[llvm] 240aa96 - [LoopVectorize] Simplify scalar cost calculation in getInstructionCost

David Sherwood via llvm-commits llvm-commits at lists.llvm.org
Fri Mar 26 04:27:18 PDT 2021


Author: David Sherwood
Date: 2021-03-26T11:27:12Z
New Revision: 240aa96cf25d880dde7a0db5d96918cfaa4b8891

URL: https://github.com/llvm/llvm-project/commit/240aa96cf25d880dde7a0db5d96918cfaa4b8891
DIFF: https://github.com/llvm/llvm-project/commit/240aa96cf25d880dde7a0db5d96918cfaa4b8891.diff

LOG: [LoopVectorize] Simplify scalar cost calculation in getInstructionCost

This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.

  unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
  return N * TTI.getArithmeticInstrCost(...

After some investigation it seems that there are only these cases that occur
in practice:

1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast with scalar uses, or b) this is an update to an induction variable
that remains scalar.

I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. For all other cases I have added an assert that none of the
users needs scalarising, which didn't fire in any unit tests.

Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.

Differential Revision: https://reviews.llvm.org/D98512

Added: 
    

Modified: 
    llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
    llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 7c90b7231e09..d113a46a9ae0 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -7253,10 +7253,36 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
   Type *RetTy = I->getType();
   if (canTruncateToMinimalBitwidth(I, VF))
     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
-  VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
   auto SE = PSE.getSE();
   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
 
+  auto hasSingleCopyAfterVectorization = [this](Instruction *I,
+                                                ElementCount VF) -> bool {
+    if (VF.isScalar())
+      return true;
+
+    auto Scalarized = InstsToScalarize.find(VF);
+    assert(Scalarized != InstsToScalarize.end() &&
+           "VF not yet analyzed for scalarization profitability");
+    return !Scalarized->second.count(I) &&
+           llvm::all_of(I->users(), [&](User *U) {
+             auto *UI = cast<Instruction>(U);
+             return !Scalarized->second.count(UI);
+           });
+  };
+
+  if (isScalarAfterVectorization(I, VF)) {
+    VectorTy = RetTy;
+    // With the exception of GEPs, after scalarization there should only be one
+    // copy of the instruction generated in the loop. This is because the VF is
+    // either 1, or any instructions that need scalarizing have already been
+    // dealt with by the the time we get here. As a result, it means we don't
+    // have to multiply the instruction cost by VF.
+    assert(I->getOpcode() == Instruction::GetElementPtr ||
+           hasSingleCopyAfterVectorization(I, VF));
+  } else
+    VectorTy = ToVectorTy(RetTy, VF);
+
   // TODO: We need to estimate the cost of intrinsic calls.
   switch (I->getOpcode()) {
   case Instruction::GetElementPtr:
@@ -7384,21 +7410,16 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
       Op2VK = TargetTransformInfo::OK_UniformValue;
 
     SmallVector<const Value *, 4> Operands(I->operand_values());
-    unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
-    return N * TTI.getArithmeticInstrCost(
-                   I->getOpcode(), VectorTy, CostKind,
-                   TargetTransformInfo::OK_AnyValue,
-                   Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
+    return TTI.getArithmeticInstrCost(
+        I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
+        Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
   }
   case Instruction::FNeg: {
     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
-    unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
-    return N * TTI.getArithmeticInstrCost(
-                   I->getOpcode(), VectorTy, CostKind,
-                   TargetTransformInfo::OK_AnyValue,
-                   TargetTransformInfo::OK_AnyValue,
-                   TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
-                   I->getOperand(0), I);
+    return TTI.getArithmeticInstrCost(
+        I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
+        TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
+        TargetTransformInfo::OP_None, I->getOperand(0), I);
   }
   case Instruction::Select: {
     SelectInst *SI = cast<SelectInst>(I);
@@ -7522,14 +7543,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
       }
     }
 
-    unsigned N;
-    if (isScalarAfterVectorization(I, VF)) {
-      assert(!VF.isScalable() && "VF is assumed to be non scalable");
-      N = VF.getKnownMinValue();
-    } else
-      N = 1;
-    return N *
-           TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
+    return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
   }
   case Instruction::Call: {
     bool NeedToScalarize;
@@ -7544,11 +7558,8 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
   case Instruction::ExtractValue:
     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
   default:
-    // The cost of executing VF copies of the scalar instruction. This opcode
-    // is unknown. Assume that it is the same as 'mul'.
-    return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
-                                       Instruction::Mul, VectorTy, CostKind) +
-           getScalarizationOverhead(I, VF);
+    // This opcode is unknown. Assume that it is the same as 'mul'.
+    return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
   } // end of switch.
 }
 

diff  --git a/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll b/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll
index 247ea35ff5d0..3061998518ad 100644
--- a/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll
+++ b/llvm/test/Transforms/LoopVectorize/AArch64/no_vector_instructions.ll
@@ -6,7 +6,7 @@ target triple = "aarch64--linux-gnu"
 
 ; CHECK-LABEL: all_scalar
 ; CHECK:       LV: Found scalar instruction: %i.next = add nuw nsw i64 %i, 2
-; CHECK:       LV: Found an estimated cost of 2 for VF 2 For instruction: %i.next = add nuw nsw i64 %i, 2
+; CHECK:       LV: Found an estimated cost of 1 for VF 2 For instruction: %i.next = add nuw nsw i64 %i, 2
 ; CHECK:       LV: Not considering vector loop of width 2 because it will not generate any vector instructions
 ;
 define void @all_scalar(i64* %a, i64 %n) {


        


More information about the llvm-commits mailing list