[llvm] bbab9f9 - [SCCP] Create SCCP Solver

Sjoerd Meijer via llvm-commits llvm-commits at lists.llvm.org
Wed Apr 14 06:58:58 PDT 2021


Author: Sjoerd Meijer
Date: 2021-04-14T14:58:03+01:00
New Revision: bbab9f986c6df8508eb64697923eb70ee17cb0f8

URL: https://github.com/llvm/llvm-project/commit/bbab9f986c6df8508eb64697923eb70ee17cb0f8
DIFF: https://github.com/llvm/llvm-project/commit/bbab9f986c6df8508eb64697923eb70ee17cb0f8.diff

LOG: [SCCP] Create SCCP Solver

This refactors SCCP and creates a SCCPSolver interface and class so that it can
be used by other passes and transformations. We will use this in D93838, which
adds a function specialisation pass.

This is based on an early version by Vinay Madhusudan.

Differential Revision: https://reviews.llvm.org/D93762

Added: 
    llvm/include/llvm/Transforms/Utils/SCCPSolver.h
    llvm/lib/Transforms/Utils/SCCPSolver.cpp

Modified: 
    llvm/include/llvm/Transforms/Scalar/SCCP.h
    llvm/lib/Transforms/Scalar/SCCP.cpp
    llvm/lib/Transforms/Utils/CMakeLists.txt

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/Transforms/Scalar/SCCP.h b/llvm/include/llvm/Transforms/Scalar/SCCP.h
index 45e674a20a16..1f96c71d3162 100644
--- a/llvm/include/llvm/Transforms/Scalar/SCCP.h
+++ b/llvm/include/llvm/Transforms/Scalar/SCCP.h
@@ -27,6 +27,7 @@
 #include "llvm/IR/Module.h"
 #include "llvm/IR/PassManager.h"
 #include "llvm/Transforms/Utils/PredicateInfo.h"
+#include "llvm/Transforms/Utils/SCCPSolver.h"
 
 namespace llvm {
 
@@ -38,13 +39,6 @@ class SCCPPass : public PassInfoMixin<SCCPPass> {
   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 };
 
-/// Helper struct for bundling up the analysis results per function for IPSCCP.
-struct AnalysisResultsForFn {
-  std::unique_ptr<PredicateInfo> PredInfo;
-  DominatorTree *DT;
-  PostDominatorTree *PDT;
-};
-
 bool runIPSCCP(Module &M, const DataLayout &DL,
                std::function<const TargetLibraryInfo &(Function &)> GetTLI,
                function_ref<AnalysisResultsForFn(Function &)> getAnalysis);

diff  --git a/llvm/include/llvm/Transforms/Utils/SCCPSolver.h b/llvm/include/llvm/Transforms/Utils/SCCPSolver.h
new file mode 100644
index 000000000000..6e8e089ff6be
--- /dev/null
+++ b/llvm/include/llvm/Transforms/Utils/SCCPSolver.h
@@ -0,0 +1,137 @@
+//===- SCCPSolver.h - SCCP Utility ----------------------------- *- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+// This file implements Sparse Conditional Constant Propagation (SCCP) utility.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_SCCP_SOLVER_H
+#define LLVM_TRANSFORMS_UTILS_SCCP_SOLVER_H
+
+#include "llvm/ADT/MapVector.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueLattice.h"
+#include "llvm/Analysis/ValueLatticeUtils.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Transforms/Utils/PredicateInfo.h"
+#include <cassert>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+/// Helper struct for bundling up the analysis results per function for IPSCCP.
+struct AnalysisResultsForFn {
+  std::unique_ptr<PredicateInfo> PredInfo;
+  DominatorTree *DT;
+  PostDominatorTree *PDT;
+};
+
+class SCCPInstVisitor;
+
+//===----------------------------------------------------------------------===//
+//
+/// SCCPSolver - This interface class is a general purpose solver for Sparse
+/// Conditional Constant Propagation (SCCP).
+///
+class SCCPSolver {
+  std::unique_ptr<SCCPInstVisitor> Visitor;
+
+public:
+  SCCPSolver(const DataLayout &DL,
+             std::function<const TargetLibraryInfo &(Function &)> GetTLI,
+             LLVMContext &Ctx);
+
+  ~SCCPSolver();
+
+  void addAnalysis(Function &F, AnalysisResultsForFn A);
+
+  /// MarkBlockExecutable - This method can be used by clients to mark all of
+  /// the blocks that are known to be intrinsically live in the processed unit.
+  /// This returns true if the block was not considered live before.
+  bool MarkBlockExecutable(BasicBlock *BB);
+
+  const PredicateBase *getPredicateInfoFor(Instruction *I);
+
+  DomTreeUpdater getDTU(Function &F);
+
+  /// TrackValueOfGlobalVariable - Clients can use this method to
+  /// inform the SCCPSolver that it should track loads and stores to the
+  /// specified global variable if it can.  This is only legal to call if
+  /// performing Interprocedural SCCP.
+  void TrackValueOfGlobalVariable(GlobalVariable *GV);
+
+  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
+  /// and out of the specified function (which cannot have its address taken),
+  /// this method must be called.
+  void AddTrackedFunction(Function *F);
+
+  /// Add function to the list of functions whose return cannot be modified.
+  void addToMustPreserveReturnsInFunctions(Function *F);
+
+  /// Returns true if the return of the given function cannot be modified.
+  bool mustPreserveReturn(Function *F);
+
+  void AddArgumentTrackedFunction(Function *F);
+
+  /// Returns true if the given function is in the solver's set of
+  /// argument-tracked functions.
+  bool isArgumentTrackedFunction(Function *F);
+
+  /// Solve - Solve for constants and executable blocks.
+  void Solve();
+
+  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+  /// that branches on undef values cannot reach any of their successors.
+  /// However, this is not a safe assumption.  After we solve dataflow, this
+  /// method should be use to handle this.  If this returns true, the solver
+  /// should be rerun.
+  bool ResolvedUndefsIn(Function &F);
+
+  bool isBlockExecutable(BasicBlock *BB) const;
+
+  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+  // block to the 'To' basic block is currently feasible.
+  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
+
+  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const;
+
+  void removeLatticeValueFor(Value *V);
+
+  const ValueLatticeElement &getLatticeValueFor(Value *V) const;
+
+  /// getTrackedRetVals - Get the inferred return value map.
+  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals();
+
+  /// getTrackedGlobals - Get and return the set of inferred initializers for
+  /// global variables.
+  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals();
+
+  /// getMRVFunctionsTracked - Get the set of functions which return multiple
+  /// values tracked by the pass.
+  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked();
+
+  /// markOverdefined - Mark the specified value overdefined.  This
+  /// works with both scalars and structs.
+  void markOverdefined(Value *V);
+
+  // isStructLatticeConstant - Return true if all the lattice values
+  // corresponding to elements of the structure are constants,
+  // false otherwise.
+  bool isStructLatticeConstant(Function *F, StructType *STy);
+
+  /// Helper to return a Constant if \p LV is either a constant or a constant
+  /// range with a single element.
+  Constant *getConstant(const ValueLatticeElement &LV) const;
+};
+
+} // namespace llvm
+
+#endif // LLVM_TRANSFORMS_UTILS_SCCP_SOLVER_H

diff  --git a/llvm/lib/Transforms/Scalar/SCCP.cpp b/llvm/lib/Transforms/Scalar/SCCP.cpp
index 86705b8622a3..4af8a15d56f5 100644
--- a/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ b/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -80,22 +80,11 @@ STATISTIC(
     IPNumInstReplaced,
     "Number of instructions replaced with (simpler) instruction by IPSCCP");
 
-// The maximum number of range extensions allowed for operations requiring
-// widening.
-static const unsigned MaxNumRangeExtensions = 10;
-
-/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
-static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
-  return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
-      MaxNumRangeExtensions);
-}
-namespace {
-
 // Helper to check if \p LV is either a constant or a constant
 // range with a single element. This should cover exactly the same cases as the
 // old ValueLatticeElement::isConstant() and is intended to be used in the
 // transition to ValueLatticeElement.
-bool isConstant(const ValueLatticeElement &LV) {
+static bool isConstant(const ValueLatticeElement &LV) {
   return LV.isConstant() ||
          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
 }
@@ -104,1520 +93,12 @@ bool isConstant(const ValueLatticeElement &LV) {
 // than a single element. This should cover exactly the same cases as the old
 // ValueLatticeElement::isOverdefined() and is intended to be used in the
 // transition to ValueLatticeElement.
-bool isOverdefined(const ValueLatticeElement &LV) {
+static bool isOverdefined(const ValueLatticeElement &LV) {
   return !LV.isUnknownOrUndef() && !isConstant(LV);
 }
 
-//===----------------------------------------------------------------------===//
-//
-/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
-/// Constant Propagation.
-///
-class SCCPSolver : public InstVisitor<SCCPSolver> {
-  const DataLayout &DL;
-  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
-  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
-  DenseMap<Value *, ValueLatticeElement>
-      ValueState; // The state each value is in.
-
-  /// StructValueState - This maintains ValueState for values that have
-  /// StructType, for example for formal arguments, calls, insertelement, etc.
-  DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
-
-  /// GlobalValue - If we are tracking any values for the contents of a global
-  /// variable, we keep a mapping from the constant accessor to the element of
-  /// the global, to the currently known value.  If the value becomes
-  /// overdefined, it's entry is simply removed from this map.
-  DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
-
-  /// TrackedRetVals - If we are tracking arguments into and the return
-  /// value out of a function, it will have an entry in this map, indicating
-  /// what the known return value for the function is.
-  MapVector<Function *, ValueLatticeElement> TrackedRetVals;
-
-  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
-  /// that return multiple values.
-  MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
-      TrackedMultipleRetVals;
-
-  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
-  /// represented here for efficient lookup.
-  SmallPtrSet<Function *, 16> MRVFunctionsTracked;
-
-  /// A list of functions whose return cannot be modified.
-  SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
-
-  /// TrackingIncomingArguments - This is the set of functions for whose
-  /// arguments we make optimistic assumptions about and try to prove as
-  /// constants.
-  SmallPtrSet<Function *, 16> TrackingIncomingArguments;
-
-  /// The reason for two worklists is that overdefined is the lowest state
-  /// on the lattice, and moving things to overdefined as fast as possible
-  /// makes SCCP converge much faster.
-  ///
-  /// By having a separate worklist, we accomplish this because everything
-  /// possibly overdefined will become overdefined at the soonest possible
-  /// point.
-  SmallVector<Value *, 64> OverdefinedInstWorkList;
-  SmallVector<Value *, 64> InstWorkList;
-
-  // The BasicBlock work list
-  SmallVector<BasicBlock *, 64>  BBWorkList;
-
-  /// KnownFeasibleEdges - Entries in this set are edges which have already had
-  /// PHI nodes retriggered.
-  using Edge = std::pair<BasicBlock *, BasicBlock *>;
-  DenseSet<Edge> KnownFeasibleEdges;
-
-  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
-  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
-
-  LLVMContext &Ctx;
-
-public:
-  void addAnalysis(Function &F, AnalysisResultsForFn A) {
-    AnalysisResults.insert({&F, std::move(A)});
-  }
-
-  const PredicateBase *getPredicateInfoFor(Instruction *I) {
-    auto A = AnalysisResults.find(I->getParent()->getParent());
-    if (A == AnalysisResults.end())
-      return nullptr;
-    return A->second.PredInfo->getPredicateInfoFor(I);
-  }
-
-  DomTreeUpdater getDTU(Function &F) {
-    auto A = AnalysisResults.find(&F);
-    assert(A != AnalysisResults.end() && "Need analysis results for function.");
-    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
-  }
-
-  SCCPSolver(const DataLayout &DL,
-             std::function<const TargetLibraryInfo &(Function &)> GetTLI,
-             LLVMContext &Ctx)
-      : DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {}
-
-  /// MarkBlockExecutable - This method can be used by clients to mark all of
-  /// the blocks that are known to be intrinsically live in the processed unit.
-  ///
-  /// This returns true if the block was not considered live before.
-  bool MarkBlockExecutable(BasicBlock *BB) {
-    if (!BBExecutable.insert(BB).second)
-      return false;
-    LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
-    BBWorkList.push_back(BB);  // Add the block to the work list!
-    return true;
-  }
-
-  /// TrackValueOfGlobalVariable - Clients can use this method to
-  /// inform the SCCPSolver that it should track loads and stores to the
-  /// specified global variable if it can.  This is only legal to call if
-  /// performing Interprocedural SCCP.
-  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
-    // We only track the contents of scalar globals.
-    if (GV->getValueType()->isSingleValueType()) {
-      ValueLatticeElement &IV = TrackedGlobals[GV];
-      if (!isa<UndefValue>(GV->getInitializer()))
-        IV.markConstant(GV->getInitializer());
-    }
-  }
-
-  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
-  /// and out of the specified function (which cannot have its address taken),
-  /// this method must be called.
-  void AddTrackedFunction(Function *F) {
-    // Add an entry, F -> undef.
-    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
-      MRVFunctionsTracked.insert(F);
-      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
-        TrackedMultipleRetVals.insert(
-            std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
-    } else if (!F->getReturnType()->isVoidTy())
-      TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
-  }
-
-  /// Add function to the list of functions whose return cannot be modified.
-  void addToMustPreserveReturnsInFunctions(Function *F) {
-    MustPreserveReturnsInFunctions.insert(F);
-  }
-
-  /// Returns true if the return of the given function cannot be modified.
-  bool mustPreserveReturn(Function *F) {
-    return MustPreserveReturnsInFunctions.count(F);
-  }
-
-  void AddArgumentTrackedFunction(Function *F) {
-    TrackingIncomingArguments.insert(F);
-  }
-
-  /// Returns true if the given function is in the solver's set of
-  /// argument-tracked functions.
-  bool isArgumentTrackedFunction(Function *F) {
-    return TrackingIncomingArguments.count(F);
-  }
-
-  /// Solve - Solve for constants and executable blocks.
-  void Solve();
-
-  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
-  /// that branches on undef values cannot reach any of their successors.
-  /// However, this is not a safe assumption.  After we solve dataflow, this
-  /// method should be use to handle this.  If this returns true, the solver
-  /// should be rerun.
-  bool ResolvedUndefsIn(Function &F);
-
-  bool isBlockExecutable(BasicBlock *BB) const {
-    return BBExecutable.count(BB);
-  }
-
-  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
-  // block to the 'To' basic block is currently feasible.
-  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
-
-  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
-    std::vector<ValueLatticeElement> StructValues;
-    auto *STy = dyn_cast<StructType>(V->getType());
-    assert(STy && "getStructLatticeValueFor() can be called only on structs");
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-      auto I = StructValueState.find(std::make_pair(V, i));
-      assert(I != StructValueState.end() && "Value not in valuemap!");
-      StructValues.push_back(I->second);
-    }
-    return StructValues;
-  }
-
-  void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
-
-  const ValueLatticeElement &getLatticeValueFor(Value *V) const {
-    assert(!V->getType()->isStructTy() &&
-           "Should use getStructLatticeValueFor");
-    DenseMap<Value *, ValueLatticeElement>::const_iterator I =
-        ValueState.find(V);
-    assert(I != ValueState.end() &&
-           "V not found in ValueState nor Paramstate map!");
-    return I->second;
-  }
-
-  /// getTrackedRetVals - Get the inferred return value map.
-  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
-    return TrackedRetVals;
-  }
-
-  /// getTrackedGlobals - Get and return the set of inferred initializers for
-  /// global variables.
-  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
-    return TrackedGlobals;
-  }
-
-  /// getMRVFunctionsTracked - Get the set of functions which return multiple
-  /// values tracked by the pass.
-  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
-    return MRVFunctionsTracked;
-  }
-
-  /// markOverdefined - Mark the specified value overdefined.  This
-  /// works with both scalars and structs.
-  void markOverdefined(Value *V) {
-    if (auto *STy = dyn_cast<StructType>(V->getType()))
-      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
-        markOverdefined(getStructValueState(V, i), V);
-    else
-      markOverdefined(ValueState[V], V);
-  }
-
-  // isStructLatticeConstant - Return true if all the lattice values
-  // corresponding to elements of the structure are constants,
-  // false otherwise.
-  bool isStructLatticeConstant(Function *F, StructType *STy) {
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-      const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
-      assert(It != TrackedMultipleRetVals.end());
-      ValueLatticeElement LV = It->second;
-      if (!isConstant(LV))
-        return false;
-    }
-    return true;
-  }
-
-  /// Helper to return a Constant if \p LV is either a constant or a constant
-  /// range with a single element.
-  Constant *getConstant(const ValueLatticeElement &LV) const {
-    if (LV.isConstant())
-      return LV.getConstant();
-
-    if (LV.isConstantRange()) {
-      auto &CR = LV.getConstantRange();
-      if (CR.getSingleElement())
-        return ConstantInt::get(Ctx, *CR.getSingleElement());
-    }
-    return nullptr;
-  }
-
-private:
-  ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
-    return dyn_cast_or_null<ConstantInt>(getConstant(IV));
-  }
-
-  // pushToWorkList - Helper for markConstant/markOverdefined
-  void pushToWorkList(ValueLatticeElement &IV, Value *V) {
-    if (IV.isOverdefined())
-      return OverdefinedInstWorkList.push_back(V);
-    InstWorkList.push_back(V);
-  }
-
-  // Helper to push \p V to the worklist, after updating it to \p IV. Also
-  // prints a debug message with the updated value.
-  void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
-    LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
-    pushToWorkList(IV, V);
-  }
-
-  // markConstant - Make a value be marked as "constant".  If the value
-  // is not already a constant, add it to the instruction work list so that
-  // the users of the instruction are updated later.
-  bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
-                    bool MayIncludeUndef = false) {
-    if (!IV.markConstant(C, MayIncludeUndef))
-      return false;
-    LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
-    pushToWorkList(IV, V);
-    return true;
-  }
-
-  bool markConstant(Value *V, Constant *C) {
-    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
-    return markConstant(ValueState[V], V, C);
-  }
-
-  // markOverdefined - Make a value be marked as "overdefined". If the
-  // value is not already overdefined, add it to the overdefined instruction
-  // work list so that the users of the instruction are updated later.
-  bool markOverdefined(ValueLatticeElement &IV, Value *V) {
-    if (!IV.markOverdefined()) return false;
-
-    LLVM_DEBUG(dbgs() << "markOverdefined: ";
-               if (auto *F = dyn_cast<Function>(V)) dbgs()
-               << "Function '" << F->getName() << "'\n";
-               else dbgs() << *V << '\n');
-    // Only instructions go on the work list
-    pushToWorkList(IV, V);
-    return true;
-  }
 
-  /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
-  /// changes.
-  bool mergeInValue(ValueLatticeElement &IV, Value *V,
-                    ValueLatticeElement MergeWithV,
-                    ValueLatticeElement::MergeOptions Opts = {
-                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
-    if (IV.mergeIn(MergeWithV, Opts)) {
-      pushToWorkList(IV, V);
-      LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
-                        << IV << "\n");
-      return true;
-    }
-    return false;
-  }
-
-  bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
-                    ValueLatticeElement::MergeOptions Opts = {
-                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
-    assert(!V->getType()->isStructTy() &&
-           "non-structs should use markConstant");
-    return mergeInValue(ValueState[V], V, MergeWithV, Opts);
-  }
-
-  /// getValueState - Return the ValueLatticeElement object that corresponds to
-  /// the value.  This function handles the case when the value hasn't been seen
-  /// yet by properly seeding constants etc.
-  ValueLatticeElement &getValueState(Value *V) {
-    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
-
-    auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
-    ValueLatticeElement &LV = I.first->second;
-
-    if (!I.second)
-      return LV;  // Common case, already in the map.
-
-    if (auto *C = dyn_cast<Constant>(V))
-      LV.markConstant(C);          // Constants are constant
-
-    // All others are unknown by default.
-    return LV;
-  }
-
-  /// getStructValueState - Return the ValueLatticeElement object that
-  /// corresponds to the value/field pair.  This function handles the case when
-  /// the value hasn't been seen yet by properly seeding constants etc.
-  ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
-    assert(V->getType()->isStructTy() && "Should use getValueState");
-    assert(i < cast<StructType>(V->getType())->getNumElements() &&
-           "Invalid element #");
-
-    auto I = StructValueState.insert(
-        std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
-    ValueLatticeElement &LV = I.first->second;
-
-    if (!I.second)
-      return LV;  // Common case, already in the map.
-
-    if (auto *C = dyn_cast<Constant>(V)) {
-      Constant *Elt = C->getAggregateElement(i);
-
-      if (!Elt)
-        LV.markOverdefined();      // Unknown sort of constant.
-      else if (isa<UndefValue>(Elt))
-        ; // Undef values remain unknown.
-      else
-        LV.markConstant(Elt);      // Constants are constant.
-    }
-
-    // All others are underdefined by default.
-    return LV;
-  }
-
-  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
-  /// work list if it is not already executable.
-  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
-    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
-      return false;  // This edge is already known to be executable!
-
-    if (!MarkBlockExecutable(Dest)) {
-      // If the destination is already executable, we just made an *edge*
-      // feasible that wasn't before.  Revisit the PHI nodes in the block
-      // because they have potentially new operands.
-      LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
-                        << " -> " << Dest->getName() << '\n');
-
-      for (PHINode &PN : Dest->phis())
-        visitPHINode(PN);
-    }
-    return true;
-  }
-
-  // getFeasibleSuccessors - Return a vector of booleans to indicate which
-  // successors are reachable from a given terminator instruction.
-  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
-
-  // OperandChangedState - This method is invoked on all of the users of an
-  // instruction that was just changed state somehow.  Based on this
-  // information, we need to update the specified user of this instruction.
-  void OperandChangedState(Instruction *I) {
-    if (BBExecutable.count(I->getParent()))   // Inst is executable?
-      visit(*I);
-  }
-
-  // Add U as additional user of V.
-  void addAdditionalUser(Value *V, User *U) {
-    auto Iter = AdditionalUsers.insert({V, {}});
-    Iter.first->second.insert(U);
-  }
-
-  // Mark I's users as changed, including AdditionalUsers.
-  void markUsersAsChanged(Value *I) {
-    // Functions include their arguments in the use-list. Changed function
-    // values mean that the result of the function changed. We only need to
-    // update the call sites with the new function result and do not have to
-    // propagate the call arguments.
-    if (isa<Function>(I)) {
-      for (User *U : I->users()) {
-        if (auto *CB = dyn_cast<CallBase>(U))
-          handleCallResult(*CB);
-      }
-    } else {
-      for (User *U : I->users())
-        if (auto *UI = dyn_cast<Instruction>(U))
-          OperandChangedState(UI);
-    }
 
-    auto Iter = AdditionalUsers.find(I);
-    if (Iter != AdditionalUsers.end()) {
-      // Copy additional users before notifying them of changes, because new
-      // users may be added, potentially invalidating the iterator.
-      SmallVector<Instruction *, 2> ToNotify;
-      for (User *U : Iter->second)
-        if (auto *UI = dyn_cast<Instruction>(U))
-          ToNotify.push_back(UI);
-      for (Instruction *UI : ToNotify)
-        OperandChangedState(UI);
-    }
-  }
-  void handleCallOverdefined(CallBase &CB);
-  void handleCallResult(CallBase &CB);
-  void handleCallArguments(CallBase &CB);
-
-private:
-  friend class InstVisitor<SCCPSolver>;
-
-  // visit implementations - Something changed in this instruction.  Either an
-  // operand made a transition, or the instruction is newly executable.  Change
-  // the value type of I to reflect these changes if appropriate.
-  void visitPHINode(PHINode &I);
-
-  // Terminators
-
-  void visitReturnInst(ReturnInst &I);
-  void visitTerminator(Instruction &TI);
-
-  void visitCastInst(CastInst &I);
-  void visitSelectInst(SelectInst &I);
-  void visitUnaryOperator(Instruction &I);
-  void visitBinaryOperator(Instruction &I);
-  void visitCmpInst(CmpInst &I);
-  void visitExtractValueInst(ExtractValueInst &EVI);
-  void visitInsertValueInst(InsertValueInst &IVI);
-
-  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
-    markOverdefined(&CPI);
-    visitTerminator(CPI);
-  }
-
-  // Instructions that cannot be folded away.
-
-  void visitStoreInst     (StoreInst &I);
-  void visitLoadInst      (LoadInst &I);
-  void visitGetElementPtrInst(GetElementPtrInst &I);
-
-  void visitCallInst      (CallInst &I) {
-    visitCallBase(I);
-  }
-
-  void visitInvokeInst    (InvokeInst &II) {
-    visitCallBase(II);
-    visitTerminator(II);
-  }
-
-  void visitCallBrInst    (CallBrInst &CBI) {
-    visitCallBase(CBI);
-    visitTerminator(CBI);
-  }
-
-  void visitCallBase      (CallBase &CB);
-  void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
-  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
-  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
-
-  void visitInstruction(Instruction &I) {
-    // All the instructions we don't do any special handling for just
-    // go to overdefined.
-    LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
-    markOverdefined(&I);
-  }
-};
-
-} // end anonymous namespace
-
-// getFeasibleSuccessors - Return a vector of booleans to indicate which
-// successors are reachable from a given terminator instruction.
-void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
-                                       SmallVectorImpl<bool> &Succs) {
-  Succs.resize(TI.getNumSuccessors());
-  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
-    if (BI->isUnconditional()) {
-      Succs[0] = true;
-      return;
-    }
-
-    ValueLatticeElement BCValue = getValueState(BI->getCondition());
-    ConstantInt *CI = getConstantInt(BCValue);
-    if (!CI) {
-      // Overdefined condition variables, and branches on unfoldable constant
-      // conditions, mean the branch could go either way.
-      if (!BCValue.isUnknownOrUndef())
-        Succs[0] = Succs[1] = true;
-      return;
-    }
-
-    // Constant condition variables mean the branch can only go a single way.
-    Succs[CI->isZero()] = true;
-    return;
-  }
-
-  // Unwinding instructions successors are always executable.
-  if (TI.isExceptionalTerminator()) {
-    Succs.assign(TI.getNumSuccessors(), true);
-    return;
-  }
-
-  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
-    if (!SI->getNumCases()) {
-      Succs[0] = true;
-      return;
-    }
-    const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
-    if (ConstantInt *CI = getConstantInt(SCValue)) {
-      Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
-      return;
-    }
-
-    // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
-    // is ready.
-    if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
-      const ConstantRange &Range = SCValue.getConstantRange();
-      for (const auto &Case : SI->cases()) {
-        const APInt &CaseValue = Case.getCaseValue()->getValue();
-        if (Range.contains(CaseValue))
-          Succs[Case.getSuccessorIndex()] = true;
-      }
-
-      // TODO: Determine whether default case is reachable.
-      Succs[SI->case_default()->getSuccessorIndex()] = true;
-      return;
-    }
-
-    // Overdefined or unknown condition? All destinations are executable!
-    if (!SCValue.isUnknownOrUndef())
-      Succs.assign(TI.getNumSuccessors(), true);
-    return;
-  }
-
-  // In case of indirect branch and its address is a blockaddress, we mark
-  // the target as executable.
-  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
-    // Casts are folded by visitCastInst.
-    ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
-    BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
-    if (!Addr) {   // Overdefined or unknown condition?
-      // All destinations are executable!
-      if (!IBRValue.isUnknownOrUndef())
-        Succs.assign(TI.getNumSuccessors(), true);
-      return;
-    }
-
-    BasicBlock* T = Addr->getBasicBlock();
-    assert(Addr->getFunction() == T->getParent() &&
-           "Block address of a 
diff erent function ?");
-    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
-      // This is the target.
-      if (IBR->getDestination(i) == T) {
-        Succs[i] = true;
-        return;
-      }
-    }
-
-    // If we didn't find our destination in the IBR successor list, then we
-    // have undefined behavior. Its ok to assume no successor is executable.
-    return;
-  }
-
-  // In case of callbr, we pessimistically assume that all successors are
-  // feasible.
-  if (isa<CallBrInst>(&TI)) {
-    Succs.assign(TI.getNumSuccessors(), true);
-    return;
-  }
-
-  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
-  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
-}
-
-// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
-// block to the 'To' basic block is currently feasible.
-bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
-  // Check if we've called markEdgeExecutable on the edge yet. (We could
-  // be more aggressive and try to consider edges which haven't been marked
-  // yet, but there isn't any need.)
-  return KnownFeasibleEdges.count(Edge(From, To));
-}
-
-// visit Implementations - Something changed in this instruction, either an
-// operand made a transition, or the instruction is newly executable.  Change
-// the value type of I to reflect these changes if appropriate.  This method
-// makes sure to do the following actions:
-//
-// 1. If a phi node merges two constants in, and has conflicting value coming
-//    from 
diff erent branches, or if the PHI node merges in an overdefined
-//    value, then the PHI node becomes overdefined.
-// 2. If a phi node merges only constants in, and they all agree on value, the
-//    PHI node becomes a constant value equal to that.
-// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
-// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
-// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
-// 6. If a conditional branch has a value that is constant, make the selected
-//    destination executable
-// 7. If a conditional branch has a value that is overdefined, make all
-//    successors executable.
-void SCCPSolver::visitPHINode(PHINode &PN) {
-  // If this PN returns a struct, just mark the result overdefined.
-  // TODO: We could do a lot better than this if code actually uses this.
-  if (PN.getType()->isStructTy())
-    return (void)markOverdefined(&PN);
-
-  if (getValueState(&PN).isOverdefined())
-    return; // Quick exit
-
-  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
-  // and slow us down a lot.  Just mark them overdefined.
-  if (PN.getNumIncomingValues() > 64)
-    return (void)markOverdefined(&PN);
-
-  unsigned NumActiveIncoming = 0;
-
-  // Look at all of the executable operands of the PHI node.  If any of them
-  // are overdefined, the PHI becomes overdefined as well.  If they are all
-  // constant, and they agree with each other, the PHI becomes the identical
-  // constant.  If they are constant and don't agree, the PHI is a constant
-  // range. If there are no executable operands, the PHI remains unknown.
-  ValueLatticeElement PhiState = getValueState(&PN);
-  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
-    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
-      continue;
-
-    ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
-    PhiState.mergeIn(IV);
-    NumActiveIncoming++;
-    if (PhiState.isOverdefined())
-      break;
-  }
-
-  // We allow up to 1 range extension per active incoming value and one
-  // additional extension. Note that we manually adjust the number of range
-  // extensions to match the number of active incoming values. This helps to
-  // limit multiple extensions caused by the same incoming value, if other
-  // incoming values are equal.
-  mergeInValue(&PN, PhiState,
-               ValueLatticeElement::MergeOptions().setMaxWidenSteps(
-                   NumActiveIncoming + 1));
-  ValueLatticeElement &PhiStateRef = getValueState(&PN);
-  PhiStateRef.setNumRangeExtensions(
-      std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
-}
-
-void SCCPSolver::visitReturnInst(ReturnInst &I) {
-  if (I.getNumOperands() == 0) return;  // ret void
-
-  Function *F = I.getParent()->getParent();
-  Value *ResultOp = I.getOperand(0);
-
-  // If we are tracking the return value of this function, merge it in.
-  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
-    auto TFRVI = TrackedRetVals.find(F);
-    if (TFRVI != TrackedRetVals.end()) {
-      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
-      return;
-    }
-  }
-
-  // Handle functions that return multiple values.
-  if (!TrackedMultipleRetVals.empty()) {
-    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
-      if (MRVFunctionsTracked.count(F))
-        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
-          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
-                       getStructValueState(ResultOp, i));
-  }
-}
-
-void SCCPSolver::visitTerminator(Instruction &TI) {
-  SmallVector<bool, 16> SuccFeasible;
-  getFeasibleSuccessors(TI, SuccFeasible);
-
-  BasicBlock *BB = TI.getParent();
-
-  // Mark all feasible successors executable.
-  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
-    if (SuccFeasible[i])
-      markEdgeExecutable(BB, TI.getSuccessor(i));
-}
-
-void SCCPSolver::visitCastInst(CastInst &I) {
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (ValueState[&I].isOverdefined())
-    return;
-
-  ValueLatticeElement OpSt = getValueState(I.getOperand(0));
-  if (Constant *OpC = getConstant(OpSt)) {
-    // Fold the constant as we build.
-    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
-    if (isa<UndefValue>(C))
-      return;
-    // Propagate constant value
-    markConstant(&I, C);
-  } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
-    auto &LV = getValueState(&I);
-    ConstantRange OpRange = OpSt.getConstantRange();
-    Type *DestTy = I.getDestTy();
-    // Vectors where all elements have the same known constant range are treated
-    // as a single constant range in the lattice. When bitcasting such vectors,
-    // there is a mis-match between the width of the lattice value (single
-    // constant range) and the original operands (vector). Go to overdefined in
-    // that case.
-    if (I.getOpcode() == Instruction::BitCast &&
-        I.getOperand(0)->getType()->isVectorTy() &&
-        OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
-      return (void)markOverdefined(&I);
-
-    ConstantRange Res =
-        OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
-    mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
-  } else if (!OpSt.isUnknownOrUndef())
-    markOverdefined(&I);
-}
-
-void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
-  // If this returns a struct, mark all elements over defined, we don't track
-  // structs in structs.
-  if (EVI.getType()->isStructTy())
-    return (void)markOverdefined(&EVI);
-
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (ValueState[&EVI].isOverdefined())
-    return (void)markOverdefined(&EVI);
-
-  // If this is extracting from more than one level of struct, we don't know.
-  if (EVI.getNumIndices() != 1)
-    return (void)markOverdefined(&EVI);
-
-  Value *AggVal = EVI.getAggregateOperand();
-  if (AggVal->getType()->isStructTy()) {
-    unsigned i = *EVI.idx_begin();
-    ValueLatticeElement EltVal = getStructValueState(AggVal, i);
-    mergeInValue(getValueState(&EVI), &EVI, EltVal);
-  } else {
-    // Otherwise, must be extracting from an array.
-    return (void)markOverdefined(&EVI);
-  }
-}
-
-void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
-  auto *STy = dyn_cast<StructType>(IVI.getType());
-  if (!STy)
-    return (void)markOverdefined(&IVI);
-
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (isOverdefined(ValueState[&IVI]))
-    return (void)markOverdefined(&IVI);
-
-  // If this has more than one index, we can't handle it, drive all results to
-  // undef.
-  if (IVI.getNumIndices() != 1)
-    return (void)markOverdefined(&IVI);
-
-  Value *Aggr = IVI.getAggregateOperand();
-  unsigned Idx = *IVI.idx_begin();
-
-  // Compute the result based on what we're inserting.
-  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-    // This passes through all values that aren't the inserted element.
-    if (i != Idx) {
-      ValueLatticeElement EltVal = getStructValueState(Aggr, i);
-      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
-      continue;
-    }
-
-    Value *Val = IVI.getInsertedValueOperand();
-    if (Val->getType()->isStructTy())
-      // We don't track structs in structs.
-      markOverdefined(getStructValueState(&IVI, i), &IVI);
-    else {
-      ValueLatticeElement InVal = getValueState(Val);
-      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
-    }
-  }
-}
-
-void SCCPSolver::visitSelectInst(SelectInst &I) {
-  // If this select returns a struct, just mark the result overdefined.
-  // TODO: We could do a lot better than this if code actually uses this.
-  if (I.getType()->isStructTy())
-    return (void)markOverdefined(&I);
-
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (ValueState[&I].isOverdefined())
-    return (void)markOverdefined(&I);
-
-  ValueLatticeElement CondValue = getValueState(I.getCondition());
-  if (CondValue.isUnknownOrUndef())
-    return;
-
-  if (ConstantInt *CondCB = getConstantInt(CondValue)) {
-    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
-    mergeInValue(&I, getValueState(OpVal));
-    return;
-  }
-
-  // Otherwise, the condition is overdefined or a constant we can't evaluate.
-  // See if we can produce something better than overdefined based on the T/F
-  // value.
-  ValueLatticeElement TVal = getValueState(I.getTrueValue());
-  ValueLatticeElement FVal = getValueState(I.getFalseValue());
-
-  bool Changed = ValueState[&I].mergeIn(TVal);
-  Changed |= ValueState[&I].mergeIn(FVal);
-  if (Changed)
-    pushToWorkListMsg(ValueState[&I], &I);
-}
-
-// Handle Unary Operators.
-void SCCPSolver::visitUnaryOperator(Instruction &I) {
-  ValueLatticeElement V0State = getValueState(I.getOperand(0));
-
-  ValueLatticeElement &IV = ValueState[&I];
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (isOverdefined(IV))
-    return (void)markOverdefined(&I);
-
-  if (isConstant(V0State)) {
-    Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
-
-    // op Y -> undef.
-    if (isa<UndefValue>(C))
-      return;
-    return (void)markConstant(IV, &I, C);
-  }
-
-  // If something is undef, wait for it to resolve.
-  if (!isOverdefined(V0State))
-    return;
-
-  markOverdefined(&I);
-}
-
-// Handle Binary Operators.
-void SCCPSolver::visitBinaryOperator(Instruction &I) {
-  ValueLatticeElement V1State = getValueState(I.getOperand(0));
-  ValueLatticeElement V2State = getValueState(I.getOperand(1));
-
-  ValueLatticeElement &IV = ValueState[&I];
-  if (IV.isOverdefined())
-    return;
-
-  // If something is undef, wait for it to resolve.
-  if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
-    return;
-
-  if (V1State.isOverdefined() && V2State.isOverdefined())
-    return (void)markOverdefined(&I);
-
-  // If either of the operands is a constant, try to fold it to a constant.
-  // TODO: Use information from notconstant better.
-  if ((V1State.isConstant() || V2State.isConstant())) {
-    Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
-    Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
-    Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
-    auto *C = dyn_cast_or_null<Constant>(R);
-    if (C) {
-      // X op Y -> undef.
-      if (isa<UndefValue>(C))
-        return;
-      // Conservatively assume that the result may be based on operands that may
-      // be undef. Note that we use mergeInValue to combine the constant with
-      // the existing lattice value for I, as 
diff erent constants might be found
-      // after one of the operands go to overdefined, e.g. due to one operand
-      // being a special floating value.
-      ValueLatticeElement NewV;
-      NewV.markConstant(C, /*MayIncludeUndef=*/true);
-      return (void)mergeInValue(&I, NewV);
-    }
-  }
-
-  // Only use ranges for binary operators on integers.
-  if (!I.getType()->isIntegerTy())
-    return markOverdefined(&I);
-
-  // Try to simplify to a constant range.
-  ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
-  ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
-  if (V1State.isConstantRange())
-    A = V1State.getConstantRange();
-  if (V2State.isConstantRange())
-    B = V2State.getConstantRange();
-
-  ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
-  mergeInValue(&I, ValueLatticeElement::getRange(R));
-
-  // TODO: Currently we do not exploit special values that produce something
-  // better than overdefined with an overdefined operand for vector or floating
-  // point types, like and <4 x i32> overdefined, zeroinitializer.
-}
-
-// Handle ICmpInst instruction.
-void SCCPSolver::visitCmpInst(CmpInst &I) {
-  // Do not cache this lookup, getValueState calls later in the function might
-  // invalidate the reference.
-  if (isOverdefined(ValueState[&I]))
-    return (void)markOverdefined(&I);
-
-  Value *Op1 = I.getOperand(0);
-  Value *Op2 = I.getOperand(1);
-
-  // For parameters, use ParamState which includes constant range info if
-  // available.
-  auto V1State = getValueState(Op1);
-  auto V2State = getValueState(Op2);
-
-  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
-  if (C) {
-    if (isa<UndefValue>(C))
-      return;
-    ValueLatticeElement CV;
-    CV.markConstant(C);
-    mergeInValue(&I, CV);
-    return;
-  }
-
-  // If operands are still unknown, wait for it to resolve.
-  if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
-      !isConstant(ValueState[&I]))
-    return;
-
-  markOverdefined(&I);
-}
-
-// Handle getelementptr instructions.  If all operands are constants then we
-// can turn this into a getelementptr ConstantExpr.
-void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
-  if (isOverdefined(ValueState[&I]))
-    return (void)markOverdefined(&I);
-
-  SmallVector<Constant*, 8> Operands;
-  Operands.reserve(I.getNumOperands());
-
-  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
-    ValueLatticeElement State = getValueState(I.getOperand(i));
-    if (State.isUnknownOrUndef())
-      return;  // Operands are not resolved yet.
-
-    if (isOverdefined(State))
-      return (void)markOverdefined(&I);
-
-    if (Constant *C = getConstant(State)) {
-      Operands.push_back(C);
-      continue;
-    }
-
-    return (void)markOverdefined(&I);
-  }
-
-  Constant *Ptr = Operands[0];
-  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
-  Constant *C =
-      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
-  if (isa<UndefValue>(C))
-      return;
-  markConstant(&I, C);
-}
-
-void SCCPSolver::visitStoreInst(StoreInst &SI) {
-  // If this store is of a struct, ignore it.
-  if (SI.getOperand(0)->getType()->isStructTy())
-    return;
-
-  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
-    return;
-
-  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
-  auto I = TrackedGlobals.find(GV);
-  if (I == TrackedGlobals.end())
-    return;
-
-  // Get the value we are storing into the global, then merge it.
-  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
-               ValueLatticeElement::MergeOptions().setCheckWiden(false));
-  if (I->second.isOverdefined())
-    TrackedGlobals.erase(I);      // No need to keep tracking this!
-}
-
-static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
-  if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
-    if (I->getType()->isIntegerTy())
-      return ValueLatticeElement::getRange(
-          getConstantRangeFromMetadata(*Ranges));
-  if (I->hasMetadata(LLVMContext::MD_nonnull))
-    return ValueLatticeElement::getNot(
-        ConstantPointerNull::get(cast<PointerType>(I->getType())));
-  return ValueLatticeElement::getOverdefined();
-}
-
-// Handle load instructions.  If the operand is a constant pointer to a constant
-// global, we can replace the load with the loaded constant value!
-void SCCPSolver::visitLoadInst(LoadInst &I) {
-  // If this load is of a struct or the load is volatile, just mark the result
-  // as overdefined.
-  if (I.getType()->isStructTy() || I.isVolatile())
-    return (void)markOverdefined(&I);
-
-  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
-  // discover a concrete value later.
-  if (ValueState[&I].isOverdefined())
-    return (void)markOverdefined(&I);
-
-  ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
-  if (PtrVal.isUnknownOrUndef())
-    return; // The pointer is not resolved yet!
-
-  ValueLatticeElement &IV = ValueState[&I];
-
-  if (isConstant(PtrVal)) {
-    Constant *Ptr = getConstant(PtrVal);
-
-    // load null is undefined.
-    if (isa<ConstantPointerNull>(Ptr)) {
-      if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
-        return (void)markOverdefined(IV, &I);
-      else
-        return;
-    }
-
-    // Transform load (constant global) into the value loaded.
-    if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
-      if (!TrackedGlobals.empty()) {
-        // If we are tracking this global, merge in the known value for it.
-        auto It = TrackedGlobals.find(GV);
-        if (It != TrackedGlobals.end()) {
-          mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
-          return;
-        }
-      }
-    }
-
-    // Transform load from a constant into a constant if possible.
-    if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
-      if (isa<UndefValue>(C))
-        return;
-      return (void)markConstant(IV, &I, C);
-    }
-  }
-
-  // Fall back to metadata.
-  mergeInValue(&I, getValueFromMetadata(&I));
-}
-
-void SCCPSolver::visitCallBase(CallBase &CB) {
-  handleCallResult(CB);
-  handleCallArguments(CB);
-}
-
-void SCCPSolver::handleCallOverdefined(CallBase &CB) {
-  Function *F = CB.getCalledFunction();
-
-  // Void return and not tracking callee, just bail.
-  if (CB.getType()->isVoidTy())
-    return;
-
-  // Always mark struct return as overdefined.
-  if (CB.getType()->isStructTy())
-    return (void)markOverdefined(&CB);
-
-  // Otherwise, if we have a single return value case, and if the function is
-  // a declaration, maybe we can constant fold it.
-  if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
-    SmallVector<Constant *, 8> Operands;
-    for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
-      if (AI->get()->getType()->isStructTy())
-        return markOverdefined(&CB); // Can't handle struct args.
-      ValueLatticeElement State = getValueState(*AI);
-
-      if (State.isUnknownOrUndef())
-        return; // Operands are not resolved yet.
-      if (isOverdefined(State))
-        return (void)markOverdefined(&CB);
-      assert(isConstant(State) && "Unknown state!");
-      Operands.push_back(getConstant(State));
-    }
-
-    if (isOverdefined(getValueState(&CB)))
-      return (void)markOverdefined(&CB);
-
-    // If we can constant fold this, mark the result of the call as a
-    // constant.
-    if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
-      // call -> undef.
-      if (isa<UndefValue>(C))
-        return;
-      return (void)markConstant(&CB, C);
-    }
-  }
-
-  // Fall back to metadata.
-  mergeInValue(&CB, getValueFromMetadata(&CB));
-}
-
-void SCCPSolver::handleCallArguments(CallBase &CB) {
-  Function *F = CB.getCalledFunction();
-  // If this is a local function that doesn't have its address taken, mark its
-  // entry block executable and merge in the actual arguments to the call into
-  // the formal arguments of the function.
-  if (!TrackingIncomingArguments.empty() &&
-      TrackingIncomingArguments.count(F)) {
-    MarkBlockExecutable(&F->front());
-
-    // Propagate information from this call site into the callee.
-    auto CAI = CB.arg_begin();
-    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
-         ++AI, ++CAI) {
-      // If this argument is byval, and if the function is not readonly, there
-      // will be an implicit copy formed of the input aggregate.
-      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
-        markOverdefined(&*AI);
-        continue;
-      }
-
-      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
-        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-          ValueLatticeElement CallArg = getStructValueState(*CAI, i);
-          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
-                       getMaxWidenStepsOpts());
-        }
-      } else
-        mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
-    }
-  }
-}
-
-void SCCPSolver::handleCallResult(CallBase &CB) {
-  Function *F = CB.getCalledFunction();
-
-  if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
-    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
-      if (ValueState[&CB].isOverdefined())
-        return;
-
-      Value *CopyOf = CB.getOperand(0);
-      ValueLatticeElement CopyOfVal = getValueState(CopyOf);
-      auto *PI = getPredicateInfoFor(&CB);
-      assert(PI && "Missing predicate info for ssa.copy");
-
-      const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
-      if (!Constraint) {
-        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
-        return;
-      }
-
-      CmpInst::Predicate Pred = Constraint->Predicate;
-      Value *OtherOp = Constraint->OtherOp;
-
-      // Wait until OtherOp is resolved.
-      if (getValueState(OtherOp).isUnknown()) {
-        addAdditionalUser(OtherOp, &CB);
-        return;
-      }
-
-      // TODO: Actually filp MayIncludeUndef for the created range to false,
-      // once most places in the optimizer respect the branches on
-      // undef/poison are UB rule. The reason why the new range cannot be
-      // undef is as follows below:
-      // The new range is based on a branch condition. That guarantees that
-      // neither of the compare operands can be undef in the branch targets,
-      // unless we have conditions that are always true/false (e.g. icmp ule
-      // i32, %a, i32_max). For the latter overdefined/empty range will be
-      // inferred, but the branch will get folded accordingly anyways.
-      bool MayIncludeUndef = !isa<PredicateAssume>(PI);
-
-      ValueLatticeElement CondVal = getValueState(OtherOp);
-      ValueLatticeElement &IV = ValueState[&CB];
-      if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
-        auto ImposedCR =
-            ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
-
-        // Get the range imposed by the condition.
-        if (CondVal.isConstantRange())
-          ImposedCR = ConstantRange::makeAllowedICmpRegion(
-              Pred, CondVal.getConstantRange());
-
-        // Combine range info for the original value with the new range from the
-        // condition.
-        auto CopyOfCR = CopyOfVal.isConstantRange()
-                            ? CopyOfVal.getConstantRange()
-                            : ConstantRange::getFull(
-                                  DL.getTypeSizeInBits(CopyOf->getType()));
-        auto NewCR = ImposedCR.intersectWith(CopyOfCR);
-        // If the existing information is != x, do not use the information from
-        // a chained predicate, as the != x information is more likely to be
-        // helpful in practice.
-        if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
-          NewCR = CopyOfCR;
-
-        addAdditionalUser(OtherOp, &CB);
-        mergeInValue(
-            IV, &CB,
-            ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
-        return;
-      } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
-        // For non-integer values or integer constant expressions, only
-        // propagate equal constants.
-        addAdditionalUser(OtherOp, &CB);
-        mergeInValue(IV, &CB, CondVal);
-        return;
-      } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
-                 !MayIncludeUndef) {
-        // Propagate inequalities.
-        addAdditionalUser(OtherOp, &CB);
-        mergeInValue(IV, &CB,
-                     ValueLatticeElement::getNot(CondVal.getConstant()));
-        return;
-      }
-
-      return (void)mergeInValue(IV, &CB, CopyOfVal);
-    }
-
-    if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
-      // Compute result range for intrinsics supported by ConstantRange.
-      // Do this even if we don't know a range for all operands, as we may
-      // still know something about the result range, e.g. of abs(x).
-      SmallVector<ConstantRange, 2> OpRanges;
-      for (Value *Op : II->args()) {
-        const ValueLatticeElement &State = getValueState(Op);
-        if (State.isConstantRange())
-          OpRanges.push_back(State.getConstantRange());
-        else
-          OpRanges.push_back(
-              ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
-      }
-
-      ConstantRange Result =
-          ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
-      return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
-    }
-  }
-
-  // The common case is that we aren't tracking the callee, either because we
-  // are not doing interprocedural analysis or the callee is indirect, or is
-  // external.  Handle these cases first.
-  if (!F || F->isDeclaration())
-    return handleCallOverdefined(CB);
-
-  // If this is a single/zero retval case, see if we're tracking the function.
-  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
-    if (!MRVFunctionsTracked.count(F))
-      return handleCallOverdefined(CB); // Not tracking this callee.
-
-    // If we are tracking this callee, propagate the result of the function
-    // into this call site.
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
-      mergeInValue(getStructValueState(&CB, i), &CB,
-                   TrackedMultipleRetVals[std::make_pair(F, i)],
-                   getMaxWidenStepsOpts());
-  } else {
-    auto TFRVI = TrackedRetVals.find(F);
-    if (TFRVI == TrackedRetVals.end())
-      return handleCallOverdefined(CB); // Not tracking this callee.
-
-    // If so, propagate the return value of the callee into this call result.
-    mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
-  }
-}
-
-void SCCPSolver::Solve() {
-  // Process the work lists until they are empty!
-  while (!BBWorkList.empty() || !InstWorkList.empty() ||
-         !OverdefinedInstWorkList.empty()) {
-    // Process the overdefined instruction's work list first, which drives other
-    // things to overdefined more quickly.
-    while (!OverdefinedInstWorkList.empty()) {
-      Value *I = OverdefinedInstWorkList.pop_back_val();
-
-      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
-
-      // "I" got into the work list because it either made the transition from
-      // bottom to constant, or to overdefined.
-      //
-      // Anything on this worklist that is overdefined need not be visited
-      // since all of its users will have already been marked as overdefined
-      // Update all of the users of this instruction's value.
-      //
-      markUsersAsChanged(I);
-    }
-
-    // Process the instruction work list.
-    while (!InstWorkList.empty()) {
-      Value *I = InstWorkList.pop_back_val();
-
-      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
-
-      // "I" got into the work list because it made the transition from undef to
-      // constant.
-      //
-      // Anything on this worklist that is overdefined need not be visited
-      // since all of its users will have already been marked as overdefined.
-      // Update all of the users of this instruction's value.
-      //
-      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
-        markUsersAsChanged(I);
-    }
-
-    // Process the basic block work list.
-    while (!BBWorkList.empty()) {
-      BasicBlock *BB = BBWorkList.pop_back_val();
-
-      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
-
-      // Notify all instructions in this basic block that they are newly
-      // executable.
-      visit(BB);
-    }
-  }
-}
-
-/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
-/// that branches on undef values cannot reach any of their successors.
-/// However, this is not a safe assumption.  After we solve dataflow, this
-/// method should be use to handle this.  If this returns true, the solver
-/// should be rerun.
-///
-/// This method handles this by finding an unresolved branch and marking it one
-/// of the edges from the block as being feasible, even though the condition
-/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
-/// CFG and only slightly pessimizes the analysis results (by marking one,
-/// potentially infeasible, edge feasible).  This cannot usefully modify the
-/// constraints on the condition of the branch, as that would impact other users
-/// of the value.
-///
-/// This scan also checks for values that use undefs. It conservatively marks
-/// them as overdefined.
-bool SCCPSolver::ResolvedUndefsIn(Function &F) {
-  bool MadeChange = false;
-  for (BasicBlock &BB : F) {
-    if (!BBExecutable.count(&BB))
-      continue;
-
-    for (Instruction &I : BB) {
-      // Look for instructions which produce undef values.
-      if (I.getType()->isVoidTy()) continue;
-
-      if (auto *STy = dyn_cast<StructType>(I.getType())) {
-        // Only a few things that can be structs matter for undef.
-
-        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
-        if (auto *CB = dyn_cast<CallBase>(&I))
-          if (Function *F = CB->getCalledFunction())
-            if (MRVFunctionsTracked.count(F))
-              continue;
-
-        // extractvalue and insertvalue don't need to be marked; they are
-        // tracked as precisely as their operands.
-        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
-          continue;
-        // Send the results of everything else to overdefined.  We could be
-        // more precise than this but it isn't worth bothering.
-        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
-          ValueLatticeElement &LV = getStructValueState(&I, i);
-          if (LV.isUnknownOrUndef()) {
-            markOverdefined(LV, &I);
-            MadeChange = true;
-          }
-        }
-        continue;
-      }
-
-      ValueLatticeElement &LV = getValueState(&I);
-      if (!LV.isUnknownOrUndef())
-        continue;
-
-      // There are two reasons a call can have an undef result
-      // 1. It could be tracked.
-      // 2. It could be constant-foldable.
-      // Because of the way we solve return values, tracked calls must
-      // never be marked overdefined in ResolvedUndefsIn.
-      if (auto *CB = dyn_cast<CallBase>(&I))
-        if (Function *F = CB->getCalledFunction())
-          if (TrackedRetVals.count(F))
-            continue;
-
-      if (isa<LoadInst>(I)) {
-        // A load here means one of two things: a load of undef from a global,
-        // a load from an unknown pointer.  Either way, having it return undef
-        // is okay.
-        continue;
-      }
-
-      markOverdefined(&I);
-      MadeChange = true;
-    }
-
-    // Check to see if we have a branch or switch on an undefined value.  If so
-    // we force the branch to go one way or the other to make the successor
-    // values live.  It doesn't really matter which way we force it.
-    Instruction *TI = BB.getTerminator();
-    if (auto *BI = dyn_cast<BranchInst>(TI)) {
-      if (!BI->isConditional()) continue;
-      if (!getValueState(BI->getCondition()).isUnknownOrUndef())
-        continue;
-
-      // If the input to SCCP is actually branch on undef, fix the undef to
-      // false.
-      if (isa<UndefValue>(BI->getCondition())) {
-        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
-        markEdgeExecutable(&BB, TI->getSuccessor(1));
-        MadeChange = true;
-        continue;
-      }
-
-      // Otherwise, it is a branch on a symbolic value which is currently
-      // considered to be undef.  Make sure some edge is executable, so a
-      // branch on "undef" always flows somewhere.
-      // FIXME: Distinguish between dead code and an LLVM "undef" value.
-      BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
-      if (markEdgeExecutable(&BB, DefaultSuccessor))
-        MadeChange = true;
-
-      continue;
-    }
-
-   if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
-      // Indirect branch with no successor ?. Its ok to assume it branches
-      // to no target.
-      if (IBR->getNumSuccessors() < 1)
-        continue;
-
-      if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
-        continue;
-
-      // If the input to SCCP is actually branch on undef, fix the undef to
-      // the first successor of the indirect branch.
-      if (isa<UndefValue>(IBR->getAddress())) {
-        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
-        markEdgeExecutable(&BB, IBR->getSuccessor(0));
-        MadeChange = true;
-        continue;
-      }
-
-      // Otherwise, it is a branch on a symbolic value which is currently
-      // considered to be undef.  Make sure some edge is executable, so a
-      // branch on "undef" always flows somewhere.
-      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
-      // we can assume the branch has undefined behavior instead.
-      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
-      if (markEdgeExecutable(&BB, DefaultSuccessor))
-        MadeChange = true;
-
-      continue;
-    }
-
-    if (auto *SI = dyn_cast<SwitchInst>(TI)) {
-      if (!SI->getNumCases() ||
-          !getValueState(SI->getCondition()).isUnknownOrUndef())
-        continue;
-
-      // If the input to SCCP is actually switch on undef, fix the undef to
-      // the first constant.
-      if (isa<UndefValue>(SI->getCondition())) {
-        SI->setCondition(SI->case_begin()->getCaseValue());
-        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
-        MadeChange = true;
-        continue;
-      }
-
-      // Otherwise, it is a branch on a symbolic value which is currently
-      // considered to be undef.  Make sure some edge is executable, so a
-      // branch on "undef" always flows somewhere.
-      // FIXME: Distinguish between dead code and an LLVM "undef" value.
-      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
-      if (markEdgeExecutable(&BB, DefaultSuccessor))
-        MadeChange = true;
-
-      continue;
-    }
-  }
-
-  return MadeChange;
-}
 
 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
   Constant *Const = nullptr;

diff  --git a/llvm/lib/Transforms/Utils/CMakeLists.txt b/llvm/lib/Transforms/Utils/CMakeLists.txt
index 1ce4f8c3aada..2e100310e6fc 100644
--- a/llvm/lib/Transforms/Utils/CMakeLists.txt
+++ b/llvm/lib/Transforms/Utils/CMakeLists.txt
@@ -56,6 +56,7 @@ add_llvm_component_library(LLVMTransformUtils
   PromoteMemoryToRegister.cpp
   RelLookupTableConverter.cpp
   ScalarEvolutionExpander.cpp
+  SCCPSolver.cpp
   StripGCRelocates.cpp
   SSAUpdater.cpp
   SSAUpdaterBulk.cpp

diff  --git a/llvm/lib/Transforms/Utils/SCCPSolver.cpp b/llvm/lib/Transforms/Utils/SCCPSolver.cpp
new file mode 100644
index 000000000000..d759faa17466
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/SCCPSolver.cpp
@@ -0,0 +1,1666 @@
+//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+// This file implements the Sparse Conditional Constant Propagation (SCCP)
+// utility.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SCCPSolver.h"
+#include <cassert>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sccp"
+
+// The maximum number of range extensions allowed for operations requiring
+// widening.
+static const unsigned MaxNumRangeExtensions = 10;
+
+/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
+static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
+  return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
+      MaxNumRangeExtensions);
+}
+
+namespace {
+
+// Helper to check if \p LV is either a constant or a constant
+// range with a single element. This should cover exactly the same cases as the
+// old ValueLatticeElement::isConstant() and is intended to be used in the
+// transition to ValueLatticeElement.
+bool isConstant(const ValueLatticeElement &LV) {
+  return LV.isConstant() ||
+         (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
+}
+
+// Helper to check if \p LV is either overdefined or a constant range with more
+// than a single element. This should cover exactly the same cases as the old
+// ValueLatticeElement::isOverdefined() and is intended to be used in the
+// transition to ValueLatticeElement.
+bool isOverdefined(const ValueLatticeElement &LV) {
+  return !LV.isUnknownOrUndef() && !isConstant(LV);
+}
+
+} // namespace
+
+namespace llvm {
+
+/// Helper class for SCCPSolver. This implements the instruction visitor and
+/// holds all the state.
+class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
+  const DataLayout &DL;
+  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
+  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
+  DenseMap<Value *, ValueLatticeElement>
+      ValueState; // The state each value is in.
+
+  /// StructValueState - This maintains ValueState for values that have
+  /// StructType, for example for formal arguments, calls, insertelement, etc.
+  DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
+
+  /// GlobalValue - If we are tracking any values for the contents of a global
+  /// variable, we keep a mapping from the constant accessor to the element of
+  /// the global, to the currently known value.  If the value becomes
+  /// overdefined, it's entry is simply removed from this map.
+  DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
+
+  /// TrackedRetVals - If we are tracking arguments into and the return
+  /// value out of a function, it will have an entry in this map, indicating
+  /// what the known return value for the function is.
+  MapVector<Function *, ValueLatticeElement> TrackedRetVals;
+
+  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
+  /// that return multiple values.
+  MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
+      TrackedMultipleRetVals;
+
+  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
+  /// represented here for efficient lookup.
+  SmallPtrSet<Function *, 16> MRVFunctionsTracked;
+
+  /// A list of functions whose return cannot be modified.
+  SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
+
+  /// TrackingIncomingArguments - This is the set of functions for whose
+  /// arguments we make optimistic assumptions about and try to prove as
+  /// constants.
+  SmallPtrSet<Function *, 16> TrackingIncomingArguments;
+
+  /// The reason for two worklists is that overdefined is the lowest state
+  /// on the lattice, and moving things to overdefined as fast as possible
+  /// makes SCCP converge much faster.
+  ///
+  /// By having a separate worklist, we accomplish this because everything
+  /// possibly overdefined will become overdefined at the soonest possible
+  /// point.
+  SmallVector<Value *, 64> OverdefinedInstWorkList;
+  SmallVector<Value *, 64> InstWorkList;
+
+  // The BasicBlock work list
+  SmallVector<BasicBlock *, 64> BBWorkList;
+
+  /// KnownFeasibleEdges - Entries in this set are edges which have already had
+  /// PHI nodes retriggered.
+  using Edge = std::pair<BasicBlock *, BasicBlock *>;
+  DenseSet<Edge> KnownFeasibleEdges;
+
+  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
+  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
+
+  LLVMContext &Ctx;
+
+private:
+  ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
+    return dyn_cast_or_null<ConstantInt>(getConstant(IV));
+  }
+
+  // pushToWorkList - Helper for markConstant/markOverdefined
+  void pushToWorkList(ValueLatticeElement &IV, Value *V);
+
+  // Helper to push \p V to the worklist, after updating it to \p IV. Also
+  // prints a debug message with the updated value.
+  void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
+
+  // markConstant - Make a value be marked as "constant".  If the value
+  // is not already a constant, add it to the instruction work list so that
+  // the users of the instruction are updated later.
+  bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
+                    bool MayIncludeUndef = false);
+
+  bool markConstant(Value *V, Constant *C) {
+    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
+    return markConstant(ValueState[V], V, C);
+  }
+
+  // markOverdefined - Make a value be marked as "overdefined". If the
+  // value is not already overdefined, add it to the overdefined instruction
+  // work list so that the users of the instruction are updated later.
+  bool markOverdefined(ValueLatticeElement &IV, Value *V);
+
+  /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
+  /// changes.
+  bool mergeInValue(ValueLatticeElement &IV, Value *V,
+                    ValueLatticeElement MergeWithV,
+                    ValueLatticeElement::MergeOptions Opts = {
+                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
+
+  bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
+                    ValueLatticeElement::MergeOptions Opts = {
+                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
+    assert(!V->getType()->isStructTy() &&
+           "non-structs should use markConstant");
+    return mergeInValue(ValueState[V], V, MergeWithV, Opts);
+  }
+
+  /// getValueState - Return the ValueLatticeElement object that corresponds to
+  /// the value.  This function handles the case when the value hasn't been seen
+  /// yet by properly seeding constants etc.
+  ValueLatticeElement &getValueState(Value *V) {
+    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
+
+    auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
+    ValueLatticeElement &LV = I.first->second;
+
+    if (!I.second)
+      return LV; // Common case, already in the map.
+
+    if (auto *C = dyn_cast<Constant>(V))
+      LV.markConstant(C); // Constants are constant
+
+    // All others are unknown by default.
+    return LV;
+  }
+
+  /// getStructValueState - Return the ValueLatticeElement object that
+  /// corresponds to the value/field pair.  This function handles the case when
+  /// the value hasn't been seen yet by properly seeding constants etc.
+  ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
+    assert(V->getType()->isStructTy() && "Should use getValueState");
+    assert(i < cast<StructType>(V->getType())->getNumElements() &&
+           "Invalid element #");
+
+    auto I = StructValueState.insert(
+        std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
+    ValueLatticeElement &LV = I.first->second;
+
+    if (!I.second)
+      return LV; // Common case, already in the map.
+
+    if (auto *C = dyn_cast<Constant>(V)) {
+      Constant *Elt = C->getAggregateElement(i);
+
+      if (!Elt)
+        LV.markOverdefined(); // Unknown sort of constant.
+      else if (isa<UndefValue>(Elt))
+        ; // Undef values remain unknown.
+      else
+        LV.markConstant(Elt); // Constants are constant.
+    }
+
+    // All others are underdefined by default.
+    return LV;
+  }
+
+  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
+  /// work list if it is not already executable.
+  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
+
+  // getFeasibleSuccessors - Return a vector of booleans to indicate which
+  // successors are reachable from a given terminator instruction.
+  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
+
+  // OperandChangedState - This method is invoked on all of the users of an
+  // instruction that was just changed state somehow.  Based on this
+  // information, we need to update the specified user of this instruction.
+  void OperandChangedState(Instruction *I) {
+    if (BBExecutable.count(I->getParent())) // Inst is executable?
+      visit(*I);
+  }
+
+  // Add U as additional user of V.
+  void addAdditionalUser(Value *V, User *U) {
+    auto Iter = AdditionalUsers.insert({V, {}});
+    Iter.first->second.insert(U);
+  }
+
+  // Mark I's users as changed, including AdditionalUsers.
+  void markUsersAsChanged(Value *I) {
+    // Functions include their arguments in the use-list. Changed function
+    // values mean that the result of the function changed. We only need to
+    // update the call sites with the new function result and do not have to
+    // propagate the call arguments.
+    if (isa<Function>(I)) {
+      for (User *U : I->users()) {
+        if (auto *CB = dyn_cast<CallBase>(U))
+          handleCallResult(*CB);
+      }
+    } else {
+      for (User *U : I->users())
+        if (auto *UI = dyn_cast<Instruction>(U))
+          OperandChangedState(UI);
+    }
+
+    auto Iter = AdditionalUsers.find(I);
+    if (Iter != AdditionalUsers.end()) {
+      // Copy additional users before notifying them of changes, because new
+      // users may be added, potentially invalidating the iterator.
+      SmallVector<Instruction *, 2> ToNotify;
+      for (User *U : Iter->second)
+        if (auto *UI = dyn_cast<Instruction>(U))
+          ToNotify.push_back(UI);
+      for (Instruction *UI : ToNotify)
+        OperandChangedState(UI);
+    }
+  }
+  void handleCallOverdefined(CallBase &CB);
+  void handleCallResult(CallBase &CB);
+  void handleCallArguments(CallBase &CB);
+
+private:
+  friend class InstVisitor<SCCPInstVisitor>;
+
+  // visit implementations - Something changed in this instruction.  Either an
+  // operand made a transition, or the instruction is newly executable.  Change
+  // the value type of I to reflect these changes if appropriate.
+  void visitPHINode(PHINode &I);
+
+  // Terminators
+
+  void visitReturnInst(ReturnInst &I);
+  void visitTerminator(Instruction &TI);
+
+  void visitCastInst(CastInst &I);
+  void visitSelectInst(SelectInst &I);
+  void visitUnaryOperator(Instruction &I);
+  void visitBinaryOperator(Instruction &I);
+  void visitCmpInst(CmpInst &I);
+  void visitExtractValueInst(ExtractValueInst &EVI);
+  void visitInsertValueInst(InsertValueInst &IVI);
+
+  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
+    markOverdefined(&CPI);
+    visitTerminator(CPI);
+  }
+
+  // Instructions that cannot be folded away.
+
+  void visitStoreInst(StoreInst &I);
+  void visitLoadInst(LoadInst &I);
+  void visitGetElementPtrInst(GetElementPtrInst &I);
+
+  void visitCallInst(CallInst &I) { visitCallBase(I); }
+
+  void visitInvokeInst(InvokeInst &II) {
+    visitCallBase(II);
+    visitTerminator(II);
+  }
+
+  void visitCallBrInst(CallBrInst &CBI) {
+    visitCallBase(CBI);
+    visitTerminator(CBI);
+  }
+
+  void visitCallBase(CallBase &CB);
+  void visitResumeInst(ResumeInst &I) { /*returns void*/
+  }
+  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
+  }
+  void visitFenceInst(FenceInst &I) { /*returns void*/
+  }
+
+  void visitInstruction(Instruction &I);
+
+public:
+  void addAnalysis(Function &F, AnalysisResultsForFn A) {
+    AnalysisResults.insert({&F, std::move(A)});
+  }
+
+  bool MarkBlockExecutable(BasicBlock *BB);
+
+  const PredicateBase *getPredicateInfoFor(Instruction *I) {
+    auto A = AnalysisResults.find(I->getParent()->getParent());
+    if (A == AnalysisResults.end())
+      return nullptr;
+    return A->second.PredInfo->getPredicateInfoFor(I);
+  }
+
+  DomTreeUpdater getDTU(Function &F) {
+    auto A = AnalysisResults.find(&F);
+    assert(A != AnalysisResults.end() && "Need analysis results for function.");
+    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
+  }
+
+  SCCPInstVisitor(const DataLayout &DL,
+                  std::function<const TargetLibraryInfo &(Function &)> GetTLI,
+                  LLVMContext &Ctx)
+      : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
+
+  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
+    // We only track the contents of scalar globals.
+    if (GV->getValueType()->isSingleValueType()) {
+      ValueLatticeElement &IV = TrackedGlobals[GV];
+      if (!isa<UndefValue>(GV->getInitializer()))
+        IV.markConstant(GV->getInitializer());
+    }
+  }
+
+  void AddTrackedFunction(Function *F) {
+    // Add an entry, F -> undef.
+    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
+      MRVFunctionsTracked.insert(F);
+      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+        TrackedMultipleRetVals.insert(
+            std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
+    } else if (!F->getReturnType()->isVoidTy())
+      TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
+  }
+
+  void addToMustPreserveReturnsInFunctions(Function *F) {
+    MustPreserveReturnsInFunctions.insert(F);
+  }
+
+  bool mustPreserveReturn(Function *F) {
+    return MustPreserveReturnsInFunctions.count(F);
+  }
+
+  void AddArgumentTrackedFunction(Function *F) {
+    TrackingIncomingArguments.insert(F);
+  }
+
+  bool isArgumentTrackedFunction(Function *F) {
+    return TrackingIncomingArguments.count(F);
+  }
+
+  void Solve();
+
+  bool ResolvedUndefsIn(Function &F);
+
+  bool isBlockExecutable(BasicBlock *BB) const {
+    return BBExecutable.count(BB);
+  }
+
+  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
+
+  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
+    std::vector<ValueLatticeElement> StructValues;
+    auto *STy = dyn_cast<StructType>(V->getType());
+    assert(STy && "getStructLatticeValueFor() can be called only on structs");
+    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+      auto I = StructValueState.find(std::make_pair(V, i));
+      assert(I != StructValueState.end() && "Value not in valuemap!");
+      StructValues.push_back(I->second);
+    }
+    return StructValues;
+  }
+
+  void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
+
+  const ValueLatticeElement &getLatticeValueFor(Value *V) const {
+    assert(!V->getType()->isStructTy() &&
+           "Should use getStructLatticeValueFor");
+    DenseMap<Value *, ValueLatticeElement>::const_iterator I =
+        ValueState.find(V);
+    assert(I != ValueState.end() &&
+           "V not found in ValueState nor Paramstate map!");
+    return I->second;
+  }
+
+  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
+    return TrackedRetVals;
+  }
+
+  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
+    return TrackedGlobals;
+  }
+
+  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
+    return MRVFunctionsTracked;
+  }
+
+  void markOverdefined(Value *V) {
+    if (auto *STy = dyn_cast<StructType>(V->getType()))
+      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+        markOverdefined(getStructValueState(V, i), V);
+    else
+      markOverdefined(ValueState[V], V);
+  }
+
+  bool isStructLatticeConstant(Function *F, StructType *STy);
+
+  Constant *getConstant(const ValueLatticeElement &LV) const;
+};
+
+} // namespace llvm
+
+bool SCCPInstVisitor::MarkBlockExecutable(BasicBlock *BB) {
+  if (!BBExecutable.insert(BB).second)
+    return false;
+  LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
+  BBWorkList.push_back(BB); // Add the block to the work list!
+  return true;
+}
+
+void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
+  if (IV.isOverdefined())
+    return OverdefinedInstWorkList.push_back(V);
+  InstWorkList.push_back(V);
+}
+
+void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
+  LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
+  pushToWorkList(IV, V);
+}
+
+bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
+                                   Constant *C, bool MayIncludeUndef) {
+  if (!IV.markConstant(C, MayIncludeUndef))
+    return false;
+  LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
+  pushToWorkList(IV, V);
+  return true;
+}
+
+bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
+  if (!IV.markOverdefined())
+    return false;
+
+  LLVM_DEBUG(dbgs() << "markOverdefined: ";
+             if (auto *F = dyn_cast<Function>(V)) dbgs()
+             << "Function '" << F->getName() << "'\n";
+             else dbgs() << *V << '\n');
+  // Only instructions go on the work list
+  pushToWorkList(IV, V);
+  return true;
+}
+
+bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
+  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+    const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
+    assert(It != TrackedMultipleRetVals.end());
+    ValueLatticeElement LV = It->second;
+    if (!isConstant(LV))
+      return false;
+  }
+  return true;
+}
+
+Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
+  if (LV.isConstant())
+    return LV.getConstant();
+
+  if (LV.isConstantRange()) {
+    auto &CR = LV.getConstantRange();
+    if (CR.getSingleElement())
+      return ConstantInt::get(Ctx, *CR.getSingleElement());
+  }
+  return nullptr;
+}
+
+void SCCPInstVisitor::visitInstruction(Instruction &I) {
+  // All the instructions we don't do any special handling for just
+  // go to overdefined.
+  LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
+  markOverdefined(&I);
+}
+
+bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
+                                   ValueLatticeElement MergeWithV,
+                                   ValueLatticeElement::MergeOptions Opts) {
+  if (IV.mergeIn(MergeWithV, Opts)) {
+    pushToWorkList(IV, V);
+    LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
+                      << IV << "\n");
+    return true;
+  }
+  return false;
+}
+
+bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
+  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
+    return false; // This edge is already known to be executable!
+
+  if (!MarkBlockExecutable(Dest)) {
+    // If the destination is already executable, we just made an *edge*
+    // feasible that wasn't before.  Revisit the PHI nodes in the block
+    // because they have potentially new operands.
+    LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
+                      << " -> " << Dest->getName() << '\n');
+
+    for (PHINode &PN : Dest->phis())
+      visitPHINode(PN);
+  }
+  return true;
+}
+
+// getFeasibleSuccessors - Return a vector of booleans to indicate which
+// successors are reachable from a given terminator instruction.
+void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
+                                            SmallVectorImpl<bool> &Succs) {
+  Succs.resize(TI.getNumSuccessors());
+  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
+    if (BI->isUnconditional()) {
+      Succs[0] = true;
+      return;
+    }
+
+    ValueLatticeElement BCValue = getValueState(BI->getCondition());
+    ConstantInt *CI = getConstantInt(BCValue);
+    if (!CI) {
+      // Overdefined condition variables, and branches on unfoldable constant
+      // conditions, mean the branch could go either way.
+      if (!BCValue.isUnknownOrUndef())
+        Succs[0] = Succs[1] = true;
+      return;
+    }
+
+    // Constant condition variables mean the branch can only go a single way.
+    Succs[CI->isZero()] = true;
+    return;
+  }
+
+  // Unwinding instructions successors are always executable.
+  if (TI.isExceptionalTerminator()) {
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+
+  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
+    if (!SI->getNumCases()) {
+      Succs[0] = true;
+      return;
+    }
+    const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
+    if (ConstantInt *CI = getConstantInt(SCValue)) {
+      Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
+      return;
+    }
+
+    // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
+    // is ready.
+    if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
+      const ConstantRange &Range = SCValue.getConstantRange();
+      for (const auto &Case : SI->cases()) {
+        const APInt &CaseValue = Case.getCaseValue()->getValue();
+        if (Range.contains(CaseValue))
+          Succs[Case.getSuccessorIndex()] = true;
+      }
+
+      // TODO: Determine whether default case is reachable.
+      Succs[SI->case_default()->getSuccessorIndex()] = true;
+      return;
+    }
+
+    // Overdefined or unknown condition? All destinations are executable!
+    if (!SCValue.isUnknownOrUndef())
+      Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+
+  // In case of indirect branch and its address is a blockaddress, we mark
+  // the target as executable.
+  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
+    // Casts are folded by visitCastInst.
+    ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
+    BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
+    if (!Addr) { // Overdefined or unknown condition?
+      // All destinations are executable!
+      if (!IBRValue.isUnknownOrUndef())
+        Succs.assign(TI.getNumSuccessors(), true);
+      return;
+    }
+
+    BasicBlock *T = Addr->getBasicBlock();
+    assert(Addr->getFunction() == T->getParent() &&
+           "Block address of a 
diff erent function ?");
+    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
+      // This is the target.
+      if (IBR->getDestination(i) == T) {
+        Succs[i] = true;
+        return;
+      }
+    }
+
+    // If we didn't find our destination in the IBR successor list, then we
+    // have undefined behavior. Its ok to assume no successor is executable.
+    return;
+  }
+
+  // In case of callbr, we pessimistically assume that all successors are
+  // feasible.
+  if (isa<CallBrInst>(&TI)) {
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+
+  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
+  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
+}
+
+// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+// block to the 'To' basic block is currently feasible.
+bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
+  // Check if we've called markEdgeExecutable on the edge yet. (We could
+  // be more aggressive and try to consider edges which haven't been marked
+  // yet, but there isn't any need.)
+  return KnownFeasibleEdges.count(Edge(From, To));
+}
+
+// visit Implementations - Something changed in this instruction, either an
+// operand made a transition, or the instruction is newly executable.  Change
+// the value type of I to reflect these changes if appropriate.  This method
+// makes sure to do the following actions:
+//
+// 1. If a phi node merges two constants in, and has conflicting value coming
+//    from 
diff erent branches, or if the PHI node merges in an overdefined
+//    value, then the PHI node becomes overdefined.
+// 2. If a phi node merges only constants in, and they all agree on value, the
+//    PHI node becomes a constant value equal to that.
+// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
+// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
+// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
+// 6. If a conditional branch has a value that is constant, make the selected
+//    destination executable
+// 7. If a conditional branch has a value that is overdefined, make all
+//    successors executable.
+void SCCPInstVisitor::visitPHINode(PHINode &PN) {
+  // If this PN returns a struct, just mark the result overdefined.
+  // TODO: We could do a lot better than this if code actually uses this.
+  if (PN.getType()->isStructTy())
+    return (void)markOverdefined(&PN);
+
+  if (getValueState(&PN).isOverdefined())
+    return; // Quick exit
+
+  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
+  // and slow us down a lot.  Just mark them overdefined.
+  if (PN.getNumIncomingValues() > 64)
+    return (void)markOverdefined(&PN);
+
+  unsigned NumActiveIncoming = 0;
+
+  // Look at all of the executable operands of the PHI node.  If any of them
+  // are overdefined, the PHI becomes overdefined as well.  If they are all
+  // constant, and they agree with each other, the PHI becomes the identical
+  // constant.  If they are constant and don't agree, the PHI is a constant
+  // range. If there are no executable operands, the PHI remains unknown.
+  ValueLatticeElement PhiState = getValueState(&PN);
+  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
+      continue;
+
+    ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
+    PhiState.mergeIn(IV);
+    NumActiveIncoming++;
+    if (PhiState.isOverdefined())
+      break;
+  }
+
+  // We allow up to 1 range extension per active incoming value and one
+  // additional extension. Note that we manually adjust the number of range
+  // extensions to match the number of active incoming values. This helps to
+  // limit multiple extensions caused by the same incoming value, if other
+  // incoming values are equal.
+  mergeInValue(&PN, PhiState,
+               ValueLatticeElement::MergeOptions().setMaxWidenSteps(
+                   NumActiveIncoming + 1));
+  ValueLatticeElement &PhiStateRef = getValueState(&PN);
+  PhiStateRef.setNumRangeExtensions(
+      std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
+}
+
+void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
+  if (I.getNumOperands() == 0)
+    return; // ret void
+
+  Function *F = I.getParent()->getParent();
+  Value *ResultOp = I.getOperand(0);
+
+  // If we are tracking the return value of this function, merge it in.
+  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
+    auto TFRVI = TrackedRetVals.find(F);
+    if (TFRVI != TrackedRetVals.end()) {
+      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
+      return;
+    }
+  }
+
+  // Handle functions that return multiple values.
+  if (!TrackedMultipleRetVals.empty()) {
+    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
+      if (MRVFunctionsTracked.count(F))
+        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
+                       getStructValueState(ResultOp, i));
+  }
+}
+
+void SCCPInstVisitor::visitTerminator(Instruction &TI) {
+  SmallVector<bool, 16> SuccFeasible;
+  getFeasibleSuccessors(TI, SuccFeasible);
+
+  BasicBlock *BB = TI.getParent();
+
+  // Mark all feasible successors executable.
+  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
+    if (SuccFeasible[i])
+      markEdgeExecutable(BB, TI.getSuccessor(i));
+}
+
+void SCCPInstVisitor::visitCastInst(CastInst &I) {
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (ValueState[&I].isOverdefined())
+    return;
+
+  ValueLatticeElement OpSt = getValueState(I.getOperand(0));
+  if (Constant *OpC = getConstant(OpSt)) {
+    // Fold the constant as we build.
+    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
+    if (isa<UndefValue>(C))
+      return;
+    // Propagate constant value
+    markConstant(&I, C);
+  } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
+    auto &LV = getValueState(&I);
+    ConstantRange OpRange = OpSt.getConstantRange();
+    Type *DestTy = I.getDestTy();
+    // Vectors where all elements have the same known constant range are treated
+    // as a single constant range in the lattice. When bitcasting such vectors,
+    // there is a mis-match between the width of the lattice value (single
+    // constant range) and the original operands (vector). Go to overdefined in
+    // that case.
+    if (I.getOpcode() == Instruction::BitCast &&
+        I.getOperand(0)->getType()->isVectorTy() &&
+        OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
+      return (void)markOverdefined(&I);
+
+    ConstantRange Res =
+        OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
+    mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
+  } else if (!OpSt.isUnknownOrUndef())
+    markOverdefined(&I);
+}
+
+void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
+  // If this returns a struct, mark all elements over defined, we don't track
+  // structs in structs.
+  if (EVI.getType()->isStructTy())
+    return (void)markOverdefined(&EVI);
+
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (ValueState[&EVI].isOverdefined())
+    return (void)markOverdefined(&EVI);
+
+  // If this is extracting from more than one level of struct, we don't know.
+  if (EVI.getNumIndices() != 1)
+    return (void)markOverdefined(&EVI);
+
+  Value *AggVal = EVI.getAggregateOperand();
+  if (AggVal->getType()->isStructTy()) {
+    unsigned i = *EVI.idx_begin();
+    ValueLatticeElement EltVal = getStructValueState(AggVal, i);
+    mergeInValue(getValueState(&EVI), &EVI, EltVal);
+  } else {
+    // Otherwise, must be extracting from an array.
+    return (void)markOverdefined(&EVI);
+  }
+}
+
+void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
+  auto *STy = dyn_cast<StructType>(IVI.getType());
+  if (!STy)
+    return (void)markOverdefined(&IVI);
+
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (isOverdefined(ValueState[&IVI]))
+    return (void)markOverdefined(&IVI);
+
+  // If this has more than one index, we can't handle it, drive all results to
+  // undef.
+  if (IVI.getNumIndices() != 1)
+    return (void)markOverdefined(&IVI);
+
+  Value *Aggr = IVI.getAggregateOperand();
+  unsigned Idx = *IVI.idx_begin();
+
+  // Compute the result based on what we're inserting.
+  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+    // This passes through all values that aren't the inserted element.
+    if (i != Idx) {
+      ValueLatticeElement EltVal = getStructValueState(Aggr, i);
+      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
+      continue;
+    }
+
+    Value *Val = IVI.getInsertedValueOperand();
+    if (Val->getType()->isStructTy())
+      // We don't track structs in structs.
+      markOverdefined(getStructValueState(&IVI, i), &IVI);
+    else {
+      ValueLatticeElement InVal = getValueState(Val);
+      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
+    }
+  }
+}
+
+void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
+  // If this select returns a struct, just mark the result overdefined.
+  // TODO: We could do a lot better than this if code actually uses this.
+  if (I.getType()->isStructTy())
+    return (void)markOverdefined(&I);
+
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (ValueState[&I].isOverdefined())
+    return (void)markOverdefined(&I);
+
+  ValueLatticeElement CondValue = getValueState(I.getCondition());
+  if (CondValue.isUnknownOrUndef())
+    return;
+
+  if (ConstantInt *CondCB = getConstantInt(CondValue)) {
+    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
+    mergeInValue(&I, getValueState(OpVal));
+    return;
+  }
+
+  // Otherwise, the condition is overdefined or a constant we can't evaluate.
+  // See if we can produce something better than overdefined based on the T/F
+  // value.
+  ValueLatticeElement TVal = getValueState(I.getTrueValue());
+  ValueLatticeElement FVal = getValueState(I.getFalseValue());
+
+  bool Changed = ValueState[&I].mergeIn(TVal);
+  Changed |= ValueState[&I].mergeIn(FVal);
+  if (Changed)
+    pushToWorkListMsg(ValueState[&I], &I);
+}
+
+// Handle Unary Operators.
+void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
+  ValueLatticeElement V0State = getValueState(I.getOperand(0));
+
+  ValueLatticeElement &IV = ValueState[&I];
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (isOverdefined(IV))
+    return (void)markOverdefined(&I);
+
+  if (isConstant(V0State)) {
+    Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
+
+    // op Y -> undef.
+    if (isa<UndefValue>(C))
+      return;
+    return (void)markConstant(IV, &I, C);
+  }
+
+  // If something is undef, wait for it to resolve.
+  if (!isOverdefined(V0State))
+    return;
+
+  markOverdefined(&I);
+}
+
+// Handle Binary Operators.
+void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
+  ValueLatticeElement V1State = getValueState(I.getOperand(0));
+  ValueLatticeElement V2State = getValueState(I.getOperand(1));
+
+  ValueLatticeElement &IV = ValueState[&I];
+  if (IV.isOverdefined())
+    return;
+
+  // If something is undef, wait for it to resolve.
+  if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
+    return;
+
+  if (V1State.isOverdefined() && V2State.isOverdefined())
+    return (void)markOverdefined(&I);
+
+  // If either of the operands is a constant, try to fold it to a constant.
+  // TODO: Use information from notconstant better.
+  if ((V1State.isConstant() || V2State.isConstant())) {
+    Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
+    Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
+    Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
+    auto *C = dyn_cast_or_null<Constant>(R);
+    if (C) {
+      // X op Y -> undef.
+      if (isa<UndefValue>(C))
+        return;
+      // Conservatively assume that the result may be based on operands that may
+      // be undef. Note that we use mergeInValue to combine the constant with
+      // the existing lattice value for I, as 
diff erent constants might be found
+      // after one of the operands go to overdefined, e.g. due to one operand
+      // being a special floating value.
+      ValueLatticeElement NewV;
+      NewV.markConstant(C, /*MayIncludeUndef=*/true);
+      return (void)mergeInValue(&I, NewV);
+    }
+  }
+
+  // Only use ranges for binary operators on integers.
+  if (!I.getType()->isIntegerTy())
+    return markOverdefined(&I);
+
+  // Try to simplify to a constant range.
+  ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
+  ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
+  if (V1State.isConstantRange())
+    A = V1State.getConstantRange();
+  if (V2State.isConstantRange())
+    B = V2State.getConstantRange();
+
+  ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
+  mergeInValue(&I, ValueLatticeElement::getRange(R));
+
+  // TODO: Currently we do not exploit special values that produce something
+  // better than overdefined with an overdefined operand for vector or floating
+  // point types, like and <4 x i32> overdefined, zeroinitializer.
+}
+
+// Handle ICmpInst instruction.
+void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
+  // Do not cache this lookup, getValueState calls later in the function might
+  // invalidate the reference.
+  if (isOverdefined(ValueState[&I]))
+    return (void)markOverdefined(&I);
+
+  Value *Op1 = I.getOperand(0);
+  Value *Op2 = I.getOperand(1);
+
+  // For parameters, use ParamState which includes constant range info if
+  // available.
+  auto V1State = getValueState(Op1);
+  auto V2State = getValueState(Op2);
+
+  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
+  if (C) {
+    if (isa<UndefValue>(C))
+      return;
+    ValueLatticeElement CV;
+    CV.markConstant(C);
+    mergeInValue(&I, CV);
+    return;
+  }
+
+  // If operands are still unknown, wait for it to resolve.
+  if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
+      !isConstant(ValueState[&I]))
+    return;
+
+  markOverdefined(&I);
+}
+
+// Handle getelementptr instructions.  If all operands are constants then we
+// can turn this into a getelementptr ConstantExpr.
+void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
+  if (isOverdefined(ValueState[&I]))
+    return (void)markOverdefined(&I);
+
+  SmallVector<Constant *, 8> Operands;
+  Operands.reserve(I.getNumOperands());
+
+  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+    ValueLatticeElement State = getValueState(I.getOperand(i));
+    if (State.isUnknownOrUndef())
+      return; // Operands are not resolved yet.
+
+    if (isOverdefined(State))
+      return (void)markOverdefined(&I);
+
+    if (Constant *C = getConstant(State)) {
+      Operands.push_back(C);
+      continue;
+    }
+
+    return (void)markOverdefined(&I);
+  }
+
+  Constant *Ptr = Operands[0];
+  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
+  Constant *C =
+      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
+  if (isa<UndefValue>(C))
+    return;
+  markConstant(&I, C);
+}
+
+void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
+  // If this store is of a struct, ignore it.
+  if (SI.getOperand(0)->getType()->isStructTy())
+    return;
+
+  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
+    return;
+
+  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
+  auto I = TrackedGlobals.find(GV);
+  if (I == TrackedGlobals.end())
+    return;
+
+  // Get the value we are storing into the global, then merge it.
+  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
+               ValueLatticeElement::MergeOptions().setCheckWiden(false));
+  if (I->second.isOverdefined())
+    TrackedGlobals.erase(I); // No need to keep tracking this!
+}
+
+static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
+  if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
+    if (I->getType()->isIntegerTy())
+      return ValueLatticeElement::getRange(
+          getConstantRangeFromMetadata(*Ranges));
+  if (I->hasMetadata(LLVMContext::MD_nonnull))
+    return ValueLatticeElement::getNot(
+        ConstantPointerNull::get(cast<PointerType>(I->getType())));
+  return ValueLatticeElement::getOverdefined();
+}
+
+// Handle load instructions.  If the operand is a constant pointer to a constant
+// global, we can replace the load with the loaded constant value!
+void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
+  // If this load is of a struct or the load is volatile, just mark the result
+  // as overdefined.
+  if (I.getType()->isStructTy() || I.isVolatile())
+    return (void)markOverdefined(&I);
+
+  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
+  // discover a concrete value later.
+  if (ValueState[&I].isOverdefined())
+    return (void)markOverdefined(&I);
+
+  ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
+  if (PtrVal.isUnknownOrUndef())
+    return; // The pointer is not resolved yet!
+
+  ValueLatticeElement &IV = ValueState[&I];
+
+  if (isConstant(PtrVal)) {
+    Constant *Ptr = getConstant(PtrVal);
+
+    // load null is undefined.
+    if (isa<ConstantPointerNull>(Ptr)) {
+      if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
+        return (void)markOverdefined(IV, &I);
+      else
+        return;
+    }
+
+    // Transform load (constant global) into the value loaded.
+    if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
+      if (!TrackedGlobals.empty()) {
+        // If we are tracking this global, merge in the known value for it.
+        auto It = TrackedGlobals.find(GV);
+        if (It != TrackedGlobals.end()) {
+          mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
+          return;
+        }
+      }
+    }
+
+    // Transform load from a constant into a constant if possible.
+    if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
+      if (isa<UndefValue>(C))
+        return;
+      return (void)markConstant(IV, &I, C);
+    }
+  }
+
+  // Fall back to metadata.
+  mergeInValue(&I, getValueFromMetadata(&I));
+}
+
+void SCCPInstVisitor::visitCallBase(CallBase &CB) {
+  handleCallResult(CB);
+  handleCallArguments(CB);
+}
+
+void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
+  Function *F = CB.getCalledFunction();
+
+  // Void return and not tracking callee, just bail.
+  if (CB.getType()->isVoidTy())
+    return;
+
+  // Always mark struct return as overdefined.
+  if (CB.getType()->isStructTy())
+    return (void)markOverdefined(&CB);
+
+  // Otherwise, if we have a single return value case, and if the function is
+  // a declaration, maybe we can constant fold it.
+  if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
+    SmallVector<Constant *, 8> Operands;
+    for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
+      if (AI->get()->getType()->isStructTy())
+        return markOverdefined(&CB); // Can't handle struct args.
+      ValueLatticeElement State = getValueState(*AI);
+
+      if (State.isUnknownOrUndef())
+        return; // Operands are not resolved yet.
+      if (isOverdefined(State))
+        return (void)markOverdefined(&CB);
+      assert(isConstant(State) && "Unknown state!");
+      Operands.push_back(getConstant(State));
+    }
+
+    if (isOverdefined(getValueState(&CB)))
+      return (void)markOverdefined(&CB);
+
+    // If we can constant fold this, mark the result of the call as a
+    // constant.
+    if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
+      // call -> undef.
+      if (isa<UndefValue>(C))
+        return;
+      return (void)markConstant(&CB, C);
+    }
+  }
+
+  // Fall back to metadata.
+  mergeInValue(&CB, getValueFromMetadata(&CB));
+}
+
+void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
+  Function *F = CB.getCalledFunction();
+  // If this is a local function that doesn't have its address taken, mark its
+  // entry block executable and merge in the actual arguments to the call into
+  // the formal arguments of the function.
+  if (!TrackingIncomingArguments.empty() &&
+      TrackingIncomingArguments.count(F)) {
+    MarkBlockExecutable(&F->front());
+
+    // Propagate information from this call site into the callee.
+    auto CAI = CB.arg_begin();
+    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
+         ++AI, ++CAI) {
+      // If this argument is byval, and if the function is not readonly, there
+      // will be an implicit copy formed of the input aggregate.
+      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
+        markOverdefined(&*AI);
+        continue;
+      }
+
+      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
+        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+          ValueLatticeElement CallArg = getStructValueState(*CAI, i);
+          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
+                       getMaxWidenStepsOpts());
+        }
+      } else
+        mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
+    }
+  }
+}
+
+void SCCPInstVisitor::handleCallResult(CallBase &CB) {
+  Function *F = CB.getCalledFunction();
+
+  if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
+    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
+      if (ValueState[&CB].isOverdefined())
+        return;
+
+      Value *CopyOf = CB.getOperand(0);
+      ValueLatticeElement CopyOfVal = getValueState(CopyOf);
+      auto *PI = getPredicateInfoFor(&CB);
+      assert(PI && "Missing predicate info for ssa.copy");
+
+      const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
+      if (!Constraint) {
+        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
+        return;
+      }
+
+      CmpInst::Predicate Pred = Constraint->Predicate;
+      Value *OtherOp = Constraint->OtherOp;
+
+      // Wait until OtherOp is resolved.
+      if (getValueState(OtherOp).isUnknown()) {
+        addAdditionalUser(OtherOp, &CB);
+        return;
+      }
+
+      // TODO: Actually filp MayIncludeUndef for the created range to false,
+      // once most places in the optimizer respect the branches on
+      // undef/poison are UB rule. The reason why the new range cannot be
+      // undef is as follows below:
+      // The new range is based on a branch condition. That guarantees that
+      // neither of the compare operands can be undef in the branch targets,
+      // unless we have conditions that are always true/false (e.g. icmp ule
+      // i32, %a, i32_max). For the latter overdefined/empty range will be
+      // inferred, but the branch will get folded accordingly anyways.
+      bool MayIncludeUndef = !isa<PredicateAssume>(PI);
+
+      ValueLatticeElement CondVal = getValueState(OtherOp);
+      ValueLatticeElement &IV = ValueState[&CB];
+      if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
+        auto ImposedCR =
+            ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
+
+        // Get the range imposed by the condition.
+        if (CondVal.isConstantRange())
+          ImposedCR = ConstantRange::makeAllowedICmpRegion(
+              Pred, CondVal.getConstantRange());
+
+        // Combine range info for the original value with the new range from the
+        // condition.
+        auto CopyOfCR = CopyOfVal.isConstantRange()
+                            ? CopyOfVal.getConstantRange()
+                            : ConstantRange::getFull(
+                                  DL.getTypeSizeInBits(CopyOf->getType()));
+        auto NewCR = ImposedCR.intersectWith(CopyOfCR);
+        // If the existing information is != x, do not use the information from
+        // a chained predicate, as the != x information is more likely to be
+        // helpful in practice.
+        if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
+          NewCR = CopyOfCR;
+
+        addAdditionalUser(OtherOp, &CB);
+        mergeInValue(IV, &CB,
+                     ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
+        return;
+      } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
+        // For non-integer values or integer constant expressions, only
+        // propagate equal constants.
+        addAdditionalUser(OtherOp, &CB);
+        mergeInValue(IV, &CB, CondVal);
+        return;
+      } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
+                 !MayIncludeUndef) {
+        // Propagate inequalities.
+        addAdditionalUser(OtherOp, &CB);
+        mergeInValue(IV, &CB,
+                     ValueLatticeElement::getNot(CondVal.getConstant()));
+        return;
+      }
+
+      return (void)mergeInValue(IV, &CB, CopyOfVal);
+    }
+
+    if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
+      // Compute result range for intrinsics supported by ConstantRange.
+      // Do this even if we don't know a range for all operands, as we may
+      // still know something about the result range, e.g. of abs(x).
+      SmallVector<ConstantRange, 2> OpRanges;
+      for (Value *Op : II->args()) {
+        const ValueLatticeElement &State = getValueState(Op);
+        if (State.isConstantRange())
+          OpRanges.push_back(State.getConstantRange());
+        else
+          OpRanges.push_back(
+              ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
+      }
+
+      ConstantRange Result =
+          ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
+      return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
+    }
+  }
+
+  // The common case is that we aren't tracking the callee, either because we
+  // are not doing interprocedural analysis or the callee is indirect, or is
+  // external.  Handle these cases first.
+  if (!F || F->isDeclaration())
+    return handleCallOverdefined(CB);
+
+  // If this is a single/zero retval case, see if we're tracking the function.
+  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
+    if (!MRVFunctionsTracked.count(F))
+      return handleCallOverdefined(CB); // Not tracking this callee.
+
+    // If we are tracking this callee, propagate the result of the function
+    // into this call site.
+    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+      mergeInValue(getStructValueState(&CB, i), &CB,
+                   TrackedMultipleRetVals[std::make_pair(F, i)],
+                   getMaxWidenStepsOpts());
+  } else {
+    auto TFRVI = TrackedRetVals.find(F);
+    if (TFRVI == TrackedRetVals.end())
+      return handleCallOverdefined(CB); // Not tracking this callee.
+
+    // If so, propagate the return value of the callee into this call result.
+    mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
+  }
+}
+
+void SCCPInstVisitor::Solve() {
+  // Process the work lists until they are empty!
+  while (!BBWorkList.empty() || !InstWorkList.empty() ||
+         !OverdefinedInstWorkList.empty()) {
+    // Process the overdefined instruction's work list first, which drives other
+    // things to overdefined more quickly.
+    while (!OverdefinedInstWorkList.empty()) {
+      Value *I = OverdefinedInstWorkList.pop_back_val();
+
+      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
+
+      // "I" got into the work list because it either made the transition from
+      // bottom to constant, or to overdefined.
+      //
+      // Anything on this worklist that is overdefined need not be visited
+      // since all of its users will have already been marked as overdefined
+      // Update all of the users of this instruction's value.
+      //
+      markUsersAsChanged(I);
+    }
+
+    // Process the instruction work list.
+    while (!InstWorkList.empty()) {
+      Value *I = InstWorkList.pop_back_val();
+
+      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
+
+      // "I" got into the work list because it made the transition from undef to
+      // constant.
+      //
+      // Anything on this worklist that is overdefined need not be visited
+      // since all of its users will have already been marked as overdefined.
+      // Update all of the users of this instruction's value.
+      //
+      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
+        markUsersAsChanged(I);
+    }
+
+    // Process the basic block work list.
+    while (!BBWorkList.empty()) {
+      BasicBlock *BB = BBWorkList.pop_back_val();
+
+      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
+
+      // Notify all instructions in this basic block that they are newly
+      // executable.
+      visit(BB);
+    }
+  }
+}
+
+/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+/// that branches on undef values cannot reach any of their successors.
+/// However, this is not a safe assumption.  After we solve dataflow, this
+/// method should be use to handle this.  If this returns true, the solver
+/// should be rerun.
+///
+/// This method handles this by finding an unresolved branch and marking it one
+/// of the edges from the block as being feasible, even though the condition
+/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
+/// CFG and only slightly pessimizes the analysis results (by marking one,
+/// potentially infeasible, edge feasible).  This cannot usefully modify the
+/// constraints on the condition of the branch, as that would impact other users
+/// of the value.
+///
+/// This scan also checks for values that use undefs. It conservatively marks
+/// them as overdefined.
+bool SCCPInstVisitor::ResolvedUndefsIn(Function &F) {
+  bool MadeChange = false;
+  for (BasicBlock &BB : F) {
+    if (!BBExecutable.count(&BB))
+      continue;
+
+    for (Instruction &I : BB) {
+      // Look for instructions which produce undef values.
+      if (I.getType()->isVoidTy())
+        continue;
+
+      if (auto *STy = dyn_cast<StructType>(I.getType())) {
+        // Only a few things that can be structs matter for undef.
+
+        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
+        if (auto *CB = dyn_cast<CallBase>(&I))
+          if (Function *F = CB->getCalledFunction())
+            if (MRVFunctionsTracked.count(F))
+              continue;
+
+        // extractvalue and insertvalue don't need to be marked; they are
+        // tracked as precisely as their operands.
+        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
+          continue;
+        // Send the results of everything else to overdefined.  We could be
+        // more precise than this but it isn't worth bothering.
+        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+          ValueLatticeElement &LV = getStructValueState(&I, i);
+          if (LV.isUnknownOrUndef()) {
+            markOverdefined(LV, &I);
+            MadeChange = true;
+          }
+        }
+        continue;
+      }
+
+      ValueLatticeElement &LV = getValueState(&I);
+      if (!LV.isUnknownOrUndef())
+        continue;
+
+      // There are two reasons a call can have an undef result
+      // 1. It could be tracked.
+      // 2. It could be constant-foldable.
+      // Because of the way we solve return values, tracked calls must
+      // never be marked overdefined in ResolvedUndefsIn.
+      if (auto *CB = dyn_cast<CallBase>(&I))
+        if (Function *F = CB->getCalledFunction())
+          if (TrackedRetVals.count(F))
+            continue;
+
+      if (isa<LoadInst>(I)) {
+        // A load here means one of two things: a load of undef from a global,
+        // a load from an unknown pointer.  Either way, having it return undef
+        // is okay.
+        continue;
+      }
+
+      markOverdefined(&I);
+      MadeChange = true;
+    }
+
+    // Check to see if we have a branch or switch on an undefined value.  If so
+    // we force the branch to go one way or the other to make the successor
+    // values live.  It doesn't really matter which way we force it.
+    Instruction *TI = BB.getTerminator();
+    if (auto *BI = dyn_cast<BranchInst>(TI)) {
+      if (!BI->isConditional())
+        continue;
+      if (!getValueState(BI->getCondition()).isUnknownOrUndef())
+        continue;
+
+      // If the input to SCCP is actually branch on undef, fix the undef to
+      // false.
+      if (isa<UndefValue>(BI->getCondition())) {
+        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
+        markEdgeExecutable(&BB, TI->getSuccessor(1));
+        MadeChange = true;
+        continue;
+      }
+
+      // Otherwise, it is a branch on a symbolic value which is currently
+      // considered to be undef.  Make sure some edge is executable, so a
+      // branch on "undef" always flows somewhere.
+      // FIXME: Distinguish between dead code and an LLVM "undef" value.
+      BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
+      if (markEdgeExecutable(&BB, DefaultSuccessor))
+        MadeChange = true;
+
+      continue;
+    }
+
+    if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
+      // Indirect branch with no successor ?. Its ok to assume it branches
+      // to no target.
+      if (IBR->getNumSuccessors() < 1)
+        continue;
+
+      if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
+        continue;
+
+      // If the input to SCCP is actually branch on undef, fix the undef to
+      // the first successor of the indirect branch.
+      if (isa<UndefValue>(IBR->getAddress())) {
+        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
+        markEdgeExecutable(&BB, IBR->getSuccessor(0));
+        MadeChange = true;
+        continue;
+      }
+
+      // Otherwise, it is a branch on a symbolic value which is currently
+      // considered to be undef.  Make sure some edge is executable, so a
+      // branch on "undef" always flows somewhere.
+      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
+      // we can assume the branch has undefined behavior instead.
+      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
+      if (markEdgeExecutable(&BB, DefaultSuccessor))
+        MadeChange = true;
+
+      continue;
+    }
+
+    if (auto *SI = dyn_cast<SwitchInst>(TI)) {
+      if (!SI->getNumCases() ||
+          !getValueState(SI->getCondition()).isUnknownOrUndef())
+        continue;
+
+      // If the input to SCCP is actually switch on undef, fix the undef to
+      // the first constant.
+      if (isa<UndefValue>(SI->getCondition())) {
+        SI->setCondition(SI->case_begin()->getCaseValue());
+        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
+        MadeChange = true;
+        continue;
+      }
+
+      // Otherwise, it is a branch on a symbolic value which is currently
+      // considered to be undef.  Make sure some edge is executable, so a
+      // branch on "undef" always flows somewhere.
+      // FIXME: Distinguish between dead code and an LLVM "undef" value.
+      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
+      if (markEdgeExecutable(&BB, DefaultSuccessor))
+        MadeChange = true;
+
+      continue;
+    }
+  }
+
+  return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// SCCPSolver implementations
+//
+SCCPSolver::SCCPSolver(
+    const DataLayout &DL,
+    std::function<const TargetLibraryInfo &(Function &)> GetTLI,
+    LLVMContext &Ctx)
+    : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
+
+SCCPSolver::~SCCPSolver() { }
+
+void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
+  return Visitor->addAnalysis(F, std::move(A));
+}
+
+bool SCCPSolver::MarkBlockExecutable(BasicBlock *BB) {
+  return Visitor->MarkBlockExecutable(BB);
+}
+
+const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
+  return Visitor->getPredicateInfoFor(I);
+}
+
+DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
+
+void SCCPSolver::TrackValueOfGlobalVariable(GlobalVariable *GV) {
+  Visitor->TrackValueOfGlobalVariable(GV);
+}
+
+void SCCPSolver::AddTrackedFunction(Function *F) {
+  Visitor->AddTrackedFunction(F);
+}
+
+void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
+  Visitor->addToMustPreserveReturnsInFunctions(F);
+}
+
+bool SCCPSolver::mustPreserveReturn(Function *F) {
+  return Visitor->mustPreserveReturn(F);
+}
+
+void SCCPSolver::AddArgumentTrackedFunction(Function *F) {
+  Visitor->AddArgumentTrackedFunction(F);
+}
+
+bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
+  return Visitor->isArgumentTrackedFunction(F);
+}
+
+void SCCPSolver::Solve() { Visitor->Solve(); }
+
+bool SCCPSolver::ResolvedUndefsIn(Function &F) {
+  return Visitor->ResolvedUndefsIn(F);
+}
+
+bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
+  return Visitor->isBlockExecutable(BB);
+}
+
+bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
+  return Visitor->isEdgeFeasible(From, To);
+}
+
+std::vector<ValueLatticeElement>
+SCCPSolver::getStructLatticeValueFor(Value *V) const {
+  return Visitor->getStructLatticeValueFor(V);
+}
+
+void SCCPSolver::removeLatticeValueFor(Value *V) {
+  return Visitor->removeLatticeValueFor(V);
+}
+
+const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
+  return Visitor->getLatticeValueFor(V);
+}
+
+const MapVector<Function *, ValueLatticeElement> &
+SCCPSolver::getTrackedRetVals() {
+  return Visitor->getTrackedRetVals();
+}
+
+const DenseMap<GlobalVariable *, ValueLatticeElement> &
+SCCPSolver::getTrackedGlobals() {
+  return Visitor->getTrackedGlobals();
+}
+
+const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
+  return Visitor->getMRVFunctionsTracked();
+}
+
+void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
+
+bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
+  return Visitor->isStructLatticeConstant(F, STy);
+}
+
+Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
+  return Visitor->getConstant(LV);
+}


        


More information about the llvm-commits mailing list