[llvm] ae6f788 - [LiveDebugValues] Add instruction-referencing LDV implementation

Jeremy Morse via llvm-commits llvm-commits at lists.llvm.org
Sat Aug 22 10:32:26 PDT 2020


Author: Jeremy Morse
Date: 2020-08-22T18:31:08+01:00
New Revision: ae6f788240310e50f912f67353bc0a845a104d97

URL: https://github.com/llvm/llvm-project/commit/ae6f788240310e50f912f67353bc0a845a104d97
DIFF: https://github.com/llvm/llvm-project/commit/ae6f788240310e50f912f67353bc0a845a104d97.diff

LOG: [LiveDebugValues] Add instruction-referencing LDV implementation

This patch imports the instruction-referencing implementation of
LiveDebugValues proposed here:

  http://lists.llvm.org/pipermail/llvm-dev/2020-June/142368.html

The new implementation is unreachable in this patch, it's the next patch
that enables it behind a command line switch. Briefly, rather than
tracking variable locations by just their location as the 'VarLoc'
implementation does, this implementation does it by value:
 * Each value defined in a function is numbered, and propagated through
   dataflow,
 * Each DBG_VALUE reads a machine value number from a machine location,
 * Variable _values_ are propagated through dataflow,
 * Variable values are translated back into locations, DBG_VALUEs
   inserted to specify where those locations are.

The ultimate aim of this is to enable referring to variable values
throughout post-isel code, rather than locations. Those patches will
build on top of this new LiveDebugValues implementation in later patches
-- it can't be done with the VarLoc implementation as we don't have
value information, only locations.

Differential Revision: https://reviews.llvm.org/D83047

Added: 
    llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp

Modified: 
    llvm/lib/CodeGen/CMakeLists.txt
    llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h

Removed: 
    


################################################################################
diff  --git a/llvm/lib/CodeGen/CMakeLists.txt b/llvm/lib/CodeGen/CMakeLists.txt
index 4469b41d133d..a90cb455858a 100644
--- a/llvm/lib/CodeGen/CMakeLists.txt
+++ b/llvm/lib/CodeGen/CMakeLists.txt
@@ -184,6 +184,7 @@ add_llvm_component_library(LLVMCodeGen
 
   LiveDebugValues/LiveDebugValues.cpp
   LiveDebugValues/VarLocBasedImpl.cpp
+  LiveDebugValues/InstrRefBasedImpl.cpp
 
   ADDITIONAL_HEADER_DIRS
   ${LLVM_MAIN_INCLUDE_DIR}/llvm/CodeGen

diff  --git a/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
new file mode 100644
index 000000000000..5818ecdf24da
--- /dev/null
+++ b/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
@@ -0,0 +1,3134 @@
+//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file InstrRefBasedImpl.cpp
+///
+/// This is a separate implementation of LiveDebugValues, see
+/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
+///
+/// This pass propagates variable locations between basic blocks, resolving
+/// control flow conflicts between them. The problem is much like SSA
+/// construction, where each DBG_VALUE instruction assigns the *value* that
+/// a variable has, and every instruction where the variable is in scope uses
+/// that variable. The resulting map of instruction-to-value is then translated
+/// into a register (or spill) location for each variable over each instruction.
+///
+/// This pass determines which DBG_VALUE dominates which instructions, or if
+/// none do, where values must be merged (like PHI nodes). The added
+/// complication is that because codegen has already finished, a PHI node may
+/// be needed for a variable location to be correct, but no register or spill
+/// slot merges the necessary values. In these circumstances, the variable
+/// location is dropped.
+///
+/// What makes this analysis non-trivial is loops: we cannot tell in advance
+/// whether a variable location is live throughout a loop, or whether its
+/// location is clobbered (or redefined by another DBG_VALUE), without
+/// exploring all the way through.
+///
+/// To make this simpler we perform two kinds of analysis. First, we identify
+/// every value defined by every instruction (ignoring those that only move
+/// another value), then compute a map of which values are available for each
+/// instruction. This is stronger than a reaching-def analysis, as we create
+/// PHI values where other values merge.
+///
+/// Secondly, for each variable, we effectively re-construct SSA using each
+/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
+/// first analysis from the location they refer to. We can then compute the
+/// dominance frontiers of where a variable has a value, and create PHI nodes
+/// where they merge.
+/// This isn't precisely SSA-construction though, because the function shape
+/// is pre-defined. If a variable location requires a PHI node, but no
+/// PHI for the relevant values is present in the function (as computed by the
+/// first analysis), the location must be dropped.
+///
+/// Once both are complete, we can pass back over all instructions knowing:
+///  * What _value_ each variable should contain, either defined by an
+///    instruction or where control flow merges
+///  * What the location of that value is (if any).
+/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
+/// a value moves location. After this pass runs, all variable locations within
+/// a block should be specified by DBG_VALUEs within that block, allowing
+/// DbgEntityHistoryCalculator to focus on individual blocks.
+///
+/// This pass is able to go fast because the size of the first
+/// reaching-definition analysis is proportional to the working-set size of
+/// the function, which the compiler tries to keep small. (It's also
+/// proportional to the number of blocks). Additionally, we repeatedly perform
+/// the second reaching-definition analysis with only the variables and blocks
+/// in a single lexical scope, exploiting their locality.
+///
+/// Determining where PHIs happen is trickier with this approach, and it comes
+/// to a head in the major problem for LiveDebugValues: is a value live-through
+/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
+/// facts about a function, however this analysis needs to generate new value
+/// numbers at joins.
+///
+/// To do this, consider a lattice of all definition values, from instructions
+/// and from PHIs. Each PHI is characterised by the RPO number of the block it
+/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
+/// with non-PHI values at the top, and any PHI value in the last block (by RPO
+/// order) at the bottom.
+///
+/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
+/// "rank" always refers to the former).
+///
+/// At any join, for each register, we consider:
+///  * All incoming values, and
+///  * The PREVIOUS live-in value at this join.
+/// If all incoming values agree: that's the live-in value. If they do not, the
+/// incoming values are ranked according to the partial order, and the NEXT
+/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
+/// the same rank are ignored as conflicting). If there are no candidate values,
+/// or if the rank of the live-in would be lower than the rank of the current
+/// blocks PHIs, create a new PHI value.
+///
+/// Intuitively: if it's not immediately obvious what value a join should result
+/// in, we iteratively descend from instruction-definitions down through PHI
+/// values, getting closer to the current block each time. If the current block
+/// is a loop head, this ordering is effectively searching outer levels of
+/// loops, to find a value that's live-through the current loop.
+///
+/// If there is no value that's live-through this loop, a PHI is created for
+/// this location instead. We can't use a lower-ranked PHI because by definition
+/// it doesn't dominate the current block. We can't create a PHI value any
+/// earlier, because we risk creating a PHI value at a location where values do
+/// not in fact merge, thus misrepresenting the truth, and not making the true
+/// live-through value for variable locations.
+///
+/// This algorithm applies to both calculating the availability of values in
+/// the first analysis, and the location of variables in the second. However
+/// for the second we add an extra dimension of pain: creating a variable
+/// location PHI is only valid if, for each incoming edge,
+///  * There is a value for the variable on the incoming edge, and
+///  * All the edges have that value in the same register.
+/// Or put another way: we can only create a variable-location PHI if there is
+/// a matching machine-location PHI, each input to which is the variables value
+/// in the predecessor block.
+///
+/// To accomodate this 
diff erence, each point on the lattice is split in
+/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
+/// have a location determined are "definite" PHIs, and no further work is
+/// needed. Otherwise, a location that all non-backedge predecessors agree
+/// on is picked and propagated as a "proposed" PHI value. If that PHI value
+/// is truly live-through, it'll appear on the loop backedges on the next
+/// dataflow iteration, after which the block live-in moves to be a "definite"
+/// PHI. If it's not truly live-through, the variable value will be downgraded
+/// further as we explore the lattice, or remains "proposed" and is considered
+/// invalid once dataflow completes.
+///
+/// ### Terminology
+///
+/// A machine location is a register or spill slot, a value is something that's
+/// defined by an instruction or PHI node, while a variable value is the value
+/// assigned to a variable. A variable location is a machine location, that must
+/// contain the appropriate variable value. A value that is a PHI node is
+/// occasionally called an mphi.
+///
+/// The first dataflow problem is the "machine value location" problem,
+/// because we're determining which machine locations contain which values.
+/// The "locations" are constant: what's unknown is what value they contain.
+///
+/// The second dataflow problem (the one for variables) is the "variable value
+/// problem", because it's determining what values a variable has, rather than
+/// what location those values are placed in. Unfortunately, it's not that
+/// simple, because producing a PHI value always involves picking a location.
+/// This is an imperfection that we just have to accept, at least for now.
+///
+/// TODO:
+///   Overlapping fragments
+///   Entry values
+///   Add back DEBUG statements for debugging this
+///   Collect statistics
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+#include <limits.h>
+#include <limits>
+
+#include "LiveDebugValues.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
+
+// Act more like the VarLoc implementation, by propagating some locations too
+// far and ignoring some transfers.
+static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
+                                   cl::desc("Act like old LiveDebugValues did"),
+                                   cl::init(false));
+
+// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
+static cl::opt<bool>
+    ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
+                       cl::desc("Allow non-kill spill and restores"),
+                       cl::init(false));
+
+namespace {
+
+// The location at which a spilled value resides. It consists of a register and
+// an offset.
+struct SpillLoc {
+  unsigned SpillBase;
+  int SpillOffset;
+  bool operator==(const SpillLoc &Other) const {
+    return std::tie(SpillBase, SpillOffset) ==
+           std::tie(Other.SpillBase, Other.SpillOffset);
+  }
+  bool operator<(const SpillLoc &Other) const {
+    return std::tie(SpillBase, SpillOffset) <
+           std::tie(Other.SpillBase, Other.SpillOffset);
+  }
+};
+
+class LocIdx {
+  unsigned Location;
+
+  // Default constructor is private, initializing to an illegal location number.
+  // Use only for "not an entry" elements in IndexedMaps.
+  LocIdx() : Location(UINT_MAX) { }
+
+public:
+  #define NUM_LOC_BITS 24
+  LocIdx(unsigned L) : Location(L) {
+    assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
+  }
+
+  static LocIdx MakeIllegalLoc() {
+    return LocIdx();
+  }
+
+  bool isIllegal() const {
+    return Location == UINT_MAX;
+  }
+
+  uint64_t asU64() const {
+    return Location;
+  }
+
+  bool operator==(unsigned L) const {
+    return Location == L;
+  }
+
+  bool operator==(const LocIdx &L) const {
+    return Location == L.Location;
+  }
+
+  bool operator!=(unsigned L) const {
+    return !(*this == L);
+  }
+
+  bool operator!=(const LocIdx &L) const {
+    return !(*this == L);
+  }
+
+  bool operator<(const LocIdx &Other) const {
+    return Location < Other.Location;
+  }
+};
+
+class LocIdxToIndexFunctor {
+public:
+  using argument_type = LocIdx;
+  unsigned operator()(const LocIdx &L) const {
+    return L.asU64();
+  }
+};
+
+/// Unique identifier for a value defined by an instruction, as a value type.
+/// Casts back and forth to a uint64_t. Probably replacable with something less
+/// bit-constrained. Each value identifies the instruction and machine location
+/// where the value is defined, although there may be no corresponding machine
+/// operand for it (ex: regmasks clobbering values). The instructions are
+/// one-based, and definitions that are PHIs have instruction number zero.
+///
+/// The obvious limits of a 1M block function or 1M instruction blocks are
+/// problematic; but by that point we should probably have bailed out of
+/// trying to analyse the function.
+class ValueIDNum {
+  uint64_t BlockNo : 20;         /// The block where the def happens.
+  uint64_t InstNo : 20;          /// The Instruction where the def happens.
+                                 /// One based, is distance from start of block.
+  uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
+
+public:
+  // XXX -- temporarily enabled while the live-in / live-out tables are moved
+  // to something more type-y
+  ValueIDNum() : BlockNo(0xFFFFF),
+                 InstNo(0xFFFFF),
+                 LocNo(0xFFFFFF) { }
+
+  ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
+    : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
+
+  ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
+    : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
+
+  uint64_t getBlock() const { return BlockNo; }
+  uint64_t getInst() const { return InstNo; }
+  uint64_t getLoc() const { return LocNo; }
+  bool isPHI() const { return InstNo == 0; }
+
+  uint64_t asU64() const {
+    uint64_t TmpBlock = BlockNo;
+    uint64_t TmpInst = InstNo;
+    return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
+  }
+
+  static ValueIDNum fromU64(uint64_t v) {
+    uint64_t L = (v & 0x3FFF);
+    return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
+  }
+
+  bool operator<(const ValueIDNum &Other) const {
+    return asU64() < Other.asU64();
+  }
+
+  bool operator==(const ValueIDNum &Other) const {
+    return std::tie(BlockNo, InstNo, LocNo) ==
+           std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
+  }
+
+  bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
+
+  std::string asString(const std::string &mlocname) const {
+    return Twine("bb ")
+        .concat(Twine(BlockNo).concat(Twine(" inst ").concat(
+            Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname))))))
+        .str();
+  }
+
+  static ValueIDNum EmptyValue;
+};
+
+} // end anonymous namespace
+
+namespace {
+
+/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
+/// the the value, and Boolean of whether or not it's indirect.
+class DbgValueProperties {
+public:
+  DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
+      : DIExpr(DIExpr), Indirect(Indirect) {}
+
+  DbgValueProperties(const DbgValueProperties &Cpy)
+      : DIExpr(Cpy.DIExpr), Indirect(Cpy.Indirect) {}
+
+  /// Extract properties from an existing DBG_VALUE instruction.
+  DbgValueProperties(const MachineInstr &MI) {
+    assert(MI.isDebugValue());
+    DIExpr = MI.getDebugExpression();
+    Indirect = MI.getOperand(1).isImm();
+  }
+
+  bool operator==(const DbgValueProperties &Other) const {
+    return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
+  }
+
+  bool operator!=(const DbgValueProperties &Other) const {
+    return !(*this == Other);
+  }
+
+  const DIExpression *DIExpr;
+  bool Indirect;
+};
+
+/// Tracker for what values are in machine locations. Listens to the Things
+/// being Done by various instructions, and maintains a table of what machine
+/// locations have what values (as defined by a ValueIDNum).
+///
+/// There are potentially a much larger number of machine locations on the
+/// target machine than the actual working-set size of the function. On x86 for
+/// example, we're extremely unlikely to want to track values through control
+/// or debug registers. To avoid doing so, MLocTracker has several layers of
+/// indirection going on, with two kinds of ``location'':
+///  * A LocID uniquely identifies a register or spill location, with a
+///    predictable value.
+///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
+/// Whenever a location is def'd or used by a MachineInstr, we automagically
+/// create a new LocIdx for a location, but not otherwise. This ensures we only
+/// account for locations that are actually used or defined. The cost is another
+/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
+/// fairly cheap, and the compiler tries to reduce the working-set at any one
+/// time in the function anyway.
+///
+/// Register mask operands completely blow this out of the water; I've just
+/// piled hacks on top of hacks to get around that.
+class MLocTracker {
+public:
+  MachineFunction &MF;
+  const TargetInstrInfo &TII;
+  const TargetRegisterInfo &TRI;
+  const TargetLowering &TLI;
+
+  /// IndexedMap type, mapping from LocIdx to ValueIDNum.
+  typedef IndexedMap<ValueIDNum, LocIdxToIndexFunctor> LocToValueType;
+
+  /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
+  /// packed, entries only exist for locations that are being tracked.
+  LocToValueType LocIdxToIDNum;
+
+  /// "Map" of machine location IDs (i.e., raw register or spill number) to the
+  /// LocIdx key / number for that location. There are always at least as many
+  /// as the number of registers on the target -- if the value in the register
+  /// is not being tracked, then the LocIdx value will be zero. New entries are
+  /// appended if a new spill slot begins being tracked.
+  /// This, and the corresponding reverse map persist for the analysis of the
+  /// whole function, and is necessarying for decoding various vectors of
+  /// values.
+  std::vector<LocIdx> LocIDToLocIdx;
+
+  /// Inverse map of LocIDToLocIdx.
+  IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
+
+  /// Unique-ification of spill slots. Used to number them -- their LocID
+  /// number is the index in SpillLocs minus one plus NumRegs.
+  UniqueVector<SpillLoc> SpillLocs;
+
+  // If we discover a new machine location, assign it an mphi with this
+  // block number.
+  unsigned CurBB;
+
+  /// Cached local copy of the number of registers the target has.
+  unsigned NumRegs;
+
+  /// Collection of register mask operands that have been observed. Second part
+  /// of pair indicates the instruction that they happened in. Used to
+  /// reconstruct where defs happened if we start tracking a location later
+  /// on.
+  SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
+
+  /// Iterator for locations and the values they contain. Dereferencing
+  /// produces a struct/pair containing the LocIdx key for this location,
+  /// and a reference to the value currently stored. Simplifies the process
+  /// of seeking a particular location.
+  class MLocIterator {
+    LocToValueType &ValueMap;
+    LocIdx Idx;
+
+  public:
+    class value_type {
+      public:
+      value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
+      const LocIdx Idx;  /// Read-only index of this location.
+      ValueIDNum &Value; /// Reference to the stored value at this location.
+    };
+
+    MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
+      : ValueMap(ValueMap), Idx(Idx) { }
+
+    bool operator==(const MLocIterator &Other) const {
+      assert(&ValueMap == &Other.ValueMap);
+      return Idx == Other.Idx;
+    }
+
+    bool operator!=(const MLocIterator &Other) const {
+      return !(*this == Other);
+    }
+
+    void operator++() {
+      Idx = LocIdx(Idx.asU64() + 1);
+    }
+
+    value_type operator*() {
+      return value_type(Idx, ValueMap[LocIdx(Idx)]);
+    }
+  };
+
+  MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
+              const TargetRegisterInfo &TRI, const TargetLowering &TLI)
+      : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
+        LocIdxToIDNum(ValueIDNum::EmptyValue),
+        LocIdxToLocID(0) {
+    NumRegs = TRI.getNumRegs();
+    reset();
+    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+    assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
+
+    // Always track SP. This avoids the implicit clobbering caused by regmasks
+    // from affectings its values. (LiveDebugValues disbelieves calls and
+    // regmasks that claim to clobber SP).
+    unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
+    if (SP) {
+      unsigned ID = getLocID(SP, false);
+      (void)lookupOrTrackRegister(ID);
+    }
+  }
+
+  /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
+  /// or spill number, and flag for whether it's a spill or not.
+  unsigned getLocID(unsigned RegOrSpill, bool isSpill) {
+    return (isSpill) ? RegOrSpill + NumRegs - 1 : RegOrSpill;
+  }
+
+  /// Accessor for reading the value at Idx.
+  ValueIDNum getNumAtPos(LocIdx Idx) const {
+    assert(Idx.asU64() < LocIdxToIDNum.size());
+    return LocIdxToIDNum[Idx];
+  }
+
+  unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
+
+  /// Reset all locations to contain a PHI value at the designated block. Used
+  /// sometimes for actual PHI values, othertimes to indicate the block entry
+  /// value (before any more information is known).
+  void setMPhis(unsigned NewCurBB) {
+    CurBB = NewCurBB;
+    for (auto Location : locations())
+      Location.Value = {CurBB, 0, Location.Idx};
+  }
+
+  /// Load values for each location from array of ValueIDNums. Take current
+  /// bbnum just in case we read a value from a hitherto untouched register.
+  void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
+    CurBB = NewCurBB;
+    // Iterate over all tracked locations, and load each locations live-in
+    // value into our local index.
+    for (auto Location : locations())
+      Location.Value = Locs[Location.Idx.asU64()];
+  }
+
+  /// Wipe any un-necessary location records after traversing a block.
+  void reset(void) {
+    // We could reset all the location values too; however either loadFromArray
+    // or setMPhis should be called before this object is re-used. Just
+    // clear Masks, they're definitely not needed.
+    Masks.clear();
+  }
+
+  /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
+  /// the information in this pass uninterpretable.
+  void clear(void) {
+    reset();
+    LocIDToLocIdx.clear();
+    LocIdxToLocID.clear();
+    LocIdxToIDNum.clear();
+    //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
+    SpillLocs = decltype(SpillLocs)();
+
+    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+  }
+
+  /// Set a locaiton to a certain value.
+  void setMLoc(LocIdx L, ValueIDNum Num) {
+    assert(L.asU64() < LocIdxToIDNum.size());
+    LocIdxToIDNum[L] = Num;
+  }
+
+  /// Create a LocIdx for an untracked register ID. Initialize it to either an
+  /// mphi value representing a live-in, or a recent register mask clobber.
+  LocIdx trackRegister(unsigned ID) {
+    assert(ID != 0);
+    LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
+    LocIdxToIDNum.grow(NewIdx);
+    LocIdxToLocID.grow(NewIdx);
+
+    // Default: it's an mphi.
+    ValueIDNum ValNum = {CurBB, 0, NewIdx};
+    // Was this reg ever touched by a regmask?
+    for (const auto &MaskPair : reverse(Masks)) {
+      if (MaskPair.first->clobbersPhysReg(ID)) {
+        // There was an earlier def we skipped.
+        ValNum = {CurBB, MaskPair.second, NewIdx};
+        break;
+      }
+    }
+
+    LocIdxToIDNum[NewIdx] = ValNum;
+    LocIdxToLocID[NewIdx] = ID;
+    return NewIdx;
+  }
+
+  LocIdx lookupOrTrackRegister(unsigned ID) {
+    LocIdx &Index = LocIDToLocIdx[ID];
+    if (Index.isIllegal())
+      Index = trackRegister(ID);
+    return Index;
+  }
+
+  /// Record a definition of the specified register at the given block / inst.
+  /// This doesn't take a ValueIDNum, because the definition and its location
+  /// are synonymous.
+  void defReg(Register R, unsigned BB, unsigned Inst) {
+    unsigned ID = getLocID(R, false);
+    LocIdx Idx = lookupOrTrackRegister(ID);
+    ValueIDNum ValueID = {BB, Inst, Idx};
+    LocIdxToIDNum[Idx] = ValueID;
+  }
+
+  /// Set a register to a value number. To be used if the value number is
+  /// known in advance.
+  void setReg(Register R, ValueIDNum ValueID) {
+    unsigned ID = getLocID(R, false);
+    LocIdx Idx = lookupOrTrackRegister(ID);
+    LocIdxToIDNum[Idx] = ValueID;
+  }
+
+  ValueIDNum readReg(Register R) {
+    unsigned ID = getLocID(R, false);
+    LocIdx Idx = lookupOrTrackRegister(ID);
+    return LocIdxToIDNum[Idx];
+  }
+
+  /// Reset a register value to zero / empty. Needed to replicate the
+  /// VarLoc implementation where a copy to/from a register effectively
+  /// clears the contents of the source register. (Values can only have one
+  ///  machine location in VarLocBasedImpl).
+  void wipeRegister(Register R) {
+    unsigned ID = getLocID(R, false);
+    LocIdx Idx = LocIDToLocIdx[ID];
+    LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
+  }
+
+  /// Determine the LocIdx of an existing register.
+  LocIdx getRegMLoc(Register R) {
+    unsigned ID = getLocID(R, false);
+    return LocIDToLocIdx[ID];
+  }
+
+  /// Record a RegMask operand being executed. Defs any register we currently
+  /// track, stores a pointer to the mask in case we have to account for it
+  /// later.
+  void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
+    // Ensure SP exists, so that we don't override it later.
+    unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
+
+    // Def any register we track have that isn't preserved. The regmask
+    // terminates the liveness of a register, meaning its value can't be
+    // relied upon -- we represent this by giving it a new value.
+    for (auto Location : locations()) {
+      unsigned ID = LocIdxToLocID[Location.Idx];
+      // Don't clobber SP, even if the mask says it's clobbered.
+      if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
+        defReg(ID, CurBB, InstID);
+    }
+    Masks.push_back(std::make_pair(MO, InstID));
+  }
+
+  /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
+  LocIdx getOrTrackSpillLoc(SpillLoc L) {
+    unsigned SpillID = SpillLocs.idFor(L);
+    if (SpillID == 0) {
+      SpillID = SpillLocs.insert(L);
+      unsigned L = getLocID(SpillID, true);
+      LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
+      LocIdxToIDNum.grow(Idx);
+      LocIdxToLocID.grow(Idx);
+      LocIDToLocIdx.push_back(Idx);
+      LocIdxToLocID[Idx] = L;
+      return Idx;
+    } else {
+      unsigned L = getLocID(SpillID, true);
+      LocIdx Idx = LocIDToLocIdx[L];
+      return Idx;
+    }
+  }
+
+  /// Set the value stored in a spill slot.
+  void setSpill(SpillLoc L, ValueIDNum ValueID) {
+    LocIdx Idx = getOrTrackSpillLoc(L);
+    LocIdxToIDNum[Idx] = ValueID;
+  }
+
+  /// Read whatever value is in a spill slot, or None if it isn't tracked.
+  Optional<ValueIDNum> readSpill(SpillLoc L) {
+    unsigned SpillID = SpillLocs.idFor(L);
+    if (SpillID == 0)
+      return None;
+
+    unsigned LocID = getLocID(SpillID, true);
+    LocIdx Idx = LocIDToLocIdx[LocID];
+    return LocIdxToIDNum[Idx];
+  }
+
+  /// Determine the LocIdx of a spill slot. Return None if it previously
+  /// hasn't had a value assigned.
+  Optional<LocIdx> getSpillMLoc(SpillLoc L) {
+    unsigned SpillID = SpillLocs.idFor(L);
+    if (SpillID == 0)
+      return None;
+    unsigned LocNo = getLocID(SpillID, true);
+    return LocIDToLocIdx[LocNo];
+  }
+
+  /// Return true if Idx is a spill machine location.
+  bool isSpill(LocIdx Idx) const {
+    return LocIdxToLocID[Idx] >= NumRegs;
+  }
+
+  MLocIterator begin() {
+    return MLocIterator(LocIdxToIDNum, 0);
+  }
+
+  MLocIterator end() {
+    return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
+  }
+
+  /// Return a range over all locations currently tracked.
+  iterator_range<MLocIterator> locations() {
+    return llvm::make_range(begin(), end());
+  }
+
+  std::string LocIdxToName(LocIdx Idx) const {
+    unsigned ID = LocIdxToLocID[Idx];
+    if (ID >= NumRegs)
+      return Twine("slot ").concat(Twine(ID - NumRegs)).str();
+    else
+      return TRI.getRegAsmName(ID).str();
+  }
+
+  std::string IDAsString(const ValueIDNum &Num) const {
+    std::string DefName = LocIdxToName(Num.getLoc());
+    return Num.asString(DefName);
+  }
+
+  LLVM_DUMP_METHOD
+  void dump() {
+    for (auto Location : locations()) {
+      std::string MLocName = LocIdxToName(Location.Value.getLoc());
+      std::string DefName = Location.Value.asString(MLocName);
+      dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
+    }
+  }
+
+  LLVM_DUMP_METHOD
+  void dump_mloc_map() {
+    for (auto Location : locations()) {
+      std::string foo = LocIdxToName(Location.Idx);
+      dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
+    }
+  }
+
+  /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
+  /// information in \pProperties, for variable Var. Don't insert it anywhere,
+  /// just return the builder for it.
+  MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
+                              const DbgValueProperties &Properties) {
+    DebugLoc DL =
+        DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
+    auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
+
+    const DIExpression *Expr = Properties.DIExpr;
+    if (!MLoc) {
+      // No location -> DBG_VALUE $noreg
+      MIB.addReg(0, RegState::Debug);
+      MIB.addReg(0, RegState::Debug);
+    } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
+      unsigned LocID = LocIdxToLocID[*MLoc];
+      const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
+      Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
+                                   Spill.SpillOffset);
+      unsigned Base = Spill.SpillBase;
+      MIB.addReg(Base, RegState::Debug);
+      MIB.addImm(0);
+    } else {
+      unsigned LocID = LocIdxToLocID[*MLoc];
+      MIB.addReg(LocID, RegState::Debug);
+      if (Properties.Indirect)
+        MIB.addImm(0);
+      else
+        MIB.addReg(0, RegState::Debug);
+    }
+
+    MIB.addMetadata(Var.getVariable());
+    MIB.addMetadata(Expr);
+    return MIB;
+  }
+};
+
+/// Class recording the (high level) _value_ of a variable. Identifies either
+/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
+/// This class also stores meta-information about how the value is qualified.
+/// Used to reason about variable values when performing the second
+/// (DebugVariable specific) dataflow analysis.
+class DbgValue {
+public:
+  union {
+    /// If Kind is Def, the value number that this value is based on.
+    ValueIDNum ID;
+    /// If Kind is Const, the MachineOperand defining this value.
+    MachineOperand MO;
+    /// For a NoVal DbgValue, which block it was generated in.
+    unsigned BlockNo;
+  };
+  /// Qualifiers for the ValueIDNum above.
+  DbgValueProperties Properties;
+
+  typedef enum {
+    Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
+    Def,       // This value is defined by an inst, or is a PHI value.
+    Const,     // A constant value contained in the MachineOperand field.
+    Proposed,  // This is a tentative PHI value, which may be confirmed or
+               // invalidated later.
+    NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
+               // which block this was generated in.
+   } KindT;
+  /// Discriminator for whether this is a constant or an in-program value.
+  KindT Kind;
+
+  DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
+    : ID(Val), Properties(Prop), Kind(Kind) {
+    assert(Kind == Def || Kind == Proposed);
+  }
+
+  DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
+    : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
+    assert(Kind == NoVal);
+  }
+
+  DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
+    : MO(MO), Properties(Prop), Kind(Kind) {
+    assert(Kind == Const);
+  }
+
+  DbgValue(const DbgValueProperties &Prop, KindT Kind)
+    : Properties(Prop), Kind(Kind) {
+    assert(Kind == Undef &&
+           "Empty DbgValue constructor must pass in Undef kind");
+  }
+
+  void dump(const MLocTracker *MTrack) const {
+    if (Kind == Const) {
+      MO.dump();
+    } else if (Kind == NoVal) {
+      dbgs() << "NoVal(" << BlockNo << ")";
+    } else if (Kind == Proposed) {
+      dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
+    } else {
+      assert(Kind == Def);
+      dbgs() << MTrack->IDAsString(ID);
+    }
+    if (Properties.Indirect)
+      dbgs() << " indir";
+    if (Properties.DIExpr)
+      dbgs() << " " << *Properties.DIExpr;
+  }
+
+  bool operator==(const DbgValue &Other) const {
+    if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
+      return false;
+    else if (Kind == Proposed && ID != Other.ID)
+      return false;
+    else if (Kind == Def && ID != Other.ID)
+      return false;
+    else if (Kind == NoVal && BlockNo != Other.BlockNo)
+      return false;
+    else if (Kind == Const)
+      return MO.isIdenticalTo(Other.MO);
+
+    return true;
+  }
+
+  bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
+};
+
+/// Types for recording sets of variable fragments that overlap. For a given
+/// local variable, we record all other fragments of that variable that could
+/// overlap it, to reduce search time.
+using FragmentOfVar =
+    std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+using OverlapMap =
+    DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+/// Collection of DBG_VALUEs observed when traversing a block. Records each
+/// variable and the value the DBG_VALUE refers to. Requires the machine value
+/// location dataflow algorithm to have run already, so that values can be
+/// identified.
+class VLocTracker {
+public:
+  /// Map DebugVariable to the latest Value it's defined to have.
+  /// Needs to be a MapVector because we determine order-in-the-input-MIR from
+  /// the order in this container.
+  /// We only retain the last DbgValue in each block for each variable, to
+  /// determine the blocks live-out variable value. The Vars container forms the
+  /// transfer function for this block, as part of the dataflow analysis. The
+  /// movement of values between locations inside of a block is handled at a
+  /// much later stage, in the TransferTracker class.
+  MapVector<DebugVariable, DbgValue> Vars;
+  DenseMap<DebugVariable, const DILocation *> Scopes;
+  MachineBasicBlock *MBB;
+
+public:
+  VLocTracker() {}
+
+  void defVar(const MachineInstr &MI, Optional<ValueIDNum> ID) {
+    // XXX skipping overlapping fragments for now.
+    assert(MI.isDebugValue());
+    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+                      MI.getDebugLoc()->getInlinedAt());
+    DbgValueProperties Properties(MI);
+    DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
+                        : DbgValue(Properties, DbgValue::Undef);
+
+    // Attempt insertion; overwrite if it's already mapped.
+    auto Result = Vars.insert(std::make_pair(Var, Rec));
+    if (!Result.second)
+      Result.first->second = Rec;
+    Scopes[Var] = MI.getDebugLoc().get();
+  }
+
+  void defVar(const MachineInstr &MI, const MachineOperand &MO) {
+    // XXX skipping overlapping fragments for now.
+    assert(MI.isDebugValue());
+    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+                      MI.getDebugLoc()->getInlinedAt());
+    DbgValueProperties Properties(MI);
+    DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
+
+    // Attempt insertion; overwrite if it's already mapped.
+    auto Result = Vars.insert(std::make_pair(Var, Rec));
+    if (!Result.second)
+      Result.first->second = Rec;
+    Scopes[Var] = MI.getDebugLoc().get();
+  }
+};
+
+/// Tracker for converting machine value locations and variable values into
+/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
+/// specifying block live-in locations and transfers within blocks.
+///
+/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
+/// and must be initialized with the set of variable values that are live-in to
+/// the block. The caller then repeatedly calls process(). TransferTracker picks
+/// out variable locations for the live-in variable values (if there _is_ a
+/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
+/// stepped through, transfers of values between machine locations are
+/// identified and if profitable, a DBG_VALUE created.
+///
+/// This is where debug use-before-defs would be resolved: a variable with an
+/// unavailable value could materialize in the middle of a block, when the
+/// value becomes available. Or, we could detect clobbers and re-specify the
+/// variable in a backup location. (XXX these are unimplemented).
+class TransferTracker {
+public:
+  const TargetInstrInfo *TII;
+  /// This machine location tracker is assumed to always contain the up-to-date
+  /// value mapping for all machine locations. TransferTracker only reads
+  /// information from it. (XXX make it const?)
+  MLocTracker *MTracker;
+  MachineFunction &MF;
+
+  /// Record of all changes in variable locations at a block position. Awkwardly
+  /// we allow inserting either before or after the point: MBB != nullptr
+  /// indicates it's before, otherwise after.
+  struct Transfer {
+    MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
+    MachineBasicBlock *MBB;          /// non-null if we should insert after.
+    SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
+  };
+
+  typedef struct {
+    LocIdx Loc;
+    DbgValueProperties Properties;
+  } LocAndProperties;
+
+  /// Collection of transfers (DBG_VALUEs) to be inserted.
+  SmallVector<Transfer, 32> Transfers;
+
+  /// Local cache of what-value-is-in-what-LocIdx. Used to identify 
diff erences
+  /// between TransferTrackers view of variable locations and MLocTrackers. For
+  /// example, MLocTracker observes all clobbers, but TransferTracker lazily
+  /// does not.
+  std::vector<ValueIDNum> VarLocs;
+
+  /// Map from LocIdxes to which DebugVariables are based that location.
+  /// Mantained while stepping through the block. Not accurate if
+  /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
+  std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
+
+  /// Map from DebugVariable to it's current location and qualifying meta
+  /// information. To be used in conjunction with ActiveMLocs to construct
+  /// enough information for the DBG_VALUEs for a particular LocIdx.
+  DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
+
+  /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
+  SmallVector<MachineInstr *, 4> PendingDbgValues;
+
+  const TargetRegisterInfo &TRI;
+  const BitVector &CalleeSavedRegs;
+
+  TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
+                  MachineFunction &MF, const TargetRegisterInfo &TRI,
+                  const BitVector &CalleeSavedRegs)
+      : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
+        CalleeSavedRegs(CalleeSavedRegs) {}
+
+  /// Load object with live-in variable values. \p mlocs contains the live-in
+  /// values in each machine location, while \p vlocs the live-in variable
+  /// values. This method picks variable locations for the live-in variables,
+  /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
+  /// object fields to track variable locations as we step through the block.
+  /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
+  void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
+                  SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
+                  unsigned NumLocs) {
+    ActiveMLocs.clear();
+    ActiveVLocs.clear();
+    VarLocs.clear();
+    VarLocs.reserve(NumLocs);
+
+    auto isCalleeSaved = [&](LocIdx L) {
+      unsigned Reg = MTracker->LocIdxToLocID[L];
+      if (Reg >= MTracker->NumRegs)
+        return false;
+      for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
+        if (CalleeSavedRegs.test(*RAI))
+          return true;
+      return false;
+    };
+
+    // Map of the preferred location for each value.
+    std::map<ValueIDNum, LocIdx> ValueToLoc;
+
+    // Produce a map of value numbers to the current machine locs they live
+    // in. When emulating VarLocBasedImpl, there should only be one
+    // location; when not, we get to pick.
+    for (auto Location : MTracker->locations()) {
+      LocIdx Idx = Location.Idx;
+      ValueIDNum &VNum = MLocs[Idx.asU64()];
+      VarLocs.push_back(VNum);
+      auto it = ValueToLoc.find(VNum);
+      // In order of preference, pick:
+      //  * Callee saved registers,
+      //  * Other registers,
+      //  * Spill slots.
+      if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
+          (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
+        // Insert, or overwrite if insertion failed.
+        auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
+        if (!PrefLocRes.second)
+          PrefLocRes.first->second = Idx;
+      }
+    }
+
+    // Now map variables to their picked LocIdxes.
+    for (auto Var : VLocs) {
+      if (Var.second.Kind == DbgValue::Const) {
+        PendingDbgValues.push_back(
+            emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
+        continue;
+      }
+
+      // If the value has no location, we can't make a variable location.
+      auto ValuesPreferredLoc = ValueToLoc.find(Var.second.ID);
+      if (ValuesPreferredLoc == ValueToLoc.end())
+        continue;
+
+      LocIdx M = ValuesPreferredLoc->second;
+      auto NewValue = LocAndProperties{M, Var.second.Properties};
+      auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
+      if (!Result.second)
+        Result.first->second = NewValue;
+      ActiveMLocs[M].insert(Var.first);
+      PendingDbgValues.push_back(
+          MTracker->emitLoc(M, Var.first, Var.second.Properties));
+    }
+    flushDbgValues(MBB.begin(), &MBB);
+  }
+
+  /// Helper to move created DBG_VALUEs into Transfers collection.
+  void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
+    if (PendingDbgValues.size() > 0) {
+      Transfers.push_back({Pos, MBB, PendingDbgValues});
+      PendingDbgValues.clear();
+    }
+  }
+
+  /// Handle a DBG_VALUE within a block. Terminate the variables current
+  /// location, and record the value its DBG_VALUE refers to, so that we can
+  /// detect location transfers later on.
+  void redefVar(const MachineInstr &MI) {
+    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+                      MI.getDebugLoc()->getInlinedAt());
+    const MachineOperand &MO = MI.getOperand(0);
+
+    // Erase any previous location,
+    auto It = ActiveVLocs.find(Var);
+    if (It != ActiveVLocs.end()) {
+      ActiveMLocs[It->second.Loc].erase(Var);
+    }
+
+    // Insert a new variable location. Ignore non-register locations, we don't
+    // transfer those, and can't currently describe spill locs independently of
+    // regs.
+    // (This is because a spill location is a DBG_VALUE of the stack pointer).
+    if (!MO.isReg() || MO.getReg() == 0) {
+      if (It != ActiveVLocs.end())
+        ActiveVLocs.erase(It);
+      return;
+    }
+
+    Register Reg = MO.getReg();
+    LocIdx MLoc = MTracker->getRegMLoc(Reg);
+    DbgValueProperties Properties(MI);
+
+    // Check whether our local copy of values-by-location in #VarLocs is out of
+    // date. Wipe old tracking data for the location if it's been clobbered in
+    // the meantime.
+    if (MTracker->getNumAtPos(MLoc) != VarLocs[MLoc.asU64()]) {
+      for (auto &P : ActiveMLocs[MLoc.asU64()]) {
+        ActiveVLocs.erase(P);
+      }
+      ActiveMLocs[MLoc].clear();
+      VarLocs[MLoc.asU64()] = MTracker->getNumAtPos(MLoc);
+    }
+
+    ActiveMLocs[MLoc].insert(Var);
+    if (It == ActiveVLocs.end()) {
+      ActiveVLocs.insert(std::make_pair(Var, LocAndProperties{MLoc, Properties}));
+    } else {
+      It->second.Loc = MLoc;
+      It->second.Properties = Properties;
+    }
+  }
+
+  /// Explicitly terminate variable locations based on \p mloc. Creates undef
+  /// DBG_VALUEs for any variables that were located there, and clears
+  /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
+  void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
+    assert(MTracker->isSpill(MLoc));
+    auto ActiveMLocIt = ActiveMLocs.find(MLoc);
+    if (ActiveMLocIt == ActiveMLocs.end())
+      return;
+
+    VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
+
+    for (auto &Var : ActiveMLocIt->second) {
+      auto ActiveVLocIt = ActiveVLocs.find(Var);
+      // Create an undef. We can't feed in a nullptr DIExpression alas,
+      // so use the variables last expression. Pass None as the location.
+      const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
+      DbgValueProperties Properties(Expr, false);
+      PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
+      ActiveVLocs.erase(ActiveVLocIt);
+    }
+    flushDbgValues(Pos, nullptr);
+
+    ActiveMLocIt->second.clear();
+  }
+
+  /// Transfer variables based on \p Src to be based on \p Dst. This handles
+  /// both register copies as well as spills and restores. Creates DBG_VALUEs
+  /// describing the movement.
+  void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
+    // Does Src still contain the value num we expect? If not, it's been
+    // clobbered in the meantime, and our variable locations are stale.
+    if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
+      return;
+
+    // assert(ActiveMLocs[Dst].size() == 0);
+    //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
+    ActiveMLocs[Dst] = ActiveMLocs[Src];
+    VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
+
+    // For each variable based on Src; create a location at Dst.
+    for (auto &Var : ActiveMLocs[Src]) {
+      auto ActiveVLocIt = ActiveVLocs.find(Var);
+      assert(ActiveVLocIt != ActiveVLocs.end());
+      ActiveVLocIt->second.Loc = Dst;
+
+      assert(Dst != 0);
+      MachineInstr *MI =
+          MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
+      PendingDbgValues.push_back(MI);
+    }
+    ActiveMLocs[Src].clear();
+    flushDbgValues(Pos, nullptr);
+
+    // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
+    // about the old location.
+    if (EmulateOldLDV)
+      VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
+  }
+
+  MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
+                                const DebugVariable &Var,
+                                const DbgValueProperties &Properties) {
+    DebugLoc DL =
+        DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
+    auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
+    MIB.add(MO);
+    if (Properties.Indirect)
+      MIB.addImm(0);
+    else
+      MIB.addReg(0);
+    MIB.addMetadata(Var.getVariable());
+    MIB.addMetadata(Properties.DIExpr);
+    return MIB;
+  }
+};
+
+class InstrRefBasedLDV : public LDVImpl {
+private:
+  using FragmentInfo = DIExpression::FragmentInfo;
+  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
+
+  // Helper while building OverlapMap, a map of all fragments seen for a given
+  // DILocalVariable.
+  using VarToFragments =
+      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+  /// Machine location/value transfer function, a mapping of which locations
+  // are assigned which new values.
+  typedef std::map<LocIdx, ValueIDNum> MLocTransferMap;
+
+  /// Live in/out structure for the variable values: a per-block map of
+  /// variables to their values. XXX, better name?
+  typedef DenseMap<const MachineBasicBlock *,
+                   DenseMap<DebugVariable, DbgValue> *>
+      LiveIdxT;
+
+  typedef std::pair<DebugVariable, DbgValue> VarAndLoc;
+
+  /// Type for a live-in value: the predecessor block, and its value.
+  typedef std::pair<MachineBasicBlock *, DbgValue *> InValueT;
+
+  /// Vector (per block) of a collection (inner smallvector) of live-ins.
+  /// Used as the result type for the variable value dataflow problem.
+  typedef SmallVector<SmallVector<VarAndLoc, 8>, 8> LiveInsT;
+
+  const TargetRegisterInfo *TRI;
+  const TargetInstrInfo *TII;
+  const TargetFrameLowering *TFI;
+  BitVector CalleeSavedRegs;
+  LexicalScopes LS;
+  TargetPassConfig *TPC;
+
+  /// Object to track machine locations as we step through a block. Could
+  /// probably be a field rather than a pointer, as it's always used.
+  MLocTracker *MTracker;
+
+  /// Number of the current block LiveDebugValues is stepping through.
+  unsigned CurBB;
+
+  /// Number of the current instruction LiveDebugValues is evaluating.
+  unsigned CurInst;
+
+  /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
+  /// steps through a block. Reads the values at each location from the
+  /// MLocTracker object.
+  VLocTracker *VTracker;
+
+  /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
+  /// between locations during stepping, creates new DBG_VALUEs when values move
+  /// location.
+  TransferTracker *TTracker;
+
+  /// Blocks which are artificial, i.e. blocks which exclusively contain
+  /// instructions without DebugLocs, or with line 0 locations.
+  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+  // Mapping of blocks to and from their RPOT order.
+  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+  DenseMap<unsigned, unsigned> BBNumToRPO;
+
+  // Map of overlapping variable fragments.
+  OverlapMap OverlapFragments;
+  VarToFragments SeenFragments;
+
+  /// Tests whether this instruction is a spill to a stack slot.
+  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+  /// Decide if @MI is a spill instruction and return true if it is. We use 2
+  /// criteria to make this decision:
+  /// - Is this instruction a store to a spill slot?
+  /// - Is there a register operand that is both used and killed?
+  /// TODO: Store optimization can fold spills into other stores (including
+  /// other spills). We do not handle this yet (more than one memory operand).
+  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+                       unsigned &Reg);
+
+  /// If a given instruction is identified as a spill, return the spill slot
+  /// and set \p Reg to the spilled register.
+  Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+                                          MachineFunction *MF, unsigned &Reg);
+
+  /// Given a spill instruction, extract the register and offset used to
+  /// address the spill slot in a target independent way.
+  SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+
+  /// Observe a single instruction while stepping through a block.
+  void process(MachineInstr &MI);
+
+  /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
+  /// \returns true if MI was recognized and processed.
+  bool transferDebugValue(const MachineInstr &MI);
+
+  /// Examines whether \p MI is copy instruction, and notifies trackers.
+  /// \returns true if MI was recognized and processed.
+  bool transferRegisterCopy(MachineInstr &MI);
+
+  /// Examines whether \p MI is stack spill or restore  instruction, and
+  /// notifies trackers. \returns true if MI was recognized and processed.
+  bool transferSpillOrRestoreInst(MachineInstr &MI);
+
+  /// Examines \p MI for any registers that it defines, and notifies trackers.
+  /// \returns true if MI was recognized and processed.
+  void transferRegisterDef(MachineInstr &MI);
+
+  /// Copy one location to the other, accounting for movement of subregisters
+  /// too.
+  void performCopy(Register Src, Register Dst);
+
+  void accumulateFragmentMap(MachineInstr &MI);
+
+  /// Step through the function, recording register definitions and movements
+  /// in an MLocTracker. Convert the observations into a per-block transfer
+  /// function in \p MLocTransfer, suitable for using with the machine value
+  /// location dataflow problem. Do the same with VLoc trackers in \p VLocs,
+  /// although the precise machine value numbers can't be known until after
+  /// the machine value number problem is solved.
+  void produceTransferFunctions(MachineFunction &MF,
+                                SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+                                unsigned MaxNumBlocks,
+                                SmallVectorImpl<VLocTracker> &VLocs);
+
+  /// Solve the machine value location dataflow problem. Takes as input the
+  /// transfer functions in \p MLocTransfer. Writes the output live-in and
+  /// live-out arrays to the (initialized to zero) multidimensional arrays in
+  /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
+  /// number, the inner by LocIdx.
+  void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
+                    SmallVectorImpl<MLocTransferMap> &MLocTransfer);
+
+  /// Perform a control flow join (lattice value meet) of the values in machine
+  /// locations at \p MBB. Follows the algorithm described in the file-comment,
+  /// reading live-outs of predecessors from \p OutLocs, the current live ins
+  /// from \p InLocs, and assigning the newly computed live ins back into
+  /// \p InLocs. \returns two bools -- the first indicates whether a change
+  /// was made, the second whether a lattice downgrade occurred. If the latter
+  /// is true, revisiting this block is necessary.
+  std::tuple<bool, bool>
+  mlocJoin(MachineBasicBlock &MBB,
+           SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+           ValueIDNum **OutLocs, ValueIDNum *InLocs);
+
+  /// Solve the variable value dataflow problem, for a single lexical scope.
+  /// Uses the algorithm from the file comment to resolve control flow joins,
+  /// although there are extra hacks, see vlocJoin. Reads the
+  /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
+  /// mlocDataflow) and reads the variable values transfer function from
+  /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
+  /// with the live-ins permanently stored to \p Output once the fixedpoint is
+  /// reached.
+  /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
+  /// that we should be tracking.
+  /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
+  /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
+  /// through.
+  void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
+                    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+                    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
+                    LiveInsT &Output, ValueIDNum **MOutLocs,
+                    ValueIDNum **MInLocs,
+                    SmallVectorImpl<VLocTracker> &AllTheVLocs);
+
+  /// Compute the live-ins to a block, considering control flow merges according
+  /// to the method in the file comment. Live out and live in variable values
+  /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
+  /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
+  /// are modified.
+  /// \p InLocsT Output argument, storage for calculated live-ins.
+  /// \returns two bools -- the first indicates whether a change
+  /// was made, the second whether a lattice downgrade occurred. If the latter
+  /// is true, revisiting this block is necessary.
+  std::tuple<bool, bool>
+  vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
+           SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
+           unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
+           ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+           SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
+           SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+           DenseMap<DebugVariable, DbgValue> &InLocsT);
+
+  /// Continue exploration of the variable-value lattice, as explained in the
+  /// file-level comment. \p OldLiveInLocation contains the current
+  /// exploration position, from which we need to descend further. \p Values
+  /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
+  /// the current block, and \p CandidateLocations a set of locations that
+  /// should be considered as PHI locations, if we reach the bottom of the
+  /// lattice. \returns true if we should downgrade; the value is the agreeing
+  /// value number in a non-backedge predecessor.
+  bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
+                            const DbgValue &OldLiveInLocation,
+                            const SmallVectorImpl<InValueT> &Values,
+                            unsigned CurBlockRPONum);
+
+  /// For the given block and live-outs feeding into it, try to find a
+  /// machine location where they all join. If a solution for all predecessors
+  /// can't be found, a location where all non-backedge-predecessors join
+  /// will be returned instead. While this method finds a join location, this
+  /// says nothing as to whether it should be used.
+  /// \returns Pair of value ID if found, and true when the correct value
+  /// is available on all predecessor edges, or false if it's only available
+  /// for non-backedge predecessors.
+  std::tuple<Optional<ValueIDNum>, bool>
+  pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
+              const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
+              ValueIDNum **MInLocs,
+              const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
+
+  /// Given the solutions to the two dataflow problems, machine value locations
+  /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
+  /// TransferTracker class over the function to produce live-in and transfer
+  /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
+  /// order given by AllVarsNumbering -- this could be any stable order, but
+  /// right now "order of appearence in function, when explored in RPO", so
+  /// that we can compare explictly against VarLocBasedImpl.
+  void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
+                     ValueIDNum **MInLocs,
+                     DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
+
+  /// Boilerplate computation of some initial sets, artifical blocks and
+  /// RPOT block ordering.
+  void initialSetup(MachineFunction &MF);
+
+  bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
+
+public:
+  /// Default construct and initialize the pass.
+  InstrRefBasedLDV();
+
+  LLVM_DUMP_METHOD
+  void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
+
+  bool isCalleeSaved(LocIdx L) {
+    unsigned Reg = MTracker->LocIdxToLocID[L];
+    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+      if (CalleeSavedRegs.test(*RAI))
+        return true;
+    return false;
+  }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+//            Implementation
+//===----------------------------------------------------------------------===//
+
+ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
+
+/// Default construct and initialize the pass.
+InstrRefBasedLDV::InstrRefBasedLDV() {}
+
+//===----------------------------------------------------------------------===//
+//            Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+// Something to restore in the future.
+// void InstrRefBasedLDV::printVarLocInMBB(..)
+#endif
+
+SpillLoc
+InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+  assert(MI.hasOneMemOperand() &&
+         "Spill instruction does not have exactly one memory operand?");
+  auto MMOI = MI.memoperands_begin();
+  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+         "Inconsistent memory operand in spill instruction");
+  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+  const MachineBasicBlock *MBB = MI.getParent();
+  Register Reg;
+  int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+  return {Reg, Offset};
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
+  if (!MI.isDebugValue())
+    return false;
+
+  const DILocalVariable *Var = MI.getDebugVariable();
+  const DIExpression *Expr = MI.getDebugExpression();
+  const DILocation *DebugLoc = MI.getDebugLoc();
+  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+         "Expected inlined-at fields to agree");
+
+  DebugVariable V(Var, Expr, InlinedAt);
+
+  // If there are no instructions in this lexical scope, do no location tracking
+  // at all, this variable shouldn't get a legitimate location range.
+  auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
+  if (Scope == nullptr)
+    return true; // handled it; by doing nothing
+
+  const MachineOperand &MO = MI.getOperand(0);
+
+  // MLocTracker needs to know that this register is read, even if it's only
+  // read by a debug inst.
+  if (MO.isReg() && MO.getReg() != 0)
+    (void)MTracker->readReg(MO.getReg());
+
+  // If we're preparing for the second analysis (variables), the machine value
+  // locations are already solved, and we report this DBG_VALUE and the value
+  // it refers to to VLocTracker.
+  if (VTracker) {
+    if (MO.isReg()) {
+      // Feed defVar the new variable location, or if this is a
+      // DBG_VALUE $noreg, feed defVar None.
+      if (MO.getReg())
+        VTracker->defVar(MI, MTracker->readReg(MO.getReg()));
+      else
+        VTracker->defVar(MI, None);
+    } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
+               MI.getOperand(0).isCImm()) {
+      VTracker->defVar(MI, MI.getOperand(0));
+    }
+  }
+
+  // If performing final tracking of transfers, report this variable definition
+  // to the TransferTracker too.
+  if (TTracker)
+    TTracker->redefVar(MI);
+  return true;
+}
+
+void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
+  // Meta Instructions do not affect the debug liveness of any register they
+  // define.
+  if (MI.isImplicitDef()) {
+    // Except when there's an implicit def, and the location it's defining has
+    // no value number. The whole point of an implicit def is to announce that
+    // the register is live, without be specific about it's value. So define
+    // a value if there isn't one already.
+    ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
+    // Has a legitimate value -> ignore the implicit def.
+    if (Num.getLoc() != 0)
+      return;
+    // Otherwise, def it here.
+  } else if (MI.isMetaInstruction())
+    return;
+
+  MachineFunction *MF = MI.getMF();
+  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
+
+  // Find the regs killed by MI, and find regmasks of preserved regs.
+  // Max out the number of statically allocated elements in `DeadRegs`, as this
+  // prevents fallback to std::set::count() operations.
+  SmallSet<uint32_t, 32> DeadRegs;
+  SmallVector<const uint32_t *, 4> RegMasks;
+  SmallVector<const MachineOperand *, 4> RegMaskPtrs;
+  for (const MachineOperand &MO : MI.operands()) {
+    // Determine whether the operand is a register def.
+    if (MO.isReg() && MO.isDef() && MO.getReg() &&
+        Register::isPhysicalRegister(MO.getReg()) &&
+        !(MI.isCall() && MO.getReg() == SP)) {
+      // Remove ranges of all aliased registers.
+      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+        // FIXME: Can we break out of this loop early if no insertion occurs?
+        DeadRegs.insert(*RAI);
+    } else if (MO.isRegMask()) {
+      RegMasks.push_back(MO.getRegMask());
+      RegMaskPtrs.push_back(&MO);
+    }
+  }
+
+  // Tell MLocTracker about all definitions, of regmasks and otherwise.
+  for (uint32_t DeadReg : DeadRegs)
+    MTracker->defReg(DeadReg, CurBB, CurInst);
+
+  for (auto *MO : RegMaskPtrs)
+    MTracker->writeRegMask(MO, CurBB, CurInst);
+}
+
+void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
+  ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
+
+  MTracker->setReg(DstRegNum, SrcValue);
+
+  // In all circumstances, re-def the super registers. It's definitely a new
+  // value now. This doesn't uniquely identify the composition of subregs, for
+  // example, two identical values in subregisters composed in 
diff erent
+  // places would not get equal value numbers.
+  for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
+    MTracker->defReg(*SRI, CurBB, CurInst);
+
+  // If we're emulating VarLocBasedImpl, just define all the subregisters.
+  // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
+  // through prior copies.
+  if (EmulateOldLDV) {
+    for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
+      MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
+    return;
+  }
+
+  // Otherwise, actually copy subregisters from one location to another.
+  // XXX: in addition, any subregisters of DstRegNum that don't line up with
+  // the source register should be def'd.
+  for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
+    unsigned SrcSubReg = SRI.getSubReg();
+    unsigned SubRegIdx = SRI.getSubRegIndex();
+    unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
+    if (!DstSubReg)
+      continue;
+
+    // Do copy. There are two matching subregisters, the source value should
+    // have been def'd when the super-reg was, the latter might not be tracked
+    // yet.
+    // This will force SrcSubReg to be tracked, if it isn't yet.
+    (void)MTracker->readReg(SrcSubReg);
+    LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
+    assert(SrcL.asU64());
+    (void)MTracker->readReg(DstSubReg);
+    LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
+    assert(DstL.asU64());
+    (void)DstL;
+    ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
+
+    MTracker->setReg(DstSubReg, CpyValue);
+  }
+}
+
+bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
+                                          MachineFunction *MF) {
+  // TODO: Handle multiple stores folded into one.
+  if (!MI.hasOneMemOperand())
+    return false;
+
+  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+    return false; // This is not a spill instruction, since no valid size was
+                  // returned from either function.
+
+  return true;
+}
+
+bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
+                                       MachineFunction *MF, unsigned &Reg) {
+  if (!isSpillInstruction(MI, MF))
+    return false;
+
+  // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
+  // actual register number.
+  if (ObserveAllStackops) {
+    int FI;
+    Reg = TII->isStoreToStackSlotPostFE(MI, FI);
+    return Reg != 0;
+  }
+
+  auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
+    if (!MO.isReg() || !MO.isUse()) {
+      Reg = 0;
+      return false;
+    }
+    Reg = MO.getReg();
+    return MO.isKill();
+  };
+
+  for (const MachineOperand &MO : MI.operands()) {
+    // In a spill instruction generated by the InlineSpiller the spilled
+    // register has its kill flag set.
+    if (isKilledReg(MO, Reg))
+      return true;
+    if (Reg != 0) {
+      // Check whether next instruction kills the spilled register.
+      // FIXME: Current solution does not cover search for killed register in
+      // bundles and instructions further down the chain.
+      auto NextI = std::next(MI.getIterator());
+      // Skip next instruction that points to basic block end iterator.
+      if (MI.getParent()->end() == NextI)
+        continue;
+      unsigned RegNext;
+      for (const MachineOperand &MONext : NextI->operands()) {
+        // Return true if we came across the register from the
+        // previous spill instruction that is killed in NextI.
+        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+          return true;
+      }
+    }
+  }
+  // Return false if we didn't find spilled register.
+  return false;
+}
+
+Optional<SpillLoc>
+InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+                                       MachineFunction *MF, unsigned &Reg) {
+  if (!MI.hasOneMemOperand())
+    return None;
+
+  // FIXME: Handle folded restore instructions with more than one memory
+  // operand.
+  if (MI.getRestoreSize(TII)) {
+    Reg = MI.getOperand(0).getReg();
+    return extractSpillBaseRegAndOffset(MI);
+  }
+  return None;
+}
+
+bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
+  // XXX -- it's too 
diff icult to implement VarLocBasedImpl's  stack location
+  // limitations under the new model. Therefore, when comparing them, compare
+  // versions that don't attempt spills or restores at all.
+  if (EmulateOldLDV)
+    return false;
+
+  MachineFunction *MF = MI.getMF();
+  unsigned Reg;
+  Optional<SpillLoc> Loc;
+
+  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+  // First, if there are any DBG_VALUEs pointing at a spill slot that is
+  // written to, terminate that variable location. The value in memory
+  // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
+  if (isSpillInstruction(MI, MF)) {
+    Loc = extractSpillBaseRegAndOffset(MI);
+
+    if (TTracker) {
+      Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
+      if (MLoc)
+        TTracker->clobberMloc(*MLoc, MI.getIterator());
+    }
+  }
+
+  // Try to recognise spill and restore instructions that may transfer a value.
+  if (isLocationSpill(MI, MF, Reg)) {
+    Loc = extractSpillBaseRegAndOffset(MI);
+    auto ValueID = MTracker->readReg(Reg);
+
+    // If the location is empty, produce a phi, signify it's the live-in value.
+    if (ValueID.getLoc() == 0)
+      ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
+
+    MTracker->setSpill(*Loc, ValueID);
+    auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
+    assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
+    LocIdx SpillLocIdx = *OptSpillLocIdx;
+
+    // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
+    if (TTracker)
+      TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
+                              MI.getIterator());
+
+    // VarLocBasedImpl would, at this point, stop tracking the source
+    // register of the store.
+    if (EmulateOldLDV) {
+      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+        MTracker->defReg(*RAI, CurBB, CurInst);
+    }
+  } else {
+    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+      return false;
+
+    // Is there a value to be restored?
+    auto OptValueID = MTracker->readSpill(*Loc);
+    if (OptValueID) {
+      ValueIDNum ValueID = *OptValueID;
+      LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
+      // XXX -- can we recover sub-registers of this value? Until we can, first
+      // overwrite all defs of the register being restored to.
+      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+        MTracker->defReg(*RAI, CurBB, CurInst);
+
+      // Now override the reg we're restoring to.
+      MTracker->setReg(Reg, ValueID);
+
+      // Report this restore to the transfer tracker too.
+      if (TTracker)
+        TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
+                                MI.getIterator());
+    } else {
+      // There isn't anything in the location; not clear if this is a code path
+      // that still runs. Def this register anyway just in case.
+      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+        MTracker->defReg(*RAI, CurBB, CurInst);
+
+      // Force the spill slot to be tracked.
+      LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
+
+      // Set the restored value to be a machine phi number, signifying that it's
+      // whatever the spills live-in value is in this block. Definitely has
+      // a LocIdx due to the setSpill above.
+      ValueIDNum ValueID = {CurBB, 0, L};
+      MTracker->setReg(Reg, ValueID);
+      MTracker->setSpill(*Loc, ValueID);
+    }
+  }
+  return true;
+}
+
+bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
+  auto DestSrc = TII->isCopyInstr(MI);
+  if (!DestSrc)
+    return false;
+
+  const MachineOperand *DestRegOp = DestSrc->Destination;
+  const MachineOperand *SrcRegOp = DestSrc->Source;
+
+  auto isCalleeSavedReg = [&](unsigned Reg) {
+    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+      if (CalleeSavedRegs.test(*RAI))
+        return true;
+    return false;
+  };
+
+  Register SrcReg = SrcRegOp->getReg();
+  Register DestReg = DestRegOp->getReg();
+
+  // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
+  if (SrcReg == DestReg)
+    return true;
+
+  // For emulating VarLocBasedImpl:
+  // We want to recognize instructions where destination register is callee
+  // saved register. If register that could be clobbered by the call is
+  // included, there would be a great chance that it is going to be clobbered
+  // soon. It is more likely that previous register, which is callee saved, is
+  // going to stay unclobbered longer, even if it is killed.
+  //
+  // For InstrRefBasedImpl, we can track multiple locations per value, so
+  // ignore this condition.
+  if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
+    return false;
+
+  // InstrRefBasedImpl only followed killing copies.
+  if (EmulateOldLDV && !SrcRegOp->isKill())
+    return false;
+
+  // Copy MTracker info, including subregs if available.
+  InstrRefBasedLDV::performCopy(SrcReg, DestReg);
+
+  // Only produce a transfer of DBG_VALUE within a block where old LDV
+  // would have. We might make use of the additional value tracking in some
+  // other way, later.
+  if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
+    TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
+                            MTracker->getRegMLoc(DestReg), MI.getIterator());
+
+  // VarLocBasedImpl would quit tracking the old location after copying.
+  if (EmulateOldLDV && SrcReg != DestReg)
+    MTracker->defReg(SrcReg, CurBB, CurInst);
+
+  return true;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+///           fragment usage.
+void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
+  DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+                      MI.getDebugLoc()->getInlinedAt());
+  FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+  // If this is the first sighting of this variable, then we are guaranteed
+  // there are currently no overlapping fragments either. Initialize the set
+  // of seen fragments, record no overlaps for the current one, and return.
+  auto SeenIt = SeenFragments.find(MIVar.getVariable());
+  if (SeenIt == SeenFragments.end()) {
+    SmallSet<FragmentInfo, 4> OneFragment;
+    OneFragment.insert(ThisFragment);
+    SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+    OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+    return;
+  }
+
+  // If this particular Variable/Fragment pair already exists in the overlap
+  // map, it has already been accounted for.
+  auto IsInOLapMap =
+      OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+  if (!IsInOLapMap.second)
+    return;
+
+  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+  auto &AllSeenFragments = SeenIt->second;
+
+  // Otherwise, examine all other seen fragments for this variable, with "this"
+  // fragment being a previously unseen fragment. Record any pair of
+  // overlapping fragments.
+  for (auto &ASeenFragment : AllSeenFragments) {
+    // Does this previously seen fragment overlap?
+    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+      // Yes: Mark the current fragment as being overlapped.
+      ThisFragmentsOverlaps.push_back(ASeenFragment);
+      // Mark the previously seen fragment as being overlapped by the current
+      // one.
+      auto ASeenFragmentsOverlaps =
+          OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
+      assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
+             "Previously seen var fragment has no vector of overlaps");
+      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+    }
+  }
+
+  AllSeenFragments.insert(ThisFragment);
+}
+
+void InstrRefBasedLDV::process(MachineInstr &MI) {
+  // Try to interpret an MI as a debug or transfer instruction. Only if it's
+  // none of these should we interpret it's register defs as new value
+  // definitions.
+  if (transferDebugValue(MI))
+    return;
+  if (transferRegisterCopy(MI))
+    return;
+  if (transferSpillOrRestoreInst(MI))
+    return;
+  transferRegisterDef(MI);
+}
+
+void InstrRefBasedLDV::produceTransferFunctions(
+    MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+    unsigned MaxNumBlocks, SmallVectorImpl<VLocTracker> &VLocs) {
+  // Because we try to optimize around register mask operands by ignoring regs
+  // that aren't currently tracked, we set up something ugly for later: RegMask
+  // operands that are seen earlier than the first use of a register, still need
+  // to clobber that register in the transfer function. But this information
+  // isn't actively recorded. Instead, we track each RegMask used in each block,
+  // and accumulated the clobbered but untracked registers in each block into
+  // the following bitvector. Later, if new values are tracked, we can add
+  // appropriate clobbers.
+  SmallVector<BitVector, 32> BlockMasks;
+  BlockMasks.resize(MaxNumBlocks);
+
+  // Reserve one bit per register for the masks described above.
+  unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
+  for (auto &BV : BlockMasks)
+    BV.resize(TRI->getNumRegs(), true);
+
+  // Step through all instructions and inhale the transfer function.
+  for (auto &MBB : MF) {
+    // Object fields that are read by trackers to know where we are in the
+    // function.
+    CurBB = MBB.getNumber();
+    CurInst = 1;
+
+    // Set all machine locations to a PHI value. For transfer function
+    // production only, this signifies the live-in value to the block.
+    MTracker->reset();
+    MTracker->setMPhis(CurBB);
+
+    VTracker = &VLocs[CurBB];
+    VTracker->MBB = &MBB;
+
+    // Step through each instruction in this block.
+    for (auto &MI : MBB) {
+      process(MI);
+      // Also accumulate fragment map.
+      if (MI.isDebugValue())
+        accumulateFragmentMap(MI);
+      ++CurInst;
+    }
+
+    // Produce the transfer function, a map of machine location to new value. If
+    // any machine location has the live-in phi value from the start of the
+    // block, it's live-through and doesn't need recording in the transfer
+    // function.
+    for (auto Location : MTracker->locations()) {
+      LocIdx Idx = Location.Idx;
+      ValueIDNum &P = Location.Value;
+      if (P.isPHI() && P.getLoc() == Idx.asU64())
+        continue;
+
+      // Insert-or-update.
+      auto &TransferMap = MLocTransfer[CurBB];
+      auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
+      if (!Result.second)
+        Result.first->second = P;
+    }
+
+    // Accumulate any bitmask operands into the clobberred reg mask for this
+    // block.
+    for (auto &P : MTracker->Masks) {
+      BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
+    }
+  }
+
+  // Compute a bitvector of all the registers that are tracked in this block.
+  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
+  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
+  BitVector UsedRegs(TRI->getNumRegs());
+  for (auto Location : MTracker->locations()) {
+    unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
+    if (ID >= TRI->getNumRegs() || ID == SP)
+      continue;
+    UsedRegs.set(ID);
+  }
+
+  // Check that any regmask-clobber of a register that gets tracked, is not
+  // live-through in the transfer function. It needs to be clobbered at the
+  // very least.
+  for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
+    BitVector &BV = BlockMasks[I];
+    BV.flip();
+    BV &= UsedRegs;
+    // This produces all the bits that we clobber, but also use. Check that
+    // they're all clobbered or at least set in the designated transfer
+    // elem.
+    for (unsigned Bit : BV.set_bits()) {
+      unsigned ID = MTracker->getLocID(Bit, false);
+      LocIdx Idx = MTracker->LocIDToLocIdx[ID];
+      auto &TransferMap = MLocTransfer[I];
+
+      // Install a value representing the fact that this location is effectively
+      // written to in this block. As there's no reserved value, instead use
+      // a value number that is never generated. Pick the value number for the
+      // first instruction in the block, def'ing this location, which we know
+      // this block never used anyway.
+      ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
+      auto Result =
+        TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
+      if (!Result.second) {
+        ValueIDNum &ValueID = Result.first->second;
+        if (ValueID.getBlock() == I && ValueID.isPHI())
+          // It was left as live-through. Set it to clobbered.
+          ValueID = NotGeneratedNum;
+      }
+    }
+  }
+}
+
+std::tuple<bool, bool>
+InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
+                           SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+                           ValueIDNum **OutLocs, ValueIDNum *InLocs) {
+  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+  bool Changed = false;
+  bool DowngradeOccurred = false;
+
+  // Collect predecessors that have been visited. Anything that hasn't been
+  // visited yet is a backedge on the first iteration, and the meet of it's
+  // lattice value for all locations will be unaffected.
+  SmallVector<const MachineBasicBlock *, 8> BlockOrders;
+  for (auto Pred : MBB.predecessors()) {
+    if (Visited.count(Pred)) {
+      BlockOrders.push_back(Pred);
+    }
+  }
+
+  // Visit predecessors in RPOT order.
+  auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
+    return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
+  };
+  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
+
+  // Skip entry block.
+  if (BlockOrders.size() == 0)
+    return std::tuple<bool, bool>(false, false);
+
+  // Step through all machine locations, then look at each predecessor and
+  // detect disagreements.
+  unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
+  for (auto Location : MTracker->locations()) {
+    LocIdx Idx = Location.Idx;
+    // Pick out the first predecessors live-out value for this location. It's
+    // guaranteed to be not a backedge, as we order by RPO.
+    ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
+
+    // Some flags for whether there's a disagreement, and whether it's a
+    // disagreement with a backedge or not.
+    bool Disagree = false;
+    bool NonBackEdgeDisagree = false;
+
+    // Loop around everything that wasn't 'base'.
+    for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
+      auto *MBB = BlockOrders[I];
+      if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
+        // Live-out of a predecessor disagrees with the first predecessor.
+        Disagree = true;
+
+        // Test whether it's a disagreemnt in the backedges or not.
+        if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
+          NonBackEdgeDisagree = true;
+      }
+    }
+
+    bool OverRide = false;
+    if (Disagree && !NonBackEdgeDisagree) {
+      // Only the backedges disagree. Consider demoting the livein
+      // lattice value, as per the file level comment. The value we consider
+      // demoting to is the value that the non-backedge predecessors agree on.
+      // The order of values is that non-PHIs are \top, a PHI at this block
+      // \bot, and phis between the two are ordered by their RPO number.
+      // If there's no agreement, or we've already demoted to this PHI value
+      // before, replace with a PHI value at this block.
+
+      // Calculate order numbers: zero means normal def, nonzero means RPO
+      // number.
+      unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
+      if (!BaseVal.isPHI())
+        BaseBlockRPONum = 0;
+
+      ValueIDNum &InLocID = InLocs[Idx.asU64()];
+      unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
+      if (!InLocID.isPHI())
+        InLocRPONum = 0;
+
+      // Should we ignore the disagreeing backedges, and override with the
+      // value the other predecessors agree on (in "base")?
+      unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
+      if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
+        // Override.
+        OverRide = true;
+        DowngradeOccurred = true;
+      }
+    }
+    // else: if we disagree in the non-backedges, then this is definitely
+    // a control flow merge where 
diff erent values merge. Make it a PHI.
+
+    // Generate a phi...
+    ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
+    ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
+    if (InLocs[Idx.asU64()] != NewVal) {
+      Changed |= true;
+      InLocs[Idx.asU64()] = NewVal;
+    }
+  }
+
+  // Uhhhhhh, reimplement NumInserted and NumRemoved pls.
+  return std::tuple<bool, bool>(Changed, DowngradeOccurred);
+}
+
+void InstrRefBasedLDV::mlocDataflow(
+    ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
+    SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
+  std::priority_queue<unsigned int, std::vector<unsigned int>,
+                      std::greater<unsigned int>>
+      Worklist, Pending;
+
+  // We track what is on the current and pending worklist to avoid inserting
+  // the same thing twice. We could avoid this with a custom priority queue,
+  // but this is probably not worth it.
+  SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
+
+  // Initialize worklist with every block to be visited.
+  for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
+    Worklist.push(I);
+    OnWorklist.insert(OrderToBB[I]);
+  }
+
+  MTracker->reset();
+
+  // Set inlocs for entry block -- each as a PHI at the entry block. Represents
+  // the incoming value to the function.
+  MTracker->setMPhis(0);
+  for (auto Location : MTracker->locations())
+    MInLocs[0][Location.Idx.asU64()] = Location.Value;
+
+  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+  while (!Worklist.empty() || !Pending.empty()) {
+    // Vector for storing the evaluated block transfer function.
+    SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
+
+    while (!Worklist.empty()) {
+      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+      CurBB = MBB->getNumber();
+      Worklist.pop();
+
+      // Join the values in all predecessor blocks.
+      bool InLocsChanged, DowngradeOccurred;
+      std::tie(InLocsChanged, DowngradeOccurred) =
+          mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
+      InLocsChanged |= Visited.insert(MBB).second;
+
+      // If a downgrade occurred, book us in for re-examination on the next
+      // iteration.
+      if (DowngradeOccurred && OnPending.insert(MBB).second)
+        Pending.push(BBToOrder[MBB]);
+
+      // Don't examine transfer function if we've visited this loc at least
+      // once, and inlocs haven't changed.
+      if (!InLocsChanged)
+        continue;
+
+      // Load the current set of live-ins into MLocTracker.
+      MTracker->loadFromArray(MInLocs[CurBB], CurBB);
+
+      // Each element of the transfer function can be a new def, or a read of
+      // a live-in value. Evaluate each element, and store to "ToRemap".
+      ToRemap.clear();
+      for (auto &P : MLocTransfer[CurBB]) {
+        if (P.second.getBlock() == CurBB && P.second.isPHI()) {
+          // This is a movement of whatever was live in. Read it.
+          ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
+          ToRemap.push_back(std::make_pair(P.first, NewID));
+        } else {
+          // It's a def. Just set it.
+          assert(P.second.getBlock() == CurBB);
+          ToRemap.push_back(std::make_pair(P.first, P.second));
+        }
+      }
+
+      // Commit the transfer function changes into mloc tracker, which
+      // transforms the contents of the MLocTracker into the live-outs.
+      for (auto &P : ToRemap)
+        MTracker->setMLoc(P.first, P.second);
+
+      // Now copy out-locs from mloc tracker into out-loc vector, checking
+      // whether changes have occurred. These changes can have come from both
+      // the transfer function, and mlocJoin.
+      bool OLChanged = false;
+      for (auto Location : MTracker->locations()) {
+        OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
+        MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
+      }
+
+      MTracker->reset();
+
+      // No need to examine successors again if out-locs didn't change.
+      if (!OLChanged)
+        continue;
+
+      // All successors should be visited: put any back-edges on the pending
+      // list for the next dataflow iteration, and any other successors to be
+      // visited this iteration, if they're not going to be already.
+      for (auto s : MBB->successors()) {
+        // Does branching to this successor represent a back-edge?
+        if (BBToOrder[s] > BBToOrder[MBB]) {
+          // No: visit it during this dataflow iteration.
+          if (OnWorklist.insert(s).second)
+            Worklist.push(BBToOrder[s]);
+        } else {
+          // Yes: visit it on the next iteration.
+          if (OnPending.insert(s).second)
+            Pending.push(BBToOrder[s]);
+        }
+      }
+    }
+
+    Worklist.swap(Pending);
+    std::swap(OnPending, OnWorklist);
+    OnPending.clear();
+    // At this point, pending must be empty, since it was just the empty
+    // worklist
+    assert(Pending.empty() && "Pending should be empty");
+  }
+
+  // Once all the live-ins don't change on mlocJoin(), we've reached a
+  // fixedpoint.
+}
+
+bool InstrRefBasedLDV::vlocDowngradeLattice(
+    const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
+    const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
+  // Ranking value preference: see file level comment, the highest rank is
+  // a plain def, followed by PHI values in reverse post-order. Numerically,
+  // we assign all defs the rank '0', all PHIs their blocks RPO number plus
+  // one, and consider the lowest value the highest ranked.
+  int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
+  if (!OldLiveInLocation.ID.isPHI())
+    OldLiveInRank = 0;
+
+  // Allow any unresolvable conflict to be over-ridden.
+  if (OldLiveInLocation.Kind == DbgValue::NoVal) {
+    // Although if it was an unresolvable conflict from _this_ block, then
+    // all other seeking of downgrades and PHIs must have failed before hand.
+    if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
+      return false;
+    OldLiveInRank = INT_MIN;
+  }
+
+  auto &InValue = *Values[0].second;
+
+  if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
+    return false;
+
+  unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
+  int ThisRank = ThisRPO + 1;
+  if (!InValue.ID.isPHI())
+    ThisRank = 0;
+
+  // Too far down the lattice?
+  if (ThisRPO >= CurBlockRPONum)
+    return false;
+
+  // Higher in the lattice than what we've already explored?
+  if (ThisRank <= OldLiveInRank)
+    return false;
+
+  return true;
+}
+
+std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
+    MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
+    ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+    const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
+  // Collect a set of locations from predecessor where its live-out value can
+  // be found.
+  SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
+  unsigned NumLocs = MTracker->getNumLocs();
+  unsigned BackEdgesStart = 0;
+
+  for (auto p : BlockOrders) {
+    // Pick out where backedges start in the list of predecessors. Relies on
+    // BlockOrders being sorted by RPO.
+    if (BBToOrder[p] < BBToOrder[&MBB])
+      ++BackEdgesStart;
+
+    // For each predecessor, create a new set of locations.
+    Locs.resize(Locs.size() + 1);
+    unsigned ThisBBNum = p->getNumber();
+    auto LiveOutMap = LiveOuts.find(p);
+    if (LiveOutMap == LiveOuts.end())
+      // This predecessor isn't in scope, it must have no live-in/live-out
+      // locations.
+      continue;
+
+    auto It = LiveOutMap->second->find(Var);
+    if (It == LiveOutMap->second->end())
+      // There's no value recorded for this variable in this predecessor,
+      // leave an empty set of locations.
+      continue;
+
+    const DbgValue &OutVal = It->second;
+
+    if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
+      // Consts and no-values cannot have locations we can join on.
+      continue;
+
+    assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
+    ValueIDNum ValToLookFor = OutVal.ID;
+
+    // Search the live-outs of the predecessor for the specified value.
+    for (unsigned int I = 0; I < NumLocs; ++I) {
+      if (MOutLocs[ThisBBNum][I] == ValToLookFor)
+        Locs.back().push_back(LocIdx(I));
+    }
+  }
+
+  // If there were no locations at all, return an empty result.
+  if (Locs.empty())
+    return {None, false};
+
+  // Lambda for seeking a common location within a range of location-sets.
+  typedef SmallVector<SmallVector<LocIdx, 4>, 8>::iterator LocsIt;
+  auto SeekLocation =
+      [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
+    // Starting with the first set of locations, take the intersection with
+    // subsequent sets.
+    SmallVector<LocIdx, 4> base = Locs[0];
+    for (auto &S : SearchRange) {
+      SmallVector<LocIdx, 4> new_base;
+      std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
+                            std::inserter(new_base, new_base.begin()));
+      base = new_base;
+    }
+    if (base.empty())
+      return None;
+
+    // We now have a set of LocIdxes that contain the right output value in
+    // each of the predecessors. Pick the lowest; if there's a register loc,
+    // that'll be it.
+    return *base.begin();
+  };
+
+  // Search for a common location for all predecessors. If we can't, then fall
+  // back to only finding a common location between non-backedge predecessors.
+  bool ValidForAllLocs = true;
+  auto TheLoc = SeekLocation(Locs);
+  if (!TheLoc) {
+    ValidForAllLocs = false;
+    TheLoc =
+        SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
+  }
+
+  if (!TheLoc)
+    return {None, false};
+
+  // Return a PHI-value-number for the found location.
+  LocIdx L = *TheLoc;
+  ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
+  return {PHIVal, ValidForAllLocs};
+}
+
+std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
+    MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
+    SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
+    const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
+    ValueIDNum **MInLocs,
+    SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
+    SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+    DenseMap<DebugVariable, DbgValue> &InLocsT) {
+  bool DowngradeOccurred = false;
+
+  // To emulate VarLocBasedImpl, process this block if it's not in scope but
+  // _does_ assign a variable value. No live-ins for this scope are transferred
+  // in though, so we can return immediately.
+  if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
+    if (VLOCVisited)
+      return std::tuple<bool, bool>(true, false);
+    return std::tuple<bool, bool>(false, false);
+  }
+
+  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+  bool Changed = false;
+
+  // Find any live-ins computed in a prior iteration.
+  auto ILSIt = VLOCInLocs.find(&MBB);
+  assert(ILSIt != VLOCInLocs.end());
+  auto &ILS = *ILSIt->second;
+
+  // Order predecessors by RPOT order, for exploring them in that order.
+  SmallVector<MachineBasicBlock *, 8> BlockOrders;
+  for (auto p : MBB.predecessors())
+    BlockOrders.push_back(p);
+
+  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+    return BBToOrder[A] < BBToOrder[B];
+  };
+
+  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
+
+  unsigned CurBlockRPONum = BBToOrder[&MBB];
+
+  // Force a re-visit to loop heads in the first dataflow iteration.
+  // FIXME: if we could "propose" Const values this wouldn't be needed,
+  // because they'd need to be confirmed before being emitted.
+  if (!BlockOrders.empty() &&
+      BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
+      VLOCVisited)
+    DowngradeOccurred = true;
+
+  auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
+    auto Result = InLocsT.insert(std::make_pair(DV, VR));
+    (void)Result;
+    assert(Result.second);
+  };
+
+  auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
+    DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
+
+    ConfirmValue(Var, NoLocPHIVal);
+  };
+
+  // Attempt to join the values for each variable.
+  for (auto &Var : AllVars) {
+    // Collect all the DbgValues for this variable.
+    SmallVector<InValueT, 8> Values;
+    bool Bail = false;
+    unsigned BackEdgesStart = 0;
+    for (auto p : BlockOrders) {
+      // If the predecessor isn't in scope / to be explored, we'll never be
+      // able to join any locations.
+      if (BlocksToExplore.find(p) == BlocksToExplore.end()) {
+        Bail = true;
+        break;
+      }
+
+      // Don't attempt to handle unvisited predecessors: they're implicitly
+      // "unknown"s in the lattice.
+      if (VLOCVisited && !VLOCVisited->count(p))
+        continue;
+
+      // If the predecessors OutLocs is absent, there's not much we can do.
+      auto OL = VLOCOutLocs.find(p);
+      if (OL == VLOCOutLocs.end()) {
+        Bail = true;
+        break;
+      }
+
+      // No live-out value for this predecessor also means we can't produce
+      // a joined value.
+      auto VIt = OL->second->find(Var);
+      if (VIt == OL->second->end()) {
+        Bail = true;
+        break;
+      }
+
+      // Keep track of where back-edges begin in the Values vector. Relies on
+      // BlockOrders being sorted by RPO.
+      unsigned ThisBBRPONum = BBToOrder[p];
+      if (ThisBBRPONum < CurBlockRPONum)
+        ++BackEdgesStart;
+
+      Values.push_back(std::make_pair(p, &VIt->second));
+    }
+
+    // If there were no values, or one of the predecessors couldn't have a
+    // value, then give up immediately. It's not safe to produce a live-in
+    // value.
+    if (Bail || Values.size() == 0)
+      continue;
+
+    // Enumeration identifying the current state of the predecessors values.
+    enum {
+      Unset = 0,
+      Agreed,       // All preds agree on the variable value.
+      PropDisagree, // All preds agree, but the value kind is Proposed in some.
+      BEDisagree,   // Only back-edges disagree on variable value.
+      PHINeeded,    // Non-back-edge predecessors have conflicing values.
+      NoSolution    // Conflicting Value metadata makes solution impossible.
+    } OurState = Unset;
+
+    // All (non-entry) blocks have at least one non-backedge predecessor.
+    // Pick the variable value from the first of these, to compare against
+    // all others.
+    const DbgValue &FirstVal = *Values[0].second;
+    const ValueIDNum &FirstID = FirstVal.ID;
+
+    // Scan for variable values that can't be resolved: if they have 
diff erent
+    // DIExpressions, 
diff erent indirectness, or are mixed constants /
+    // non-constants.
+    for (auto &V : Values) {
+      if (V.second->Properties != FirstVal.Properties)
+        OurState = NoSolution;
+      if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
+        OurState = NoSolution;
+    }
+
+    // Flags diagnosing _how_ the values disagree.
+    bool NonBackEdgeDisagree = false;
+    bool DisagreeOnPHINess = false;
+    bool IDDisagree = false;
+    bool Disagree = false;
+    if (OurState == Unset) {
+      for (auto &V : Values) {
+        if (*V.second == FirstVal)
+          continue; // No disagreement.
+
+        Disagree = true;
+
+        // Flag whether the value number actually diagrees.
+        if (V.second->ID != FirstID)
+          IDDisagree = true;
+
+        // Distinguish whether disagreement happens in backedges or not.
+        // Relies on Values (and BlockOrders) being sorted by RPO.
+        unsigned ThisBBRPONum = BBToOrder[V.first];
+        if (ThisBBRPONum < CurBlockRPONum)
+          NonBackEdgeDisagree = true;
+
+        // Is there a 
diff erence in whether the value is definite or only
+        // proposed?
+        if (V.second->Kind != FirstVal.Kind &&
+            (V.second->Kind == DbgValue::Proposed ||
+             V.second->Kind == DbgValue::Def) &&
+            (FirstVal.Kind == DbgValue::Proposed ||
+             FirstVal.Kind == DbgValue::Def))
+          DisagreeOnPHINess = true;
+      }
+
+      // Collect those flags together and determine an overall state for
+      // what extend the predecessors agree on a live-in value.
+      if (!Disagree)
+        OurState = Agreed;
+      else if (!IDDisagree && DisagreeOnPHINess)
+        OurState = PropDisagree;
+      else if (!NonBackEdgeDisagree)
+        OurState = BEDisagree;
+      else
+        OurState = PHINeeded;
+    }
+
+    // An extra indicator: if we only disagree on whether the value is a
+    // Def, or proposed, then also flag whether that disagreement happens
+    // in backedges only.
+    bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
+                         !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
+
+    const auto &Properties = FirstVal.Properties;
+
+    auto OldLiveInIt = ILS.find(Var);
+    const DbgValue *OldLiveInLocation =
+        (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
+
+    bool OverRide = false;
+    if (OurState == BEDisagree && OldLiveInLocation) {
+      // Only backedges disagree: we can consider downgrading. If there was a
+      // previous live-in value, use it to work out whether the current
+      // incoming value represents a lattice downgrade or not.
+      OverRide =
+          vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
+    }
+
+    // Use the current state of predecessor agreement and other flags to work
+    // out what to do next. Possibilities include:
+    //  * Accept a value all predecessors agree on, or accept one that
+    //    represents a step down the exploration lattice,
+    //  * Use a PHI value number, if one can be found,
+    //  * Propose a PHI value number, and see if it gets confirmed later,
+    //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
+    if (OurState == Agreed) {
+      // Easiest solution: all predecessors agree on the variable value.
+      ConfirmValue(Var, FirstVal);
+    } else if (OurState == BEDisagree && OverRide) {
+      // Only backedges disagree, and the other predecessors have produced
+      // a new live-in value further down the exploration lattice.
+      DowngradeOccurred = true;
+      ConfirmValue(Var, FirstVal);
+    } else if (OurState == PropDisagree) {
+      // Predecessors agree on value, but some say it's only a proposed value.
+      // Propagate it as proposed: unless it was proposed in this block, in
+      // which case we're able to confirm the value.
+      if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
+        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
+      } else if (PropOnlyInBEs) {
+        // If only backedges disagree, a higher (in RPO) block confirmed this
+        // location, and we need to propagate it into this loop.
+        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
+      } else {
+        // Otherwise; a Def meeting a Proposed is still a Proposed.
+        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
+      }
+    } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
+      // Predecessors disagree and can't be downgraded: this can only be
+      // solved with a PHI. Use pickVPHILoc to go look for one.
+      Optional<ValueIDNum> VPHI;
+      bool AllEdgesVPHI = false;
+      std::tie(VPHI, AllEdgesVPHI) =
+          pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
+
+      if (VPHI && AllEdgesVPHI) {
+        // There's a PHI value that's valid for all predecessors -- we can use
+        // it. If any of the non-backedge predecessors have proposed values
+        // though, this PHI is also only proposed, until the predecessors are
+        // confirmed.
+        DbgValue::KindT K = DbgValue::Def;
+        for (unsigned int I = 0; I < BackEdgesStart; ++I)
+          if (Values[I].second->Kind == DbgValue::Proposed)
+            K = DbgValue::Proposed;
+
+        ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
+      } else if (VPHI) {
+        // There's a PHI value, but it's only legal for backedges. Leave this
+        // as a proposed PHI value: it might come back on the backedges,
+        // and allow us to confirm it in the future.
+        DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
+        ConfirmValue(Var, NoBEValue);
+      } else {
+        ConfirmNoVal(Var, Properties);
+      }
+    } else {
+      // Otherwise: we don't know. Emit a "phi but no real loc" phi.
+      ConfirmNoVal(Var, Properties);
+    }
+  }
+
+  // Store newly calculated in-locs into VLOCInLocs, if they've changed.
+  Changed = ILS != InLocsT;
+  if (Changed)
+    ILS = InLocsT;
+
+  return std::tuple<bool, bool>(Changed, DowngradeOccurred);
+}
+
+void InstrRefBasedLDV::vlocDataflow(
+    const LexicalScope *Scope, const DILocation *DILoc,
+    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
+    ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+    SmallVectorImpl<VLocTracker> &AllTheVLocs) {
+  // This method is much like mlocDataflow: but focuses on a single
+  // LexicalScope at a time. Pick out a set of blocks and variables that are
+  // to have their value assignments solved, then run our dataflow algorithm
+  // until a fixedpoint is reached.
+  std::priority_queue<unsigned int, std::vector<unsigned int>,
+                      std::greater<unsigned int>>
+      Worklist, Pending;
+  SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
+
+  // The set of blocks we'll be examining.
+  SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
+
+  // The order in which to examine them (RPO).
+  SmallVector<MachineBasicBlock *, 8> BlockOrders;
+
+  // RPO ordering function.
+  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+    return BBToOrder[A] < BBToOrder[B];
+  };
+
+  LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
+
+  // A separate container to distinguish "blocks we're exploring" versus
+  // "blocks that are potentially in scope. See comment at start of vlocJoin.
+  SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
+
+  // Old LiveDebugValues tracks variable locations that come out of blocks
+  // not in scope, where DBG_VALUEs occur. This is something we could
+  // legitimately ignore, but lets allow it for now.
+  if (EmulateOldLDV)
+    BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
+
+  // We also need to propagate variable values through any artificial blocks
+  // that immediately follow blocks in scope.
+  DenseSet<const MachineBasicBlock *> ToAdd;
+
+  // Helper lambda: For a given block in scope, perform a depth first search
+  // of all the artificial successors, adding them to the ToAdd collection.
+  auto AccumulateArtificialBlocks =
+      [this, &ToAdd, &BlocksToExplore,
+       &InScopeBlocks](const MachineBasicBlock *MBB) {
+        // Depth-first-search state: each node is a block and which successor
+        // we're currently exploring.
+        SmallVector<std::pair<const MachineBasicBlock *,
+                              MachineBasicBlock::const_succ_iterator>,
+                    8>
+            DFS;
+
+        // Find any artificial successors not already tracked.
+        for (auto *succ : MBB->successors()) {
+          if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
+            continue;
+          if (!ArtificialBlocks.count(succ))
+            continue;
+          DFS.push_back(std::make_pair(succ, succ->succ_begin()));
+          ToAdd.insert(succ);
+        }
+
+        // Search all those blocks, depth first.
+        while (!DFS.empty()) {
+          const MachineBasicBlock *CurBB = DFS.back().first;
+          MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
+          // Walk back if we've explored this blocks successors to the end.
+          if (CurSucc == CurBB->succ_end()) {
+            DFS.pop_back();
+            continue;
+          }
+
+          // If the current successor is artificial and unexplored, descend into
+          // it.
+          if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
+            DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
+            ToAdd.insert(*CurSucc);
+            continue;
+          }
+
+          ++CurSucc;
+        }
+      };
+
+  // Search in-scope blocks and those containing a DBG_VALUE from this scope
+  // for artificial successors.
+  for (auto *MBB : BlocksToExplore)
+    AccumulateArtificialBlocks(MBB);
+  for (auto *MBB : InScopeBlocks)
+    AccumulateArtificialBlocks(MBB);
+
+  BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
+  InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
+
+  // Single block scope: not interesting! No propagation at all. Note that
+  // this could probably go above ArtificialBlocks without damage, but
+  // that then produces output 
diff erences from original-live-debug-values,
+  // which propagates from a single block into many artificial ones.
+  if (BlocksToExplore.size() == 1)
+    return;
+
+  // Picks out relevants blocks RPO order and sort them.
+  for (auto *MBB : BlocksToExplore)
+    BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
+
+  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
+  unsigned NumBlocks = BlockOrders.size();
+
+  // Allocate some vectors for storing the live ins and live outs. Large.
+  SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
+  LiveIns.resize(NumBlocks);
+  LiveOuts.resize(NumBlocks);
+
+  // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
+  // vlocJoin.
+  LiveIdxT LiveOutIdx, LiveInIdx;
+  LiveOutIdx.reserve(NumBlocks);
+  LiveInIdx.reserve(NumBlocks);
+  for (unsigned I = 0; I < NumBlocks; ++I) {
+    LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
+    LiveInIdx[BlockOrders[I]] = &LiveIns[I];
+  }
+
+  for (auto *MBB : BlockOrders) {
+    Worklist.push(BBToOrder[MBB]);
+    OnWorklist.insert(MBB);
+  }
+
+  // Iterate over all the blocks we selected, propagating variable values.
+  bool FirstTrip = true;
+  SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
+  while (!Worklist.empty() || !Pending.empty()) {
+    while (!Worklist.empty()) {
+      auto *MBB = OrderToBB[Worklist.top()];
+      CurBB = MBB->getNumber();
+      Worklist.pop();
+
+      DenseMap<DebugVariable, DbgValue> JoinedInLocs;
+
+      // Join values from predecessors. Updates LiveInIdx, and writes output
+      // into JoinedInLocs.
+      bool InLocsChanged, DowngradeOccurred;
+      std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
+          *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
+          CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
+          BlocksToExplore, JoinedInLocs);
+
+      auto &VTracker = AllTheVLocs[MBB->getNumber()];
+      bool FirstVisit = VLOCVisited.insert(MBB).second;
+
+      // Always explore transfer function if inlocs changed, or if we've not
+      // visited this block before.
+      InLocsChanged |= FirstVisit;
+
+      // If a downgrade occurred, book us in for re-examination on the next
+      // iteration.
+      if (DowngradeOccurred && OnPending.insert(MBB).second)
+        Pending.push(BBToOrder[MBB]);
+
+      // Patch up the variable value transfer function to use the live-in
+      // machine values, now that that problem is solved.
+      if (FirstVisit) {
+        for (auto &Transfer : VTracker.Vars) {
+          if (Transfer.second.Kind == DbgValue::Def &&
+              Transfer.second.ID.getBlock() == CurBB &&
+              Transfer.second.ID.isPHI()) {
+            LocIdx Loc = Transfer.second.ID.getLoc();
+            Transfer.second.ID = MInLocs[CurBB][Loc.asU64()];
+          }
+        }
+      }
+
+      if (!InLocsChanged)
+        continue;
+
+      // Do transfer function.
+      for (auto &Transfer : VTracker.Vars) {
+        // Is this var we're mangling in this scope?
+        if (VarsWeCareAbout.count(Transfer.first)) {
+          // Erase on empty transfer (DBG_VALUE $noreg).
+          if (Transfer.second.Kind == DbgValue::Undef) {
+            JoinedInLocs.erase(Transfer.first);
+          } else {
+            // Insert new variable value; or overwrite.
+            auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
+            auto Result = JoinedInLocs.insert(NewValuePair);
+            if (!Result.second)
+              Result.first->second = Transfer.second;
+          }
+        }
+      }
+
+      // Did the live-out locations change?
+      bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
+
+      // If they haven't changed, there's no need to explore further.
+      if (!OLChanged)
+        continue;
+
+      // Commit to the live-out record.
+      *LiveOutIdx[MBB] = JoinedInLocs;
+
+      // We should visit all successors. Ensure we'll visit any non-backedge
+      // successors during this dataflow iteration; book backedge successors
+      // to be visited next time around.
+      for (auto s : MBB->successors()) {
+        // Ignore out of scope / not-to-be-explored successors.
+        if (LiveInIdx.find(s) == LiveInIdx.end())
+          continue;
+
+        if (BBToOrder[s] > BBToOrder[MBB]) {
+          if (OnWorklist.insert(s).second)
+            Worklist.push(BBToOrder[s]);
+        } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
+          Pending.push(BBToOrder[s]);
+        }
+      }
+    }
+    Worklist.swap(Pending);
+    std::swap(OnWorklist, OnPending);
+    OnPending.clear();
+    assert(Pending.empty());
+    FirstTrip = false;
+  }
+
+  // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
+  // as being variable-PHIs, because those did not have their machine-PHI
+  // value confirmed. Such variable values are places that could have been
+  // PHIs, but are not.
+  for (auto *MBB : BlockOrders) {
+    auto &VarMap = *LiveInIdx[MBB];
+    for (auto &P : VarMap) {
+      if (P.second.Kind == DbgValue::Proposed ||
+          P.second.Kind == DbgValue::NoVal)
+        continue;
+      Output[MBB->getNumber()].push_back(P);
+    }
+  }
+
+  BlockOrders.clear();
+  BlocksToExplore.clear();
+}
+
+void InstrRefBasedLDV::dump_mloc_transfer(
+    const MLocTransferMap &mloc_transfer) const {
+  for (auto &P : mloc_transfer) {
+    std::string foo = MTracker->LocIdxToName(P.first);
+    std::string bar = MTracker->IDAsString(P.second);
+    dbgs() << "Loc " << foo << " --> " << bar << "\n";
+  }
+}
+
+void InstrRefBasedLDV::emitLocations(
+    MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
+    DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
+  TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
+  unsigned NumLocs = MTracker->getNumLocs();
+
+  // For each block, load in the machine value locations and variable value
+  // live-ins, then step through each instruction in the block. New DBG_VALUEs
+  // to be inserted will be created along the way.
+  for (MachineBasicBlock &MBB : MF) {
+    unsigned bbnum = MBB.getNumber();
+    MTracker->reset();
+    MTracker->loadFromArray(MInLocs[bbnum], bbnum);
+    TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
+                         NumLocs);
+
+    CurBB = bbnum;
+    CurInst = 1;
+    for (auto &MI : MBB) {
+      process(MI);
+      ++CurInst;
+    }
+  }
+
+  // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
+  // in DWARF in 
diff erent orders. Use the order that they appear when walking
+  // through each block / each instruction, stored in AllVarsNumbering.
+  auto OrderDbgValues = [&](const MachineInstr *A,
+                            const MachineInstr *B) -> bool {
+    DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
+                       A->getDebugLoc()->getInlinedAt());
+    DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
+                       B->getDebugLoc()->getInlinedAt());
+    return AllVarsNumbering.find(VarA)->second <
+           AllVarsNumbering.find(VarB)->second;
+  };
+
+  // Go through all the transfers recorded in the TransferTracker -- this is
+  // both the live-ins to a block, and any movements of values that happen
+  // in the middle.
+  for (auto &P : TTracker->Transfers) {
+    // Sort them according to appearance order.
+    llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues);
+    // Insert either before or after the designated point...
+    if (P.MBB) {
+      MachineBasicBlock &MBB = *P.MBB;
+      for (auto *MI : P.Insts) {
+        MBB.insert(P.Pos, MI);
+      }
+    } else {
+      MachineBasicBlock &MBB = *P.Pos->getParent();
+      for (auto *MI : P.Insts) {
+        MBB.insertAfter(P.Pos, MI);
+      }
+    }
+  }
+}
+
+void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
+  // Build some useful data structures.
+  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+    if (const DebugLoc &DL = MI.getDebugLoc())
+      return DL.getLine() != 0;
+    return false;
+  };
+  // Collect a set of all the artificial blocks.
+  for (auto &MBB : MF)
+    if (none_of(MBB.instrs(), hasNonArtificialLocation))
+      ArtificialBlocks.insert(&MBB);
+
+  // Compute mappings of block <=> RPO order.
+  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+  unsigned int RPONumber = 0;
+  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+    OrderToBB[RPONumber] = *RI;
+    BBToOrder[*RI] = RPONumber;
+    BBNumToRPO[(*RI)->getNumber()] = RPONumber;
+    ++RPONumber;
+  }
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
+                                    TargetPassConfig *TPC) {
+  // No subprogram means this function contains no debuginfo.
+  if (!MF.getFunction().getSubprogram())
+    return false;
+
+  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+  this->TPC = TPC;
+
+  TRI = MF.getSubtarget().getRegisterInfo();
+  TII = MF.getSubtarget().getInstrInfo();
+  TFI = MF.getSubtarget().getFrameLowering();
+  TFI->getCalleeSaves(MF, CalleeSavedRegs);
+  LS.initialize(MF);
+
+  MTracker =
+      new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
+  VTracker = nullptr;
+  TTracker = nullptr;
+
+  SmallVector<MLocTransferMap, 32> MLocTransfer;
+  SmallVector<VLocTracker, 8> vlocs;
+  LiveInsT SavedLiveIns;
+
+  int MaxNumBlocks = -1;
+  for (auto &MBB : MF)
+    MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
+  assert(MaxNumBlocks >= 0);
+  ++MaxNumBlocks;
+
+  MLocTransfer.resize(MaxNumBlocks);
+  vlocs.resize(MaxNumBlocks);
+  SavedLiveIns.resize(MaxNumBlocks);
+
+  initialSetup(MF);
+
+  produceTransferFunctions(MF, MLocTransfer, MaxNumBlocks, vlocs);
+
+  // Allocate and initialize two array-of-arrays for the live-in and live-out
+  // machine values. The outer dimension is the block number; while the inner
+  // dimension is a LocIdx from MLocTracker.
+  ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
+  ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
+  unsigned NumLocs = MTracker->getNumLocs();
+  for (int i = 0; i < MaxNumBlocks; ++i) {
+    MOutLocs[i] = new ValueIDNum[NumLocs];
+    MInLocs[i] = new ValueIDNum[NumLocs];
+  }
+
+  // Solve the machine value dataflow problem using the MLocTransfer function,
+  // storing the computed live-ins / live-outs into the array-of-arrays. We use
+  // both live-ins and live-outs for decision making in the variable value
+  // dataflow problem.
+  mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
+
+  // Number all variables in the order that they appear, to be used as a stable
+  // insertion order later.
+  DenseMap<DebugVariable, unsigned> AllVarsNumbering;
+
+  // Map from one LexicalScope to all the variables in that scope.
+  DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
+
+  // Map from One lexical scope to all blocks in that scope.
+  DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
+      ScopeToBlocks;
+
+  // Store a DILocation that describes a scope.
+  DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
+
+  // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
+  // the order is unimportant, it just has to be stable.
+  for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
+    auto *MBB = OrderToBB[I];
+    auto *VTracker = &vlocs[MBB->getNumber()];
+    // Collect each variable with a DBG_VALUE in this block.
+    for (auto &idx : VTracker->Vars) {
+      const auto &Var = idx.first;
+      const DILocation *ScopeLoc = VTracker->Scopes[Var];
+      assert(ScopeLoc != nullptr);
+      auto *Scope = LS.findLexicalScope(ScopeLoc);
+
+      // No insts in scope -> shouldn't have been recorded.
+      assert(Scope != nullptr);
+
+      AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
+      ScopeToVars[Scope].insert(Var);
+      ScopeToBlocks[Scope].insert(VTracker->MBB);
+      ScopeToDILocation[Scope] = ScopeLoc;
+    }
+  }
+
+  // OK. Iterate over scopes: there might be something to be said for
+  // ordering them by size/locality, but that's for the future. For each scope,
+  // solve the variable value problem, producing a map of variables to values
+  // in SavedLiveIns.
+  for (auto &P : ScopeToVars) {
+    vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
+                 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
+                 vlocs);
+  }
+
+  // Using the computed value locations and variable values for each block,
+  // create the DBG_VALUE instructions representing the extended variable
+  // locations.
+  emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);
+
+  for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
+    delete[] MOutLocs[Idx];
+    delete[] MInLocs[Idx];
+  }
+  delete[] MOutLocs;
+  delete[] MInLocs;
+
+  // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
+  bool Changed = TTracker->Transfers.size() != 0;
+
+  delete MTracker;
+  VTracker = nullptr;
+  TTracker = nullptr;
+
+  ArtificialBlocks.clear();
+  OrderToBB.clear();
+  BBToOrder.clear();
+  BBNumToRPO.clear();
+
+  return Changed;
+}
+
+LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
+  return new InstrRefBasedLDV();
+}

diff  --git a/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h b/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h
index 3926721a7931..6b05bc68d74d 100644
--- a/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h
+++ b/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h
@@ -28,4 +28,5 @@ class LDVImpl {
 
 // Factory functions for LiveDebugValues implementations.
 extern LDVImpl *makeVarLocBasedLiveDebugValues();
+extern LDVImpl *makeInstrRefBasedLiveDebugValues();
 } // namespace llvm


        


More information about the llvm-commits mailing list