[llvm] 02077da - Add jump-threading optimization for deterministic finite automata

Danilo C. Grael via llvm-commits llvm-commits at lists.llvm.org
Tue Jul 27 11:36:00 PDT 2021


Author: Alexey Zhikhartsev
Date: 2021-07-27T14:34:04-04:00
New Revision: 02077da7e7a8ff76c0576bb33adb462c337013f5

URL: https://github.com/llvm/llvm-project/commit/02077da7e7a8ff76c0576bb33adb462c337013f5
DIFF: https://github.com/llvm/llvm-project/commit/02077da7e7a8ff76c0576bb33adb462c337013f5.diff

LOG: Add jump-threading optimization for deterministic finite automata

The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.

This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.

This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:

```
          sw.bb                        sw.bb
        /   |   \                    /   |   \
   case1  case2  case3          case1  case2  case3
        \   |   /                /       |       \
        latch.bb             latch.2  latch.3  latch.1
         br sw.bb              /         |         \
                           sw.bb.2     sw.bb.3     sw.bb.1
                            br case2    br case3    br case1
```

Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D99205

Added: 
    llvm/include/llvm/Transforms/Scalar/DFAJumpThreading.h
    llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp
    llvm/test/Transforms/DFAJumpThreading/dfa-constant-propagation.ll
    llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-analysis.ll
    llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-transform.ll
    llvm/test/Transforms/DFAJumpThreading/dfa-unfold-select.ll
    llvm/test/Transforms/DFAJumpThreading/max-path-length.ll
    llvm/test/Transforms/DFAJumpThreading/negative.ll

Modified: 
    llvm/include/llvm/InitializePasses.h
    llvm/include/llvm/LinkAllPasses.h
    llvm/include/llvm/Transforms/Scalar.h
    llvm/lib/Passes/PassBuilder.cpp
    llvm/lib/Passes/PassRegistry.def
    llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
    llvm/lib/Transforms/Scalar/CMakeLists.txt
    llvm/lib/Transforms/Scalar/Scalar.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/InitializePasses.h b/llvm/include/llvm/InitializePasses.h
index eda429b9d622b..365240de321ae 100644
--- a/llvm/include/llvm/InitializePasses.h
+++ b/llvm/include/llvm/InitializePasses.h
@@ -124,6 +124,7 @@ void initializeCrossDSOCFIPass(PassRegistry&);
 void initializeDAEPass(PassRegistry&);
 void initializeDAHPass(PassRegistry&);
 void initializeDCELegacyPassPass(PassRegistry&);
+void initializeDFAJumpThreadingLegacyPassPass(PassRegistry &);
 void initializeDSELegacyPassPass(PassRegistry&);
 void initializeDataFlowSanitizerLegacyPassPass(PassRegistry &);
 void initializeDeadMachineInstructionElimPass(PassRegistry&);

diff  --git a/llvm/include/llvm/LinkAllPasses.h b/llvm/include/llvm/LinkAllPasses.h
index 26e56f19d39e1..45978828a8ce1 100644
--- a/llvm/include/llvm/LinkAllPasses.h
+++ b/llvm/include/llvm/LinkAllPasses.h
@@ -174,6 +174,7 @@ namespace {
       (void) llvm::createStripDeadPrototypesPass();
       (void) llvm::createTailCallEliminationPass();
       (void) llvm::createJumpThreadingPass();
+      (void) llvm::createDFAJumpThreadingPass();
       (void) llvm::createUnifyFunctionExitNodesPass();
       (void) llvm::createInstCountPass();
       (void) llvm::createConstantHoistingPass();

diff  --git a/llvm/include/llvm/Transforms/Scalar.h b/llvm/include/llvm/Transforms/Scalar.h
index 3db1613d7457f..d6228700aa9ac 100644
--- a/llvm/include/llvm/Transforms/Scalar.h
+++ b/llvm/include/llvm/Transforms/Scalar.h
@@ -253,6 +253,14 @@ FunctionPass *createReassociatePass();
 FunctionPass *createJumpThreadingPass(bool FreezeSelectCond = false,
                                       int Threshold = -1);
 
+//===----------------------------------------------------------------------===//
+//
+// DFAJumpThreading - When a switch statement inside a loop is used to
+// implement a deterministic finite automata we can jump thread the switch
+// statement reducing number of conditional jumps.
+//
+FunctionPass *createDFAJumpThreadingPass();
+
 //===----------------------------------------------------------------------===//
 //
 // CFGSimplification - Merge basic blocks, eliminate unreachable blocks,

diff  --git a/llvm/include/llvm/Transforms/Scalar/DFAJumpThreading.h b/llvm/include/llvm/Transforms/Scalar/DFAJumpThreading.h
new file mode 100644
index 0000000000000..afebd9bbc122b
--- /dev/null
+++ b/llvm/include/llvm/Transforms/Scalar/DFAJumpThreading.h
@@ -0,0 +1,27 @@
+//===- DFAJumpThreading.h - Threads a switch statement inside a loop ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides the interface for the DFAJumpThreading pass.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_SCALAR_DFAJUMPTHREADING_H
+#define LLVM_TRANSFORMS_SCALAR_DFAJUMPTHREADING_H
+
+#include "llvm/IR/Function.h"
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+
+struct DFAJumpThreadingPass : PassInfoMixin<DFAJumpThreadingPass> {
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_SCALAR_DFAJUMPTHREADING_H

diff  --git a/llvm/lib/Passes/PassBuilder.cpp b/llvm/lib/Passes/PassBuilder.cpp
index ec081e9e0f788..79fcc8569b6d0 100644
--- a/llvm/lib/Passes/PassBuilder.cpp
+++ b/llvm/lib/Passes/PassBuilder.cpp
@@ -145,6 +145,7 @@
 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
 #include "llvm/Transforms/Scalar/DCE.h"
+#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
 #include "llvm/Transforms/Scalar/DivRemPairs.h"
 #include "llvm/Transforms/Scalar/EarlyCSE.h"
@@ -302,6 +303,7 @@ extern cl::opt<bool> EnableCHR;
 extern cl::opt<bool> EnableLoopInterchange;
 extern cl::opt<bool> EnableUnrollAndJam;
 extern cl::opt<bool> EnableLoopFlatten;
+extern cl::opt<bool> EnableDFAJumpThreading;
 extern cl::opt<bool> RunNewGVN;
 extern cl::opt<bool> RunPartialInlining;
 extern cl::opt<bool> ExtraVectorizerPasses;
@@ -829,6 +831,9 @@ PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
 
   // Re-consider control flow based optimizations after redundancy elimination,
   // redo DCE, etc.
+  if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
+    FPM.addPass(DFAJumpThreadingPass());
+
   FPM.addPass(JumpThreadingPass());
   FPM.addPass(CorrelatedValuePropagationPass());
 

diff  --git a/llvm/lib/Passes/PassRegistry.def b/llvm/lib/Passes/PassRegistry.def
index e0b2beef38cc7..7525d59f94a5c 100644
--- a/llvm/lib/Passes/PassRegistry.def
+++ b/llvm/lib/Passes/PassRegistry.def
@@ -212,6 +212,7 @@ FUNCTION_PASS("coro-elide", CoroElidePass())
 FUNCTION_PASS("coro-cleanup", CoroCleanupPass())
 FUNCTION_PASS("correlated-propagation", CorrelatedValuePropagationPass())
 FUNCTION_PASS("dce", DCEPass())
+FUNCTION_PASS("dfa-jump-threading", DFAJumpThreadingPass())
 FUNCTION_PASS("div-rem-pairs", DivRemPairsPass())
 FUNCTION_PASS("dse", DSEPass())
 FUNCTION_PASS("dot-cfg", CFGPrinterPass())

diff  --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index d64d3702fa1dd..aa916345954dd 100644
--- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -99,6 +99,10 @@ cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
                                 cl::Hidden,
                                 cl::desc("Enable the LoopFlatten Pass"));
 
+cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread",
+                                     cl::desc("Enable DFA jump threading."),
+                                     cl::init(false), cl::Hidden);
+
 static cl::opt<bool>
     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
                             cl::desc("Enable preparation for ThinLTO."));
@@ -500,6 +504,9 @@ void PassManagerBuilder::addFunctionSimplificationPasses(
   MPM.add(createInstructionCombiningPass());
   addExtensionsToPM(EP_Peephole, MPM);
   if (OptLevel > 1) {
+    if (EnableDFAJumpThreading && SizeLevel == 0)
+      MPM.add(createDFAJumpThreadingPass());
+
     MPM.add(createJumpThreadingPass());         // Thread jumps
     MPM.add(createCorrelatedValuePropagationPass());
   }

diff  --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt
index 5fddaf542a389..79559a4d14a07 100644
--- a/llvm/lib/Transforms/Scalar/CMakeLists.txt
+++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt
@@ -9,6 +9,7 @@ add_llvm_component_library(LLVMScalarOpts
   CorrelatedValuePropagation.cpp
   DCE.cpp
   DeadStoreElimination.cpp
+  DFAJumpThreading.cpp
   DivRemPairs.cpp
   EarlyCSE.cpp
   FlattenCFGPass.cpp

diff  --git a/llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp b/llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp
new file mode 100644
index 0000000000000..614e63833367a
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp
@@ -0,0 +1,1287 @@
+//===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Transform each threading path to effectively jump thread the DFA. For
+// example, the CFG below could be transformed as follows, where the cloned
+// blocks unconditionally branch to the next correct case based on what is
+// identified in the analysis.
+//
+//          sw.bb                        sw.bb
+//        /   |   \                    /   |   \
+//   case1  case2  case3          case1  case2  case3
+//        \   |   /                 |      |      |
+//       determinator            det.2   det.3  det.1
+//        br sw.bb                /        |        \
+//                          sw.bb.2     sw.bb.3     sw.bb.1
+//                           br case2    br case3    br case1ยง
+//
+// Definitions and Terminology:
+//
+// * Threading path:
+//   a list of basic blocks, the exit state, and the block that determines
+//   the next state, for which the following notation will be used:
+//   < path of BBs that form a cycle > [ state, determinator ]
+//
+// * Predictable switch:
+//   The switch variable is always a known constant so that all conditional
+//   jumps based on switch variable can be converted to unconditional jump.
+//
+// * Determinator:
+//   The basic block that determines the next state of the DFA.
+//
+// Representing the optimization in C-like pseudocode: the code pattern on the
+// left could functionally be transformed to the right pattern if the switch
+// condition is predictable.
+//
+//  X = A                       goto A
+//  for (...)                   A:
+//    switch (X)                  ...
+//      case A                    goto B
+//        X = B                 B:
+//      case B                    ...
+//        X = C                   goto C
+//
+// The pass first checks that switch variable X is decided by the control flow
+// path taken in the loop; for example, in case B, the next value of X is
+// decided to be C. It then enumerates through all paths in the loop and labels
+// the basic blocks where the next state is decided.
+//
+// Using this information it creates new paths that unconditionally branch to
+// the next case. This involves cloning code, so it only gets triggered if the
+// amount of code duplicated is below a threshold.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <deque>
+#include <unordered_map>
+#include <unordered_set>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "dfa-jump-threading"
+
+STATISTIC(NumTransforms, "Number of transformations done");
+STATISTIC(NumCloned, "Number of blocks cloned");
+STATISTIC(NumPaths, "Number of individual paths threaded");
+
+static cl::opt<bool>
+    ClViewCfgBefore("dfa-jump-view-cfg-before",
+                    cl::desc("View the CFG before DFA Jump Threading"),
+                    cl::Hidden, cl::init(false));
+
+static cl::opt<unsigned> MaxPathLength(
+    "dfa-max-path-length",
+    cl::desc("Max number of blocks searched to find a threading path"),
+    cl::Hidden, cl::init(20));
+
+static cl::opt<unsigned>
+    CostThreshold("dfa-cost-threshold",
+                  cl::desc("Maximum cost accepted for the transformation"),
+                  cl::Hidden, cl::init(50));
+
+namespace {
+
+class SelectInstToUnfold {
+  SelectInst *SI;
+  PHINode *SIUse;
+
+public:
+  SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}
+
+  SelectInst *getInst() { return SI; }
+  PHINode *getUse() { return SIUse; }
+
+  explicit operator bool() const { return SI && SIUse; }
+};
+
+void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
+            std::vector<SelectInstToUnfold> *NewSIsToUnfold,
+            std::vector<BasicBlock *> *NewBBs);
+
+class DFAJumpThreading {
+public:
+  DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
+                   TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE)
+      : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}
+
+  bool run(Function &F);
+
+private:
+  void
+  unfoldSelectInstrs(DominatorTree *DT,
+                     const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
+    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+    SmallVector<SelectInstToUnfold, 4> Stack;
+    for (SelectInstToUnfold SIToUnfold : SelectInsts)
+      Stack.push_back(SIToUnfold);
+
+    while (!Stack.empty()) {
+      SelectInstToUnfold SIToUnfold = Stack.back();
+      Stack.pop_back();
+
+      std::vector<SelectInstToUnfold> NewSIsToUnfold;
+      std::vector<BasicBlock *> NewBBs;
+      unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);
+
+      // Put newly discovered select instructions into the work list.
+      for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
+        Stack.push_back(NewSIToUnfold);
+    }
+  }
+
+  AssumptionCache *AC;
+  DominatorTree *DT;
+  TargetTransformInfo *TTI;
+  OptimizationRemarkEmitter *ORE;
+};
+
+class DFAJumpThreadingLegacyPass : public FunctionPass {
+public:
+  static char ID; // Pass identification
+  DFAJumpThreadingLegacyPass() : FunctionPass(ID) {}
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<AssumptionCacheTracker>();
+    AU.addRequired<DominatorTreeWrapperPass>();
+    AU.addRequired<TargetTransformInfoWrapperPass>();
+    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+  }
+
+  bool runOnFunction(Function &F) override {
+    if (skipFunction(F))
+      return false;
+
+    AssumptionCache *AC =
+        &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+    TargetTransformInfo *TTI =
+        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+    OptimizationRemarkEmitter *ORE =
+        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+
+    return DFAJumpThreading(AC, DT, TTI, ORE).run(F);
+  }
+};
+} // end anonymous namespace
+
+char DFAJumpThreadingLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
+                      "DFA Jump Threading", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_END(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
+                    "DFA Jump Threading", false, false)
+
+// Public interface to the DFA Jump Threading pass
+FunctionPass *llvm::createDFAJumpThreadingPass() {
+  return new DFAJumpThreadingLegacyPass();
+}
+
+namespace {
+
+/// Create a new basic block and sink \p SIToSink into it.
+void createBasicBlockAndSinkSelectInst(
+    DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
+    BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
+    BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
+    std::vector<BasicBlock *> *NewBBs) {
+  assert(SIToSink->hasOneUse());
+  assert(NewBlock);
+  assert(NewBranch);
+  *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
+                                 EndBlock->getParent(), EndBlock);
+  NewBBs->push_back(*NewBlock);
+  *NewBranch = BranchInst::Create(EndBlock, *NewBlock);
+  SIToSink->moveBefore(*NewBranch);
+  NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
+  DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
+}
+
+/// Unfold the select instruction held in \p SIToUnfold by replacing it with
+/// control flow.
+///
+/// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
+/// created basic blocks into \p NewBBs.
+///
+/// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
+void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
+            std::vector<SelectInstToUnfold> *NewSIsToUnfold,
+            std::vector<BasicBlock *> *NewBBs) {
+  SelectInst *SI = SIToUnfold.getInst();
+  PHINode *SIUse = SIToUnfold.getUse();
+  BasicBlock *StartBlock = SI->getParent();
+  BasicBlock *EndBlock = SIUse->getParent();
+  BranchInst *StartBlockTerm =
+      dyn_cast<BranchInst>(StartBlock->getTerminator());
+
+  assert(StartBlockTerm && StartBlockTerm->isUnconditional());
+  assert(SI->hasOneUse());
+
+  // These are the new basic blocks for the conditional branch.
+  // At least one will become an actual new basic block.
+  BasicBlock *TrueBlock = nullptr;
+  BasicBlock *FalseBlock = nullptr;
+  BranchInst *TrueBranch = nullptr;
+  BranchInst *FalseBranch = nullptr;
+
+  // Sink select instructions to be able to unfold them later.
+  if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
+    createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
+                                      "si.unfold.true", &TrueBlock, &TrueBranch,
+                                      NewSIsToUnfold, NewBBs);
+  }
+  if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
+    createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
+                                      "si.unfold.false", &FalseBlock,
+                                      &FalseBranch, NewSIsToUnfold, NewBBs);
+  }
+
+  // If there was nothing to sink, then arbitrarily choose the 'false' side
+  // for a new input value to the PHI.
+  if (!TrueBlock && !FalseBlock) {
+    FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
+                                    EndBlock->getParent(), EndBlock);
+    NewBBs->push_back(FalseBlock);
+    BranchInst::Create(EndBlock, FalseBlock);
+    DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
+  }
+
+  // Insert the real conditional branch based on the original condition.
+  // If we did not create a new block for one of the 'true' or 'false' paths
+  // of the condition, it means that side of the branch goes to the end block
+  // directly and the path originates from the start block from the point of
+  // view of the new PHI.
+  BasicBlock *TT = EndBlock;
+  BasicBlock *FT = EndBlock;
+  if (TrueBlock && FalseBlock) {
+    // A diamond.
+    TT = TrueBlock;
+    FT = FalseBlock;
+
+    // Update the phi node of SI.
+    SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
+    SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
+    SIUse->addIncoming(SI->getFalseValue(), FalseBlock);
+
+    // Update any other PHI nodes in EndBlock.
+    for (PHINode &Phi : EndBlock->phis()) {
+      if (&Phi != SIUse) {
+        Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
+        Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
+      }
+    }
+  } else {
+    BasicBlock *NewBlock = nullptr;
+    Value *SIOp1 = SI->getTrueValue();
+    Value *SIOp2 = SI->getFalseValue();
+
+    // A triangle pointing right.
+    if (!TrueBlock) {
+      NewBlock = FalseBlock;
+      FT = FalseBlock;
+    }
+    // A triangle pointing left.
+    else {
+      NewBlock = TrueBlock;
+      TT = TrueBlock;
+      std::swap(SIOp1, SIOp2);
+    }
+
+    // Update the phi node of SI.
+    for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
+      if (SIUse->getIncomingBlock(Idx) == StartBlock)
+        SIUse->setIncomingValue(Idx, SIOp1);
+    }
+    SIUse->addIncoming(SIOp2, NewBlock);
+
+    // Update any other PHI nodes in EndBlock.
+    for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
+         ++II) {
+      if (Phi != SIUse)
+        Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
+    }
+  }
+  StartBlockTerm->eraseFromParent();
+  BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
+  DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
+                     {DominatorTree::Insert, StartBlock, FT}});
+
+  // The select is now dead.
+  SI->eraseFromParent();
+}
+
+struct ClonedBlock {
+  BasicBlock *BB;
+  uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
+};
+
+typedef std::deque<BasicBlock *> PathType;
+typedef std::vector<PathType> PathsType;
+typedef std::set<const BasicBlock *> VisitedBlocks;
+typedef std::vector<ClonedBlock> CloneList;
+
+// This data structure keeps track of all blocks that have been cloned.  If two
+// 
diff erent ThreadingPaths clone the same block for a certain state it should
+// be reused, and it can be looked up in this map.
+typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;
+
+// This map keeps track of all the new definitions for an instruction. This
+// information is needed when restoring SSA form after cloning blocks.
+typedef DenseMap<Instruction *, std::vector<Instruction *>> DefMap;
+
+inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
+  OS << "< ";
+  for (const BasicBlock *BB : Path) {
+    std::string BBName;
+    if (BB->hasName())
+      raw_string_ostream(BBName) << BB->getName();
+    else
+      raw_string_ostream(BBName) << BB;
+    OS << BBName << " ";
+  }
+  OS << ">";
+  return OS;
+}
+
+/// ThreadingPath is a path in the control flow of a loop that can be threaded
+/// by cloning necessary basic blocks and replacing conditional branches with
+/// unconditional ones. A threading path includes a list of basic blocks, the
+/// exit state, and the block that determines the next state.
+struct ThreadingPath {
+  /// Exit value is DFA's exit state for the given path.
+  uint64_t getExitValue() const { return ExitVal; }
+  void setExitValue(const ConstantInt *V) {
+    ExitVal = V->getZExtValue();
+    IsExitValSet = true;
+  }
+  bool isExitValueSet() const { return IsExitValSet; }
+
+  /// Determinator is the basic block that determines the next state of the DFA.
+  const BasicBlock *getDeterminatorBB() const { return DBB; }
+  void setDeterminator(const BasicBlock *BB) { DBB = BB; }
+
+  /// Path is a list of basic blocks.
+  const PathType &getPath() const { return Path; }
+  void setPath(const PathType &NewPath) { Path = NewPath; }
+
+  void print(raw_ostream &OS) const {
+    OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
+  }
+
+private:
+  PathType Path;
+  uint64_t ExitVal;
+  const BasicBlock *DBB = nullptr;
+  bool IsExitValSet = false;
+};
+
+#ifndef NDEBUG
+inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
+  TPath.print(OS);
+  return OS;
+}
+#endif
+
+struct MainSwitch {
+  MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
+    if (isPredictable(SI)) {
+      Instr = SI;
+    } else {
+      ORE->emit([&]() {
+        return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
+               << "Switch instruction is not predictable.";
+      });
+    }
+  }
+
+  virtual ~MainSwitch() = default;
+
+  SwitchInst *getInstr() const { return Instr; }
+  const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
+    return SelectInsts;
+  }
+
+private:
+  /// Do a use-def chain traversal. Make sure the value of the switch variable
+  /// is always a known constant. This means that all conditional jumps based on
+  /// switch variable can be converted to unconditional jumps.
+  bool isPredictable(const SwitchInst *SI) {
+    std::deque<Instruction *> Q;
+    SmallSet<Value *, 16> SeenValues;
+    SelectInsts.clear();
+
+    Value *FirstDef = SI->getOperand(0);
+    auto *Inst = dyn_cast<Instruction>(FirstDef);
+
+    // If this is a function argument or another non-instruction, then give up.
+    // We are interested in loop local variables.
+    if (!Inst)
+      return false;
+
+    // Require the first definition to be a PHINode
+    if (!isa<PHINode>(Inst))
+      return false;
+
+    LLVM_DEBUG(dbgs() << "\tisPredictable() FirstDef: " << *Inst << "\n");
+
+    Q.push_back(Inst);
+    SeenValues.insert(FirstDef);
+
+    while (!Q.empty()) {
+      Instruction *Current = Q.front();
+      Q.pop_front();
+
+      if (auto *Phi = dyn_cast<PHINode>(Current)) {
+        for (Value *Incoming : Phi->incoming_values()) {
+          if (!isPredictableValue(Incoming, SeenValues))
+            return false;
+          addInstToQueue(Incoming, Q, SeenValues);
+        }
+        LLVM_DEBUG(dbgs() << "\tisPredictable() phi: " << *Phi << "\n");
+      } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
+        if (!isValidSelectInst(SelI))
+          return false;
+        if (!isPredictableValue(SelI->getTrueValue(), SeenValues) ||
+            !isPredictableValue(SelI->getFalseValue(), SeenValues)) {
+          return false;
+        }
+        addInstToQueue(SelI->getTrueValue(), Q, SeenValues);
+        addInstToQueue(SelI->getFalseValue(), Q, SeenValues);
+        LLVM_DEBUG(dbgs() << "\tisPredictable() select: " << *SelI << "\n");
+        if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
+          SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
+      } else {
+        // If it is neither a phi nor a select, then we give up.
+        return false;
+      }
+    }
+
+    return true;
+  }
+
+  bool isPredictableValue(Value *InpVal, SmallSet<Value *, 16> &SeenValues) {
+    if (SeenValues.find(InpVal) != SeenValues.end())
+      return true;
+
+    if (isa<ConstantInt>(InpVal))
+      return true;
+
+    // If this is a function argument or another non-instruction, then give up.
+    if (!isa<Instruction>(InpVal))
+      return false;
+
+    return true;
+  }
+
+  void addInstToQueue(Value *Val, std::deque<Instruction *> &Q,
+                      SmallSet<Value *, 16> &SeenValues) {
+    if (SeenValues.find(Val) != SeenValues.end())
+      return;
+    if (Instruction *I = dyn_cast<Instruction>(Val))
+      Q.push_back(I);
+    SeenValues.insert(Val);
+  }
+
+  bool isValidSelectInst(SelectInst *SI) {
+    if (!SI->hasOneUse())
+      return false;
+
+    Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
+    // The use of the select inst should be either a phi or another select.
+    if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
+      return false;
+
+    BasicBlock *SIBB = SI->getParent();
+
+    // Currently, we can only expand select instructions in basic blocks with
+    // one successor.
+    BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
+    if (!SITerm || !SITerm->isUnconditional())
+      return false;
+
+    if (isa<PHINode>(SIUse) &&
+        SIBB->getSingleSuccessor() != dyn_cast<Instruction>(SIUse)->getParent())
+      return false;
+
+    // If select will not be sunk during unfolding, and it is in the same basic
+    // block as another state defining select, then cannot unfold both.
+    for (SelectInstToUnfold SIToUnfold : SelectInsts) {
+      SelectInst *PrevSI = SIToUnfold.getInst();
+      if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
+          PrevSI->getParent() == SI->getParent())
+        return false;
+    }
+
+    return true;
+  }
+
+  SwitchInst *Instr = nullptr;
+  SmallVector<SelectInstToUnfold, 4> SelectInsts;
+};
+
+struct AllSwitchPaths {
+  AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
+      : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
+        ORE(ORE) {}
+
+  std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
+  unsigned getNumThreadingPaths() { return TPaths.size(); }
+  SwitchInst *getSwitchInst() { return Switch; }
+  BasicBlock *getSwitchBlock() { return SwitchBlock; }
+
+  void run() {
+    VisitedBlocks Visited;
+    PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
+    StateDefMap StateDef = getStateDefMap();
+
+    for (PathType Path : LoopPaths) {
+      ThreadingPath TPath;
+
+      const BasicBlock *PrevBB = Path.back();
+      for (const BasicBlock *BB : Path) {
+        if (StateDef.count(BB) != 0) {
+          const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
+          assert(Phi && "Expected a state-defining instr to be a phi node.");
+
+          const Value *V = Phi->getIncomingValueForBlock(PrevBB);
+          if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
+            TPath.setExitValue(C);
+            TPath.setDeterminator(BB);
+            TPath.setPath(Path);
+          }
+        }
+
+        // Switch block is the determinator, this is the final exit value.
+        if (TPath.isExitValueSet() && BB == Path.front())
+          break;
+
+        PrevBB = BB;
+      }
+
+      if (TPath.isExitValueSet())
+        TPaths.push_back(TPath);
+    }
+  }
+
+private:
+  // Value: an instruction that defines a switch state;
+  // Key: the parent basic block of that instruction.
+  typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap;
+
+  PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
+                  unsigned PathDepth) const {
+    PathsType Res;
+
+    // Stop exploring paths after visiting MaxPathLength blocks
+    if (PathDepth > MaxPathLength) {
+      ORE->emit([&]() {
+        return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
+                                          Switch)
+               << "Exploration stopped after visiting MaxPathLength="
+               << ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
+      });
+      return Res;
+    }
+
+    Visited.insert(BB);
+
+    // Some blocks have multiple edges to the same successor, and this set
+    // is used to prevent a duplicate path from being generated
+    SmallSet<BasicBlock *, 4> Successors;
+
+    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
+      BasicBlock *Succ = *SI;
+
+      if (Successors.find(Succ) != Successors.end())
+        continue;
+      Successors.insert(Succ);
+
+      // Found a cycle through the SwitchBlock
+      if (Succ == SwitchBlock) {
+        Res.push_back({BB});
+        continue;
+      }
+
+      // We have encountered a cycle, do not get caught in it
+      if (Visited.find(Succ) != Visited.end())
+        continue;
+
+      PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
+      for (PathType Path : SuccPaths) {
+        PathType NewPath(Path);
+        NewPath.push_front(BB);
+        Res.push_back(NewPath);
+      }
+    }
+    // This block could now be visited again from a 
diff erent predecessor. Note
+    // that this will result in exponential runtime. Subpaths could possibly be
+    // cached but it takes a lot of memory to store them.
+    Visited.erase(BB);
+    return Res;
+  }
+
+  /// Walk the use-def chain and collect all the state-defining instructions.
+  StateDefMap getStateDefMap() const {
+    StateDefMap Res;
+
+    Value *FirstDef = Switch->getOperand(0);
+
+    assert(isa<PHINode>(FirstDef) && "After select unfolding, all state "
+                                     "definitions are expected to be phi "
+                                     "nodes.");
+
+    SmallVector<PHINode *, 8> Stack;
+    Stack.push_back(dyn_cast<PHINode>(FirstDef));
+    SmallSet<Value *, 16> SeenValues;
+
+    while (!Stack.empty()) {
+      PHINode *CurPhi = Stack.back();
+      Stack.pop_back();
+
+      Res[CurPhi->getParent()] = CurPhi;
+      SeenValues.insert(CurPhi);
+
+      for (Value *Incoming : CurPhi->incoming_values()) {
+        if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
+            SeenValues.find(Incoming) != SeenValues.end()) {
+          continue;
+        }
+
+        assert(isa<PHINode>(Incoming) && "After select unfolding, all state "
+                                         "definitions are expected to be phi "
+                                         "nodes.");
+
+        Stack.push_back(cast<PHINode>(Incoming));
+      }
+    }
+
+    return Res;
+  }
+
+  SwitchInst *Switch;
+  BasicBlock *SwitchBlock;
+  OptimizationRemarkEmitter *ORE;
+  std::vector<ThreadingPath> TPaths;
+};
+
+struct TransformDFA {
+  TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
+               AssumptionCache *AC, TargetTransformInfo *TTI,
+               OptimizationRemarkEmitter *ORE,
+               SmallPtrSet<const Value *, 32> EphValues)
+      : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
+        EphValues(EphValues) {}
+
+  void run() {
+    if (isLegalAndProfitableToTransform()) {
+      createAllExitPaths();
+      NumTransforms++;
+    }
+  }
+
+private:
+  /// This function performs both a legality check and profitability check at
+  /// the same time since it is convenient to do so. It iterates through all
+  /// blocks that will be cloned, and keeps track of the duplication cost. It
+  /// also returns false if it is illegal to clone some required block.
+  bool isLegalAndProfitableToTransform() {
+    CodeMetrics Metrics;
+    SwitchInst *Switch = SwitchPaths->getSwitchInst();
+
+    // Note that DuplicateBlockMap is not being used as intended here. It is
+    // just being used to ensure (BB, State) pairs are only counted once.
+    DuplicateBlockMap DuplicateMap;
+
+    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
+      PathType PathBBs = TPath.getPath();
+      uint64_t NextState = TPath.getExitValue();
+      const BasicBlock *Determinator = TPath.getDeterminatorBB();
+
+      // Update Metrics for the Switch block, this is always cloned
+      BasicBlock *BB = SwitchPaths->getSwitchBlock();
+      BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
+      if (!VisitedBB) {
+        Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
+        DuplicateMap[BB].push_back({BB, NextState});
+      }
+
+      // If the Switch block is the Determinator, then we can continue since
+      // this is the only block that is cloned and we already counted for it.
+      if (PathBBs.front() == Determinator)
+        continue;
+
+      // Otherwise update Metrics for all blocks that will be cloned. If any
+      // block is already cloned and would be reused, don't double count it.
+      auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
+      for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
+        BB = *BBIt;
+        VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
+        if (VisitedBB)
+          continue;
+        Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
+        DuplicateMap[BB].push_back({BB, NextState});
+      }
+
+      if (Metrics.notDuplicatable) {
+        LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
+                          << "non-duplicatable instructions.\n");
+        ORE->emit([&]() {
+          return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
+                                          Switch)
+                 << "Contains non-duplicatable instructions.";
+        });
+        return false;
+      }
+
+      if (Metrics.convergent) {
+        LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
+                          << "convergent instructions.\n");
+        ORE->emit([&]() {
+          return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
+                 << "Contains convergent instructions.";
+        });
+        return false;
+      }
+    }
+
+    unsigned DuplicationCost = 0;
+
+    unsigned JumpTableSize = 0;
+    TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
+                                          nullptr);
+    if (JumpTableSize == 0) {
+      // Factor in the number of conditional branches reduced from jump
+      // threading. Assume that lowering the switch block is implemented by
+      // using binary search, hence the LogBase2().
+      unsigned CondBranches =
+          APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
+      DuplicationCost = Metrics.NumInsts / CondBranches;
+    } else {
+      // Compared with jump tables, the DFA optimizer removes an indirect branch
+      // on each loop iteration, thus making branch prediction more precise. The
+      // more branch targets there are, the more likely it is for the branch
+      // predictor to make a mistake, and the more benefit there is in the DFA
+      // optimizer. Thus, the more branch targets there are, the lower is the
+      // cost of the DFA opt.
+      DuplicationCost = Metrics.NumInsts / JumpTableSize;
+    }
+
+    LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
+                      << SwitchPaths->getSwitchBlock()->getName()
+                      << " is: " << DuplicationCost << "\n\n");
+
+    if (DuplicationCost > CostThreshold) {
+      LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
+                        << "cost threshold.\n");
+      ORE->emit([&]() {
+        return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
+               << "Duplication cost exceeds the cost threshold (cost="
+               << ore::NV("Cost", DuplicationCost)
+               << ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
+      });
+      return false;
+    }
+
+    ORE->emit([&]() {
+      return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
+             << "Switch statement jump-threaded.";
+    });
+
+    return true;
+  }
+
+  /// Transform each threading path to effectively jump thread the DFA.
+  void createAllExitPaths() {
+    DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);
+
+    // Move the switch block to the end of the path, since it will be duplicated
+    BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
+    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
+      LLVM_DEBUG(dbgs() << TPath << "\n");
+      PathType NewPath(TPath.getPath());
+      NewPath.push_back(SwitchBlock);
+      TPath.setPath(NewPath);
+    }
+
+    // Transform the ThreadingPaths and keep track of the cloned values
+    DuplicateBlockMap DuplicateMap;
+    DefMap NewDefs;
+
+    SmallSet<BasicBlock *, 16> BlocksToClean;
+    for (BasicBlock *BB : successors(SwitchBlock))
+      BlocksToClean.insert(BB);
+
+    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
+      createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
+      NumPaths++;
+    }
+
+    // After all paths are cloned, now update the last successor of the cloned
+    // path so it skips over the switch statement
+    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
+      updateLastSuccessor(TPath, DuplicateMap, &DTU);
+
+    // For each instruction that was cloned and used outside, update its uses
+    updateSSA(NewDefs);
+
+    // Clean PHI Nodes for the newly created blocks
+    for (BasicBlock *BB : BlocksToClean)
+      cleanPhiNodes(BB);
+  }
+
+  /// For a specific ThreadingPath \p Path, create an exit path starting from
+  /// the determinator block.
+  ///
+  /// To remember the correct destination, we have to duplicate blocks
+  /// corresponding to each state. Also update the terminating instruction of
+  /// the predecessors, and phis in the successor blocks.
+  void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
+                      DuplicateBlockMap &DuplicateMap,
+                      SmallSet<BasicBlock *, 16> &BlocksToClean,
+                      DomTreeUpdater *DTU) {
+    uint64_t NextState = Path.getExitValue();
+    const BasicBlock *Determinator = Path.getDeterminatorBB();
+    PathType PathBBs = Path.getPath();
+
+    // Don't select the placeholder block in front
+    if (PathBBs.front() == Determinator)
+      PathBBs.pop_front();
+
+    auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
+    auto Prev = std::prev(DetIt);
+    BasicBlock *PrevBB = *Prev;
+    for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
+      BasicBlock *BB = *BBIt;
+      BlocksToClean.insert(BB);
+
+      // We already cloned BB for this NextState, now just update the branch
+      // and continue.
+      BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
+      if (NextBB) {
+        updatePredecessor(PrevBB, BB, NextBB, DTU);
+        PrevBB = NextBB;
+        continue;
+      }
+
+      // Clone the BB and update the successor of Prev to jump to the new block
+      BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
+          BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
+      DuplicateMap[BB].push_back({NewBB, NextState});
+      BlocksToClean.insert(NewBB);
+      PrevBB = NewBB;
+    }
+  }
+
+  /// Restore SSA form after cloning blocks.
+  ///
+  /// Each cloned block creates new defs for a variable, and the uses need to be
+  /// updated to reflect this. The uses may be replaced with a cloned value, or
+  /// some derived phi instruction. Note that all uses of a value defined in the
+  /// same block were already remapped when cloning the block.
+  void updateSSA(DefMap &NewDefs) {
+    SSAUpdaterBulk SSAUpdate;
+    SmallVector<Use *, 16> UsesToRename;
+
+    for (auto KV : NewDefs) {
+      Instruction *I = KV.first;
+      BasicBlock *BB = I->getParent();
+      std::vector<Instruction *> Cloned = KV.second;
+
+      // Scan all uses of this instruction to see if it is used outside of its
+      // block, and if so, record them in UsesToRename.
+      for (Use &U : I->uses()) {
+        Instruction *User = cast<Instruction>(U.getUser());
+        if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+          if (UserPN->getIncomingBlock(U) == BB)
+            continue;
+        } else if (User->getParent() == BB) {
+          continue;
+        }
+
+        UsesToRename.push_back(&U);
+      }
+
+      // If there are no uses outside the block, we're done with this
+      // instruction.
+      if (UsesToRename.empty())
+        continue;
+      LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
+                        << "\n");
+
+      // We found a use of I outside of BB.  Rename all uses of I that are
+      // outside its block to be uses of the appropriate PHI node etc.  See
+      // ValuesInBlocks with the values we know.
+      unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
+      SSAUpdate.AddAvailableValue(VarNum, BB, I);
+      for (Instruction *New : Cloned)
+        SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);
+
+      while (!UsesToRename.empty())
+        SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());
+
+      LLVM_DEBUG(dbgs() << "\n");
+    }
+    // SSAUpdater handles phi placement and renaming uses with the appropriate
+    // value.
+    SSAUpdate.RewriteAllUses(DT);
+  }
+
+  /// Clones a basic block, and adds it to the CFG.
+  ///
+  /// This function also includes updating phi nodes in the successors of the
+  /// BB, and remapping uses that were defined locally in the cloned BB.
+  BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
+                                             uint64_t NextState,
+                                             DuplicateBlockMap &DuplicateMap,
+                                             DefMap &NewDefs,
+                                             DomTreeUpdater *DTU) {
+    ValueToValueMapTy VMap;
+    BasicBlock *NewBB = CloneBasicBlock(
+        BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
+    NewBB->moveAfter(BB);
+    NumCloned++;
+
+    for (Instruction &I : *NewBB) {
+      // Do not remap operands of PHINode in case a definition in BB is an
+      // incoming value to a phi in the same block. This incoming value will
+      // be renamed later while restoring SSA.
+      if (isa<PHINode>(&I))
+        continue;
+      RemapInstruction(&I, VMap,
+                       RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
+      if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
+        AC->registerAssumption(II);
+    }
+
+    updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
+    updatePredecessor(PrevBB, BB, NewBB, DTU);
+    updateDefMap(NewDefs, VMap);
+
+    // Add all successors to the DominatorTree
+    SmallPtrSet<BasicBlock *, 4> SuccSet;
+    for (auto *SuccBB : successors(NewBB)) {
+      if (SuccSet.insert(SuccBB).second)
+        DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
+    }
+    SuccSet.clear();
+    return NewBB;
+  }
+
+  /// Update the phi nodes in BB's successors.
+  ///
+  /// This means creating a new incoming value from NewBB with the new
+  /// instruction wherever there is an incoming value from BB.
+  void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
+                           uint64_t NextState, ValueToValueMapTy &VMap,
+                           DuplicateBlockMap &DuplicateMap) {
+    std::vector<BasicBlock *> BlocksToUpdate;
+
+    // If BB is the last block in the path, we can simply update the one case
+    // successor that will be reached.
+    if (BB == SwitchPaths->getSwitchBlock()) {
+      SwitchInst *Switch = SwitchPaths->getSwitchInst();
+      BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
+      BlocksToUpdate.push_back(NextCase);
+      BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
+      if (ClonedSucc)
+        BlocksToUpdate.push_back(ClonedSucc);
+    }
+    // Otherwise update phis in all successors.
+    else {
+      for (BasicBlock *Succ : successors(BB)) {
+        BlocksToUpdate.push_back(Succ);
+
+        // Check if a successor has already been cloned for the particular exit
+        // value. In this case if a successor was already cloned, the phi nodes
+        // in the cloned block should be updated directly.
+        BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
+        if (ClonedSucc)
+          BlocksToUpdate.push_back(ClonedSucc);
+      }
+    }
+
+    // If there is a phi with an incoming value from BB, create a new incoming
+    // value for the new predecessor ClonedBB. The value will either be the same
+    // value from BB or a cloned value.
+    for (BasicBlock *Succ : BlocksToUpdate) {
+      for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
+           ++II) {
+        Value *Incoming = Phi->getIncomingValueForBlock(BB);
+        if (Incoming) {
+          if (isa<Constant>(Incoming)) {
+            Phi->addIncoming(Incoming, ClonedBB);
+            continue;
+          }
+          Value *ClonedVal = VMap[Incoming];
+          if (ClonedVal)
+            Phi->addIncoming(ClonedVal, ClonedBB);
+          else
+            Phi->addIncoming(Incoming, ClonedBB);
+        }
+      }
+    }
+  }
+
+  /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
+  /// other successors are kept as well.
+  void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
+                         BasicBlock *NewBB, DomTreeUpdater *DTU) {
+    // When a path is reused, there is a chance that predecessors were already
+    // updated before. Check if the predecessor needs to be updated first.
+    if (!isPredecessor(OldBB, PrevBB))
+      return;
+
+    Instruction *PrevTerm = PrevBB->getTerminator();
+    for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
+      if (PrevTerm->getSuccessor(Idx) == OldBB) {
+        OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
+        PrevTerm->setSuccessor(Idx, NewBB);
+      }
+    }
+    DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
+                       {DominatorTree::Insert, PrevBB, NewBB}});
+  }
+
+  /// Add new value mappings to the DefMap to keep track of all new definitions
+  /// for a particular instruction. These will be used while updating SSA form.
+  void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
+    for (auto Entry : VMap) {
+      Instruction *Inst =
+          dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
+      if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
+          isa<SwitchInst>(Inst)) {
+        continue;
+      }
+
+      Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
+      if (!Cloned)
+        continue;
+
+      if (NewDefs.find(Inst) == NewDefs.end())
+        NewDefs[Inst] = {Cloned};
+      else
+        NewDefs[Inst].push_back(Cloned);
+    }
+  }
+
+  /// Update the last branch of a particular cloned path to point to the correct
+  /// case successor.
+  ///
+  /// Note that this is an optional step and would have been done in later
+  /// optimizations, but it makes the CFG significantly easier to work with.
+  void updateLastSuccessor(ThreadingPath &TPath,
+                           DuplicateBlockMap &DuplicateMap,
+                           DomTreeUpdater *DTU) {
+    uint64_t NextState = TPath.getExitValue();
+    BasicBlock *BB = TPath.getPath().back();
+    BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);
+
+    // Note multiple paths can end at the same block so check that it is not
+    // updated yet
+    if (!isa<SwitchInst>(LastBlock->getTerminator()))
+      return;
+    SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
+    BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
+
+    std::vector<DominatorTree::UpdateType> DTUpdates;
+    SmallPtrSet<BasicBlock *, 4> SuccSet;
+    for (BasicBlock *Succ : successors(LastBlock)) {
+      if (Succ != NextCase && SuccSet.insert(Succ).second)
+        DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
+    }
+
+    Switch->eraseFromParent();
+    BranchInst::Create(NextCase, LastBlock);
+
+    DTU->applyUpdates(DTUpdates);
+  }
+
+  /// After cloning blocks, some of the phi nodes have extra incoming values
+  /// that are no longer used. This function removes them.
+  void cleanPhiNodes(BasicBlock *BB) {
+    // If BB is no longer reachable, remove any remaining phi nodes
+    if (pred_empty(BB)) {
+      std::vector<PHINode *> PhiToRemove;
+      for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
+        PhiToRemove.push_back(Phi);
+      }
+      for (PHINode *PN : PhiToRemove) {
+        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+        PN->eraseFromParent();
+      }
+      return;
+    }
+
+    // Remove any incoming values that come from an invalid predecessor
+    for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
+      std::vector<BasicBlock *> BlocksToRemove;
+      for (BasicBlock *IncomingBB : Phi->blocks()) {
+        if (!isPredecessor(BB, IncomingBB))
+          BlocksToRemove.push_back(IncomingBB);
+      }
+      for (BasicBlock *BB : BlocksToRemove)
+        Phi->removeIncomingValue(BB);
+    }
+  }
+
+  /// Checks if BB was already cloned for a particular next state value. If it
+  /// was then it returns this cloned block, and otherwise null.
+  BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
+                          DuplicateBlockMap &DuplicateMap) {
+    CloneList ClonedBBs = DuplicateMap[BB];
+
+    // Find an entry in the CloneList with this NextState. If it exists then
+    // return the corresponding BB
+    auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
+      return C.State == NextState;
+    });
+    return It != ClonedBBs.end() ? (*It).BB : nullptr;
+  }
+
+  /// Helper to get the successor corresponding to a particular case value for
+  /// a switch statement.
+  BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
+    BasicBlock *NextCase = nullptr;
+    for (auto Case : Switch->cases()) {
+      if (Case.getCaseValue()->getZExtValue() == NextState) {
+        NextCase = Case.getCaseSuccessor();
+        break;
+      }
+    }
+    if (!NextCase)
+      NextCase = Switch->getDefaultDest();
+    return NextCase;
+  }
+
+  /// Returns true if IncomingBB is a predecessor of BB.
+  bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
+    return llvm::find(predecessors(BB), IncomingBB) != pred_end(BB);
+  }
+
+  AllSwitchPaths *SwitchPaths;
+  DominatorTree *DT;
+  AssumptionCache *AC;
+  TargetTransformInfo *TTI;
+  OptimizationRemarkEmitter *ORE;
+  SmallPtrSet<const Value *, 32> EphValues;
+  std::vector<ThreadingPath> TPaths;
+};
+
+bool DFAJumpThreading::run(Function &F) {
+  LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");
+
+  if (F.hasOptSize()) {
+    LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
+    return false;
+  }
+
+  if (ClViewCfgBefore)
+    F.viewCFG();
+
+  SmallVector<AllSwitchPaths, 2> ThreadableLoops;
+  bool MadeChanges = false;
+
+  for (BasicBlock &BB : F) {
+    auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
+    if (!SI)
+      continue;
+
+    LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
+                      << " is predictable\n");
+    MainSwitch Switch(SI, ORE);
+
+    if (!Switch.getInstr())
+      continue;
+
+    LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
+                      << "candidate for jump threading\n");
+    LLVM_DEBUG(SI->dump());
+
+    unfoldSelectInstrs(DT, Switch.getSelectInsts());
+    if (!Switch.getSelectInsts().empty())
+      MadeChanges = true;
+
+    AllSwitchPaths SwitchPaths(&Switch, ORE);
+    SwitchPaths.run();
+
+    if (SwitchPaths.getNumThreadingPaths() > 0) {
+      ThreadableLoops.push_back(SwitchPaths);
+
+      // For the time being limit this optimization to occurring once in a
+      // function since it can change the CFG significantly. This is not a
+      // strict requirement but it can cause buggy behavior if there is an
+      // overlap of blocks in 
diff erent opportunities. There is a lot of room to
+      // experiment with catching more opportunities here.
+      break;
+    }
+  }
+
+  SmallPtrSet<const Value *, 32> EphValues;
+  if (ThreadableLoops.size() > 0)
+    CodeMetrics::collectEphemeralValues(&F, AC, EphValues);
+
+  for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
+    TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
+    Transform.run();
+    MadeChanges = true;
+  }
+
+#ifdef EXPENSIVE_CHECKS
+  assert(DT->verify(DominatorTree::VerificationLevel::Full));
+  verifyFunction(F, &dbgs());
+#endif
+
+  return MadeChanges;
+}
+
+} // end anonymous namespace
+
+/// Integrate with the new Pass Manager
+PreservedAnalyses DFAJumpThreadingPass::run(Function &F,
+                                            FunctionAnalysisManager &AM) {
+  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
+  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
+  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
+  OptimizationRemarkEmitter ORE(&F);
+
+  if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
+    return PreservedAnalyses::all();
+
+  PreservedAnalyses PA;
+  PA.preserve<DominatorTreeAnalysis>();
+  return PA;
+}

diff  --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp
index dba3dba24e25d..a041af0d70d00 100644
--- a/llvm/lib/Transforms/Scalar/Scalar.cpp
+++ b/llvm/lib/Transforms/Scalar/Scalar.cpp
@@ -60,6 +60,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
   initializeInferAddressSpacesPass(Registry);
   initializeInstSimplifyLegacyPassPass(Registry);
   initializeJumpThreadingPass(Registry);
+  initializeDFAJumpThreadingLegacyPassPass(Registry);
   initializeLegacyLICMPassPass(Registry);
   initializeLegacyLoopSinkPassPass(Registry);
   initializeLoopFuseLegacyPass(Registry);

diff  --git a/llvm/test/Transforms/DFAJumpThreading/dfa-constant-propagation.ll b/llvm/test/Transforms/DFAJumpThreading/dfa-constant-propagation.ll
new file mode 100644
index 0000000000000..78e5615c5d2d1
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/dfa-constant-propagation.ll
@@ -0,0 +1,32 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt -S -dfa-jump-threading -sccp -simplifycfg %s | FileCheck %s
+
+; This test checks that a constant propagation is applied for a basic loop.
+; Related to bug 44679.
+define i32 @test(i32 %a) {
+; CHECK-LABEL: @test(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    ret i32 3
+;
+entry:
+  br label %while.cond
+
+while.cond:
+  %num = phi i32 [ 0, %entry ], [ %add, %case1 ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %case1 ]
+  switch i32 %state, label %end [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  %state.next = phi i32 [ 3, %case2 ], [ 2, %while.cond ]
+  %add = add nsw i32 %num, %state
+  br label %while.cond
+
+case2:
+  br label %case1
+
+end:
+  ret i32 %num
+}

diff  --git a/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-analysis.ll b/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-analysis.ll
new file mode 100644
index 0000000000000..7dfa1fcc3a779
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-analysis.ll
@@ -0,0 +1,180 @@
+; REQUIRES: asserts
+; RUN: opt -S -dfa-jump-threading -debug-only=dfa-jump-threading -disable-output %s 2>&1 | FileCheck %s
+
+; This test checks that the analysis identifies all threadable paths in a
+; simple CFG. A threadable path includes a list of basic blocks, the exit
+; state, and the block that determines the next state.
+; < path of BBs that form a cycle > [ state, determinator ]
+define i32 @test1(i32 %num) {
+; CHECK: < for.body for.inc > [ 1, for.inc ]
+; CHECK-NEXT: < for.body case1 for.inc > [ 2, for.inc ]
+; CHECK-NEXT: < for.body case2 for.inc > [ 1, for.inc ]
+; CHECK-NEXT: < for.body case2 si.unfold.false for.inc > [ 2, for.inc ]
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+    i32 1, label %case1
+    i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+; This test checks that the analysis finds threadable paths in a more
+; complicated CFG. Here the FSM is represented as a nested loop, with
+; fallthrough cases.
+define i32 @test2(i32 %init) {
+; CHECK: < loop.3 case2 > [ 3, loop.3 ]
+; CHECK-NEXT: < loop.3 case2 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
+; CHECK-NEXT: < loop.3 case2 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 4, loop.1.backedge ]
+; CHECK-NEXT: < loop.3 case3 loop.2.backedge loop.2 > [ 0, loop.2.backedge ]
+; CHECK-NEXT: < loop.3 case3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
+; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
+; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
+; CHECK-NEXT: < loop.3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
+; CHECK-NEXT: < loop.3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
+; CHECK-NEXT: < loop.3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
+entry:
+  %cmp = icmp eq i32 %init, 0
+  %sel = select i1 %cmp, i32 0, i32 2
+  br label %loop.1
+
+loop.1:
+  %state.1 = phi i32 [ %sel, %entry ], [ %state.1.be2, %loop.1.backedge ]
+  br label %loop.2
+
+loop.2:
+  %state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
+  br label %loop.3
+
+loop.3:
+  %state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
+  switch i32 %state, label %infloop.i [
+    i32 2, label %case2
+    i32 3, label %case3
+    i32 4, label %case4
+    i32 0, label %case0
+    i32 1, label %case1
+  ]
+
+case2:
+  br i1 %cmp, label %loop.3, label %loop.1.backedge
+
+case3:
+  br i1 %cmp, label %loop.2.backedge, label %case4
+
+case4:
+  br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge
+
+loop.1.backedge:
+  %state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
+  %state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
+  br label %loop.1
+
+loop.2.backedge:
+  %state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
+  br label %loop.2
+
+case0:
+  br label %exit
+
+case1:
+  br label %exit
+
+infloop.i:
+  br label %infloop.i
+
+exit:
+  ret i32 0
+}
+
+declare void @baz()
+
+; Verify that having the switch block as a determinator is handled correctly.
+define i32 @main() {
+; CHECK: < bb43 bb59 bb3 bb31 bb41 > [ 77, bb43 ]
+; CHECK-NEXT: < bb43 bb49 bb59 bb3 bb31 bb41 > [ 77, bb43 ]
+bb:
+  %i = alloca [420 x i8], align 1
+  %i2 = getelementptr inbounds [420 x i8], [420 x i8]* %i, i64 0, i64 390
+  br label %bb3
+
+bb3:                                              ; preds = %bb59, %bb
+  %i4 = phi i8* [ %i2, %bb ], [ %i60, %bb59 ]
+  %i5 = phi i8 [ 77, %bb ], [ %i64, %bb59 ]
+  %i6 = phi i32 [ 2, %bb ], [ %i63, %bb59 ]
+  %i7 = phi i32 [ 26, %bb ], [ %i62, %bb59 ]
+  %i8 = phi i32 [ 25, %bb ], [ %i61, %bb59 ]
+  %i9 = icmp sgt i32 %i7, 2
+  %i10 = select i1 %i9, i32 %i7, i32 2
+  %i11 = add i32 %i8, 2
+  %i12 = sub i32 %i11, %i10
+  %i13 = mul nsw i32 %i12, 3
+  %i14 = add nsw i32 %i13, %i6
+  %i15 = sext i32 %i14 to i64
+  %i16 = getelementptr inbounds i8, i8* %i4, i64 %i15
+  %i17 = load i8, i8* %i16, align 1
+  %i18 = icmp sgt i8 %i17, 0
+  br i1 %i18, label %bb21, label %bb31
+
+bb21:                                             ; preds = %bb3
+  br i1 true, label %bb59, label %bb43
+
+bb59:                                             ; preds = %bb49, %bb43, %bb31, %bb21
+  %i60 = phi i8* [ %i44, %bb49 ], [ %i44, %bb43 ], [ %i34, %bb31 ], [ %i4, %bb21 ]
+  %i61 = phi i32 [ %i45, %bb49 ], [ %i45, %bb43 ], [ %i33, %bb31 ], [ %i8, %bb21 ]
+  %i62 = phi i32 [ %i47, %bb49 ], [ %i47, %bb43 ], [ %i32, %bb31 ], [ %i7, %bb21 ]
+  %i63 = phi i32 [ %i48, %bb49 ], [ %i48, %bb43 ], [ 2, %bb31 ], [ %i6, %bb21 ]
+  %i64 = phi i8 [ %i46, %bb49 ], [ %i46, %bb43 ], [ 77, %bb31 ], [ %i5, %bb21 ]
+  %i65 = icmp sgt i32 %i62, 0
+  br i1 %i65, label %bb3, label %bb66
+
+bb31:                                             ; preds = %bb3
+  %i32 = add nsw i32 %i7, -1
+  %i33 = add nsw i32 %i8, -1
+  %i34 = getelementptr inbounds i8, i8* %i4, i64 -15
+  %i35 = icmp eq i8 %i5, 77
+  br i1 %i35, label %bb59, label %bb41
+
+bb41:                                             ; preds = %bb31
+  tail call void @baz()
+  br label %bb43
+
+bb43:                                             ; preds = %bb41, %bb21
+  %i44 = phi i8* [ %i34, %bb41 ], [ %i4, %bb21 ]
+  %i45 = phi i32 [ %i33, %bb41 ], [ %i8, %bb21 ]
+  %i46 = phi i8 [ 77, %bb41 ], [ %i5, %bb21 ]
+  %i47 = phi i32 [ %i32, %bb41 ], [ %i7, %bb21 ]
+  %i48 = phi i32 [ 2, %bb41 ], [ %i6, %bb21 ]
+  tail call void @baz()
+  switch i8 %i5, label %bb59 [
+    i8 68, label %bb49
+    i8 73, label %bb49
+  ]
+
+bb49:                                             ; preds = %bb43, %bb43
+  tail call void @baz()
+  br label %bb59
+
+bb66:                                             ; preds = %bb59
+  ret i32 0
+}

diff  --git a/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-transform.ll b/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-transform.ll
new file mode 100644
index 0000000000000..360f8053ebf6f
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-transform.ll
@@ -0,0 +1,234 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt -S -dfa-jump-threading %s | FileCheck %s
+
+; These tests check that the DFA jump threading transformation is applied
+; properly to two CFGs. It checks that blocks are cloned, branches are updated,
+; and SSA form is restored.
+define i32 @test1(i32 %num) {
+; CHECK-LABEL: @test1(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ undef, [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC_JT1:%.*]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       for.body.jt2:
+; CHECK-NEXT:    [[COUNT_JT2:%.*]] = phi i32 [ [[INC_JT2:%.*]], [[FOR_INC_JT2:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_NEXT_JT2:%.*]], [[FOR_INC_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       for.body.jt1:
+; CHECK-NEXT:    [[COUNT_JT1:%.*]] = phi i32 [ [[INC_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_NEXT_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       case1:
+; CHECK-NEXT:    [[COUNT2:%.*]] = phi i32 [ [[COUNT_JT1]], [[FOR_BODY_JT1:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[COUNT1:%.*]] = phi i32 [ [[COUNT_JT2]], [[FOR_BODY_JT2:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[COUNT1]], 50
+; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[INC]] = add nsw i32 undef, 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.inc.jt2:
+; CHECK-NEXT:    [[COUNT4:%.*]] = phi i32 [ [[COUNT1]], [[SI_UNFOLD_FALSE]] ], [ [[COUNT2]], [[CASE1]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT2]] = phi i32 [ 2, [[CASE1]] ], [ 2, [[SI_UNFOLD_FALSE]] ]
+; CHECK-NEXT:    [[INC_JT2]] = add nsw i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT2:%.*]] = icmp slt i32 [[INC_JT2]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT2]], label [[FOR_BODY_JT2]], label [[FOR_END]]
+; CHECK:       for.inc.jt1:
+; CHECK-NEXT:    [[COUNT3:%.*]] = phi i32 [ [[COUNT1]], [[CASE2]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT1]] = phi i32 [ 1, [[CASE2]] ], [ 1, [[FOR_BODY]] ]
+; CHECK-NEXT:    [[INC_JT1]] = add nsw i32 [[COUNT3]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT1:%.*]] = icmp slt i32 [[INC_JT1]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT1]], label [[FOR_BODY_JT1]], label [[FOR_END]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+
+define i32 @test2(i32 %init) {
+; CHECK-LABEL: @test2(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[INIT:%.*]], 0
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_1:%.*]], label [[SI_UNFOLD_FALSE1:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br label [[LOOP_1]]
+; CHECK:       si.unfold.false.jt2:
+; CHECK-NEXT:    br label [[LOOP_1_JT2:%.*]]
+; CHECK:       si.unfold.false.jt4:
+; CHECK-NEXT:    br label [[LOOP_1_JT4:%.*]]
+; CHECK:       si.unfold.false1:
+; CHECK-NEXT:    br label [[LOOP_1]]
+; CHECK:       loop.1:
+; CHECK-NEXT:    [[STATE_1:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ undef, [[SI_UNFOLD_FALSE:%.*]] ], [ 2, [[SI_UNFOLD_FALSE1]] ]
+; CHECK-NEXT:    br label [[LOOP_2:%.*]]
+; CHECK:       loop.1.jt2:
+; CHECK-NEXT:    [[STATE_1_JT2:%.*]] = phi i32 [ [[STATE_1_BE_JT2:%.*]], [[SI_UNFOLD_FALSE_JT2:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_2_JT2:%.*]]
+; CHECK:       loop.1.jt4:
+; CHECK-NEXT:    [[STATE_1_JT4:%.*]] = phi i32 [ [[STATE_1_BE_JT4:%.*]], [[SI_UNFOLD_FALSE_JT4:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_2_JT4:%.*]]
+; CHECK:       loop.1.jt1:
+; CHECK-NEXT:    [[STATE_1_JT1:%.*]] = phi i32 [ 1, [[LOOP_1_BACKEDGE:%.*]] ], [ 1, [[LOOP_1_BACKEDGE_JT4:%.*]] ], [ 1, [[LOOP_1_BACKEDGE_JT2:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_2_JT1:%.*]]
+; CHECK:       loop.2:
+; CHECK-NEXT:    [[STATE_2:%.*]] = phi i32 [ [[STATE_1]], [[LOOP_1]] ], [ undef, [[LOOP_2_BACKEDGE:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_3:%.*]]
+; CHECK:       loop.2.jt2:
+; CHECK-NEXT:    [[STATE_2_JT2:%.*]] = phi i32 [ [[STATE_1_JT2]], [[LOOP_1_JT2]] ]
+; CHECK-NEXT:    br label [[LOOP_3_JT2:%.*]]
+; CHECK:       loop.2.jt3:
+; CHECK-NEXT:    [[STATE_2_JT3:%.*]] = phi i32 [ [[STATE_2_BE_JT3:%.*]], [[LOOP_2_BACKEDGE_JT3:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_3_JT3:%.*]]
+; CHECK:       loop.2.jt0:
+; CHECK-NEXT:    [[STATE_2_JT0:%.*]] = phi i32 [ [[STATE_2_BE_JT0:%.*]], [[LOOP_2_BACKEDGE_JT0:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_3_JT0:%.*]]
+; CHECK:       loop.2.jt4:
+; CHECK-NEXT:    [[STATE_2_JT4:%.*]] = phi i32 [ [[STATE_1_JT4]], [[LOOP_1_JT4]] ]
+; CHECK-NEXT:    br label [[LOOP_3_JT4:%.*]]
+; CHECK:       loop.2.jt1:
+; CHECK-NEXT:    [[STATE_2_JT1:%.*]] = phi i32 [ [[STATE_1_JT1]], [[LOOP_1_JT1:%.*]] ]
+; CHECK-NEXT:    br label [[LOOP_3_JT1:%.*]]
+; CHECK:       loop.3:
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ [[STATE_2]], [[LOOP_2]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[INFLOOP_I:%.*]] [
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    i32 3, label [[CASE3:%.*]]
+; CHECK-NEXT:    i32 4, label [[CASE4:%.*]]
+; CHECK-NEXT:    i32 0, label [[CASE0:%.*]]
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       loop.3.jt2:
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_2_JT2]], [[LOOP_2_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       loop.3.jt0:
+; CHECK-NEXT:    [[STATE_JT0:%.*]] = phi i32 [ [[STATE_2_JT0]], [[LOOP_2_JT0:%.*]] ]
+; CHECK-NEXT:    br label [[CASE0]]
+; CHECK:       loop.3.jt4:
+; CHECK-NEXT:    [[STATE_JT4:%.*]] = phi i32 [ [[STATE_2_JT4]], [[LOOP_2_JT4]] ]
+; CHECK-NEXT:    br label [[CASE4]]
+; CHECK:       loop.3.jt1:
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_2_JT1]], [[LOOP_2_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       loop.3.jt3:
+; CHECK-NEXT:    [[STATE_JT3:%.*]] = phi i32 [ 3, [[CASE2]] ], [ [[STATE_2_JT3]], [[LOOP_2_JT3:%.*]] ]
+; CHECK-NEXT:    br label [[CASE3]]
+; CHECK:       case2:
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_3_JT3]], label [[LOOP_1_BACKEDGE_JT4]]
+; CHECK:       case3:
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_2_BACKEDGE_JT0]], label [[CASE4]]
+; CHECK:       case4:
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_2_BACKEDGE_JT3]], label [[LOOP_1_BACKEDGE_JT2]]
+; CHECK:       loop.1.backedge:
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_1_JT1]], label [[SI_UNFOLD_FALSE]]
+; CHECK:       loop.1.backedge.jt2:
+; CHECK-NEXT:    [[STATE_1_BE_JT2]] = phi i32 [ 2, [[CASE4]] ]
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_1_JT1]], label [[SI_UNFOLD_FALSE_JT2]]
+; CHECK:       loop.1.backedge.jt4:
+; CHECK-NEXT:    [[STATE_1_BE_JT4]] = phi i32 [ 4, [[CASE2]] ]
+; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP_1_JT1]], label [[SI_UNFOLD_FALSE_JT4]]
+; CHECK:       loop.2.backedge:
+; CHECK-NEXT:    br label [[LOOP_2]]
+; CHECK:       loop.2.backedge.jt3:
+; CHECK-NEXT:    [[STATE_2_BE_JT3]] = phi i32 [ 3, [[CASE4]] ]
+; CHECK-NEXT:    br label [[LOOP_2_JT3]]
+; CHECK:       loop.2.backedge.jt0:
+; CHECK-NEXT:    [[STATE_2_BE_JT0]] = phi i32 [ 0, [[CASE3]] ]
+; CHECK-NEXT:    br label [[LOOP_2_JT0]]
+; CHECK:       case0:
+; CHECK-NEXT:    br label [[EXIT:%.*]]
+; CHECK:       case1:
+; CHECK-NEXT:    br label [[EXIT]]
+; CHECK:       infloop.i:
+; CHECK-NEXT:    br label [[INFLOOP_I]]
+; CHECK:       exit:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  %cmp = icmp eq i32 %init, 0
+  %sel = select i1 %cmp, i32 0, i32 2
+  br label %loop.1
+
+loop.1:
+  %state.1 = phi i32 [ %sel, %entry ], [ %state.1.be2, %loop.1.backedge ]
+  br label %loop.2
+
+loop.2:
+  %state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
+  br label %loop.3
+
+loop.3:
+  %state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
+  switch i32 %state, label %infloop.i [
+  i32 2, label %case2
+  i32 3, label %case3
+  i32 4, label %case4
+  i32 0, label %case0
+  i32 1, label %case1
+  ]
+
+case2:
+  br i1 %cmp, label %loop.3, label %loop.1.backedge
+
+case3:
+  br i1 %cmp, label %loop.2.backedge, label %case4
+
+case4:
+  br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge
+
+loop.1.backedge:
+  %state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
+  %state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
+  br label %loop.1
+
+loop.2.backedge:
+  %state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
+  br label %loop.2
+
+case0:
+  br label %exit
+
+case1:
+  br label %exit
+
+infloop.i:
+  br label %infloop.i
+
+exit:
+  ret i32 0
+}

diff  --git a/llvm/test/Transforms/DFAJumpThreading/dfa-unfold-select.ll b/llvm/test/Transforms/DFAJumpThreading/dfa-unfold-select.ll
new file mode 100644
index 0000000000000..8768b6e631267
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/dfa-unfold-select.ll
@@ -0,0 +1,293 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt -S -dfa-jump-threading %s | FileCheck %s
+
+; These tests check if selects are unfolded properly for jump threading
+; opportunities. There are three 
diff erent patterns to consider:
+; 1) Both operands are constant and the false branch is unfolded by default
+; 2) One operand is constant and the other is another select to be unfolded. In
+;    this case a single select is sunk to a new block to unfold.
+; 3) Both operands are a select, and both should be sunk to new blocks.
+define i32 @test1(i32 %num) {
+; CHECK-LABEL: @test1(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ undef, [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC_JT1:%.*]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       for.body.jt2:
+; CHECK-NEXT:    [[COUNT_JT2:%.*]] = phi i32 [ [[INC_JT2:%.*]], [[FOR_INC_JT2:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_NEXT_JT2:%.*]], [[FOR_INC_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       for.body.jt1:
+; CHECK-NEXT:    [[COUNT_JT1:%.*]] = phi i32 [ [[INC_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_NEXT_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       case1:
+; CHECK-NEXT:    [[COUNT2:%.*]] = phi i32 [ [[COUNT_JT1]], [[FOR_BODY_JT1:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[COUNT1:%.*]] = phi i32 [ [[COUNT_JT2]], [[FOR_BODY_JT2:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[COUNT1]], 50
+; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[INC]] = add nsw i32 undef, 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.inc.jt2:
+; CHECK-NEXT:    [[COUNT4:%.*]] = phi i32 [ [[COUNT1]], [[SI_UNFOLD_FALSE]] ], [ [[COUNT2]], [[CASE1]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT2]] = phi i32 [ 2, [[CASE1]] ], [ 2, [[SI_UNFOLD_FALSE]] ]
+; CHECK-NEXT:    [[INC_JT2]] = add nsw i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT2:%.*]] = icmp slt i32 [[INC_JT2]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT2]], label [[FOR_BODY_JT2]], label [[FOR_END]]
+; CHECK:       for.inc.jt1:
+; CHECK-NEXT:    [[COUNT3:%.*]] = phi i32 [ [[COUNT1]], [[CASE2]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT1]] = phi i32 [ 1, [[CASE2]] ], [ 1, [[FOR_BODY]] ]
+; CHECK-NEXT:    [[INC_JT1]] = add nsw i32 [[COUNT3]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT1:%.*]] = icmp slt i32 [[INC_JT1]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT1]], label [[FOR_BODY_JT1]], label [[FOR_END]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp slt i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+define i32 @test2(i32 %num) {
+; CHECK-LABEL: @test2(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ undef, [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC_JT1:%.*]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       for.body.jt3:
+; CHECK-NEXT:    [[COUNT_JT3:%.*]] = phi i32 [ [[INC_JT3:%.*]], [[FOR_INC_JT3:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT3:%.*]] = phi i32 [ [[STATE_NEXT_JT3:%.*]], [[FOR_INC_JT3]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT1]]
+; CHECK:       for.body.jt2:
+; CHECK-NEXT:    [[COUNT_JT2:%.*]] = phi i32 [ [[INC_JT2:%.*]], [[FOR_INC_JT2:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_NEXT_JT2:%.*]], [[FOR_INC_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       for.body.jt1:
+; CHECK-NEXT:    [[COUNT_JT1:%.*]] = phi i32 [ [[INC_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_NEXT_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       case1:
+; CHECK-NEXT:    [[COUNT5:%.*]] = phi i32 [ [[COUNT_JT1]], [[FOR_BODY_JT1:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP_C1:%.*]] = icmp slt i32 [[COUNT5]], 50
+; CHECK-NEXT:    [[CMP2_C1:%.*]] = icmp slt i32 [[COUNT5]], 100
+; CHECK-NEXT:    br i1 [[CMP2_C1]], label [[SI_UNFOLD_TRUE:%.*]], label [[FOR_INC_JT3]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[COUNT3:%.*]] = phi i32 [ [[COUNT_JT2]], [[FOR_BODY_JT2:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP_C2:%.*]] = icmp slt i32 [[COUNT3]], 50
+; CHECK-NEXT:    [[CMP2_C2:%.*]] = icmp sgt i32 [[COUNT3]], 100
+; CHECK-NEXT:    br i1 [[CMP2_C2]], label [[FOR_INC_JT3]], label [[SI_UNFOLD_FALSE:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br i1 [[CMP_C2]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE1:%.*]]
+; CHECK:       si.unfold.false1:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       si.unfold.true:
+; CHECK-NEXT:    br i1 [[CMP_C1]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE2:%.*]]
+; CHECK:       si.unfold.false2:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[INC]] = add nsw i32 undef, 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.inc.jt3:
+; CHECK-NEXT:    [[COUNT6:%.*]] = phi i32 [ [[COUNT3]], [[CASE2]] ], [ [[COUNT5]], [[CASE1]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT3]] = phi i32 [ 3, [[CASE1]] ], [ 3, [[CASE2]] ]
+; CHECK-NEXT:    [[INC_JT3]] = add nsw i32 [[COUNT6]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT3:%.*]] = icmp slt i32 [[INC_JT3]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT3]], label [[FOR_BODY_JT3:%.*]], label [[FOR_END]]
+; CHECK:       for.inc.jt2:
+; CHECK-NEXT:    [[COUNT7:%.*]] = phi i32 [ [[COUNT3]], [[SI_UNFOLD_FALSE1]] ], [ [[COUNT5]], [[SI_UNFOLD_FALSE2]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT2]] = phi i32 [ 2, [[SI_UNFOLD_FALSE1]] ], [ 2, [[SI_UNFOLD_FALSE2]] ]
+; CHECK-NEXT:    [[INC_JT2]] = add nsw i32 [[COUNT7]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT2:%.*]] = icmp slt i32 [[INC_JT2]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT2]], label [[FOR_BODY_JT2]], label [[FOR_END]]
+; CHECK:       for.inc.jt1:
+; CHECK-NEXT:    [[COUNT4:%.*]] = phi i32 [ [[COUNT_JT3]], [[FOR_BODY_JT3]] ], [ [[COUNT3]], [[SI_UNFOLD_FALSE]] ], [ [[COUNT5]], [[SI_UNFOLD_TRUE]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT1]] = phi i32 [ 1, [[FOR_BODY]] ], [ 1, [[SI_UNFOLD_FALSE]] ], [ 1, [[SI_UNFOLD_TRUE]] ], [ 1, [[FOR_BODY_JT3]] ]
+; CHECK-NEXT:    [[INC_JT1]] = add nsw i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT1:%.*]] = icmp slt i32 [[INC_JT1]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT1]], label [[FOR_BODY_JT1]], label [[FOR_END]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  %cmp.c1 = icmp slt i32 %count, 50
+  %cmp2.c1 = icmp slt i32 %count, 100
+  %state1.1 = select i1 %cmp.c1, i32 1, i32 2
+  %state1.2 = select i1 %cmp2.c1, i32 %state1.1, i32 3
+  br label %for.inc
+
+case2:
+  %cmp.c2 = icmp slt i32 %count, 50
+  %cmp2.c2 = icmp sgt i32 %count, 100
+  %state2.1 = select i1 %cmp.c2, i32 1, i32 2
+  %state2.2 = select i1 %cmp2.c2, i32 3, i32 %state2.1
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %state1.2, %case1 ], [ %state2.2, %case2 ], [ 1, %for.body ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+define i32 @test3(i32 %num) {
+; CHECK-LABEL: @test3(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ undef, [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC_JT1:%.*]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       for.body.jt4:
+; CHECK-NEXT:    [[COUNT_JT4:%.*]] = phi i32 [ [[INC_JT4:%.*]], [[FOR_INC_JT4:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT4:%.*]] = phi i32 [ [[STATE_NEXT_JT4:%.*]], [[FOR_INC_JT4]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT1]]
+; CHECK:       for.body.jt3:
+; CHECK-NEXT:    [[COUNT_JT3:%.*]] = phi i32 [ [[INC_JT3:%.*]], [[FOR_INC_JT3:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT3:%.*]] = phi i32 [ [[STATE_NEXT_JT3:%.*]], [[FOR_INC_JT3]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT1]]
+; CHECK:       for.body.jt2:
+; CHECK-NEXT:    [[COUNT_JT2:%.*]] = phi i32 [ [[INC_JT2:%.*]], [[FOR_INC_JT2:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_NEXT_JT2:%.*]], [[FOR_INC_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       for.body.jt1:
+; CHECK-NEXT:    [[COUNT_JT1:%.*]] = phi i32 [ [[INC_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_NEXT_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       case1:
+; CHECK-NEXT:    [[COUNT5:%.*]] = phi i32 [ [[COUNT_JT1]], [[FOR_BODY_JT1:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[COUNT4:%.*]] = phi i32 [ [[COUNT_JT2]], [[FOR_BODY_JT2:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP_1:%.*]] = icmp slt i32 [[COUNT4]], 50
+; CHECK-NEXT:    [[CMP_2:%.*]] = icmp slt i32 [[COUNT4]], 100
+; CHECK-NEXT:    [[TMP0:%.*]] = and i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_3:%.*]] = icmp eq i32 [[TMP0]], 0
+; CHECK-NEXT:    br i1 [[CMP_3]], label [[SI_UNFOLD_TRUE:%.*]], label [[SI_UNFOLD_FALSE:%.*]]
+; CHECK:       si.unfold.true:
+; CHECK-NEXT:    br i1 [[CMP_1]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE2:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br i1 [[CMP_2]], label [[FOR_INC_JT3]], label [[SI_UNFOLD_FALSE1:%.*]]
+; CHECK:       si.unfold.false1:
+; CHECK-NEXT:    br label [[FOR_INC_JT4]]
+; CHECK:       si.unfold.false2:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[INC]] = add nsw i32 undef, 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.inc.jt4:
+; CHECK-NEXT:    [[STATE_NEXT_JT4]] = phi i32 [ 4, [[SI_UNFOLD_FALSE1]] ]
+; CHECK-NEXT:    [[INC_JT4]] = add nsw i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT4:%.*]] = icmp slt i32 [[INC_JT4]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT4]], label [[FOR_BODY_JT4:%.*]], label [[FOR_END]]
+; CHECK:       for.inc.jt3:
+; CHECK-NEXT:    [[STATE_NEXT_JT3]] = phi i32 [ 3, [[SI_UNFOLD_FALSE]] ]
+; CHECK-NEXT:    [[INC_JT3]] = add nsw i32 [[COUNT4]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT3:%.*]] = icmp slt i32 [[INC_JT3]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT3]], label [[FOR_BODY_JT3:%.*]], label [[FOR_END]]
+; CHECK:       for.inc.jt2:
+; CHECK-NEXT:    [[COUNT6:%.*]] = phi i32 [ [[COUNT4]], [[SI_UNFOLD_FALSE2]] ], [ [[COUNT5]], [[CASE1]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT2]] = phi i32 [ 2, [[CASE1]] ], [ 2, [[SI_UNFOLD_FALSE2]] ]
+; CHECK-NEXT:    [[INC_JT2]] = add nsw i32 [[COUNT6]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT2:%.*]] = icmp slt i32 [[INC_JT2]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT2]], label [[FOR_BODY_JT2]], label [[FOR_END]]
+; CHECK:       for.inc.jt1:
+; CHECK-NEXT:    [[COUNT3:%.*]] = phi i32 [ [[COUNT_JT4]], [[FOR_BODY_JT4]] ], [ [[COUNT_JT3]], [[FOR_BODY_JT3]] ], [ [[COUNT4]], [[SI_UNFOLD_TRUE]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT1]] = phi i32 [ 1, [[FOR_BODY]] ], [ 1, [[SI_UNFOLD_TRUE]] ], [ 1, [[FOR_BODY_JT3]] ], [ 1, [[FOR_BODY_JT4]] ]
+; CHECK-NEXT:    [[INC_JT1]] = add nsw i32 [[COUNT3]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT1:%.*]] = icmp slt i32 [[INC_JT1]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT1]], label [[FOR_BODY_JT1]], label [[FOR_END]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp.1 = icmp slt i32 %count, 50
+  %cmp.2 = icmp slt i32 %count, 100
+  %0 = and i32 %count, 1
+  %cmp.3 = icmp eq i32 %0, 0
+  %sel.1 = select i1 %cmp.1, i32 1, i32 2
+  %sel.2 = select i1 %cmp.2, i32 3, i32 4
+  %sel.3 = select i1 %cmp.3, i32 %sel.1, i32 %sel.2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel.3, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}

diff  --git a/llvm/test/Transforms/DFAJumpThreading/max-path-length.ll b/llvm/test/Transforms/DFAJumpThreading/max-path-length.ll
new file mode 100644
index 0000000000000..a40e7c7d0df77
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/max-path-length.ll
@@ -0,0 +1,101 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt -S -dfa-jump-threading -dfa-max-path-length=6 %s | FileCheck %s
+
+; Make the path
+;   <%for.body %case1 %case1.1 %case1.2 %case1.3 %case1.4 %for.inc %for.end>
+; too long so that it is not jump-threaded.
+define i32 @max_path_length(i32 %num) {
+; CHECK-LABEL: @max_path_length(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ [[STATE_NEXT:%.*]], [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC_JT1:%.*]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       for.body.jt2:
+; CHECK-NEXT:    [[COUNT_JT2:%.*]] = phi i32 [ [[INC_JT2:%.*]], [[FOR_INC_JT2:%.*]] ]
+; CHECK-NEXT:    [[STATE_JT2:%.*]] = phi i32 [ [[STATE_NEXT_JT2:%.*]], [[FOR_INC_JT2]] ]
+; CHECK-NEXT:    br label [[CASE2]]
+; CHECK:       for.body.jt1:
+; CHECK-NEXT:    [[COUNT_JT1:%.*]] = phi i32 [ [[INC_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    [[STATE_JT1:%.*]] = phi i32 [ [[STATE_NEXT_JT1:%.*]], [[FOR_INC_JT1]] ]
+; CHECK-NEXT:    br label [[CASE1]]
+; CHECK:       case1:
+; CHECK-NEXT:    [[COUNT2:%.*]] = phi i32 [ [[COUNT_JT1]], [[FOR_BODY_JT1:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    br label [[CASE1_1:%.*]]
+; CHECK:       case1.1:
+; CHECK-NEXT:    br label [[CASE1_2:%.*]]
+; CHECK:       case1.2:
+; CHECK-NEXT:    br label [[CASE1_3:%.*]]
+; CHECK:       case1.3:
+; CHECK-NEXT:    br label [[CASE1_4:%.*]]
+; CHECK:       case1.4:
+; CHECK-NEXT:    br label [[FOR_INC]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[COUNT1:%.*]] = phi i32 [ [[COUNT_JT2]], [[FOR_BODY_JT2:%.*]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[COUNT1]], 50
+; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_INC_JT1]], label [[SI_UNFOLD_FALSE:%.*]]
+; CHECK:       si.unfold.false:
+; CHECK-NEXT:    br label [[FOR_INC_JT2]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[STATE_NEXT]] = phi i32 [ 2, [[CASE1_4]] ]
+; CHECK-NEXT:    [[INC]] = add nsw i32 [[COUNT2]], 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.inc.jt2:
+; CHECK-NEXT:    [[STATE_NEXT_JT2]] = phi i32 [ 2, [[SI_UNFOLD_FALSE]] ]
+; CHECK-NEXT:    [[INC_JT2]] = add nsw i32 [[COUNT1]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT2:%.*]] = icmp slt i32 [[INC_JT2]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT2]], label [[FOR_BODY_JT2]], label [[FOR_END]]
+; CHECK:       for.inc.jt1:
+; CHECK-NEXT:    [[COUNT3:%.*]] = phi i32 [ [[COUNT1]], [[CASE2]] ], [ [[COUNT]], [[FOR_BODY]] ]
+; CHECK-NEXT:    [[STATE_NEXT_JT1]] = phi i32 [ 1, [[CASE2]] ], [ 1, [[FOR_BODY]] ]
+; CHECK-NEXT:    [[INC_JT1]] = add nsw i32 [[COUNT3]], 1
+; CHECK-NEXT:    [[CMP_EXIT_JT1:%.*]] = icmp slt i32 [[INC_JT1]], [[NUM]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT_JT1]], label [[FOR_BODY_JT1]], label [[FOR_END]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %case1.1
+
+case1.1:
+  br label %case1.2
+
+case1.2:
+  br label %case1.3
+
+case1.3:
+  br label %case1.4
+
+case1.4:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1.4 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}

diff  --git a/llvm/test/Transforms/DFAJumpThreading/negative.ll b/llvm/test/Transforms/DFAJumpThreading/negative.ll
new file mode 100644
index 0000000000000..009ffa3c557db
--- /dev/null
+++ b/llvm/test/Transforms/DFAJumpThreading/negative.ll
@@ -0,0 +1,216 @@
+; RUN: opt -dfa-jump-threading -dfa-cost-threshold=25 -pass-remarks-missed='dfa-jump-threading' -pass-remarks-output=%t -disable-output %s
+; RUN: FileCheck --input-file %t --check-prefix=REMARK %s
+; RUN: opt -S -dfa-jump-threading %s | FileCheck %s
+
+; This negative test case checks that the optimization doesn't trigger
+; when the code size cost is too high.
+define i32 @negative1(i32 %num) {
+; REMARK: NotProfitable
+; REMARK-NEXT: negative1
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %add1 = add i32 %num, %num
+  %add2 = add i32 %add1, %add1
+  %add3 = add i32 %add2, %add2
+  %add4 = add i32 %add3, %add3
+  %add5 = add i32 %add4, %add4
+  %add6 = add i32 %add5, %add5
+  %add7 = add i32 %add6, %add6
+  %add8 = add i32 %add7, %add7
+  %add9 = add i32 %add8, %add8
+  %add10 = add i32 %add9, %add9
+  %add11 = add i32 %add10, %add10
+  %add12 = add i32 %add11, %add11
+  %add13 = add i32 %add12, %add12
+  %add14 = add i32 %add13, %add13
+  %add15 = add i32 %add14, %add14
+  %add16 = add i32 %add15, %add15
+  %add17 = add i32 %add16, %add16
+  %add18 = add i32 %add17, %add17
+  %add19 = add i32 %add18, %add18
+  %add20 = add i32 %add19, %add19
+  %add21 = add i32 %add20, %add20
+  %add22 = add i32 %add21, %add21
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 %add22
+}
+
+declare void @func()
+
+define i32 @negative2(i32 %num) {
+; REMARK: NonDuplicatableInst
+; REMARK-NEXT: negative2
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  call void @func() noduplicate
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+define i32 @negative3(i32 %num) {
+; REMARK: ConvergentInst
+; REMARK-NEXT: negative3
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  call void @func() convergent
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+define i32 @negative4(i32 %num) {
+; REMARK: SwitchNotPredictable
+; REMARK-NEXT: negative4
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  ; the switch variable is not predictable since the exit value for %case1
+  ; is defined through a non-instruction (function argument).
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ %num, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}
+
+; Do not optimize if marked minsize.
+define i32 @negative5(i32 %num) minsize {
+; CHECK-LABEL: @negative5(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
+; CHECK:       for.body:
+; CHECK-NEXT:    [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT:    [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ [[STATE_NEXT:%.*]], [[FOR_INC]] ]
+; CHECK-NEXT:    switch i32 [[STATE]], label [[FOR_INC]] [
+; CHECK-NEXT:    i32 1, label [[CASE1:%.*]]
+; CHECK-NEXT:    i32 2, label [[CASE2:%.*]]
+; CHECK-NEXT:    ]
+; CHECK:       case1:
+; CHECK-NEXT:    br label [[FOR_INC]]
+; CHECK:       case2:
+; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[COUNT]], 50
+; CHECK-NEXT:    [[SEL:%.*]] = select i1 [[CMP]], i32 1, i32 2
+; CHECK-NEXT:    br label [[FOR_INC]]
+; CHECK:       for.inc:
+; CHECK-NEXT:    [[STATE_NEXT]] = phi i32 [ [[SEL]], [[CASE2]] ], [ 1, [[FOR_BODY]] ], [ 2, [[CASE1]] ]
+; CHECK-NEXT:    [[INC]] = add nsw i32 [[COUNT]], 1
+; CHECK-NEXT:    [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
+; CHECK-NEXT:    br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
+; CHECK:       for.end:
+; CHECK-NEXT:    ret i32 0
+;
+entry:
+  br label %for.body
+
+for.body:
+  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
+  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
+  switch i32 %state, label %for.inc [
+  i32 1, label %case1
+  i32 2, label %case2
+  ]
+
+case1:
+  br label %for.inc
+
+case2:
+  %cmp = icmp eq i32 %count, 50
+  %sel = select i1 %cmp, i32 1, i32 2
+  br label %for.inc
+
+for.inc:
+  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
+  %inc = add nsw i32 %count, 1
+  %cmp.exit = icmp slt i32 %inc, %num
+  br i1 %cmp.exit, label %for.body, label %for.end
+
+for.end:
+  ret i32 0
+}


        


More information about the llvm-commits mailing list