlobalValue::AvailableExternallyLinkage:
+    return 12;
+  }
+  llvm_unreachable("Invalid linkage");
+}
+
+unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
+  return getEncodedLinkage(GV.getLinkage());
+}
+
+unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
+  switch (GV.getVisibility()) {
+  case GlobalValue::DefaultVisibility:   return 0;
+  case GlobalValue::HiddenVisibility:    return 1;
+  case GlobalValue::ProtectedVisibility: return 2;
+  }
+  llvm_unreachable("Invalid visibility");
+}
+
+unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
+  switch (GV.getDLLStorageClass()) {
+  case GlobalValue::DefaultStorageClass:   return 0;
+  case GlobalValue::DLLImportStorageClass: return 1;
+  case GlobalValue::DLLExportStorageClass: return 2;
+  }
+  llvm_unreachable("Invalid DLL storage class");
+}
+
+unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
+  switch (GV.getThreadLocalMode()) {
+    case GlobalVariable::NotThreadLocal:         return 0;
+    case GlobalVariable::GeneralDynamicTLSModel: return 1;
+    case GlobalVariable::LocalDynamicTLSModel:   return 2;
+    case GlobalVariable::InitialExecTLSModel:    return 3;
+    case GlobalVariable::LocalExecTLSModel:      return 4;
+  }
+  llvm_unreachable("Invalid TLS model");
+}
+
+unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
+  switch (C.getSelectionKind()) {
+  case Comdat::Any:
+    return bitc::COMDAT_SELECTION_KIND_ANY;
+  case Comdat::ExactMatch:
+    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
+  case Comdat::Largest:
+    return bitc::COMDAT_SELECTION_KIND_LARGEST;
+  case Comdat::NoDeduplicate:
+    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
+  case Comdat::SameSize:
+    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
+  }
+  llvm_unreachable("Invalid selection kind");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin DXILBitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+void DXILBitcodeWriter::writeAttributeGroupTable() {
+  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
+      VE.getAttributeGroups();
+  if (AttrGrps.empty())
+    return;
+
+  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
+    unsigned AttrListIndex = Pair.first;
+    AttributeSet AS = Pair.second;
+    Record.push_back(VE.getAttributeGroupID(Pair));
+    Record.push_back(AttrListIndex);
+
+    for (Attribute Attr : AS) {
+      if (Attr.isEnumAttribute()) {
+        uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+        assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+               "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+        Record.push_back(0);
+        Record.push_back(Val);
+      } else if (Attr.isIntAttribute()) {
+        uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+        assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+               "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+        Record.push_back(1);
+        Record.push_back(Val);
+        Record.push_back(Attr.getValueAsInt());
+      } else {
+        StringRef Kind = Attr.getKindAsString();
+        StringRef Val = Attr.getValueAsString();
+
+        Record.push_back(Val.empty() ? 3 : 4);
+        Record.append(Kind.begin(), Kind.end());
+        Record.push_back(0);
+        if (!Val.empty()) {
+          Record.append(Val.begin(), Val.end());
+          Record.push_back(0);
+        }
+      }
+    }
+
+    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeAttributeTable() {
+  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
+  if (Attrs.empty())
+    return;
+
+  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+    AttributeList AL = Attrs[i];
+    for (unsigned i : AL.indexes()) {
+      AttributeSet AS = AL.getAttributes(i);
+      if (AS.hasAttributes())
+        Record.push_back(VE.getAttributeGroupID({i, AS}));
+    }
+
+    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+void DXILBitcodeWriter::writeTypeTable() {
+  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
+  SmallVector<uint64_t, 64> TypeVals;
+
+  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
+
+  // Abbrev for TYPE_CODE_POINTER.
+  auto Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
+  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Abbrev for TYPE_CODE_FUNCTION.
+  Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Abbrev for TYPE_CODE_STRUCT_ANON.
+  Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Abbrev for TYPE_CODE_STRUCT_NAME.
+  Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Abbrev for TYPE_CODE_STRUCT_NAMED.
+  Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Abbrev for TYPE_CODE_ARRAY.
+  Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+  // Emit an entry count so the reader can reserve space.
+  TypeVals.push_back(TypeList.size());
+  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+  TypeVals.clear();
+
+  // Loop over all of the types, emitting each in turn.
+  for (Type *T : TypeList) {
+    int AbbrevToUse = 0;
+    unsigned Code = 0;
+
+    switch (T->getTypeID()) {
+    case Type::BFloatTyID:
+    case Type::X86_AMXTyID:
+    case Type::TokenTyID:
+      llvm_unreachable("These should never be used!!!");
+      break;
+    case Type::VoidTyID:
+      Code = bitc::TYPE_CODE_VOID;
+      break;
+    case Type::HalfTyID:
+      Code = bitc::TYPE_CODE_HALF;
+      break;
+    case Type::FloatTyID:
+      Code = bitc::TYPE_CODE_FLOAT;
+      break;
+    case Type::DoubleTyID:
+      Code = bitc::TYPE_CODE_DOUBLE;
+      break;
+    case Type::X86_FP80TyID:
+      Code = bitc::TYPE_CODE_X86_FP80;
+      break;
+    case Type::FP128TyID:
+      Code = bitc::TYPE_CODE_FP128;
+      break;
+    case Type::PPC_FP128TyID:
+      Code = bitc::TYPE_CODE_PPC_FP128;
+      break;
+    case Type::LabelTyID:
+      Code = bitc::TYPE_CODE_LABEL;
+      break;
+    case Type::MetadataTyID:
+      Code = bitc::TYPE_CODE_METADATA;
+      break;
+    case Type::X86_MMXTyID:
+      Code = bitc::TYPE_CODE_X86_MMX;
+      break;
+    case Type::IntegerTyID:
+      // INTEGER: [width]
+      Code = bitc::TYPE_CODE_INTEGER;
+      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+      break;
+    case Type::PointerTyID: {
+      PointerType *PTy = cast<PointerType>(T);
+      // POINTER: [pointee type, address space]
+      Code = bitc::TYPE_CODE_POINTER;
+      TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
+      unsigned AddressSpace = PTy->getAddressSpace();
+      TypeVals.push_back(AddressSpace);
+      if (AddressSpace == 0)
+        AbbrevToUse = PtrAbbrev;
+      break;
+    }
+    case Type::FunctionTyID: {
+      FunctionType *FT = cast<FunctionType>(T);
+      // FUNCTION: [isvararg, retty, paramty x N]
+      Code = bitc::TYPE_CODE_FUNCTION;
+      TypeVals.push_back(FT->isVarArg());
+      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
+      for (Type *PTy : FT->params())
+        TypeVals.push_back(VE.getTypeID(PTy));
+      AbbrevToUse = FunctionAbbrev;
+      break;
+    }
+    case Type::StructTyID: {
+      StructType *ST = cast<StructType>(T);
+      // STRUCT: [ispacked, eltty x N]
+      TypeVals.push_back(ST->isPacked());
+      // Output all of the element types.
+      for (Type *ElTy : ST->elements())
+        TypeVals.push_back(VE.getTypeID(ElTy));
+
+      if (ST->isLiteral()) {
+        Code = bitc::TYPE_CODE_STRUCT_ANON;
+        AbbrevToUse = StructAnonAbbrev;
+      } else {
+        if (ST->isOpaque()) {
+          Code = bitc::TYPE_CODE_OPAQUE;
+        } else {
+          Code = bitc::TYPE_CODE_STRUCT_NAMED;
+          AbbrevToUse = StructNamedAbbrev;
+        }
+
+        // Emit the name if it is present.
+        if (!ST->getName().empty())
+          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
+                            StructNameAbbrev);
+      }
+      break;
+    }
+    case Type::ArrayTyID: {
+      ArrayType *AT = cast<ArrayType>(T);
+      // ARRAY: [numelts, eltty]
+      Code = bitc::TYPE_CODE_ARRAY;
+      TypeVals.push_back(AT->getNumElements());
+      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+      AbbrevToUse = ArrayAbbrev;
+      break;
+    }
+    case Type::FixedVectorTyID:
+    case Type::ScalableVectorTyID: {
+      VectorType *VT = cast<VectorType>(T);
+      // VECTOR [numelts, eltty]
+      Code = bitc::TYPE_CODE_VECTOR;
+      TypeVals.push_back(VT->getElementCount().getKnownMinValue());
+      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
+      break;
+    }
+    }
+
+    // Emit the finished record.
+    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+    TypeVals.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeComdats() {
+  SmallVector<uint16_t, 64> Vals;
+  for (const Comdat *C : VE.getComdats()) {
+    // COMDAT: [selection_kind, name]
+    Vals.push_back(getEncodedComdatSelectionKind(*C));
+    size_t Size = C->getName().size();
+    assert(isUInt<16>(Size));
+    Vals.push_back(Size);
+    for (char Chr : C->getName())
+      Vals.push_back((unsigned char)Chr);
+    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
+    Vals.clear();
+  }
+}
+
+void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
+
+/// Emit top-level description of module, including target triple, inline asm,
+/// descriptors for global variables, and function prototype info.
+/// Returns the bit offset to backpatch with the location of the real VST.
+void DXILBitcodeWriter::writeModuleInfo() {
+  // Emit various pieces of data attached to a module.
+  if (!M.getTargetTriple().empty())
+    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
+                      0 /*TODO*/);
+  const std::string &DL = M.getDataLayoutStr();
+  if (!DL.empty())
+    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
+  if (!M.getModuleInlineAsm().empty())
+    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
+                      0 /*TODO*/);
+
+  // Emit information about sections and GC, computing how many there are. Also
+  // compute the maximum alignment value.
+  std::map<std::string, unsigned> SectionMap;
+  std::map<std::string, unsigned> GCMap;
+  MaybeAlign MaxAlignment;
+  unsigned MaxGlobalType = 0;
+  const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
+    if (A)
+      MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
+  };
+  for (const GlobalVariable &GV : M.globals()) {
+    UpdateMaxAlignment(GV.getAlign());
+    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
+    if (GV.hasSection()) {
+      // Give section names unique ID's.
+      unsigned &Entry = SectionMap[std::string(GV.getSection())];
+      if (!Entry) {
+        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
+                          GV.getSection(), 0 /*TODO*/);
+        Entry = SectionMap.size();
+      }
+    }
+  }
+  for (const Function &F : M) {
+    UpdateMaxAlignment(F.getAlign());
+    if (F.hasSection()) {
+      // Give section names unique ID's.
+      unsigned &Entry = SectionMap[std::string(F.getSection())];
+      if (!Entry) {
+        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
+                          0 /*TODO*/);
+        Entry = SectionMap.size();
+      }
+    }
+    if (F.hasGC()) {
+      // Same for GC names.
+      unsigned &Entry = GCMap[F.getGC()];
+      if (!Entry) {
+        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
+                          0 /*TODO*/);
+        Entry = GCMap.size();
+      }
+    }
+  }
+
+  // Emit abbrev for globals, now that we know # sections and max alignment.
+  unsigned SimpleGVarAbbrev = 0;
+  if (!M.global_empty()) {
+    // Add an abbrev for common globals with no visibility or thread localness.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                              Log2_32_Ceil(MaxGlobalType + 1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
+                                                           //| explicitType << 1
+                                                           //| constant
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
+    if (MaxAlignment == 0)                                 // Alignment.
+      Abbv->Add(BitCodeAbbrevOp(0));
+    else {
+      unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                                Log2_32_Ceil(MaxEncAlignment + 1)));
+    }
+    if (SectionMap.empty()) // Section.
+      Abbv->Add(BitCodeAbbrevOp(0));
+    else
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                                Log2_32_Ceil(SectionMap.size() + 1)));
+    // Don't bother emitting vis + thread local.
+    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+  }
+
+  // Emit the global variable information.
+  SmallVector<unsigned, 64> Vals;
+  for (const GlobalVariable &GV : M.globals()) {
+    unsigned AbbrevToUse = 0;
+
+    // GLOBALVAR: [type, isconst, initid,
+    //             linkage, alignment, section, visibility, threadlocal,
+    //             unnamed_addr, externally_initialized, dllstorageclass,
+    //             comdat]
+    Vals.push_back(VE.getTypeID(GV.getValueType()));
+    Vals.push_back(
+        GV.getType()->getAddressSpace() << 2 | 2 |
+        (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
+                                    // unsigned int and bool
+    Vals.push_back(
+        GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
+    Vals.push_back(getEncodedLinkage(GV));
+    Vals.push_back(getEncodedAlign(GV.getAlign()));
+    Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
+                                   : 0);
+    if (GV.isThreadLocal() ||
+        GV.getVisibility() != GlobalValue::DefaultVisibility ||
+        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
+        GV.isExternallyInitialized() ||
+        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
+        GV.hasComdat()) {
+      Vals.push_back(getEncodedVisibility(GV));
+      Vals.push_back(getEncodedThreadLocalMode(GV));
+      Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+      Vals.push_back(GV.isExternallyInitialized());
+      Vals.push_back(getEncodedDLLStorageClass(GV));
+      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
+    } else {
+      AbbrevToUse = SimpleGVarAbbrev;
+    }
+
+    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+
+  // Emit the function proto information.
+  for (const Function &F : M) {
+    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
+    //             section, visibility, gc, unnamed_addr, prologuedata,
+    //             dllstorageclass, comdat, prefixdata, personalityfn]
+    Vals.push_back(VE.getTypeID(F.getFunctionType()));
+    Vals.push_back(F.getCallingConv());
+    Vals.push_back(F.isDeclaration());
+    Vals.push_back(getEncodedLinkage(F));
+    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
+    Vals.push_back(getEncodedAlign(F.getAlign()));
+    Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
+                                  : 0);
+    Vals.push_back(getEncodedVisibility(F));
+    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
+    Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+    Vals.push_back(
+        F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
+    Vals.push_back(getEncodedDLLStorageClass(F));
+    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
+    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
+                                     : 0);
+    Vals.push_back(
+        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
+
+    unsigned AbbrevToUse = 0;
+    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+
+  // Emit the alias information.
+  for (const GlobalAlias &A : M.aliases()) {
+    // ALIAS: [alias type, aliasee val#, linkage, visibility]
+    Vals.push_back(VE.getTypeID(A.getValueType()));
+    Vals.push_back(VE.getValueID(A.getAliasee()));
+    Vals.push_back(getEncodedLinkage(A));
+    Vals.push_back(getEncodedVisibility(A));
+    Vals.push_back(getEncodedDLLStorageClass(A));
+    Vals.push_back(getEncodedThreadLocalMode(A));
+    Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+    unsigned AbbrevToUse = 0;
+    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+}
+
+void DXILBitcodeWriter::writeValueAsMetadata(
+    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
+  // Mimic an MDNode with a value as one operand.
+  Value *V = MD->getValue();
+  Record.push_back(VE.getTypeID(V->getType()));
+  Record.push_back(VE.getValueID(V));
+  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
+                                     SmallVectorImpl<uint64_t> &Record,
+                                     unsigned Abbrev) {
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    Metadata *MD = N->getOperand(i);
+    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
+           "Unexpected function-local metadata");
+    Record.push_back(VE.getMetadataOrNullID(MD));
+  }
+  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
+                                    : bitc::METADATA_NODE,
+                    Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocation(const DILocation *N,
+                                        SmallVectorImpl<uint64_t> &Record,
+                                        unsigned &Abbrev) {
+  if (!Abbrev)
+    Abbrev = createDILocationAbbrev();
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getLine());
+  Record.push_back(N->getColumn());
+  Record.push_back(VE.getMetadataID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
+
+  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
+  Record.clear();
+}
+
+static uint64_t rotateSign(APInt Val) {
+  int64_t I = Val.getSExtValue();
+  uint64_t U = I;
+  return I < 0 ? ~(U << 1) : U << 1;
+}
+
+static uint64_t rotateSign(DISubrange::BoundType Val) {
+  return rotateSign(Val.get<ConstantInt *>()->getValue());
+}
+
+void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
+                                        SmallVectorImpl<uint64_t> &Record,
+                                        unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(
+      N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
+  Record.push_back(rotateSign(N->getLowerBound()));
+
+  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
+                                          SmallVectorImpl<uint64_t> &Record,
+                                          unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(rotateSign(N->getValue()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
+                                         SmallVectorImpl<uint64_t> &Record,
+                                         unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(N->getSizeInBits());
+  Record.push_back(N->getAlignInBits());
+  Record.push_back(N->getEncoding());
+
+  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
+                                           SmallVectorImpl<uint64_t> &Record,
+                                           unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+  Record.push_back(N->getSizeInBits());
+  Record.push_back(N->getAlignInBits());
+  Record.push_back(N->getOffsetInBits());
+  Record.push_back(N->getFlags());
+  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
+
+  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
+                                             SmallVectorImpl<uint64_t> &Record,
+                                             unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+  Record.push_back(N->getSizeInBits());
+  Record.push_back(N->getAlignInBits());
+  Record.push_back(N->getOffsetInBits());
+  Record.push_back(N->getFlags());
+  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
+  Record.push_back(N->getRuntimeLang());
+  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
+  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
+
+  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
+                                              SmallVectorImpl<uint64_t> &Record,
+                                              unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getFlags());
+  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
+
+  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIFile(const DIFile *N,
+                                    SmallVectorImpl<uint64_t> &Record,
+                                    unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
+
+  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
+                                           SmallVectorImpl<uint64_t> &Record,
+                                           unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getSourceLanguage());
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
+  Record.push_back(N->isOptimized());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
+  Record.push_back(N->getRuntimeVersion());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
+  Record.push_back(N->getEmissionKind());
+  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
+  Record.push_back(/* subprograms */ 0);
+  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
+  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
+  Record.push_back(N->getDWOId());
+
+  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
+                                          SmallVectorImpl<uint64_t> &Record,
+                                          unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getType()));
+  Record.push_back(N->isLocalToUnit());
+  Record.push_back(N->isDefinition());
+  Record.push_back(N->getScopeLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
+  Record.push_back(N->getVirtuality());
+  Record.push_back(N->getVirtualIndex());
+  Record.push_back(N->getFlags());
+  Record.push_back(N->isOptimized());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
+  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
+
+  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
+                                            SmallVectorImpl<uint64_t> &Record,
+                                            unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(N->getColumn());
+
+  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlockFile(
+    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
+    unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getDiscriminator());
+
+  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
+                                         SmallVectorImpl<uint64_t> &Record,
+                                         unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(/* line number */ 0);
+
+  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIModule(const DIModule *N,
+                                      SmallVectorImpl<uint64_t> &Record,
+                                      unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  for (auto &I : N->operands())
+    Record.push_back(VE.getMetadataOrNullID(I));
+
+  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateTypeParameter(
+    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
+    unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getType()));
+
+  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateValueParameter(
+    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
+    unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getType()));
+  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
+
+  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
+                                              SmallVectorImpl<uint64_t> &Record,
+                                              unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getType()));
+  Record.push_back(N->isLocalToUnit());
+  Record.push_back(N->isDefinition());
+  Record.push_back(/* N->getRawVariable() */ 0);
+  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
+
+  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
+                                             SmallVectorImpl<uint64_t> &Record,
+                                             unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getType()));
+  Record.push_back(N->getArg());
+  Record.push_back(N->getFlags());
+
+  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
+                                          SmallVectorImpl<uint64_t> &Record,
+                                          unsigned Abbrev) {
+  Record.reserve(N->getElements().size() + 1);
+
+  Record.push_back(N->isDistinct());
+  Record.append(N->elements_begin(), N->elements_end());
+
+  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
+  Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
+                                            SmallVectorImpl<uint64_t> &Record,
+                                            unsigned Abbrev) {
+  llvm_unreachable("DXIL does not support objc!!!");
+}
+
+void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
+                                              SmallVectorImpl<uint64_t> &Record,
+                                              unsigned Abbrev) {
+  Record.push_back(N->isDistinct());
+  Record.push_back(N->getTag());
+  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
+  Record.push_back(N->getLine());
+  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
+  Record.clear();
+}
+
+unsigned DXILBitcodeWriter::createDILocationAbbrev() {
+  // Abbrev for METADATA_LOCATION.
+  //
+  // Assume the column is usually under 128, and always output the inlined-at
+  // location (it's never more expensive than building an array size 1).
+  std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
+  // Abbrev for METADATA_GENERIC_DEBUG.
+  //
+  // Assume the column is usually under 128, and always output the inlined-at
+  // location (it's never more expensive than building an array size 1).
+  std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+  return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+                                             SmallVectorImpl<uint64_t> &Record,
+                                             std::vector<unsigned> *MDAbbrevs,
+                                             std::vector<uint64_t> *IndexPos) {
+  if (MDs.empty())
+    return;
+
+    // Initialize MDNode abbreviations.
+#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
+#include "llvm/IR/Metadata.def"
+
+  for (const Metadata *MD : MDs) {
+    if (IndexPos)
+      IndexPos->push_back(Stream.GetCurrentBitNo());
+    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+      assert(N->isResolved() && "Expected forward references to be resolved");
+
+      switch (N->getMetadataID()) {
+      default:
+        llvm_unreachable("Invalid MDNode subclass");
+#define HANDLE_MDNODE_LEAF(CLASS)                                              \
+  case Metadata::CLASS##Kind:                                                  \
+    if (MDAbbrevs)                                                             \
+      write##CLASS(cast<CLASS>(N), Record,                                     \
+                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
+    else                                                                       \
+      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
+    continue;
+#include "llvm/IR/Metadata.def"
+      }
+    }
+    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
+  }
+}
+
+unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
+  auto Abbv = std::make_shared<BitCodeAbbrev>();
+  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+  return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataStrings(
+    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
+  for (const Metadata *MD : Strings) {
+    const MDString *MDS = cast<MDString>(MD);
+    // Code: [strchar x N]
+    Record.append(MDS->bytes_begin(), MDS->bytes_end());
+
+    // Emit the finished record.
+    Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
+                      createMetadataStringsAbbrev());
+    Record.clear();
+  }
+}
+
+void DXILBitcodeWriter::writeModuleMetadata() {
+  if (!VE.hasMDs() && M.named_metadata_empty())
+    return;
+
+  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
+
+  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
+  // block and load any metadata.
+  std::vector<unsigned> MDAbbrevs;
+
+  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
+  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
+  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
+      createGenericDINodeAbbrev();
+
+  unsigned NameAbbrev = 0;
+  if (!M.named_metadata_empty()) {
+    // Abbrev for METADATA_NAME.
+    std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+  }
+
+  SmallVector<uint64_t, 64> Record;
+  writeMetadataStrings(VE.getMDStrings(), Record);
+
+  std::vector<uint64_t> IndexPos;
+  IndexPos.reserve(VE.getNonMDStrings().size());
+  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
+
+  // Write named metadata.
+  for (const NamedMDNode &NMD : M.named_metadata()) {
+    // Write name.
+    StringRef Str = NMD.getName();
+    Record.append(Str.bytes_begin(), Str.bytes_end());
+    Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
+    Record.clear();
+
+    // Write named metadata operands.
+    for (const MDNode *N : NMD.operands())
+      Record.push_back(VE.getMetadataID(N));
+    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
+  if (!VE.hasMDs())
+    return;
+
+  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
+  SmallVector<uint64_t, 64> Record;
+  writeMetadataStrings(VE.getMDStrings(), Record);
+  writeMetadataRecords(VE.getNonMDStrings(), Record);
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
+  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata attachments
+  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+  F.getAllMetadata(MDs);
+  if (!MDs.empty()) {
+    for (const auto &I : MDs) {
+      Record.push_back(I.first);
+      Record.push_back(VE.getMetadataID(I.second));
+    }
+    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+    Record.clear();
+  }
+
+  for (const BasicBlock &BB : F)
+    for (const Instruction &I : BB) {
+      MDs.clear();
+      I.getAllMetadataOtherThanDebugLoc(MDs);
+
+      // If no metadata, ignore instruction.
+      if (MDs.empty())
+        continue;
+
+      Record.push_back(VE.getInstructionID(&I));
+
+      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+        Record.push_back(MDs[i].first);
+        Record.push_back(VE.getMetadataID(MDs[i].second));
+      }
+      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+      Record.clear();
+    }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleMetadataKinds() {
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata kinds
+  // METADATA_KIND - [n x [id, name]]
+  SmallVector<StringRef, 8> Names;
+  M.getMDKindNames(Names);
+
+  if (Names.empty())
+    return;
+
+  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
+    Record.push_back(MDKindID);
+    StringRef KName = Names[MDKindID];
+    Record.append(KName.begin(), KName.end());
+
+    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
+                                       bool isGlobal) {
+  if (FirstVal == LastVal)
+    return;
+
+  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+  unsigned AggregateAbbrev = 0;
+  unsigned String8Abbrev = 0;
+  unsigned CString7Abbrev = 0;
+  unsigned CString6Abbrev = 0;
+  // If this is a constant pool for the module, emit module-specific abbrevs.
+  if (isGlobal) {
+    // Abbrev for CST_CODE_AGGREGATE.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(
+        BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
+    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+    // Abbrev for CST_CODE_STRING.
+    Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+  }
+
+  SmallVector<uint64_t, 64> Record;
+
+  const ValueEnumerator::ValueList &Vals = VE.getValues();
+  Type *LastTy = nullptr;
+  for (unsigned i = FirstVal; i != LastVal; ++i) {
+    const Value *V = Vals[i].first;
+    // If we need to switch types, do so now.
+    if (V->getType() != LastTy) {
+      LastTy = V->getType();
+      Record.push_back(VE.getTypeID(LastTy));
+      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+                        CONSTANTS_SETTYPE_ABBREV);
+      Record.clear();
+    }
+
+    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+      Record.push_back(unsigned(IA->hasSideEffects()) |
+                       unsigned(IA->isAlignStack()) << 1 |
+                       unsigned(IA->getDialect() & 1) << 2);
+
+      // Add the asm string.
+      const std::string &AsmStr = IA->getAsmString();
+      Record.push_back(AsmStr.size());
+      Record.append(AsmStr.begin(), AsmStr.end());
+
+      // Add the constraint string.
+      const std::string &ConstraintStr = IA->getConstraintString();
+      Record.push_back(ConstraintStr.size());
+      Record.append(ConstraintStr.begin(), ConstraintStr.end());
+      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+      Record.clear();
+      continue;
+    }
+    const Constant *C = cast<Constant>(V);
+    unsigned Code = -1U;
+    unsigned AbbrevToUse = 0;
+    if (C->isNullValue()) {
+      Code = bitc::CST_CODE_NULL;
+    } else if (isa<UndefValue>(C)) {
+      Code = bitc::CST_CODE_UNDEF;
+    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+      if (IV->getBitWidth() <= 64) {
+        uint64_t V = IV->getSExtValue();
+        emitSignedInt64(Record, V);
+        Code = bitc::CST_CODE_INTEGER;
+        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+      } else { // Wide integers, > 64 bits in size.
+        // We have an arbitrary precision integer value to write whose
+        // bit width is > 64. However, in canonical unsigned integer
+        // format it is likely that the high bits are going to be zero.
+        // So, we only write the number of active words.
+        unsigned NWords = IV->getValue().getActiveWords();
+        const uint64_t *RawWords = IV->getValue().getRawData();
+        for (unsigned i = 0; i != NWords; ++i) {
+          emitSignedInt64(Record, RawWords[i]);
+        }
+        Code = bitc::CST_CODE_WIDE_INTEGER;
+      }
+    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+      Code = bitc::CST_CODE_FLOAT;
+      Type *Ty = CFP->getType();
+      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
+        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+      } else if (Ty->isX86_FP80Ty()) {
+        // api needed to prevent premature destruction
+        // bits are not in the same order as a normal i80 APInt, compensate.
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back((p[1] << 48) | (p[0] >> 16));
+        Record.push_back(p[0] & 0xffffLL);
+      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back(p[0]);
+        Record.push_back(p[1]);
+      } else {
+        assert(0 && "Unknown FP type!");
+      }
+    } else if (isa<ConstantDataSequential>(C) &&
+               cast<ConstantDataSequential>(C)->isString()) {
+      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
+      // Emit constant strings specially.
+      unsigned NumElts = Str->getNumElements();
+      // If this is a null-terminated string, use the denser CSTRING encoding.
+      if (Str->isCString()) {
+        Code = bitc::CST_CODE_CSTRING;
+        --NumElts; // Don't encode the null, which isn't allowed by char6.
+      } else {
+        Code = bitc::CST_CODE_STRING;
+        AbbrevToUse = String8Abbrev;
+      }
+      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+      for (unsigned i = 0; i != NumElts; ++i) {
+        unsigned char V = Str->getElementAsInteger(i);
+        Record.push_back(V);
+        isCStr7 &= (V & 128) == 0;
+        if (isCStrChar6)
+          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+      }
+
+      if (isCStrChar6)
+        AbbrevToUse = CString6Abbrev;
+      else if (isCStr7)
+        AbbrevToUse = CString7Abbrev;
+    } else if (const ConstantDataSequential *CDS =
+                   dyn_cast<ConstantDataSequential>(C)) {
+      Code = bitc::CST_CODE_DATA;
+      Type *EltTy = CDS->getType()->getArrayElementType();
+      if (isa<IntegerType>(EltTy)) {
+        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
+          Record.push_back(CDS->getElementAsInteger(i));
+      } else if (EltTy->isFloatTy()) {
+        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+          union {
+            float F;
+            uint32_t I;
+          };
+          F = CDS->getElementAsFloat(i);
+          Record.push_back(I);
+        }
+      } else {
+        assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
+        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+          union {
+            double F;
+            uint64_t I;
+          };
+          F = CDS->getElementAsDouble(i);
+          Record.push_back(I);
+        }
+      }
+    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
+               isa<ConstantVector>(C)) {
+      Code = bitc::CST_CODE_AGGREGATE;
+      for (const Value *Op : C->operands())
+        Record.push_back(VE.getValueID(Op));
+      AbbrevToUse = AggregateAbbrev;
+    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+      switch (CE->getOpcode()) {
+      default:
+        if (Instruction::isCast(CE->getOpcode())) {
+          Code = bitc::CST_CODE_CE_CAST;
+          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
+          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+          Record.push_back(VE.getValueID(C->getOperand(0)));
+          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+        } else {
+          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+          Code = bitc::CST_CODE_CE_BINOP;
+          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
+          Record.push_back(VE.getValueID(C->getOperand(0)));
+          Record.push_back(VE.getValueID(C->getOperand(1)));
+          uint64_t Flags = getOptimizationFlags(CE);
+          if (Flags != 0)
+            Record.push_back(Flags);
+        }
+        break;
+      case Instruction::GetElementPtr: {
+        Code = bitc::CST_CODE_CE_GEP;
+        const auto *GO = cast<GEPOperator>(C);
+        if (GO->isInBounds())
+          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
+        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
+        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
+          Record.push_back(VE.getValueID(C->getOperand(i)));
+        }
+        break;
+      }
+      case Instruction::Select:
+        Code = bitc::CST_CODE_CE_SELECT;
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ExtractElement:
+        Code = bitc::CST_CODE_CE_EXTRACTELT;
+        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        break;
+      case Instruction::InsertElement:
+        Code = bitc::CST_CODE_CE_INSERTELT;
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ShuffleVector:
+        // If the return type and argument types are the same, this is a
+        // standard shufflevector instruction.  If the types are 
diff erent,
+        // then the shuffle is widening or truncating the input vectors, and
+        // the argument type must also be encoded.
+        if (C->getType() == C->getOperand(0)->getType()) {
+          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+        } else {
+          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        }
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ICmp:
+      case Instruction::FCmp:
+        Code = bitc::CST_CODE_CE_CMP;
+        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(CE->getPredicate());
+        break;
+      }
+    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+      Code = bitc::CST_CODE_BLOCKADDRESS;
+      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
+      Record.push_back(VE.getValueID(BA->getFunction()));
+      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
+    } else {
+#ifndef NDEBUG
+      C->dump();
+#endif
+      llvm_unreachable("Unknown constant!");
+    }
+    Stream.EmitRecord(Code, Record, AbbrevToUse);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleConstants() {
+  const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+  // Find the first constant to emit, which is the first non-globalvalue value.
+  // We know globalvalues have been emitted by WriteModuleInfo.
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+    if (!isa<GlobalValue>(Vals[i].first)) {
+      writeConstants(i, Vals.size(), true);
+      return;
+    }
+  }
+}
+
+/// pushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references.  However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals.  If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.  The value ID that is written is encoded relative to the InstID.
+bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
+                                         SmallVectorImpl<unsigned> &Vals) {
+  unsigned ValID = VE.getValueID(V);
+  // Make encoding relative to the InstID.
+  Vals.push_back(InstID - ValID);
+  if (ValID >= InstID) {
+    Vals.push_back(VE.getTypeID(V->getType()));
+    return true;
+  }
+  return false;
+}
+
+/// pushValue - Like pushValueAndType, but where the type of the value is
+/// omitted (perhaps it was already encoded in an earlier operand).
+void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
+                                  SmallVectorImpl<unsigned> &Vals) {
+  unsigned ValID = VE.getValueID(V);
+  Vals.push_back(InstID - ValID);
+}
+
+void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
+                                        SmallVectorImpl<uint64_t> &Vals) {
+  unsigned ValID = VE.getValueID(V);
+  int64_t 
diff  = ((int32_t)InstID - (int32_t)ValID);
+  emitSignedInt64(Vals, 
diff );
+}
+
+/// WriteInstruction - Emit an instruction
+void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
+                                         SmallVectorImpl<unsigned> &Vals) {
+  unsigned Code = 0;
+  unsigned AbbrevToUse = 0;
+  VE.setInstructionID(&I);
+  switch (I.getOpcode()) {
+  default:
+    if (Instruction::isCast(I.getOpcode())) {
+      Code = bitc::FUNC_CODE_INST_CAST;
+      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+        AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
+      Vals.push_back(VE.getTypeID(I.getType()));
+      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
+    } else {
+      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+      Code = bitc::FUNC_CODE_INST_BINOP;
+      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+        AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
+      pushValue(I.getOperand(1), InstID, Vals);
+      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
+      uint64_t Flags = getOptimizationFlags(&I);
+      if (Flags != 0) {
+        if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
+          AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
+        Vals.push_back(Flags);
+      }
+    }
+    break;
+
+  case Instruction::GetElementPtr: {
+    Code = bitc::FUNC_CODE_INST_GEP;
+    AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
+    auto &GEPInst = cast<GetElementPtrInst>(I);
+    Vals.push_back(GEPInst.isInBounds());
+    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      pushValueAndType(I.getOperand(i), InstID, Vals);
+    break;
+  }
+  case Instruction::ExtractValue: {
+    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+    Vals.append(EVI->idx_begin(), EVI->idx_end());
+    break;
+  }
+  case Instruction::InsertValue: {
+    Code = bitc::FUNC_CODE_INST_INSERTVAL;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    pushValueAndType(I.getOperand(1), InstID, Vals);
+    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+    Vals.append(IVI->idx_begin(), IVI->idx_end());
+    break;
+  }
+  case Instruction::Select:
+    Code = bitc::FUNC_CODE_INST_VSELECT;
+    pushValueAndType(I.getOperand(1), InstID, Vals);
+    pushValue(I.getOperand(2), InstID, Vals);
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    break;
+  case Instruction::ExtractElement:
+    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    pushValueAndType(I.getOperand(1), InstID, Vals);
+    break;
+  case Instruction::InsertElement:
+    Code = bitc::FUNC_CODE_INST_INSERTELT;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    pushValue(I.getOperand(1), InstID, Vals);
+    pushValueAndType(I.getOperand(2), InstID, Vals);
+    break;
+  case Instruction::ShuffleVector:
+    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    pushValue(I.getOperand(1), InstID, Vals);
+    pushValue(I.getOperand(2), InstID, Vals);
+    break;
+  case Instruction::ICmp:
+  case Instruction::FCmp: {
+    // compare returning Int1Ty or vector of Int1Ty
+    Code = bitc::FUNC_CODE_INST_CMP2;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    pushValue(I.getOperand(1), InstID, Vals);
+    Vals.push_back(cast<CmpInst>(I).getPredicate());
+    uint64_t Flags = getOptimizationFlags(&I);
+    if (Flags != 0)
+      Vals.push_back(Flags);
+    break;
+  }
+
+  case Instruction::Ret: {
+    Code = bitc::FUNC_CODE_INST_RET;
+    unsigned NumOperands = I.getNumOperands();
+    if (NumOperands == 0)
+      AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
+    else if (NumOperands == 1) {
+      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+        AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
+    } else {
+      for (unsigned i = 0, e = NumOperands; i != e; ++i)
+        pushValueAndType(I.getOperand(i), InstID, Vals);
+    }
+  } break;
+  case Instruction::Br: {
+    Code = bitc::FUNC_CODE_INST_BR;
+    const BranchInst &II = cast<BranchInst>(I);
+    Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+    if (II.isConditional()) {
+      Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+      pushValue(II.getCondition(), InstID, Vals);
+    }
+  } break;
+  case Instruction::Switch: {
+    Code = bitc::FUNC_CODE_INST_SWITCH;
+    const SwitchInst &SI = cast<SwitchInst>(I);
+    Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
+    pushValue(SI.getCondition(), InstID, Vals);
+    Vals.push_back(VE.getValueID(SI.getDefaultDest()));
+    for (auto Case : SI.cases()) {
+      Vals.push_back(VE.getValueID(Case.getCaseValue()));
+      Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
+    }
+  } break;
+  case Instruction::IndirectBr:
+    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    // Encode the address operand as relative, but not the basic blocks.
+    pushValue(I.getOperand(0), InstID, Vals);
+    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+
+  case Instruction::Invoke: {
+    const InvokeInst *II = cast<InvokeInst>(&I);
+    const Value *Callee = II->getCalledOperand();
+    FunctionType *FTy = II->getFunctionType();
+    Code = bitc::FUNC_CODE_INST_INVOKE;
+
+    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
+    Vals.push_back(II->getCallingConv() | 1 << 13);
+    Vals.push_back(VE.getValueID(II->getNormalDest()));
+    Vals.push_back(VE.getValueID(II->getUnwindDest()));
+    Vals.push_back(VE.getTypeID(FTy));
+    pushValueAndType(Callee, InstID, Vals);
+
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
+
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
+           ++i)
+        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
+    }
+    break;
+  }
+  case Instruction::Resume:
+    Code = bitc::FUNC_CODE_INST_RESUME;
+    pushValueAndType(I.getOperand(0), InstID, Vals);
+    break;
+  case Instruction::Unreachable:
+    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+    AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
+    break;
+
+  case Instruction::PHI: {
+    const PHINode &PN = cast<PHINode>(I);
+    Code = bitc::FUNC_CODE_INST_PHI;
+    // With the newer instruction encoding, forward references could give
+    // negative valued IDs.  This is most common for PHIs, so we use
+    // signed VBRs.
+    SmallVector<uint64_t, 128> Vals64;
+    Vals64.push_back(VE.getTypeID(PN.getType()));
+    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
+      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
+    }
+    // Emit a Vals64 vector and exit.
+    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
+    Vals64.clear();
+    return;
+  }
+
+  case Instruction::LandingPad: {
+    const LandingPadInst &LP = cast<LandingPadInst>(I);
+    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
+    Vals.push_back(VE.getTypeID(LP.getType()));
+    Vals.push_back(LP.isCleanup());
+    Vals.push_back(LP.getNumClauses());
+    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
+      if (LP.isCatch(I))
+        Vals.push_back(LandingPadInst::Catch);
+      else
+        Vals.push_back(LandingPadInst::Filter);
+      pushValueAndType(LP.getClause(I), InstID, Vals);
+    }
+    break;
+  }
+
+  case Instruction::Alloca: {
+    Code = bitc::FUNC_CODE_INST_ALLOCA;
+    const AllocaInst &AI = cast<AllocaInst>(I);
+    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+    using APV = AllocaPackedValues;
+    unsigned Record = 0;
+    unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
+    Bitfield::set<APV::AlignLower>(
+        Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
+    Bitfield::set<APV::AlignUpper>(Record,
+                                   EncodedAlign >> APV::AlignLower::Bits);
+    Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
+    Vals.push_back(Record);
+    break;
+  }
+
+  case Instruction::Load:
+    if (cast<LoadInst>(I).isAtomic()) {
+      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
+      pushValueAndType(I.getOperand(0), InstID, Vals);
+    } else {
+      Code = bitc::FUNC_CODE_INST_LOAD;
+      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
+        AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
+    }
+    Vals.push_back(VE.getTypeID(I.getType()));
+    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment()) + 1);
+    Vals.push_back(cast<LoadInst>(I).isVolatile());
+    if (cast<LoadInst>(I).isAtomic()) {
+      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
+      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
+    }
+    break;
+  case Instruction::Store:
+    if (cast<StoreInst>(I).isAtomic())
+      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
+    else
+      Code = bitc::FUNC_CODE_INST_STORE;
+    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
+    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
+    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment()) + 1);
+    Vals.push_back(cast<StoreInst>(I).isVolatile());
+    if (cast<StoreInst>(I).isAtomic()) {
+      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
+      Vals.push_back(
+          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
+    }
+    break;
+  case Instruction::AtomicCmpXchg:
+    Code = bitc::FUNC_CODE_INST_CMPXCHG;
+    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
+    pushValue(I.getOperand(2), InstID, Vals);        // newval.
+    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
+    Vals.push_back(
+        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
+    Vals.push_back(
+        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
+    Vals.push_back(
+        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
+    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
+    break;
+  case Instruction::AtomicRMW:
+    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
+    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+    pushValue(I.getOperand(1), InstID, Vals);        // val.
+    Vals.push_back(
+        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
+    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
+    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
+    Vals.push_back(
+        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
+    break;
+  case Instruction::Fence:
+    Code = bitc::FUNC_CODE_INST_FENCE;
+    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
+    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
+    break;
+  case Instruction::Call: {
+    const CallInst &CI = cast<CallInst>(I);
+    FunctionType *FTy = CI.getFunctionType();
+
+    Code = bitc::FUNC_CODE_INST_CALL;
+
+    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
+    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
+                   unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
+    Vals.push_back(VE.getTypeID(FTy));
+    pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
+
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
+      // Check for labels (can happen with asm labels).
+      if (FTy->getParamType(i)->isLabelTy())
+        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
+      else
+        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
+    }
+
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
+        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
+    }
+    break;
+  }
+  case Instruction::VAArg:
+    Code = bitc::FUNC_CODE_INST_VAARG;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
+    pushValue(I.getOperand(0), InstID, Vals);                 // valist.
+    Vals.push_back(VE.getTypeID(I.getType()));                // restype.
+    break;
+  }
+
+  Stream.EmitRecord(Code, Vals, AbbrevToUse);
+  Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
+    const ValueSymbolTable &VST) {
+  if (VST.empty())
+    return;
+  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+  SmallVector<unsigned, 64> NameVals;
+
+  // HLSL Change
+  // Read the named values from a sorted list instead of the original list
+  // to ensure the binary is the same no matter what values ever existed.
+  SmallVector<const ValueName *, 16> SortedTable;
+
+  for (auto &VI : VST) {
+    SortedTable.push_back(VI.second->getValueName());
+  }
+  // The keys are unique, so there shouldn't be stability issues.
+  std::sort(SortedTable.begin(), SortedTable.end(),
+            [](const ValueName *A, const ValueName *B) {
+              return A->first() < B->first();
+            });
+
+  for (const ValueName *SI : SortedTable) {
+    auto &Name = *SI;
+
+    // Figure out the encoding to use for the name.
+    bool is7Bit = true;
+    bool isChar6 = true;
+    for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
+         C != E; ++C) {
+      if (isChar6)
+        isChar6 = BitCodeAbbrevOp::isChar6(*C);
+      if ((unsigned char)*C & 128) {
+        is7Bit = false;
+        break; // don't bother scanning the rest.
+      }
+    }
+
+    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+    // VST_ENTRY:   [valueid, namechar x N]
+    // VST_BBENTRY: [bbid, namechar x N]
+    unsigned Code;
+    if (isa<BasicBlock>(SI->getValue())) {
+      Code = bitc::VST_CODE_BBENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_BBENTRY_6_ABBREV;
+    } else {
+      Code = bitc::VST_CODE_ENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_ENTRY_6_ABBREV;
+      else if (is7Bit)
+        AbbrevToUse = VST_ENTRY_7_ABBREV;
+    }
+
+    NameVals.push_back(VE.getValueID(SI->getValue()));
+    for (const char *P = Name.getKeyData(),
+                    *E = Name.getKeyData() + Name.getKeyLength();
+         P != E; ++P)
+      NameVals.push_back((unsigned char)*P);
+
+    // Emit the finished record.
+    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+    NameVals.clear();
+  }
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
+  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+  unsigned Code;
+  if (isa<BasicBlock>(Order.V))
+    Code = bitc::USELIST_CODE_BB;
+  else
+    Code = bitc::USELIST_CODE_DEFAULT;
+
+  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
+  Record.push_back(VE.getValueID(Order.V));
+  Stream.EmitRecord(Code, Record);
+}
+
+void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
+  assert(VE.shouldPreserveUseListOrder() &&
+         "Expected to be preserving use-list order");
+
+  auto hasMore = [&]() {
+    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
+  };
+  if (!hasMore())
+    // Nothing to do.
+    return;
+
+  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
+  while (hasMore()) {
+    writeUseList(std::move(VE.UseListOrders.back()));
+    VE.UseListOrders.pop_back();
+  }
+  Stream.ExitBlock();
+}
+
+/// Emit a function body to the module stream.
+void DXILBitcodeWriter::writeFunction(const Function &F) {
+  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+  VE.incorporateFunction(F);
+
+  SmallVector<unsigned, 64> Vals;
+
+  // Emit the number of basic blocks, so the reader can create them ahead of
+  // time.
+  Vals.push_back(VE.getBasicBlocks().size());
+  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+  Vals.clear();
+
+  // If there are function-local constants, emit them now.
+  unsigned CstStart, CstEnd;
+  VE.getFunctionConstantRange(CstStart, CstEnd);
+  writeConstants(CstStart, CstEnd, false);
+
+  // If there is function-local metadata, emit it now.
+  writeFunctionMetadata(F);
+
+  // Keep a running idea of what the instruction ID is.
+  unsigned InstID = CstEnd;
+
+  bool NeedsMetadataAttachment = F.hasMetadata();
+
+  DILocation *LastDL = nullptr;
+
+  // Finally, emit all the instructions, in order.
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
+         ++I) {
+      writeInstruction(*I, InstID, Vals);
+
+      if (!I->getType()->isVoidTy())
+        ++InstID;
+
+      // If the instruction has metadata, write a metadata attachment later.
+      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
+
+      // If the instruction has a debug location, emit it.
+      DILocation *DL = I->getDebugLoc();
+      if (!DL)
+        continue;
+
+      if (DL == LastDL) {
+        // Just repeat the same debug loc as last time.
+        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
+        continue;
+      }
+
+      Vals.push_back(DL->getLine());
+      Vals.push_back(DL->getColumn());
+      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
+      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
+      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
+      Vals.clear();
+
+      LastDL = DL;
+    }
+
+  // Emit names for all the instructions etc.
+  if (auto *Symtab = F.getValueSymbolTable())
+    writeFunctionLevelValueSymbolTable(*Symtab);
+
+  if (NeedsMetadataAttachment)
+    writeFunctionMetadataAttachment(F);
+  if (VE.shouldPreserveUseListOrder())
+    writeUseListBlock(&F);
+  VE.purgeFunction();
+  Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+void DXILBitcodeWriter::writeBlockInfo() {
+  // We only want to emit block info records for blocks that have multiple
+  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
+  // Other blocks can define their abbrevs inline.
+  Stream.EnterBlockInfoBlock();
+
+  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   std::move(Abbv)) != VST_ENTRY_8_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  { // 7-bit fixed width VST_ENTRY strings.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   std::move(Abbv)) != VST_ENTRY_7_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_ENTRY strings.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   std::move(Abbv)) != VST_ENTRY_6_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_BBENTRY strings.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  { // SETTYPE abbrev for CONSTANTS_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                              VE.computeBitsRequiredForTypeIndicies()));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+        CONSTANTS_SETTYPE_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  { // INTEGER abbrev for CONSTANTS_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+        CONSTANTS_INTEGER_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  { // CE_CAST abbrev for CONSTANTS_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
+                              VE.computeBitsRequiredForTypeIndicies()));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+        CONSTANTS_CE_CAST_Abbrev)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // NULL abbrev for CONSTANTS_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+        CONSTANTS_NULL_Abbrev)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  // FIXME: This should only use space for first class types!
+
+  { // INST_LOAD abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
+                              VE.computeBitsRequiredForTypeIndicies()));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_LOAD_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_BINOP_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // INST_CAST abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
+                              VE.computeBitsRequiredForTypeIndicies()));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_CAST_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+  {
+    auto Abbv = std::make_shared<BitCodeAbbrev>();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+                              Log2_32_Ceil(VE.getTypes().size() + 1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+        (unsigned)FUNCTION_INST_GEP_ABBREV)
+      assert(false && "Unexpected abbrev ordering!");
+  }
+
+  Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleVersion() {
+  // VERSION: [version#]
+  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
+}
+
+/// WriteModule - Emit the specified module to the bitstream.
+void DXILBitcodeWriter::write() {
+  // The identification block is new since llvm-3.7, but the old bitcode reader
+  // will skip it.
+  // writeIdentificationBlock(Stream);
+
+  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+  // It is redundant to fully-specify this here, but nice to make it explicit
+  // so that it is clear the DXIL module version is 
diff erent.
+  DXILBitcodeWriter::writeModuleVersion();
+
+  // Emit blockinfo, which defines the standard abbreviations etc.
+  writeBlockInfo();
+
+  // Emit information about attribute groups.
+  writeAttributeGroupTable();
+
+  // Emit information about parameter attributes.
+  writeAttributeTable();
+
+  // Emit information describing all of the types in the module.
+  writeTypeTable();
+
+  writeComdats();
+
+  // Emit top-level description of module, including target triple, inline asm,
+  // descriptors for global variables, and function prototype info.
+  writeModuleInfo();
+
+  // Emit constants.
+  writeModuleConstants();
+
+  // Emit metadata.
+  writeModuleMetadataKinds();
+
+  // Emit metadata.
+  writeModuleMetadata();
+
+  // Emit names for globals/functions etc.
+  // DXIL uses the same format for module-level value symbol table as for the
+  // function level table.
+  writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
+
+  // Emit module-level use-lists.
+  if (VE.shouldPreserveUseListOrder())
+    writeUseListBlock(nullptr);
+
+  // Emit function bodies.
+  for (const Function &F : M)
+    if (!F.isDeclaration())
+      writeFunction(F);
+
+  Stream.ExitBlock();
+}

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h
new file mode 100644
index 0000000000000..289f692f0f822
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h
@@ -0,0 +1,82 @@
+//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/MC/StringTableBuilder.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/MemoryBufferRef.h"
+#include <map>
+#include <memory>
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+class BitstreamWriter;
+class Module;
+class raw_ostream;
+
+namespace dxil {
+
+class BitcodeWriter {
+  SmallVectorImpl<char> &Buffer;
+  std::unique_ptr<BitstreamWriter> Stream;
+
+  StringTableBuilder StrtabBuilder{StringTableBuilder::RAW};
+
+  // Owns any strings created by the irsymtab writer until we create the
+  // string table.
+  BumpPtrAllocator Alloc;
+
+  bool WroteStrtab = false, WroteSymtab = false;
+
+  void writeBlob(unsigned Block, unsigned Record, StringRef Blob);
+
+  std::vector<Module *> Mods;
+
+public:
+  /// Create a BitcodeWriter that writes to Buffer.
+  BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS = nullptr);
+
+  ~BitcodeWriter();
+
+  /// Attempt to write a symbol table to the bitcode file. This must be called
+  /// at most once after all modules have been written.
+  ///
+  /// A reader does not require a symbol table to interpret a bitcode file;
+  /// the symbol table is needed only to improve link-time performance. So
+  /// this function may decide not to write a symbol table. It may so decide
+  /// if, for example, the target is unregistered or the IR is malformed.
+  void writeSymtab();
+
+  /// Write the bitcode file's string table. This must be called exactly once
+  /// after all modules and the optional symbol table have been written.
+  void writeStrtab();
+
+  /// Copy the string table for another module into this bitcode file. This
+  /// should be called after copying the module itself into the bitcode file.
+  void copyStrtab(StringRef Strtab);
+
+  /// Write the specified module to the buffer specified at construction time.
+  void writeModule(const Module &M);
+};
+
+/// Write the specified module to the specified raw output stream.
+///
+/// For streams where it matters, the given stream should be in "binary"
+/// mode.
+void WriteDXILToFile(const Module &M, raw_ostream &Out);
+
+} // namespace dxil
+
+} // namespace llvm

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
new file mode 100644
index 0000000000000..286b2c8a20af1
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
@@ -0,0 +1,1188 @@
+//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+// Forked from lib/Bitcode/Writer
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILValueEnumerator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstddef>
+#include <iterator>
+#include <tuple>
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+
+struct OrderMap {
+  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
+  unsigned LastGlobalConstantID = 0;
+  unsigned LastGlobalValueID = 0;
+
+  OrderMap() = default;
+
+  bool isGlobalConstant(unsigned ID) const {
+    return ID <= LastGlobalConstantID;
+  }
+
+  bool isGlobalValue(unsigned ID) const {
+    return ID <= LastGlobalValueID && !isGlobalConstant(ID);
+  }
+
+  unsigned size() const { return IDs.size(); }
+  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
+
+  std::pair<unsigned, bool> lookup(const Value *V) const {
+    return IDs.lookup(V);
+  }
+
+  void index(const Value *V) {
+    // Explicitly sequence get-size and insert-value operations to avoid UB.
+    unsigned ID = IDs.size() + 1;
+    IDs[V].first = ID;
+  }
+};
+
+} // end anonymous namespace
+
+static void orderValue(const Value *V, OrderMap &OM) {
+  if (OM.lookup(V).first)
+    return;
+
+  if (const Constant *C = dyn_cast<Constant>(V)) {
+    if (C->getNumOperands() && !isa<GlobalValue>(C)) {
+      for (const Value *Op : C->operands())
+        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+          orderValue(Op, OM);
+      if (auto *CE = dyn_cast<ConstantExpr>(C))
+        if (CE->getOpcode() == Instruction::ShuffleVector)
+          orderValue(CE->getShuffleMaskForBitcode(), OM);
+    }
+  }
+
+  // Note: we cannot cache this lookup above, since inserting into the map
+  // changes the map's size, and thus affects the other IDs.
+  OM.index(V);
+}
+
+static OrderMap orderModule(const Module &M) {
+  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
+  // and ValueEnumerator::incorporateFunction().
+  OrderMap OM;
+
+  // In the reader, initializers of GlobalValues are set *after* all the
+  // globals have been read.  Rather than awkwardly modeling this behaviour
+  // directly in predictValueUseListOrderImpl(), just assign IDs to
+  // initializers of GlobalValues before GlobalValues themselves to model this
+  // implicitly.
+  for (const GlobalVariable &G : M.globals())
+    if (G.hasInitializer())
+      if (!isa<GlobalValue>(G.getInitializer()))
+        orderValue(G.getInitializer(), OM);
+  for (const GlobalAlias &A : M.aliases())
+    if (!isa<GlobalValue>(A.getAliasee()))
+      orderValue(A.getAliasee(), OM);
+  for (const GlobalIFunc &I : M.ifuncs())
+    if (!isa<GlobalValue>(I.getResolver()))
+      orderValue(I.getResolver(), OM);
+  for (const Function &F : M) {
+    for (const Use &U : F.operands())
+      if (!isa<GlobalValue>(U.get()))
+        orderValue(U.get(), OM);
+  }
+
+  // As constants used in metadata operands are emitted as module-level
+  // constants, we must order them before other operands. Also, we must order
+  // these before global values, as these will be read before setting the
+  // global values' initializers. The latter matters for constants which have
+  // uses towards other constants that are used as initializers.
+  auto orderConstantValue = [&OM](const Value *V) {
+    if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
+      orderValue(V, OM);
+  };
+  for (const Function &F : M) {
+    if (F.isDeclaration())
+      continue;
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB)
+        for (const Value *V : I.operands()) {
+          if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
+            if (const auto *VAM =
+                    dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
+              orderConstantValue(VAM->getValue());
+            } else if (const auto *AL =
+                           dyn_cast<DIArgList>(MAV->getMetadata())) {
+              for (const auto *VAM : AL->getArgs())
+                orderConstantValue(VAM->getValue());
+            }
+          }
+        }
+  }
+  OM.LastGlobalConstantID = OM.size();
+
+  // Initializers of GlobalValues are processed in
+  // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
+  // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
+  // by giving IDs in reverse order.
+  //
+  // Since GlobalValues never reference each other directly (just through
+  // initializers), their relative IDs only matter for determining order of
+  // uses in their initializers.
+  for (const Function &F : M)
+    orderValue(&F, OM);
+  for (const GlobalAlias &A : M.aliases())
+    orderValue(&A, OM);
+  for (const GlobalIFunc &I : M.ifuncs())
+    orderValue(&I, OM);
+  for (const GlobalVariable &G : M.globals())
+    orderValue(&G, OM);
+  OM.LastGlobalValueID = OM.size();
+
+  for (const Function &F : M) {
+    if (F.isDeclaration())
+      continue;
+    // Here we need to match the union of ValueEnumerator::incorporateFunction()
+    // and WriteFunction().  Basic blocks are implicitly declared before
+    // anything else (by declaring their size).
+    for (const BasicBlock &BB : F)
+      orderValue(&BB, OM);
+    for (const Argument &A : F.args())
+      orderValue(&A, OM);
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB) {
+        for (const Value *Op : I.operands())
+          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+              isa<InlineAsm>(*Op))
+            orderValue(Op, OM);
+        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+          orderValue(SVI->getShuffleMaskForBitcode(), OM);
+      }
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB)
+        orderValue(&I, OM);
+  }
+  return OM;
+}
+
+static void predictValueUseListOrderImpl(const Value *V, const Function *F,
+                                         unsigned ID, const OrderMap &OM,
+                                         UseListOrderStack &Stack) {
+  // Predict use-list order for this one.
+  using Entry = std::pair<const Use *, unsigned>;
+  SmallVector<Entry, 64> List;
+  for (const Use &U : V->uses())
+    // Check if this user will be serialized.
+    if (OM.lookup(U.getUser()).first)
+      List.push_back(std::make_pair(&U, List.size()));
+
+  if (List.size() < 2)
+    // We may have lost some users.
+    return;
+
+  bool IsGlobalValue = OM.isGlobalValue(ID);
+  llvm::sort(List, [&](const Entry &L, const Entry &R) {
+    const Use *LU = L.first;
+    const Use *RU = R.first;
+    if (LU == RU)
+      return false;
+
+    auto LID = OM.lookup(LU->getUser()).first;
+    auto RID = OM.lookup(RU->getUser()).first;
+
+    // Global values are processed in reverse order.
+    //
+    // Moreover, initializers of GlobalValues are set *after* all the globals
+    // have been read (despite having earlier IDs).  Rather than awkwardly
+    // modeling this behaviour here, orderModule() has assigned IDs to
+    // initializers of GlobalValues before GlobalValues themselves.
+    if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) {
+      if (LID == RID)
+        return LU->getOperandNo() > RU->getOperandNo();
+      return LID < RID;
+    }
+
+    // If ID is 4, then expect: 7 6 5 1 2 3.
+    if (LID < RID) {
+      if (RID <= ID)
+        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+          return true;
+      return false;
+    }
+    if (RID < LID) {
+      if (LID <= ID)
+        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+          return false;
+      return true;
+    }
+
+    // LID and RID are equal, so we have 
diff erent operands of the same user.
+    // Assume operands are added in order for all instructions.
+    if (LID <= ID)
+      if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+        return LU->getOperandNo() < RU->getOperandNo();
+    return LU->getOperandNo() > RU->getOperandNo();
+  });
+
+  if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
+        return L.second < R.second;
+      }))
+    // Order is already correct.
+    return;
+
+  // Store the shuffle.
+  Stack.emplace_back(V, F, List.size());
+  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
+  for (size_t I = 0, E = List.size(); I != E; ++I)
+    Stack.back().Shuffle[I] = List[I].second;
+}
+
+static void predictValueUseListOrder(const Value *V, const Function *F,
+                                     OrderMap &OM, UseListOrderStack &Stack) {
+  auto &IDPair = OM[V];
+  assert(IDPair.first && "Unmapped value");
+  if (IDPair.second)
+    // Already predicted.
+    return;
+
+  // Do the actual prediction.
+  IDPair.second = true;
+  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
+    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
+
+  // Recursive descent into constants.
+  if (const Constant *C = dyn_cast<Constant>(V)) {
+    if (C->getNumOperands()) { // Visit GlobalValues.
+      for (const Value *Op : C->operands())
+        if (isa<Constant>(Op)) // Visit GlobalValues.
+          predictValueUseListOrder(Op, F, OM, Stack);
+      if (auto *CE = dyn_cast<ConstantExpr>(C))
+        if (CE->getOpcode() == Instruction::ShuffleVector)
+          predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
+                                   Stack);
+    }
+  }
+}
+
+static UseListOrderStack predictUseListOrder(const Module &M) {
+  OrderMap OM = orderModule(M);
+
+  // Use-list orders need to be serialized after all the users have been added
+  // to a value, or else the shuffles will be incomplete.  Store them per
+  // function in a stack.
+  //
+  // Aside from function order, the order of values doesn't matter much here.
+  UseListOrderStack Stack;
+
+  // We want to visit the functions backward now so we can list function-local
+  // constants in the last Function they're used in.  Module-level constants
+  // have already been visited above.
+  for (const Function &F : llvm::reverse(M)) {
+    if (F.isDeclaration())
+      continue;
+    for (const BasicBlock &BB : F)
+      predictValueUseListOrder(&BB, &F, OM, Stack);
+    for (const Argument &A : F.args())
+      predictValueUseListOrder(&A, &F, OM, Stack);
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB) {
+        for (const Value *Op : I.operands())
+          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
+            predictValueUseListOrder(Op, &F, OM, Stack);
+        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+          predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
+                                   Stack);
+      }
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB)
+        predictValueUseListOrder(&I, &F, OM, Stack);
+  }
+
+  // Visit globals last, since the module-level use-list block will be seen
+  // before the function bodies are processed.
+  for (const GlobalVariable &G : M.globals())
+    predictValueUseListOrder(&G, nullptr, OM, Stack);
+  for (const Function &F : M)
+    predictValueUseListOrder(&F, nullptr, OM, Stack);
+  for (const GlobalAlias &A : M.aliases())
+    predictValueUseListOrder(&A, nullptr, OM, Stack);
+  for (const GlobalIFunc &I : M.ifuncs())
+    predictValueUseListOrder(&I, nullptr, OM, Stack);
+  for (const GlobalVariable &G : M.globals())
+    if (G.hasInitializer())
+      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
+  for (const GlobalAlias &A : M.aliases())
+    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+  for (const GlobalIFunc &I : M.ifuncs())
+    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
+  for (const Function &F : M) {
+    for (const Use &U : F.operands())
+      predictValueUseListOrder(U.get(), nullptr, OM, Stack);
+  }
+
+  return Stack;
+}
+
+static bool isIntOrIntVectorValue(const std::pair<const Value *, unsigned> &V) {
+  return V.first->getType()->isIntOrIntVectorTy();
+}
+
+ValueEnumerator::ValueEnumerator(const Module &M,
+                                 bool ShouldPreserveUseListOrder)
+    : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
+  if (ShouldPreserveUseListOrder)
+    UseListOrders = predictUseListOrder(M);
+
+  // Enumerate the global variables.
+  for (const GlobalVariable &GV : M.globals()) {
+    EnumerateValue(&GV);
+    EnumerateType(GV.getValueType());
+  }
+
+  // Enumerate the functions.
+  for (const Function &F : M) {
+    EnumerateValue(&F);
+    EnumerateType(F.getValueType());
+    EnumerateAttributes(F.getAttributes());
+  }
+
+  // Enumerate the aliases.
+  for (const GlobalAlias &GA : M.aliases()) {
+    EnumerateValue(&GA);
+    EnumerateType(GA.getValueType());
+  }
+
+  // Enumerate the ifuncs.
+  for (const GlobalIFunc &GIF : M.ifuncs()) {
+    EnumerateValue(&GIF);
+    EnumerateType(GIF.getValueType());
+  }
+
+  // Remember what is the cutoff between globalvalue's and other constants.
+  unsigned FirstConstant = Values.size();
+
+  // Enumerate the global variable initializers and attributes.
+  for (const GlobalVariable &GV : M.globals()) {
+    if (GV.hasInitializer())
+      EnumerateValue(GV.getInitializer());
+    if (GV.hasAttributes())
+      EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
+  }
+
+  // Enumerate the aliasees.
+  for (const GlobalAlias &GA : M.aliases())
+    EnumerateValue(GA.getAliasee());
+
+  // Enumerate the ifunc resolvers.
+  for (const GlobalIFunc &GIF : M.ifuncs())
+    EnumerateValue(GIF.getResolver());
+
+  // Enumerate any optional Function data.
+  for (const Function &F : M)
+    for (const Use &U : F.operands())
+      EnumerateValue(U.get());
+
+  // Enumerate the metadata type.
+  //
+  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
+  // only encodes the metadata type when it's used as a value.
+  EnumerateType(Type::getMetadataTy(M.getContext()));
+
+  // Insert constants and metadata that are named at module level into the slot
+  // pool so that the module symbol table can refer to them...
+  EnumerateValueSymbolTable(M.getValueSymbolTable());
+  EnumerateNamedMetadata(M);
+
+  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
+  for (const GlobalVariable &GV : M.globals()) {
+    MDs.clear();
+    GV.getAllMetadata(MDs);
+    for (const auto &I : MDs)
+      // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
+      // to write metadata to the global variable's own metadata block
+      // (PR28134).
+      EnumerateMetadata(nullptr, I.second);
+  }
+
+  // Enumerate types used by function bodies and argument lists.
+  for (const Function &F : M) {
+    for (const Argument &A : F.args())
+      EnumerateType(A.getType());
+
+    // Enumerate metadata attached to this function.
+    MDs.clear();
+    F.getAllMetadata(MDs);
+    for (const auto &I : MDs)
+      EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
+
+    for (const BasicBlock &BB : F)
+      for (const Instruction &I : BB) {
+        for (const Use &Op : I.operands()) {
+          auto *MD = dyn_cast<MetadataAsValue>(&Op);
+          if (!MD) {
+            EnumerateOperandType(Op);
+            continue;
+          }
+
+          // Local metadata is enumerated during function-incorporation, but
+          // any ConstantAsMetadata arguments in a DIArgList should be examined
+          // now.
+          if (isa<LocalAsMetadata>(MD->getMetadata()))
+            continue;
+          if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
+            for (auto *VAM : AL->getArgs())
+              if (isa<ConstantAsMetadata>(VAM))
+                EnumerateMetadata(&F, VAM);
+            continue;
+          }
+
+          EnumerateMetadata(&F, MD->getMetadata());
+        }
+        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+          EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
+        if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
+          EnumerateType(GEP->getSourceElementType());
+        if (auto *AI = dyn_cast<AllocaInst>(&I))
+          EnumerateType(AI->getAllocatedType());
+        EnumerateType(I.getType());
+        if (const auto *Call = dyn_cast<CallBase>(&I)) {
+          EnumerateAttributes(Call->getAttributes());
+          EnumerateType(Call->getFunctionType());
+        }
+
+        // Enumerate metadata attached with this instruction.
+        MDs.clear();
+        I.getAllMetadataOtherThanDebugLoc(MDs);
+        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
+          EnumerateMetadata(&F, MDs[i].second);
+
+        // Don't enumerate the location directly -- it has a special record
+        // type -- but enumerate its operands.
+        if (DILocation *L = I.getDebugLoc())
+          for (const Metadata *Op : L->operands())
+            EnumerateMetadata(&F, Op);
+      }
+  }
+
+  // Optimize constant ordering.
+  OptimizeConstants(FirstConstant, Values.size());
+
+  // Organize metadata ordering.
+  organizeMetadata();
+}
+
+unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
+  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
+  assert(I != InstructionMap.end() && "Instruction is not mapped!");
+  return I->second;
+}
+
+unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
+  unsigned ComdatID = Comdats.idFor(C);
+  assert(ComdatID && "Comdat not found!");
+  return ComdatID;
+}
+
+void ValueEnumerator::setInstructionID(const Instruction *I) {
+  InstructionMap[I] = InstructionCount++;
+}
+
+unsigned ValueEnumerator::getValueID(const Value *V) const {
+  if (auto *MD = dyn_cast<MetadataAsValue>(V))
+    return getMetadataID(MD->getMetadata());
+
+  ValueMapType::const_iterator I = ValueMap.find(V);
+  assert(I != ValueMap.end() && "Value not in slotcalculator!");
+  return I->second - 1;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
+  print(dbgs(), ValueMap, "Default");
+  dbgs() << '\n';
+  print(dbgs(), MetadataMap, "MetaData");
+  dbgs() << '\n';
+}
+#endif
+
+void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
+                            const char *Name) const {
+  OS << "Map Name: " << Name << "\n";
+  OS << "Size: " << Map.size() << "\n";
+  for (const auto &I : Map) {
+    const Value *V = I.first;
+    if (V->hasName())
+      OS << "Value: " << V->getName();
+    else
+      OS << "Value: [null]\n";
+    V->print(errs());
+    errs() << '\n';
+
+    OS << " Uses(" << V->getNumUses() << "):";
+    for (const Use &U : V->uses()) {
+      if (&U != &*V->use_begin())
+        OS << ",";
+      if (U->hasName())
+        OS << " " << U->getName();
+      else
+        OS << " [null]";
+    }
+    OS << "\n\n";
+  }
+}
+
+void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
+                            const char *Name) const {
+  OS << "Map Name: " << Name << "\n";
+  OS << "Size: " << Map.size() << "\n";
+  for (const auto &I : Map) {
+    const Metadata *MD = I.first;
+    OS << "Metadata: slot = " << I.second.ID << "\n";
+    OS << "Metadata: function = " << I.second.F << "\n";
+    MD->print(OS);
+    OS << "\n";
+  }
+}
+
+/// OptimizeConstants - Reorder constant pool for denser encoding.
+void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
+  if (CstStart == CstEnd || CstStart + 1 == CstEnd)
+    return;
+
+  if (ShouldPreserveUseListOrder)
+    // Optimizing constants makes the use-list order 
diff icult to predict.
+    // Disable it for now when trying to preserve the order.
+    return;
+
+  std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
+                   [this](const std::pair<const Value *, unsigned> &LHS,
+                          const std::pair<const Value *, unsigned> &RHS) {
+                     // Sort by plane.
+                     if (LHS.first->getType() != RHS.first->getType())
+                       return getTypeID(LHS.first->getType()) <
+                              getTypeID(RHS.first->getType());
+                     // Then by frequency.
+                     return LHS.second > RHS.second;
+                   });
+
+  // Ensure that integer and vector of integer constants are at the start of the
+  // constant pool.  This is important so that GEP structure indices come before
+  // gep constant exprs.
+  std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
+                        isIntOrIntVectorValue);
+
+  // Rebuild the modified portion of ValueMap.
+  for (; CstStart != CstEnd; ++CstStart)
+    ValueMap[Values[CstStart].first] = CstStart + 1;
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+       VI != VE; ++VI)
+    EnumerateValue(VI->getValue());
+}
+
+/// Insert all of the values referenced by named metadata in the specified
+/// module.
+void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
+  for (const auto &I : M.named_metadata())
+    EnumerateNamedMDNode(&I);
+}
+
+void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
+  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
+    EnumerateMetadata(nullptr, MD->getOperand(i));
+}
+
+unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
+  return F ? getValueID(F) + 1 : 0;
+}
+
+void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
+  EnumerateMetadata(getMetadataFunctionID(F), MD);
+}
+
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+    const Function &F, const LocalAsMetadata *Local) {
+  EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
+}
+
+void ValueEnumerator::EnumerateFunctionLocalListMetadata(
+    const Function &F, const DIArgList *ArgList) {
+  EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
+}
+
+void ValueEnumerator::dropFunctionFromMetadata(
+    MetadataMapType::value_type &FirstMD) {
+  SmallVector<const MDNode *, 64> Worklist;
+  auto push = [&Worklist](MetadataMapType::value_type &MD) {
+    auto &Entry = MD.second;
+
+    // Nothing to do if this metadata isn't tagged.
+    if (!Entry.F)
+      return;
+
+    // Drop the function tag.
+    Entry.F = 0;
+
+    // If this is has an ID and is an MDNode, then its operands have entries as
+    // well.  We need to drop the function from them too.
+    if (Entry.ID)
+      if (auto *N = dyn_cast<MDNode>(MD.first))
+        Worklist.push_back(N);
+  };
+  push(FirstMD);
+  while (!Worklist.empty())
+    for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
+      if (!Op)
+        continue;
+      auto MD = MetadataMap.find(Op);
+      if (MD != MetadataMap.end())
+        push(*MD);
+    }
+}
+
+void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
+  // It's vital for reader efficiency that uniqued subgraphs are done in
+  // post-order; it's expensive when their operands have forward references.
+  // If a distinct node is referenced from a uniqued node, it'll be delayed
+  // until the uniqued subgraph has been completely traversed.
+  SmallVector<const MDNode *, 32> DelayedDistinctNodes;
+
+  // Start by enumerating MD, and then work through its transitive operands in
+  // post-order.  This requires a depth-first search.
+  SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
+  if (const MDNode *N = enumerateMetadataImpl(F, MD))
+    Worklist.push_back(std::make_pair(N, N->op_begin()));
+
+  while (!Worklist.empty()) {
+    const MDNode *N = Worklist.back().first;
+
+    // Enumerate operands until we hit a new node.  We need to traverse these
+    // nodes' operands before visiting the rest of N's operands.
+    MDNode::op_iterator I = std::find_if(
+        Worklist.back().second, N->op_end(),
+        [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
+    if (I != N->op_end()) {
+      auto *Op = cast<MDNode>(*I);
+      Worklist.back().second = ++I;
+
+      // Delay traversing Op if it's a distinct node and N is uniqued.
+      if (Op->isDistinct() && !N->isDistinct())
+        DelayedDistinctNodes.push_back(Op);
+      else
+        Worklist.push_back(std::make_pair(Op, Op->op_begin()));
+      continue;
+    }
+
+    // All the operands have been visited.  Now assign an ID.
+    Worklist.pop_back();
+    MDs.push_back(N);
+    MetadataMap[N].ID = MDs.size();
+
+    // Flush out any delayed distinct nodes; these are all the distinct nodes
+    // that are leaves in last uniqued subgraph.
+    if (Worklist.empty() || Worklist.back().first->isDistinct()) {
+      for (const MDNode *N : DelayedDistinctNodes)
+        Worklist.push_back(std::make_pair(N, N->op_begin()));
+      DelayedDistinctNodes.clear();
+    }
+  }
+}
+
+const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F,
+                                                     const Metadata *MD) {
+  if (!MD)
+    return nullptr;
+
+  assert(
+      (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
+      "Invalid metadata kind");
+
+  auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
+  MDIndex &Entry = Insertion.first->second;
+  if (!Insertion.second) {
+    // Already mapped.  If F doesn't match the function tag, drop it.
+    if (Entry.hasDifferentFunction(F))
+      dropFunctionFromMetadata(*Insertion.first);
+    return nullptr;
+  }
+
+  // Don't assign IDs to metadata nodes.
+  if (auto *N = dyn_cast<MDNode>(MD))
+    return N;
+
+  // Save the metadata.
+  MDs.push_back(MD);
+  Entry.ID = MDs.size();
+
+  // Enumerate the constant, if any.
+  if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
+    EnumerateValue(C->getValue());
+
+  return nullptr;
+}
+
+/// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
+/// information reachable from the metadata.
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+    unsigned F, const LocalAsMetadata *Local) {
+  assert(F && "Expected a function");
+
+  // Check to see if it's already in!
+  MDIndex &Index = MetadataMap[Local];
+  if (Index.ID) {
+    assert(Index.F == F && "Expected the same function");
+    return;
+  }
+
+  MDs.push_back(Local);
+  Index.F = F;
+  Index.ID = MDs.size();
+
+  EnumerateValue(Local->getValue());
+}
+
+/// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
+/// information reachable from the metadata.
+void ValueEnumerator::EnumerateFunctionLocalListMetadata(
+    unsigned F, const DIArgList *ArgList) {
+  assert(F && "Expected a function");
+
+  // Check to see if it's already in!
+  MDIndex &Index = MetadataMap[ArgList];
+  if (Index.ID) {
+    assert(Index.F == F && "Expected the same function");
+    return;
+  }
+
+  for (ValueAsMetadata *VAM : ArgList->getArgs()) {
+    if (isa<LocalAsMetadata>(VAM)) {
+      assert(MetadataMap.count(VAM) &&
+             "LocalAsMetadata should be enumerated before DIArgList");
+      assert(MetadataMap[VAM].F == F &&
+             "Expected LocalAsMetadata in the same function");
+    } else {
+      assert(isa<ConstantAsMetadata>(VAM) &&
+             "Expected LocalAsMetadata or ConstantAsMetadata");
+      assert(ValueMap.count(VAM->getValue()) &&
+             "Constant should be enumerated beforeDIArgList");
+      EnumerateMetadata(F, VAM);
+    }
+  }
+
+  MDs.push_back(ArgList);
+  Index.F = F;
+  Index.ID = MDs.size();
+}
+
+static unsigned getMetadataTypeOrder(const Metadata *MD) {
+  // Strings are emitted in bulk and must come first.
+  if (isa<MDString>(MD))
+    return 0;
+
+  // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
+  // to the front since we can detect it.
+  auto *N = dyn_cast<MDNode>(MD);
+  if (!N)
+    return 1;
+
+  // The reader is fast forward references for distinct node operands, but slow
+  // when uniqued operands are unresolved.
+  return N->isDistinct() ? 2 : 3;
+}
+
+void ValueEnumerator::organizeMetadata() {
+  assert(MetadataMap.size() == MDs.size() &&
+         "Metadata map and vector out of sync");
+
+  if (MDs.empty())
+    return;
+
+  // Copy out the index information from MetadataMap in order to choose a new
+  // order.
+  SmallVector<MDIndex, 64> Order;
+  Order.reserve(MetadataMap.size());
+  for (const Metadata *MD : MDs)
+    Order.push_back(MetadataMap.lookup(MD));
+
+  // Partition:
+  //   - by function, then
+  //   - by isa<MDString>
+  // and then sort by the original/current ID.  Since the IDs are guaranteed to
+  // be unique, the result of std::sort will be deterministic.  There's no need
+  // for std::stable_sort.
+  llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
+    return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
+           std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
+  });
+
+  // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
+  // and fix up MetadataMap.
+  std::vector<const Metadata *> OldMDs;
+  MDs.swap(OldMDs);
+  MDs.reserve(OldMDs.size());
+  for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
+    auto *MD = Order[I].get(OldMDs);
+    MDs.push_back(MD);
+    MetadataMap[MD].ID = I + 1;
+    if (isa<MDString>(MD))
+      ++NumMDStrings;
+  }
+
+  // Return early if there's nothing for the functions.
+  if (MDs.size() == Order.size())
+    return;
+
+  // Build the function metadata ranges.
+  MDRange R;
+  FunctionMDs.reserve(OldMDs.size());
+  unsigned PrevF = 0;
+  for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
+       ++I) {
+    unsigned F = Order[I].F;
+    if (!PrevF) {
+      PrevF = F;
+    } else if (PrevF != F) {
+      R.Last = FunctionMDs.size();
+      std::swap(R, FunctionMDInfo[PrevF]);
+      R.First = FunctionMDs.size();
+
+      ID = MDs.size();
+      PrevF = F;
+    }
+
+    auto *MD = Order[I].get(OldMDs);
+    FunctionMDs.push_back(MD);
+    MetadataMap[MD].ID = ++ID;
+    if (isa<MDString>(MD))
+      ++R.NumStrings;
+  }
+  R.Last = FunctionMDs.size();
+  FunctionMDInfo[PrevF] = R;
+}
+
+void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
+  NumModuleMDs = MDs.size();
+
+  auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
+  NumMDStrings = R.NumStrings;
+  MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
+             FunctionMDs.begin() + R.Last);
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
+  assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
+
+  // Check to see if it's already in!
+  unsigned &ValueID = ValueMap[V];
+  if (ValueID) {
+    // Increment use count.
+    Values[ValueID - 1].second++;
+    return;
+  }
+
+  if (auto *GO = dyn_cast<GlobalObject>(V))
+    if (const Comdat *C = GO->getComdat())
+      Comdats.insert(C);
+
+  // Enumerate the type of this value.
+  EnumerateType(V->getType());
+
+  if (const Constant *C = dyn_cast<Constant>(V)) {
+    if (isa<GlobalValue>(C)) {
+      // Initializers for globals are handled explicitly elsewhere.
+    } else if (C->getNumOperands()) {
+      // If a constant has operands, enumerate them.  This makes sure that if a
+      // constant has uses (for example an array of const ints), that they are
+      // inserted also.
+
+      // We prefer to enumerate them with values before we enumerate the user
+      // itself.  This makes it more likely that we can avoid forward references
+      // in the reader.  We know that there can be no cycles in the constants
+      // graph that don't go through a global variable.
+      for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;
+           ++I)
+        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
+          EnumerateValue(*I);
+      if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+        if (CE->getOpcode() == Instruction::ShuffleVector)
+          EnumerateValue(CE->getShuffleMaskForBitcode());
+        if (auto *GEP = dyn_cast<GEPOperator>(CE))
+          EnumerateType(GEP->getSourceElementType());
+      }
+
+      // Finally, add the value.  Doing this could make the ValueID reference be
+      // dangling, don't reuse it.
+      Values.push_back(std::make_pair(V, 1U));
+      ValueMap[V] = Values.size();
+      return;
+    }
+  }
+
+  // Add the value.
+  Values.push_back(std::make_pair(V, 1U));
+  ValueID = Values.size();
+}
+
+void ValueEnumerator::EnumerateType(Type *Ty) {
+  unsigned *TypeID = &TypeMap[Ty];
+
+  // We've already seen this type.
+  if (*TypeID)
+    return;
+
+  // If it is a non-anonymous struct, mark the type as being visited so that we
+  // don't recursively visit it.  This is safe because we allow forward
+  // references of these in the bitcode reader.
+  if (StructType *STy = dyn_cast<StructType>(Ty))
+    if (!STy->isLiteral())
+      *TypeID = ~0U;
+
+  // Enumerate all of the subtypes before we enumerate this type.  This ensures
+  // that the type will be enumerated in an order that can be directly built.
+  for (Type *SubTy : Ty->subtypes())
+    EnumerateType(SubTy);
+
+  // Refresh the TypeID pointer in case the table rehashed.
+  TypeID = &TypeMap[Ty];
+
+  // Check to see if we got the pointer another way.  This can happen when
+  // enumerating recursive types that hit the base case deeper than they start.
+  //
+  // If this is actually a struct that we are treating as forward ref'able,
+  // then emit the definition now that all of its contents are available.
+  if (*TypeID && *TypeID != ~0U)
+    return;
+
+  // Add this type now that its contents are all happily enumerated.
+  Types.push_back(Ty);
+
+  *TypeID = Types.size();
+}
+
+// Enumerate the types for the specified value.  If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+  EnumerateType(V->getType());
+
+  assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
+
+  const Constant *C = dyn_cast<Constant>(V);
+  if (!C)
+    return;
+
+  // If this constant is already enumerated, ignore it, we know its type must
+  // be enumerated.
+  if (ValueMap.count(C))
+    return;
+
+  // This constant may have operands, make sure to enumerate the types in
+  // them.
+  for (const Value *Op : C->operands()) {
+    // Don't enumerate basic blocks here, this happens as operands to
+    // blockaddress.
+    if (isa<BasicBlock>(Op))
+      continue;
+
+    EnumerateOperandType(Op);
+  }
+  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+    if (CE->getOpcode() == Instruction::ShuffleVector)
+      EnumerateOperandType(CE->getShuffleMaskForBitcode());
+    if (CE->getOpcode() == Instruction::GetElementPtr)
+      EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
+  }
+}
+
+void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
+  if (PAL.isEmpty())
+    return; // null is always 0.
+
+  // Do a lookup.
+  unsigned &Entry = AttributeListMap[PAL];
+  if (Entry == 0) {
+    // Never saw this before, add it.
+    AttributeLists.push_back(PAL);
+    Entry = AttributeLists.size();
+  }
+
+  // Do lookups for all attribute groups.
+  for (unsigned i : PAL.indexes()) {
+    AttributeSet AS = PAL.getAttributes(i);
+    if (!AS.hasAttributes())
+      continue;
+    IndexAndAttrSet Pair = {i, AS};
+    unsigned &Entry = AttributeGroupMap[Pair];
+    if (Entry == 0) {
+      AttributeGroups.push_back(Pair);
+      Entry = AttributeGroups.size();
+
+      for (Attribute Attr : AS) {
+        if (Attr.isTypeAttribute())
+          EnumerateType(Attr.getValueAsType());
+      }
+    }
+  }
+}
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+  InstructionCount = 0;
+  NumModuleValues = Values.size();
+
+  // Add global metadata to the function block.  This doesn't include
+  // LocalAsMetadata.
+  incorporateFunctionMetadata(F);
+
+  // Adding function arguments to the value table.
+  for (const auto &I : F.args()) {
+    EnumerateValue(&I);
+    if (I.hasAttribute(Attribute::ByVal))
+      EnumerateType(I.getParamByValType());
+    else if (I.hasAttribute(Attribute::StructRet))
+      EnumerateType(I.getParamStructRetType());
+    else if (I.hasAttribute(Attribute::ByRef))
+      EnumerateType(I.getParamByRefType());
+  }
+  FirstFuncConstantID = Values.size();
+
+  // Add all function-level constants to the value table.
+  for (const BasicBlock &BB : F) {
+    for (const Instruction &I : BB) {
+      for (const Use &OI : I.operands()) {
+        if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
+          EnumerateValue(OI);
+      }
+      if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+        EnumerateValue(SVI->getShuffleMaskForBitcode());
+    }
+    BasicBlocks.push_back(&BB);
+    ValueMap[&BB] = BasicBlocks.size();
+  }
+
+  // Optimize the constant layout.
+  OptimizeConstants(FirstFuncConstantID, Values.size());
+
+  // Add the function's parameter attributes so they are available for use in
+  // the function's instruction.
+  EnumerateAttributes(F.getAttributes());
+
+  FirstInstID = Values.size();
+
+  SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
+  SmallVector<DIArgList *, 8> ArgListMDVector;
+  // Add all of the instructions.
+  for (const BasicBlock &BB : F) {
+    for (const Instruction &I : BB) {
+      for (const Use &OI : I.operands()) {
+        if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
+          if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
+            // Enumerate metadata after the instructions they might refer to.
+            FnLocalMDVector.push_back(Local);
+          } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
+            ArgListMDVector.push_back(ArgList);
+            for (ValueAsMetadata *VMD : ArgList->getArgs()) {
+              if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
+                // Enumerate metadata after the instructions they might refer
+                // to.
+                FnLocalMDVector.push_back(Local);
+              }
+            }
+          }
+        }
+      }
+
+      if (!I.getType()->isVoidTy())
+        EnumerateValue(&I);
+    }
+  }
+
+  // Add all of the function-local metadata.
+  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
+    // At this point, every local values have been incorporated, we shouldn't
+    // have a metadata operand that references a value that hasn't been seen.
+    assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
+           "Missing value for metadata operand");
+    EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
+  }
+  // DIArgList entries must come after function-local metadata, as it is not
+  // possible to forward-reference them.
+  for (const DIArgList *ArgList : ArgListMDVector)
+    EnumerateFunctionLocalListMetadata(F, ArgList);
+}
+
+void ValueEnumerator::purgeFunction() {
+  /// Remove purged values from the ValueMap.
+  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+    ValueMap.erase(Values[i].first);
+  for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
+    MetadataMap.erase(MDs[i]);
+  for (const BasicBlock *BB : BasicBlocks)
+    ValueMap.erase(BB);
+
+  Values.resize(NumModuleValues);
+  MDs.resize(NumModuleMDs);
+  BasicBlocks.clear();
+  NumMDStrings = 0;
+}
+
+static void IncorporateFunctionInfoGlobalBBIDs(
+    const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) {
+  unsigned Counter = 0;
+  for (const BasicBlock &BB : *F)
+    IDMap[&BB] = ++Counter;
+}
+
+/// getGlobalBasicBlockID - This returns the function-specific ID for the
+/// specified basic block.  This is relatively expensive information, so it
+/// should only be used by rare constructs such as address-of-label.
+unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
+  unsigned &Idx = GlobalBasicBlockIDs[BB];
+  if (Idx != 0)
+    return Idx - 1;
+
+  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
+  return getGlobalBasicBlockID(BB);
+}
+
+uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
+  return Log2_32_Ceil(getTypes().size() + 1);
+}

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h
new file mode 100644
index 0000000000000..c4a842bc5b38d
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h
@@ -0,0 +1,312 @@
+//===- DirectX/DXILWriter/ValueEnumerator.h - Number values -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This class gives values and types Unique ID's.
+// Forked from lib/Bitcode/Writer
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DXILWRITER_VALUEENUMERATOR_H
+#define LLVM_DXILWRITER_VALUEENUMERATOR_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/UseListOrder.h"
+#include <cassert>
+#include <cstdint>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+class BasicBlock;
+class Comdat;
+class DIArgList;
+class Function;
+class Instruction;
+class LocalAsMetadata;
+class MDNode;
+class Metadata;
+class Module;
+class NamedMDNode;
+class raw_ostream;
+class Type;
+class Value;
+class ValueSymbolTable;
+
+namespace dxil {
+
+class ValueEnumerator {
+public:
+  using TypeList = std::vector<Type *>;
+
+  // For each value, we remember its Value* and occurrence frequency.
+  using ValueList = std::vector<std::pair<const Value *, unsigned>>;
+
+  /// Attribute groups as encoded in bitcode are almost AttributeSets, but they
+  /// include the AttributeList index, so we have to track that in our map.
+  using IndexAndAttrSet = std::pair<unsigned, AttributeSet>;
+
+  UseListOrderStack UseListOrders;
+
+private:
+  using TypeMapType = DenseMap<Type *, unsigned>;
+  TypeMapType TypeMap;
+  TypeList Types;
+
+  using ValueMapType = DenseMap<const Value *, unsigned>;
+  ValueMapType ValueMap;
+  ValueList Values;
+
+  using ComdatSetType = UniqueVector<const Comdat *>;
+  ComdatSetType Comdats;
+
+  std::vector<const Metadata *> MDs;
+  std::vector<const Metadata *> FunctionMDs;
+
+  /// Index of information about a piece of metadata.
+  struct MDIndex {
+    unsigned F = 0;  ///< The ID of the function for this metadata, if any.
+    unsigned ID = 0; ///< The implicit ID of this metadata in bitcode.
+
+    MDIndex() = default;
+    explicit MDIndex(unsigned F) : F(F) {}
+
+    /// Check if this has a function tag, and it's 
diff erent from NewF.
+    bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; }
+
+    /// Fetch the MD this references out of the given metadata array.
+    const Metadata *get(ArrayRef<const Metadata *> MDs) const {
+      assert(ID && "Expected non-zero ID");
+      assert(ID <= MDs.size() && "Expected valid ID");
+      return MDs[ID - 1];
+    }
+  };
+
+  using MetadataMapType = DenseMap<const Metadata *, MDIndex>;
+  MetadataMapType MetadataMap;
+
+  /// Range of metadata IDs, as a half-open range.
+  struct MDRange {
+    unsigned First = 0;
+    unsigned Last = 0;
+
+    /// Number of strings in the prefix of the metadata range.
+    unsigned NumStrings = 0;
+
+    MDRange() = default;
+    explicit MDRange(unsigned First) : First(First) {}
+  };
+  SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo;
+
+  bool ShouldPreserveUseListOrder;
+
+  using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>;
+  AttributeGroupMapType AttributeGroupMap;
+  std::vector<IndexAndAttrSet> AttributeGroups;
+
+  using AttributeListMapType = DenseMap<AttributeList, unsigned>;
+  AttributeListMapType AttributeListMap;
+  std::vector<AttributeList> AttributeLists;
+
+  /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by
+  /// the "getGlobalBasicBlockID" method.
+  mutable DenseMap<const BasicBlock *, unsigned> GlobalBasicBlockIDs;
+
+  using InstructionMapType = DenseMap<const Instruction *, unsigned>;
+  InstructionMapType InstructionMap;
+  unsigned InstructionCount;
+
+  /// BasicBlocks - This contains all the basic blocks for the currently
+  /// incorporated function.  Their reverse mapping is stored in ValueMap.
+  std::vector<const BasicBlock *> BasicBlocks;
+
+  /// When a function is incorporated, this is the size of the Values list
+  /// before incorporation.
+  unsigned NumModuleValues;
+
+  /// When a function is incorporated, this is the size of the Metadatas list
+  /// before incorporation.
+  unsigned NumModuleMDs = 0;
+  unsigned NumMDStrings = 0;
+
+  unsigned FirstFuncConstantID;
+  unsigned FirstInstID;
+
+public:
+  ValueEnumerator(const Module &M, bool ShouldPreserveUseListOrder);
+  ValueEnumerator(const ValueEnumerator &) = delete;
+  ValueEnumerator &operator=(const ValueEnumerator &) = delete;
+
+  void dump() const;
+  void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const;
+  void print(raw_ostream &OS, const MetadataMapType &Map,
+             const char *Name) const;
+
+  unsigned getValueID(const Value *V) const;
+
+  unsigned getMetadataID(const Metadata *MD) const {
+    auto ID = getMetadataOrNullID(MD);
+    assert(ID != 0 && "Metadata not in slotcalculator!");
+    return ID - 1;
+  }
+
+  unsigned getMetadataOrNullID(const Metadata *MD) const {
+    return MetadataMap.lookup(MD).ID;
+  }
+
+  unsigned numMDs() const { return MDs.size(); }
+
+  bool shouldPreserveUseListOrder() const { return ShouldPreserveUseListOrder; }
+
+  unsigned getTypeID(Type *T) const {
+    TypeMapType::const_iterator I = TypeMap.find(T);
+    assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
+    return I->second - 1;
+  }
+
+  unsigned getInstructionID(const Instruction *I) const;
+  void setInstructionID(const Instruction *I);
+
+  unsigned getAttributeListID(AttributeList PAL) const {
+    if (PAL.isEmpty())
+      return 0; // Null maps to zero.
+    AttributeListMapType::const_iterator I = AttributeListMap.find(PAL);
+    assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!");
+    return I->second;
+  }
+
+  unsigned getAttributeGroupID(IndexAndAttrSet Group) const {
+    if (!Group.second.hasAttributes())
+      return 0; // Null maps to zero.
+    AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group);
+    assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!");
+    return I->second;
+  }
+
+  /// getFunctionConstantRange - Return the range of values that corresponds to
+  /// function-local constants.
+  void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
+    Start = FirstFuncConstantID;
+    End = FirstInstID;
+  }
+
+  const ValueList &getValues() const { return Values; }
+
+  /// Check whether the current block has any metadata to emit.
+  bool hasMDs() const { return NumModuleMDs < MDs.size(); }
+
+  /// Get the MDString metadata for this block.
+  ArrayRef<const Metadata *> getMDStrings() const {
+    return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings);
+  }
+
+  /// Get the non-MDString metadata for this block.
+  ArrayRef<const Metadata *> getNonMDStrings() const {
+    return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings);
+  }
+
+  const TypeList &getTypes() const { return Types; }
+
+  const std::vector<const BasicBlock *> &getBasicBlocks() const {
+    return BasicBlocks;
+  }
+
+  const std::vector<AttributeList> &getAttributeLists() const {
+    return AttributeLists;
+  }
+
+  const std::vector<IndexAndAttrSet> &getAttributeGroups() const {
+    return AttributeGroups;
+  }
+
+  const ComdatSetType &getComdats() const { return Comdats; }
+  unsigned getComdatID(const Comdat *C) const;
+
+  /// getGlobalBasicBlockID - This returns the function-specific ID for the
+  /// specified basic block.  This is relatively expensive information, so it
+  /// should only be used by rare constructs such as address-of-label.
+  unsigned getGlobalBasicBlockID(const BasicBlock *BB) const;
+
+  /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
+  /// use these two methods to get its data into the ValueEnumerator!
+  void incorporateFunction(const Function &F);
+
+  void purgeFunction();
+  uint64_t computeBitsRequiredForTypeIndicies() const;
+
+private:
+  void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
+
+  /// Reorder the reachable metadata.
+  ///
+  /// This is not just an optimization, but is mandatory for emitting MDString
+  /// correctly.
+  void organizeMetadata();
+
+  /// Drop the function tag from the transitive operands of the given node.
+  void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD);
+
+  /// Incorporate the function metadata.
+  ///
+  /// This should be called before enumerating LocalAsMetadata for the
+  /// function.
+  void incorporateFunctionMetadata(const Function &F);
+
+  /// Enumerate a single instance of metadata with the given function tag.
+  ///
+  /// If \c MD has already been enumerated, check that \c F matches its
+  /// function tag.  If not, call \a dropFunctionFromMetadata().
+  ///
+  /// Otherwise, mark \c MD as visited.  Assign it an ID, or just return it if
+  /// it's an \a MDNode.
+  const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD);
+
+  unsigned getMetadataFunctionID(const Function *F) const;
+
+  /// Enumerate reachable metadata in (almost) post-order.
+  ///
+  /// Enumerate all the metadata reachable from MD.  We want to minimize the
+  /// cost of reading bitcode records, and so the primary consideration is that
+  /// operands of uniqued nodes are resolved before the nodes are read.  This
+  /// avoids re-uniquing them on the context and factors away RAUW support.
+  ///
+  /// This algorithm guarantees that subgraphs of uniqued nodes are in
+  /// post-order.  Distinct subgraphs reachable only from a single uniqued node
+  /// will be in post-order.
+  ///
+  /// \note The relative order of a distinct and uniqued node is irrelevant.
+  /// \a organizeMetadata() will later partition distinct nodes ahead of
+  /// uniqued ones.
+  ///{
+  void EnumerateMetadata(const Function *F, const Metadata *MD);
+  void EnumerateMetadata(unsigned F, const Metadata *MD);
+  ///}
+
+  void EnumerateFunctionLocalMetadata(const Function &F,
+                                      const LocalAsMetadata *Local);
+  void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local);
+  void EnumerateFunctionLocalListMetadata(const Function &F,
+                                          const DIArgList *ArgList);
+  void EnumerateFunctionLocalListMetadata(unsigned F, const DIArgList *Arglist);
+  void EnumerateNamedMDNode(const NamedMDNode *NMD);
+  void EnumerateValue(const Value *V);
+  void EnumerateType(Type *T);
+  void EnumerateOperandType(const Value *V);
+  void EnumerateAttributes(AttributeList PAL);
+
+  void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+  void EnumerateNamedMetadata(const Module &M);
+};
+
+} // end namespace dxil
+} // end namespace llvm
+
+#endif // LLVM_DXILWRITER_VALUEENUMERATOR_H

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp
new file mode 100644
index 0000000000000..a60abfd3d7013
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp
@@ -0,0 +1,61 @@
+//===- DXILWriterPass.cpp - Bitcode writing pass --------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// DXILWriterPass implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILWriterPass.h"
+#include "DXILBitcodeWriter.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/ModuleSummaryAnalysis.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+class WriteDXILPass : public llvm::ModulePass {
+  raw_ostream &OS; // raw_ostream to print on
+
+public:
+  static char ID; // Pass identification, replacement for typeid
+  WriteDXILPass() : ModulePass(ID), OS(dbgs()) {
+    initializeWriteDXILPassPass(*PassRegistry::getPassRegistry());
+  }
+
+  explicit WriteDXILPass(raw_ostream &o) : ModulePass(ID), OS(o) {
+    initializeWriteDXILPassPass(*PassRegistry::getPassRegistry());
+  }
+
+  StringRef getPassName() const override { return "Bitcode Writer"; }
+
+  bool runOnModule(Module &M) override {
+    WriteDXILToFile(M, OS);
+    return false;
+  }
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.setPreservesAll();
+  }
+};
+} // namespace
+
+char WriteDXILPass::ID = 0;
+INITIALIZE_PASS_BEGIN(WriteDXILPass, "write-bitcode", "Write Bitcode", false,
+                      true)
+INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
+INITIALIZE_PASS_END(WriteDXILPass, "write-bitcode", "Write Bitcode", false,
+                    true)
+
+ModulePass *llvm::createDXILWriterPass(raw_ostream &Str) {
+  return new WriteDXILPass(Str);
+}

diff  --git a/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h
new file mode 100644
index 0000000000000..612b4c53d3d1f
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h
@@ -0,0 +1,32 @@
+//===-- DXILWriterPass.h - Bitcode writing pass --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file provides a bitcode writing pass.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_BITCODE_DXILWriterPass_H
+#define LLVM_BITCODE_DXILWriterPass_H
+
+#include "DirectX.h"
+#include "llvm/Bitcode/BitcodeWriter.h"
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+class Module;
+class raw_ostream;
+
+/// Create and return a pass that writes the module to the specified
+/// ostream. Note that this pass is designed for use with the legacy pass
+/// manager.
+ModulePass *createDXILWriterPass(raw_ostream &Str);
+
+} // namespace llvm
+
+#endif

diff  --git a/llvm/lib/Target/DirectX/DirectX.h b/llvm/lib/Target/DirectX/DirectX.h
index 4d5dc06a3aa24..73932aea24fbb 100644
--- a/llvm/lib/Target/DirectX/DirectX.h
+++ b/llvm/lib/Target/DirectX/DirectX.h
@@ -15,6 +15,9 @@ namespace llvm {
 class ModulePass;
 class PassRegistry;
 
+/// Initializer for dxil writer pass
+void initializeWriteDXILPassPass(PassRegistry &);
+
 /// Initializer for DXIL-prepare
 void initializeDXILPrepareModulePass(PassRegistry &);
 

diff  --git a/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp b/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
index 4088dca20c226..98adfbf89bae5 100644
--- a/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
+++ b/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
@@ -12,11 +12,11 @@
 //===----------------------------------------------------------------------===//
 
 #include "DirectXTargetMachine.h"
+#include "DXILWriter/DXILWriterPass.h"
 #include "DirectX.h"
 #include "DirectXSubtarget.h"
 #include "DirectXTargetTransformInfo.h"
 #include "TargetInfo/DirectXTargetInfo.h"
-#include "llvm/Bitcode/BitcodeWriterPass.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/CodeGen/TargetPassConfig.h"
 #include "llvm/IR/IRPrintingPasses.h"
@@ -90,8 +90,8 @@ bool DirectXTargetMachine::addPassesToEmitFile(
     PM.add(createPrintModulePass(Out, "", true));
     break;
   case CGFT_ObjectFile:
-    // TODO: Write DXIL instead of bitcode
-    PM.add(createBitcodeWriterPass(Out, true, false, false));
+    // TODO: Use MC Object streamer to write DXContainer
+    PM.add(createDXILWriterPass(Out));
     break;
   case CGFT_Null:
     break;

diff  --git a/llvm/test/CMakeLists.txt b/llvm/test/CMakeLists.txt
index 7eff058ce78fe..50a4a982ec4d2 100644
--- a/llvm/test/CMakeLists.txt
+++ b/llvm/test/CMakeLists.txt
@@ -20,6 +20,7 @@ llvm_canonicalize_cmake_booleans(
   LLVM_INLINER_MODEL_AUTOGENERATED
   LLVM_RAEVICT_MODEL_AUTOGENERATED
   LLVM_ENABLE_EXPENSIVE_CHECKS
+  LLVM_INCLUDE_DXIL_TESTS
   )
 
 configure_lit_site_cfg(
@@ -211,6 +212,10 @@ if(TARGET ocaml_llvm)
         )
 endif()
 
+if (LLVM_INCLUDE_DXIL_TESTS)
+  list(APPEND LLVM_TEST_DEPENDS dxil-dis)
+endif()
+
 add_custom_target(llvm-test-depends DEPENDS ${LLVM_TEST_DEPENDS})
 set_target_properties(llvm-test-depends PROPERTIES FOLDER "Tests")
 

diff  --git a/llvm/test/lit.cfg.py b/llvm/test/lit.cfg.py
index bacf9960bccc1..5c62c8ab49222 100644
--- a/llvm/test/lit.cfg.py
+++ b/llvm/test/lit.cfg.py
@@ -189,7 +189,8 @@ def get_asan_rtlib():
     ToolSubst('OrcV2CBindingsRemovableCode', unresolved='ignore'),
     ToolSubst('OrcV2CBindingsReflectProcessSymbols', unresolved='ignore'),
     ToolSubst('OrcV2CBindingsLazy', unresolved='ignore'),
-    ToolSubst('OrcV2CBindingsVeryLazy', unresolved='ignore')])
+    ToolSubst('OrcV2CBindingsVeryLazy', unresolved='ignore'),
+    ToolSubst('dxil-dis', unresolved='ignore')])
 
 llvm_config.add_tool_substitutions(tools, config.llvm_tools_dir)
 

diff  --git a/llvm/test/lit.site.cfg.py.in b/llvm/test/lit.site.cfg.py.in
index 393caff63a375..b198f3d6dc3b1 100644
--- a/llvm/test/lit.site.cfg.py.in
+++ b/llvm/test/lit.site.cfg.py.in
@@ -57,6 +57,7 @@ config.have_tf_api = @LLVM_HAVE_TF_API@
 config.llvm_inliner_model_autogenerated = @LLVM_INLINER_MODEL_AUTOGENERATED@
 config.llvm_raevict_model_autogenerated = @LLVM_RAEVICT_MODEL_AUTOGENERATED@
 config.expensive_checks = @LLVM_ENABLE_EXPENSIVE_CHECKS@
+config.dxil_tests = @LLVM_INCLUDE_DXIL_TESTS@
 
 import lit.llvm
 lit.llvm.initialize(lit_config, config)

diff  --git a/llvm/test/tools/dxil-dis/BasicIR.ll b/llvm/test/tools/dxil-dis/BasicIR.ll
new file mode 100644
index 0000000000000..f5602086008c8
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/BasicIR.ll
@@ -0,0 +1,15 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis -o - | FileCheck %s
+
+; CHECK: define i32 @foo(i32 %X, i32 %Y) {
+; CHECK:   %Z = sub i32 %X, %Y
+; CHECK:   %Q = add i32 %Z, %Y
+; CHECK:   ret i32 %Q
+; CHECK: }
+
+target triple = "dxil-unknown-unknown"
+
+define i32 @foo(i32 %X, i32 %Y) {
+  %Z = sub i32 %X, %Y
+  %Q = add i32 %Z, %Y
+  ret i32 %Q
+}

diff  --git a/llvm/test/tools/dxil-dis/attribute-filter.ll b/llvm/test/tools/dxil-dis/attribute-filter.ll
new file mode 100644
index 0000000000000..8957eb784012b
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/attribute-filter.ll
@@ -0,0 +1,15 @@
+; RUN: llc %s --filetype=obj -o - | dxil-dis -o - | FileCheck %s
+
+; CHECK: target triple = "dxil-unknown-unknown"
+target triple = "dxil-unknown-unknown"
+
+; CHECK: Function Attrs: nounwind readnone
+; Function Attrs: norecurse nounwind readnone willreturn
+define float @fma(float %0, float %1, float %2) #0 {
+  %4 = fmul float %0, %1
+  %5 = fadd float %4, %2
+  ret float %5
+}
+
+; CHECK: attributes #0 = { nounwind readnone "disable-tail-calls"="false" }
+attributes #0 = { norecurse nounwind readnone willreturn "disable-tail-calls"="false" }

diff  --git a/llvm/test/tools/dxil-dis/debug-info.ll b/llvm/test/tools/dxil-dis/debug-info.ll
new file mode 100644
index 0000000000000..4799bc2f79bbe
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/debug-info.ll
@@ -0,0 +1,66 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis -o - | FileCheck %s
+target triple = "dxil-unknown-unknown"
+target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
+
+; CHECK: define float @fma(float, float, float) unnamed_addr #0 !dbg !6
+; Function Attrs: norecurse nounwind readnone willreturn
+define dso_local float @fma(float %0, float %1, float %2) local_unnamed_addr #0 !dbg !6 {
+; CHECK-NEXT: call void @llvm.dbg.value(metadata float %0, metadata !11, metadata !14), !dbg !15
+; CHECK-NEXT: call void @llvm.dbg.value(metadata float %1, metadata !12, metadata !14), !dbg !15
+; CHECK-NEXT: call void @llvm.dbg.value(metadata float %2, metadata !13, metadata !14), !dbg !15
+  call void @llvm.dbg.value(metadata float %0, metadata !11, metadata !DIExpression()), !dbg !14
+  call void @llvm.dbg.value(metadata float %1, metadata !12, metadata !DIExpression()), !dbg !14
+  call void @llvm.dbg.value(metadata float %2, metadata !13, metadata !DIExpression()), !dbg !14
+; CHECK-NEXT: %4 = fmul float %0, %1, !dbg !16
+; CHECK-NEXT: %5 = fadd float %4, %2, !dbg !17
+  %4 = fmul float %0, %1, !dbg !15
+  %5 = fadd float %4, %2, !dbg !16
+  ret float %5, !dbg !17
+}
+
+; Function Attrs: nofree nosync nounwind readnone speculatable willreturn
+declare void @llvm.dbg.value(metadata, metadata, metadata) #1
+
+attributes #0 = { norecurse nounwind readnone willreturn }
+attributes #1 = { nofree nosync nounwind readnone speculatable willreturn }
+
+!llvm.dbg.cu = !{!0}
+!llvm.module.flags = !{!3, !4}
+!llvm.ident = !{!5}
+
+; Other tests verify that we come back with reasonable structure for the debug
+; info types, this test just needs to ensure they are there.
+; The patch this is paired with fixes a bug where function debug info wasn't
+; being emitted correctly even though other tests verified the MD would be
+; emitted if it was referenced as module metadata.
+
+; CHECK:      !0 = distinct !DICompileUnit
+; CHECK-NEXT: !1 = !DIFile(filename:
+; CHECK:      !6 = distinct !DISubprogram(name: "fma", 
+; CHECK:      !11 = !DILocalVariable(tag:
+; CHECK-NEXT: !12 = !DILocalVariable(tag:
+; CHECK-NEXT: !13 = !DILocalVariable(tag:
+; CHECK-NEXT: !14 = !DIExpression()
+; CHECK-NEXT: !15 = !DILocation(line:
+; CHECK-NEXT: !16 = !DILocation(line:
+; CHECK-NEXT: !17 = !DILocation(line:
+; CHECK-NEXT: !18 = !DILocation(line:
+
+!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, splitDebugInlining: false, nameTableKind: None)
+!1 = !DIFile(filename: "in.c", directory: "dir")
+!2 = !{}
+!3 = !{i32 7, !"Dwarf Version", i32 2}
+!4 = !{i32 2, !"Debug Info Version", i32 3}
+!5 = !{!"Some Compiler"}
+!6 = distinct !DISubprogram(name: "fma", scope: !1, file: !1, line: 1, type: !7, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !0, retainedNodes: !10)
+!7 = !DISubroutineType(types: !8)
+!8 = !{!9, !9, !9, !9}
+!9 = !DIBasicType(name: "float", size: 32, encoding: DW_ATE_float)
+!10 = !{!11, !12, !13}
+!11 = !DILocalVariable(name: "x", arg: 1, scope: !6, file: !1, line: 1, type: !9)
+!12 = !DILocalVariable(name: "y", arg: 2, scope: !6, file: !1, line: 1, type: !9)
+!13 = !DILocalVariable(name: "z", arg: 3, scope: !6, file: !1, line: 1, type: !9)
+!14 = !DILocation(line: 0, scope: !6)
+!15 = !DILocation(line: 2, column: 12, scope: !6)
+!16 = !DILocation(line: 2, column: 16, scope: !6)
+!17 = !DILocation(line: 2, column: 3, scope: !6)

diff  --git a/llvm/test/tools/dxil-dis/di-compile-unit.ll b/llvm/test/tools/dxil-dis/di-compile-unit.ll
new file mode 100644
index 0000000000000..724fed1323130
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/di-compile-unit.ll
@@ -0,0 +1,17 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis -o - | FileCheck %s
+target triple = "dxil-unknown-unknown"
+
+!llvm.dbg.cu = !{!0}
+!llvm.module.flags = !{!3, !4}
+
+!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "Some Compiler", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, splitDebugInlining: false, nameTableKind: None)
+!1 = !DIFile(filename: "di-compile-unit.src", directory: "/some-path")
+!2 = !{}
+!3 = !{i32 7, !"Dwarf Version", i32 2}
+!4 = !{i32 2, !"Debug Info Version", i32 3}
+
+; CHECK: !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "Some Compiler", isOptimized: true, runtimeVersion: 0, emissionKind: 1, enums: !2)
+; CHECK: !1 = !DIFile(filename: "di-compile-unit.src", directory: "/some-path")
+; CHECK: !2 = !{}
+; CHECK: !3 = !{i32 7, !"Dwarf Version", i32 2}
+; CHECK: !4 = !{i32 2, !"Debug Info Version", i32 3}

diff  --git a/llvm/test/tools/dxil-dis/di-subprogram.ll b/llvm/test/tools/dxil-dis/di-subprogram.ll
new file mode 100644
index 0000000000000..056319d40ff9f
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/di-subprogram.ll
@@ -0,0 +1,53 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis -o - | FileCheck %s
+target triple = "dxil-unknown-unknown"
+
+!llvm.dbg.cu = !{!0}
+!llvm.module.flags = !{!3, !4}
+!llvm.used = !{!5}
+!llvm.lines = !{!13, !14, !15, !16}
+
+; CHECK: !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "Some Compiler", isOptimized: true, runtimeVersion: 0, emissionKind: 1, enums: !2)
+!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "Some Compiler", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, splitDebugInlining: false, nameTableKind: None)
+; CHECK: !1 = !DIFile(filename: "some-source", directory: "some-path")
+!1 = !DIFile(filename: "some-source", directory: "some-path")
+!2 = !{}
+
+; CHECK: !3 = !{i32 7, !"Dwarf Version", i32 2}
+!3 = !{i32 7, !"Dwarf Version", i32 2}
+; CHECK: !4 = !{i32 2, !"Debug Info Version", i32 3}
+!4 = !{i32 2, !"Debug Info Version", i32 3}
+
+; CHECK: !5 = distinct !DISubprogram(name: "fma", scope: !1, file: !1, line: 1, type: !6, isLocal: false, isDefinition: true, scopeLine: 1, flags: DIFlagPrototyped, isOptimized: true, function: !0, variables: !9)
+!5 = distinct !DISubprogram(name: "fma", scope: !1, file: !1, line: 1, type: !6, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !0, retainedNodes: !9)
+
+; CHECK: !6 = !DISubroutineType(types: !7)
+!6 = !DISubroutineType(types: !7)
+
+; CHECK: !7 = !{!8, !8, !8, !8}
+!7 = !{!8, !8, !8, !8}
+
+; CHECK: !8 = !DIBasicType(name: "float", size: 32, encoding: DW_ATE_float)
+!8 = !DIBasicType(name: "float", size: 32, encoding: DW_ATE_float)
+
+; CHECK: !9 = !{!10, !11, !12}
+!9 = !{!10, !11, !12}
+
+; CHECK: !10 = !DILocalVariable(tag: DW_TAG_variable, name: "x", arg: 1, scope: !5, file: !1, line: 1, type: !8)
+!10 = !DILocalVariable(name: "x", arg: 1, scope: !5, file: !1, line: 1, type: !8)
+
+; CHECK: !11 = !DILocalVariable(tag: DW_TAG_variable, name: "y", arg: 2, scope: !5, file: !1, line: 1, type: !8)
+!11 = !DILocalVariable(name: "y", arg: 2, scope: !5, file: !1, line: 1, type: !8)
+
+; CHECK: !12 = !DILocalVariable(tag: DW_TAG_variable, name: "z", arg: 3, scope: !5, file: !1, line: 1, type: !8)
+!12 = !DILocalVariable(name: "z", arg: 3, scope: !5, file: !1, line: 1, type: !8)
+
+
+; CHECK: !13 = !DILocation(line: 0, scope: !5)
+; CHECK: !14 = !DILocation(line: 2, column: 12, scope: !5)
+; CHECK: !15 = !DILocation(line: 2, column: 16, scope: !5)
+; CHECK: !16 = !DILocation(line: 2, column: 3, scope: !5)
+
+!13 = !DILocation(line: 0, scope: !5)
+!14 = !DILocation(line: 2, column: 12, scope: !5)
+!15 = !DILocation(line: 2, column: 16, scope: !5)
+!16 = !DILocation(line: 2, column: 3, scope: !5)

diff  --git a/llvm/test/tools/dxil-dis/di-subrotine.ll b/llvm/test/tools/dxil-dis/di-subrotine.ll
new file mode 100644
index 0000000000000..dfb772a94ce17
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/di-subrotine.ll
@@ -0,0 +1,12 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis -o - | FileCheck %s
+target triple = "dxil-unknown-unknown"
+
+!llvm.used = !{!0}
+
+!0 = !DISubroutineType(types: !1)
+!1 = !{!2, !2, !2, !2}
+!2 = !DIBasicType(name: "float", size: 32, encoding: DW_ATE_float)
+
+; CHECK: !0 = !DISubroutineType(types: !1)
+; CHECK: !1 = !{!2, !2, !2, !2}
+; CHECK: !2 = !DIBasicType(name: "float", size: 32, encoding: DW_ATE_float)

diff  --git a/llvm/test/tools/dxil-dis/lit.local.cfg b/llvm/test/tools/dxil-dis/lit.local.cfg
new file mode 100644
index 0000000000000..e31f8f3cb6ecc
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/lit.local.cfg
@@ -0,0 +1,3 @@
+if not config.dxil_tests:
+  config.unsupported = True
+config.suffixes = ['.ll']

diff  --git a/llvm/test/tools/dxil-dis/metadata.ll b/llvm/test/tools/dxil-dis/metadata.ll
new file mode 100644
index 0000000000000..54f7940eba103
--- /dev/null
+++ b/llvm/test/tools/dxil-dis/metadata.ll
@@ -0,0 +1,13 @@
+; RUN: llc --filetype=obj %s -o - | dxil-dis 
+target triple = "dxil-unknown-unknown"
+
+!llvm.foo = !{!0}
+!llvm.bar = !{!1}
+
+!0 = !{i32 42}
+!1 = !{!"Some MDString"}
+
+; CHECK: !llvm.foo = !{!0}
+; CHECK: !llvm.bar = !{!1}
+; CHECK: !0 = !{i32 42}
+; CHECK: !1 = !{!"Some MDString"}

diff  --git a/llvm/tools/dxil-dis/CMakeLists.txt b/llvm/tools/dxil-dis/CMakeLists.txt
new file mode 100644
index 0000000000000..2859318e6e7d3
--- /dev/null
+++ b/llvm/tools/dxil-dis/CMakeLists.txt
@@ -0,0 +1,48 @@
+option(LLVM_INCLUDE_DXIL_TESTS "Include DXIL tests" Off)
+mark_as_advanced(LLVM_INCLUDE_DXIL_TESTS)
+
+if (NOT LLVM_INCLUDE_DXIL_TESTS)
+  return()
+endif ()
+
+if (NOT "DirectX" IN_LIST LLVM_TARGETS_TO_BUILD)
+  message(FATAL_ERROR "Building dxil-dis tests is unsupported without the DirectX target")
+endif ()
+
+if (CMAKE_HOST_UNIX)
+  set(LLVM_LINK_OR_COPY create_symlink)
+else ()
+  set(LLVM_LINK_OR_COPY copy)
+endif ()
+
+if (DXIL_DIS)
+  add_custom_target(dxil-dis
+    COMMAND ${CMAKE_COMMAND} -E ${LLVM_LINK_OR_COPY} "${DXIL_DIS}" "${LLVM_RUNTIME_OUTPUT_INTDIR}/dxil-dis")
+  return()
+endif ()
+
+include(ExternalProject)
+
+set(SOURCE_DIR ${CMAKE_CURRENT_BINARY_DIR}/DXC-src)
+set(BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/DXC-bins)
+set(GIT_SETTINGS GIT_REPOSITORY https://github.com/microsoft/DirectXShaderCompiler.git)
+
+if (DXC_SOURCE_DIR)
+  set(SOURCE_DIR ${DXC_SOURCE_DIR})
+  unset(GIT_SETTINGS)
+endif ()
+
+ExternalProject_Add(DXC
+                    ${GIT_SETTINGS}
+                    SOURCE_DIR ${SOURCE_DIR}
+                    BINARY_DIR ${BINARY_DIR}
+                    CMAKE_ARGS -C ${SOURCE_DIR}/cmake/caches/PredefinedParams.cmake -DLLVM_INCLUDE_TESTS=On
+                    BUILD_COMMAND ${CMAKE_COMMAND} --build ${BINARY_DIR} --target llvm-dis
+                    BUILD_BYPRODUCTS ${BINARY_DIR}/bin/llvm-dis
+                    INSTALL_COMMAND ""
+                    )
+
+add_custom_target(dxil-dis
+                  COMMAND ${CMAKE_COMMAND} -E ${LLVM_LINK_OR_COPY} "${BINARY_DIR}/bin/llvm-dis${CMAKE_EXECUTABLE_SUFFIX}" "${LLVM_RUNTIME_OUTPUT_INTDIR}/dxil-dis${CMAKE_EXECUTABLE_SUFFIX}"
+                  DEPENDS DXC
+                  )


        


More information about the llvm-commits mailing list