[llvm] 83080a2 - [llvm] Native size estimator for training -Oz inliner
Mircea Trofin via llvm-commits
llvm-commits at lists.llvm.org
Mon Jul 13 10:14:15 PDT 2020
Author: Mircea Trofin
Date: 2020-07-13T10:13:56-07:00
New Revision: 83080a294ad7d145d758821bcf4354ad0cb7d299
URL: https://github.com/llvm/llvm-project/commit/83080a294ad7d145d758821bcf4354ad0cb7d299
DIFF: https://github.com/llvm/llvm-project/commit/83080a294ad7d145d758821bcf4354ad0cb7d299.diff
LOG: [llvm] Native size estimator for training -Oz inliner
Summary:
This is an experimental ML-based native size estimator, necessary for
computing partial rewards during -Oz inliner policy training. Data
extraction for model training will be provided in a separate patch.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: davidxl, jdoerfert
Subscribers: mgorny, hiraditya, mgrang, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82817
Added:
llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h
llvm/include/llvm/Analysis/Utils/TFUtils.h
llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
llvm/lib/Analysis/TFUtils.cpp
llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp
llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt
llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.data-00000-of-00001
llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.index
llvm/unittests/Analysis/TFUtilsTest.cpp
Modified:
llvm/CMakeLists.txt
llvm/lib/Analysis/CMakeLists.txt
llvm/lib/Passes/PassBuilder.cpp
llvm/lib/Passes/PassRegistry.def
llvm/unittests/Analysis/CMakeLists.txt
Removed:
################################################################################
diff --git a/llvm/CMakeLists.txt b/llvm/CMakeLists.txt
index de2887b64c2a..4e14e61fcacd 100644
--- a/llvm/CMakeLists.txt
+++ b/llvm/CMakeLists.txt
@@ -981,6 +981,18 @@ if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
endif()
+set(TENSORFLOW_C_LIB_PATH "" CACHE PATH "Path to TensorFlow C library install")
+find_library(tensorflow_c_api tensorflow PATHS ${TENSORFLOW_C_LIB_PATH}/lib)
+
+# Similar to the above Tensorflow dependency, please refer to the same script.
+# In this case, the latest C API library is available for download from
+# https://www.tensorflow.org/install/lang_c
+if (tensorflow_c_api)
+ set(LLVM_HAVE_TF_API "ON" CACHE BOOL "Full Tensorflow API available")
+ add_definitions("-DLLVM_HAVE_TF_API")
+ include_directories(${TENSORFLOW_C_LIB_PATH}/include)
+endif()
+
# Put this before tblgen. Else we have a circular dependence.
add_subdirectory(lib/Demangle)
add_subdirectory(lib/Support)
diff --git a/llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h b/llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h
new file mode 100644
index 000000000000..29a6f5914674
--- /dev/null
+++ b/llvm/include/llvm/Analysis/InlineSizeEstimatorAnalysis.h
@@ -0,0 +1,35 @@
+//===- InlineSizeEstimatorAnalysis.h - ML size estimator --------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+
+#ifndef LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
+#define LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
+
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+class Function;
+
+class TFModelEvaluator;
+class InlineSizeEstimatorAnalysis
+ : public AnalysisInfoMixin<InlineSizeEstimatorAnalysis> {
+public:
+ InlineSizeEstimatorAnalysis();
+ InlineSizeEstimatorAnalysis(InlineSizeEstimatorAnalysis &&);
+ ~InlineSizeEstimatorAnalysis();
+
+ static AnalysisKey Key;
+ using Result = Optional<size_t>;
+ Result run(const Function &F, FunctionAnalysisManager &FAM);
+ static bool isEvaluatorRequested();
+
+private:
+ std::unique_ptr<TFModelEvaluator> Evaluator;
+};
+} // namespace llvm
+#endif // LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
\ No newline at end of file
diff --git a/llvm/include/llvm/Analysis/Utils/TFUtils.h b/llvm/include/llvm/Analysis/Utils/TFUtils.h
new file mode 100644
index 000000000000..a1d7108b149f
--- /dev/null
+++ b/llvm/include/llvm/Analysis/Utils/TFUtils.h
@@ -0,0 +1,136 @@
+//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+#ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
+#define LLVM_ANALYSIS_UTILS_TFUTILS_H
+
+#include "tensorflow/c/c_api.h"
+#include "llvm/IR/LLVMContext.h"
+
+#include <memory>
+#include <vector>
+
+namespace llvm {
+
+/// Load a SavedModel, find the given inputs and outputs, and setup storage
+/// for input tensors. The user is responsible for correctly dimensioning the
+/// input tensors and setting their values before calling evaluate().
+/// To initialize:
+/// - construct the object
+/// - initialize the input tensors using initInput. Indices must correspond to
+/// indices in the InputNames used at construction.
+/// To use:
+/// - set input values by using getInput to get each input tensor, and then
+/// setting internal scalars, for all dimensions (tensors are row-major:
+/// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
+/// - prepare an output vector of TF_Output* type, with the correct number of
+/// outputs (i.e. same as OutputNames). Initialize the vector with nullptr
+/// values.
+/// - call evaluate. The input tensors' values are not consumed after this, and
+/// may still be read.
+/// - use the outputs in the output vector
+/// - deallocate each output tensor in the output vector, using TF_DeleteTensor.
+class TFModelEvaluator final {
+public:
+ /// The result of a model evaluation. Handles the lifetime of the output
+ /// TF_Tensor objects, which means that their values need to be used before
+ /// the EvaluationResult's dtor is called.
+ class EvaluationResult {
+ public:
+ ~EvaluationResult() {
+ for (auto *P : Output)
+ if (P)
+ TF_DeleteTensor(P);
+ }
+
+ EvaluationResult(const EvaluationResult &) = delete;
+ EvaluationResult(EvaluationResult &&Other)
+ : OutputSize(Other.OutputSize), Output(std::move(Other.Output)) {
+ Other.Output.clear();
+ };
+
+ /// Get a pointer to the first element of the tensor at Index.
+ template <typename T> T *getTensorValue(size_t Index) {
+ return static_cast<T *>(TF_TensorData(Output[Index]));
+ }
+
+ private:
+ friend class TFModelEvaluator;
+ EvaluationResult(size_t OutputSize)
+ : OutputSize(OutputSize), Output(OutputSize){};
+
+ const size_t OutputSize;
+ std::vector<TF_Tensor *> Output;
+ };
+
+ using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
+ using TFSessionOptionsPtr =
+ std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
+ using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
+
+ TFModelEvaluator(StringRef SavedModelPath,
+ const std::vector<std::string> &InputNames,
+ const std::vector<std::string> &OutputNames,
+ const char *Tags = "serve");
+ ~TFModelEvaluator();
+ TFModelEvaluator(const TFModelEvaluator &) = delete;
+ TFModelEvaluator(TFModelEvaluator &&) = delete;
+
+ /// Evaluate the model, assuming it is valid. Returns None if the evaluation
+ /// fails or the model is invalid, or an EvaluationResult otherwise. The
+ /// inputs are assumed to have been already provided via getInput(). When
+ /// returning None, it also marks the object invalid. Pass an Output vector
+ /// with the same size as OutputNames, but with nullptr values. evaluate()
+ /// will populate it with tensors, matching in index the corresponding
+ /// OutputNames. The caller is responsible for the deallocation of those
+ /// tensors, using TF_DeleteTensor.
+ Optional<EvaluationResult> evaluate();
+
+ /// Provides access to the input vector. It is already dimensioned correctly,
+ /// but the values need to be allocated by the user.
+ std::vector<TF_Tensor *> &getInput() { return Input; }
+
+ /// Returns true if the tensorflow model was loaded successfully, false
+ /// otherwise.
+ bool isValid() const { return !!Session; }
+
+ /// Initialize the input at Index as a tensor of the given type and dimensions
+ void initInput(int Index, TF_DataType Type,
+ const std::vector<int64_t> &Dimensions);
+
+private:
+ /// The objects necessary for carrying out an evaluation of the SavedModel.
+ /// They are expensive to set up, and we maintain them accross all the
+ /// evaluations of the model.
+ TF_Session *Session = nullptr;
+ TFGraphPtr Graph;
+ TFSessionOptionsPtr Options;
+
+ /// The specification of the input nodes.
+ std::vector<TF_Output> InputFeed;
+
+ /// The input tensors. They must match by index of the corresponding InputFeed
+ /// value. We set up the tensors once and just mutate theirs scalars before
+ /// each evaluation. The input tensors keep their value after an evaluation.
+ std::vector<TF_Tensor *> Input;
+
+ /// The specification of the output nodes. When evaluating, the tensors in the
+ /// output tensor vector must match by index the corresponding element in the
+ /// OutputFeed.
+ std::vector<TF_Output> OutputFeed;
+
+ /// Reusable utility for deleting the session.
+ void deleteSession();
+
+ /// Reusable utility for ensuring we can bind the requested Name to a node in
+ /// the SavedModel Graph.
+ bool checkReportAndReset(const TF_Output &Output, StringRef Name);
+};
+} // namespace llvm
+
+#endif // LLVM_ANALYSIS_UTILS_TFUTILS_H
\ No newline at end of file
diff --git a/llvm/lib/Analysis/CMakeLists.txt b/llvm/lib/Analysis/CMakeLists.txt
index a317579ecc83..703623396d96 100644
--- a/llvm/lib/Analysis/CMakeLists.txt
+++ b/llvm/lib/Analysis/CMakeLists.txt
@@ -1,17 +1,35 @@
set(CommonMLSources MLInlineAdvisor.cpp)
set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
+set(DevelopmentModeMLSources TFUtils.cpp)
-if (DEFINED LLVM_HAVE_TF_AOT)
- include(TensorFlowCompile)
- tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
- list(APPEND ReleaseModeMLSources
- $<TARGET_OBJECTS:tf_xla_runtime_objects>
- ${GENERATED_OBJS}
- )
- set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
+if (DEFINED LLVM_HAVE_TF_AOT OR DEFINED LLVM_HAVE_TF_API)
+ set(MLPolicySources ${CommonMLSources})
+ if (DEFINED LLVM_HAVE_TF_AOT)
+ include(TensorFlowCompile)
+ tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
+ list(APPEND ReleaseModeMLSources
+ $<TARGET_OBJECTS:tf_xla_runtime_objects>
+ ${GENERATED_OBJS}
+ )
+ LIST(APPEND MLPolicySources ${ReleaseModeMLSources})
+ else()
+ LIST(APPEND LLVM_OPTIONAL_SOURCES ${ReleaseModeMLSources})
+ endif()
+
+ if (DEFINED LLVM_HAVE_TF_API)
+ LIST(APPEND MLPolicySources ${DevelopmentModeMLSources})
+ LIST(APPEND MLLinkDeps ${tensorflow_c_api})
+ else()
+ LIST(APPEND LLVM_OPTIONAL_SOURCES ${DevelopmentModeMLSources})
+ endif()
else()
- set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
+ LIST(APPEND LLVM_OPTIONAL_SOURCES
+ ${CommonMLSources}
+ ${DevelopmentModeMLSources}
+ ${ReleaseModeMLSources}
+ )
endif()
+
add_llvm_component_library(LLVMAnalysis
AliasAnalysis.cpp
@@ -57,6 +75,7 @@ add_llvm_component_library(LLVMAnalysis
InlineCost.cpp
InlineAdvisor.cpp
InlineFeaturesAnalysis.cpp
+ InlineSizeEstimatorAnalysis.cpp
InstCount.cpp
InstructionPrecedenceTracking.cpp
InstructionSimplify.cpp
@@ -124,4 +143,7 @@ add_llvm_component_library(LLVMAnalysis
DEPENDS
intrinsics_gen
+
+ LINK_LIBS
+ ${MLLinkDeps}
)
diff --git a/llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp b/llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
new file mode 100644
index 000000000000..1d1952ae6cbb
--- /dev/null
+++ b/llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
@@ -0,0 +1,299 @@
+//===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements feature and label extraction for offline supervised learning
+// of a IR to native size model.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
+
+#ifdef LLVM_HAVE_TF_API
+#include "llvm/Analysis/Utils/TFUtils.h"
+#endif
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm>
+#include <deque>
+
+using namespace llvm;
+
+AnalysisKey InlineSizeEstimatorAnalysis::Key;
+
+#define DEBUG_TYPE "inline-size-estimator"
+
+#ifdef LLVM_HAVE_TF_API
+cl::opt<std::string> TFIR2NativeModelPath(
+ "ml-inliner-ir2native-model", cl::Hidden,
+ cl::desc("Path to saved model evaluating native size from IR."));
+
+namespace {
+unsigned getMaxInstructionID() {
+#define LAST_OTHER_INST(NR) return NR;
+#include "llvm/IR/Instruction.def"
+}
+
+class IRToNativeSizeLearning {
+public:
+ enum class NamedFeatureIndex : size_t {
+ InitialSize,
+ Blocks,
+ Calls,
+ IsLocal,
+ IsLinkOnceODR,
+ IsLinkOnce,
+ Loops,
+ MaxLoopDepth,
+ MaxDomTreeLevel,
+
+ NumNamedFeatures
+ };
+ static const size_t NumNamedFeatures =
+ static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
+ struct FunctionFeatures {
+ static std::vector<std::pair<size_t, size_t>>
+ ImportantInstructionSuccessions;
+ static const size_t FeatureCount;
+
+ std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
+ std::vector<int32_t> InstructionHistogram;
+ std::vector<int32_t> InstructionPairHistogram;
+
+ void fillTensor(int32_t *Ptr) const;
+ int32_t &operator[](NamedFeatureIndex Pos) {
+ return NamedFeatures[static_cast<size_t>(Pos)];
+ }
+ };
+ IRToNativeSizeLearning() = default;
+
+ static FunctionFeatures getFunctionFeatures(Function &F,
+ FunctionAnalysisManager &FAM);
+
+private:
+ /// Sort once the feature tuples.
+ struct SortFeatureTuples {
+ bool IsSorted = false;
+ SortFeatureTuples() {
+ std::sort(FunctionFeatures::ImportantInstructionSuccessions.begin(),
+ FunctionFeatures::ImportantInstructionSuccessions.end());
+ IsSorted = true;
+ }
+ };
+
+ static llvm::ManagedStatic<SortFeatureTuples> TupleSorter;
+
+ static bool ensureSortedTuples() { return TupleSorter->IsSorted; }
+};
+llvm::ManagedStatic<IRToNativeSizeLearning::SortFeatureTuples>
+ IRToNativeSizeLearning::TupleSorter;
+
+// This is a point in time - we determined including these pairs of
+// consecutive instructions (in the IR layout available at inline time) as
+// features improves the model performance. We want to move away from manual
+// feature selection.
+// The vector is given in opcode pairs rather than labels because 1) labels
+// weren't readily available, and 2) the successions were hand - extracted
+std::vector<std::pair<size_t, size_t>>
+ IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions =
+ {{1, 34}, {15, 27}, {53, 53}, {53, 34}, {1, 11}, {32, 2}, {2, 48},
+ {28, 48}, {1, 45}, {49, 32}, {57, 56}, {55, 53}, {1, 28}, {57, 34},
+ {1, 1}, {32, 28}, {32, 15}, {49, 28}, {53, 1}, {2, 53}, {48, 34},
+ {28, 53}, {2, 32}, {1, 40}, {32, 48}, {29, 56}, {56, 32}, {55, 56},
+ {48, 56}, {1, 31}, {33, 34}, {2, 28}, {1, 12}, {55, 1}, {31, 31},
+ {65, 1}, {33, 56}, {32, 32}, {13, 13}, {1, 26}, {13, 26}, {2, 1},
+ {1, 33}, {47, 49}, {64, 1}, {2, 38}, {34, 53}, {48, 2}, {55, 34},
+ {34, 32}, {1, 5}, {56, 13}, {2, 2}, {2, 49}, {33, 2}, {49, 39},
+ {56, 49}, {33, 49}, {32, 39}, {39, 57}, {29, 33}, {31, 34}, {32, 29},
+ {47, 15}, {13, 34}, {2, 33}, {32, 49}, {49, 34}, {56, 33}, {1, 30},
+ {33, 33}, {31, 33}, {2, 29}, {56, 7}, {32, 13}, {2, 55}, {56, 56},
+ {2, 34}, {1, 42}, {34, 49}, {1, 20}, {32, 33}, {1, 25}, {53, 28},
+ {1, 14}, {31, 49}, {28, 2}, {2, 13}, {2, 56}, {1, 32}, {56, 53},
+ {65, 65}, {33, 53}, {64, 64}, {13, 2}, {34, 33}, {1, 4}, {49, 2},
+ {1, 9}, {56, 1}, {33, 1}, {53, 57}, {32, 53}, {13, 56}, {32, 56},
+ {55, 55}, {1, 18}, {49, 56}, {34, 34}, {1, 7}, {56, 64}, {32, 1},
+ {13, 33}, {55, 28}, {49, 33}, {57, 57}, {56, 34}, {34, 56}, {33, 32},
+ {32, 40}, {1, 29}, {53, 2}, {34, 1}, {32, 34}, {49, 49}, {1, 24},
+ {40, 34}, {1, 13}, {38, 34}, {29, 2}, {34, 2}, {1, 39}, {1, 22},
+ {1, 27}, {49, 1}, {1, 8}, {56, 2}};
+
+// We have: 9 calculated features (the features here); 1 feature for each
+// instruction opcode; and 1 feature for each manually-identified sequence.
+// For the latter 2, we build a histogram: we count the number of
+// occurrences of each instruction opcode or succession of instructions,
+// respectively.
+// Note that instruction opcodes start from 1. For convenience, we also have an
+// always 0 feature for the '0' opcode, hence the extra 1.
+const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
+ IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions
+ .size() +
+ getMaxInstructionID() + 1 + IRToNativeSizeLearning::NumNamedFeatures;
+
+size_t getSize(Function &F, TargetTransformInfo &TTI) {
+ size_t Ret = 0;
+ for (auto &BB : F)
+ for (auto &I : BB)
+ Ret += TTI.getInstructionCost(
+ &I, TargetTransformInfo::TargetCostKind::TCK_CodeSize);
+ return Ret;
+}
+
+size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
+ auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
+ return getSize(F, TTI);
+}
+
+unsigned getMaxDominatorTreeDepth(const Function &F,
+ const DominatorTree &Tree) {
+ unsigned Ret = 0;
+ for (auto &BB : F)
+ if (auto *TN = Tree.getNode(&BB))
+ Ret = std::max(Ret, TN->getLevel());
+ return Ret;
+}
+} // namespace
+
+IRToNativeSizeLearning::FunctionFeatures
+IRToNativeSizeLearning::getFunctionFeatures(Function &F,
+ FunctionAnalysisManager &FAM) {
+ assert(ensureSortedTuples() && "expected lazy initialization");
+
+ auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
+ FunctionFeatures FF;
+ size_t InstrCount = getMaxInstructionID() + 1;
+ FF.InstructionHistogram.resize(InstrCount);
+
+ FF.InstructionPairHistogram.resize(
+ FunctionFeatures::ImportantInstructionSuccessions.size());
+
+ auto StartID = 0;
+ auto LastID = StartID;
+ auto getPairIndex = [](size_t a, size_t b) {
+ auto I =
+ std::find(FunctionFeatures::ImportantInstructionSuccessions.begin(),
+ FunctionFeatures::ImportantInstructionSuccessions.end(),
+ std::make_pair(a, b));
+ if (I == FunctionFeatures::ImportantInstructionSuccessions.end())
+ return -1;
+ return static_cast<int>(std::distance(
+ FunctionFeatures::ImportantInstructionSuccessions.begin(), I));
+ };
+
+ // We don't want debug calls, because they'd just add noise.
+ for (auto &BB : F) {
+ for (auto I = BB.instructionsWithoutDebug().begin(),
+ E = BB.instructionsWithoutDebug().end();
+ I != E; ++I) {
+ auto ID = I->getOpcode();
+
+ ++FF.InstructionHistogram[ID];
+ int PairIndex = getPairIndex(LastID, ID);
+ if (PairIndex >= 0)
+ ++FF.InstructionPairHistogram[PairIndex];
+ LastID = ID;
+ if (isa<CallBase>(*I))
+ ++FF[NamedFeatureIndex::Calls];
+ }
+ }
+
+ FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
+ FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
+ FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
+ FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
+ FF[NamedFeatureIndex::Blocks] =
+ std::distance(F.getBasicBlockList().begin(), F.getBasicBlockList().end());
+ auto &LI = FAM.getResult<LoopAnalysis>(F);
+ FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
+ for (auto &L : LI)
+ FF[NamedFeatureIndex::MaxLoopDepth] =
+ std::max(FF[NamedFeatureIndex::MaxLoopDepth],
+ static_cast<int32_t>(L->getLoopDepth()));
+ FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
+ return FF;
+}
+
+void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
+ std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
+ Ptr += NamedFeatures.size();
+ std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
+ Ptr += InstructionHistogram.size();
+ std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
+ Ptr);
+}
+
+bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
+ return !TFIR2NativeModelPath.empty();
+}
+
+InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
+ if (!isEvaluatorRequested()) {
+ return;
+ }
+ std::vector<std::string> InputNames{"serving_default_input_1"};
+ std::vector<std::string> OutputName{"StatefulPartitionedCall"};
+ Evaluator = std::make_unique<TFModelEvaluator>(
+ TFIR2NativeModelPath.getValue().c_str(), InputNames, OutputName);
+ if (!Evaluator || !Evaluator->isValid()) {
+ Evaluator.reset();
+ return;
+ }
+ static const std::vector<int64_t> Dim{
+ 1, static_cast<int64_t>(
+ IRToNativeSizeLearning::FunctionFeatures::FeatureCount)};
+
+ Evaluator->initInput(0, TF_INT32, Dim);
+}
+
+InlineSizeEstimatorAnalysis::Result
+InlineSizeEstimatorAnalysis::run(const Function &F,
+ FunctionAnalysisManager &FAM) {
+ if (!Evaluator)
+ return None;
+ auto Features = IRToNativeSizeLearning::getFunctionFeatures(
+ const_cast<Function &>(F), FAM);
+ int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator->getInput()[0]));
+ Features.fillTensor(V);
+ auto ER = Evaluator->evaluate();
+ if (!ER)
+ return None;
+ float Ret = *ER->getTensorValue<float>(0);
+ if (Ret < 0.0)
+ Ret = 0.0;
+ return static_cast<size_t>(Ret);
+}
+
+InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
+InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
+ InlineSizeEstimatorAnalysis &&Other)
+ : Evaluator(std::move(Other.Evaluator)) {}
+
+#else
+namespace llvm {
+class TFModelEvaluator {};
+} // namespace llvm
+InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {}
+InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
+ InlineSizeEstimatorAnalysis &&) {}
+InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
+InlineSizeEstimatorAnalysis::Result
+InlineSizeEstimatorAnalysis::run(const Function &F,
+ FunctionAnalysisManager &FAM) {
+ return None;
+}
+bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
+#endif
\ No newline at end of file
diff --git a/llvm/lib/Analysis/TFUtils.cpp b/llvm/lib/Analysis/TFUtils.cpp
new file mode 100644
index 000000000000..6cd5b5c9b4ea
--- /dev/null
+++ b/llvm/lib/Analysis/TFUtils.cpp
@@ -0,0 +1,143 @@
+//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements utilities for interfacing with tensorflow C APIs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Utils/TFUtils.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include "tensorflow/c/c_api_experimental.h"
+
+#include <cassert>
+
+using namespace llvm;
+
+namespace {
+
+struct TFInitializer {
+ TFInitializer() {
+ assert(!IsInitialized && "TFInitialized should be called only once");
+ int Argc = 1;
+ const char *Name = "";
+ const char **NamePtr = &Name;
+ TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
+ IsInitialized = true;
+ }
+ bool IsInitialized = false;
+};
+
+llvm::ManagedStatic<TFInitializer> TFLibInitializer;
+
+bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
+
+TFModelEvaluator::TFGraphPtr createTFGraph() {
+ return TFModelEvaluator::TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
+}
+
+TFModelEvaluator::TFStatusPtr createTFStatus() {
+ return TFModelEvaluator::TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
+}
+
+TFModelEvaluator::TFSessionOptionsPtr createTFSessionOptions() {
+ return TFModelEvaluator::TFSessionOptionsPtr(TF_NewSessionOptions(),
+ &TF_DeleteSessionOptions);
+}
+} // namespace
+
+TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
+ const std::vector<std::string> &InputNames,
+ const std::vector<std::string> &OutputNames,
+ const char *Tags)
+ : Graph(createTFGraph()), Options(createTFSessionOptions()),
+ InputFeed(InputNames.size()), Input(InputNames.size()),
+ OutputFeed(OutputNames.size()) {
+ if (!ensureInitTF()) {
+ errs() << "Tensorflow should have been initialized";
+ return;
+ }
+ auto Status = createTFStatus();
+
+ Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
+ SavedModelPath.str().c_str(), &Tags, 1,
+ Graph.get(), nullptr, Status.get());
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
+ errs() << TF_Message(Status.get());
+ deleteSession();
+ }
+ for (size_t I = 0; I < InputNames.size(); ++I) {
+ InputFeed[I] = {
+ TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0};
+ if (!checkReportAndReset(InputFeed[I], InputNames[I]))
+ return;
+ }
+ for (size_t I = 0; I < OutputNames.size(); ++I) {
+ OutputFeed[I] = {
+ TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0};
+ if (!checkReportAndReset(OutputFeed[I], OutputNames[I]))
+ return;
+ }
+}
+
+TFModelEvaluator::~TFModelEvaluator() {
+ for (auto *T : Input) {
+ TF_DeleteTensor(T);
+ }
+ deleteSession();
+}
+
+bool TFModelEvaluator::checkReportAndReset(const TF_Output &Output,
+ StringRef Name) {
+ if (Output.oper)
+ return true;
+ errs() << "Could not find TF_Output named: " + Name;
+ deleteSession();
+ return false;
+}
+
+void TFModelEvaluator::deleteSession() {
+ if (Session == nullptr)
+ return;
+ auto Status = createTFStatus();
+ TF_DeleteSession(Session, Status.get());
+ Session = nullptr;
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
+ errs() << "Could not delete TF session";
+}
+
+Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
+ if (!isValid())
+ return None;
+ EvaluationResult Ret(OutputFeed.size());
+ auto Status = createTFStatus();
+ TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), Input.size(),
+ OutputFeed.data(), Ret.Output.data(), Ret.Output.size(),
+ nullptr, 0, nullptr, Status.get());
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
+ errs() << TF_Message(Status.get());
+ deleteSession();
+ return None;
+ }
+ return Ret;
+}
+
+void TFModelEvaluator::initInput(int Index, TF_DataType Type,
+ const std::vector<int64_t> &Dimensions) {
+ int64_t TotalSize = TF_DataTypeSize(Type);
+ for (auto &D : Dimensions)
+ TotalSize *= D;
+
+ Input[Index] =
+ TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
+ std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
+}
\ No newline at end of file
diff --git a/llvm/lib/Passes/PassBuilder.cpp b/llvm/lib/Passes/PassBuilder.cpp
index 771cdfd17aa5..7f5763467695 100644
--- a/llvm/lib/Passes/PassBuilder.cpp
+++ b/llvm/lib/Passes/PassBuilder.cpp
@@ -35,6 +35,7 @@
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
+#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
diff --git a/llvm/lib/Passes/PassRegistry.def b/llvm/lib/Passes/PassRegistry.def
index eb2b740db561..dfdfc3d05976 100644
--- a/llvm/lib/Passes/PassRegistry.def
+++ b/llvm/lib/Passes/PassRegistry.def
@@ -133,6 +133,7 @@ FUNCTION_ANALYSIS("loops", LoopAnalysis())
FUNCTION_ANALYSIS("lazy-value-info", LazyValueAnalysis())
FUNCTION_ANALYSIS("da", DependenceAnalysis())
FUNCTION_ANALYSIS("inliner-features", InlineFeaturesAnalysis())
+FUNCTION_ANALYSIS("inliner-size-estimator", InlineSizeEstimatorAnalysis())
FUNCTION_ANALYSIS("memdep", MemoryDependenceAnalysis())
FUNCTION_ANALYSIS("memoryssa", MemorySSAAnalysis())
FUNCTION_ANALYSIS("phi-values", PhiValuesAnalysis())
diff --git a/llvm/unittests/Analysis/CMakeLists.txt b/llvm/unittests/Analysis/CMakeLists.txt
index 42f7dd3c0610..59ad444d32fb 100644
--- a/llvm/unittests/Analysis/CMakeLists.txt
+++ b/llvm/unittests/Analysis/CMakeLists.txt
@@ -6,7 +6,13 @@ set(LLVM_LINK_COMPONENTS
TransformUtils
)
-add_llvm_unittest(AnalysisTests
+if (DEFINED LLVM_HAVE_TF_API)
+ LIST(APPEND EXTRA_TESTS TFUtilsTest.cpp)
+else()
+ LIST(APPEND LLVM_OPTIONAL_SOURCES TFUtilsTest.cpp)
+endif()
+
+add_llvm_unittest_with_input_files(AnalysisTests
AliasAnalysisTest.cpp
AliasSetTrackerTest.cpp
AssumeBundleQueriesTest.cpp
@@ -22,6 +28,7 @@ add_llvm_unittest(AnalysisTests
DomTreeUpdaterTest.cpp
GlobalsModRefTest.cpp
InlineFeaturesAnalysisTest.cpp
+ InlineSizeEstimatorAnalysisTest.cpp
IVDescriptorsTest.cpp
LazyCallGraphTest.cpp
LoadsTest.cpp
@@ -40,4 +47,7 @@ add_llvm_unittest(AnalysisTests
ValueLatticeTest.cpp
ValueTrackingTest.cpp
VectorUtilsTest.cpp
+ ${EXTRA_TESTS}
)
+
+ target_link_libraries(AnalysisTests PRIVATE LLVMTestingSupport)
diff --git a/llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp b/llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp
new file mode 100644
index 000000000000..377590be016a
--- /dev/null
+++ b/llvm/unittests/Analysis/InlineSizeEstimatorAnalysisTest.cpp
@@ -0,0 +1,101 @@
+//===- InlineSizeEstimatorAnalysisTest.cpp - test for ir2native -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/AsmParser/Parser.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Testing/Support/SupportHelpers.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+extern const char *TestMainArgv0;
+extern cl::opt<std::string> TFIR2NativeModelPath;
+
+#if LLVM_HAVE_TF_API
+static std::string getModelPath() {
+ SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
+ llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
+ return std::string(InputsDir);
+}
+#endif
+
+static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
+ SMDiagnostic Err;
+ std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
+ if (!Mod)
+ Err.print("MLAnalysisTests", errs());
+ return Mod;
+}
+
+static FunctionAnalysisManager buildFAM() {
+ FunctionAnalysisManager FAM;
+ FAM.registerPass([&] { return DominatorTreeAnalysis(); });
+ FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
+ FAM.registerPass([&] { return TargetIRAnalysis(); });
+ FAM.registerPass([&] { return LoopAnalysis(); });
+ return FAM;
+}
+
+// Test model loading and evaluation.
+TEST(InlineSizeEstimatorAnalysis, SizeIsValidTest) {
+ LLVMContext C;
+ std::unique_ptr<Module> M = parseIR(C,
+ R"IR(
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-pc-linux-gnu"
+
+declare i32 @f1(i32)
+declare i32 @f2(i32)
+
+define i32 @branches(i32) {
+ %cond = icmp slt i32 %0, 3
+ br i1 %cond, label %then, label %else
+
+then:
+ %ret.1 = call i32 @f1(i32 %0)
+ br label %last.block
+
+else:
+ %ret.2 = call i32 @f2(i32 %0)
+ br label %last.block
+
+last.block:
+ %ret = phi i32 [%ret.1, %then], [%ret.2, %else]
+ ret i32 %ret
+}
+
+define internal i32 @top() {
+ %1 = call i32 @branches(i32 2)
+ %2 = call i32 @f1(i32 %1)
+ ret i32 %2
+}
+)IR");
+
+ FunctionAnalysisManager FAM = buildFAM();
+#if LLVM_HAVE_TF_API
+ TFIR2NativeModelPath = getModelPath();
+#endif
+
+ InlineSizeEstimatorAnalysis FA;
+ auto SizeEstimate = FA.run(*M->getFunction("branches"), FAM);
+#if LLVM_HAVE_TF_API
+ EXPECT_GT(*SizeEstimate, 0);
+#else
+ EXPECT_FALSE(SizeEstimate.hasValue());
+#endif
+}
diff --git a/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt
new file mode 100644
index 000000000000..6efdad51083d
--- /dev/null
+++ b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/saved_model.pbtxt
@@ -0,0 +1,10596 @@
+saved_model_schema_version: 1
+meta_graphs {
+ meta_info_def {
+ stripped_op_list {
+ op {
+ name: "Const"
+ output_arg {
+ name: "output"
+ type_attr: "dtype"
+ }
+ attr {
+ name: "value"
+ type: "tensor"
+ }
+ attr {
+ name: "dtype"
+ type: "type"
+ }
+ }
+ op {
+ name: "NoOp"
+ }
+ op {
+ name: "Placeholder"
+ output_arg {
+ name: "output"
+ type_attr: "dtype"
+ }
+ attr {
+ name: "dtype"
+ type: "type"
+ }
+ attr {
+ name: "shape"
+ type: "shape"
+ default_value {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ op {
+ name: "ReadVariableOp"
+ input_arg {
+ name: "resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "value"
+ type_attr: "dtype"
+ }
+ attr {
+ name: "dtype"
+ type: "type"
+ }
+ is_stateful: true
+ }
+ op {
+ name: "StatefulPartitionedCall"
+ input_arg {
+ name: "args"
+ type_list_attr: "Tin"
+ }
+ output_arg {
+ name: "output"
+ type_list_attr: "Tout"
+ }
+ attr {
+ name: "Tin"
+ type: "list(type)"
+ has_minimum: true
+ }
+ attr {
+ name: "Tout"
+ type: "list(type)"
+ has_minimum: true
+ }
+ attr {
+ name: "f"
+ type: "func"
+ }
+ attr {
+ name: "config"
+ type: "string"
+ default_value {
+ s: ""
+ }
+ }
+ attr {
+ name: "config_proto"
+ type: "string"
+ default_value {
+ s: ""
+ }
+ }
+ attr {
+ name: "executor_type"
+ type: "string"
+ default_value {
+ s: ""
+ }
+ }
+ is_stateful: true
+ }
+ op {
+ name: "VarHandleOp"
+ output_arg {
+ name: "resource"
+ type: DT_RESOURCE
+ }
+ attr {
+ name: "container"
+ type: "string"
+ default_value {
+ s: ""
+ }
+ }
+ attr {
+ name: "shared_name"
+ type: "string"
+ default_value {
+ s: ""
+ }
+ }
+ attr {
+ name: "dtype"
+ type: "type"
+ }
+ attr {
+ name: "shape"
+ type: "shape"
+ }
+ is_stateful: true
+ }
+ }
+ tags: "serve"
+ tensorflow_version: "1.15.0"
+ tensorflow_git_version: "unknown"
+ stripped_default_attrs: true
+ }
+ graph_def {
+ node {
+ name: "dense/kernel"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "dense/kernel"
+ }
+ }
+ }
+ node {
+ name: "dense/kernel/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense/kernel"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "dense/bias"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "dense/bias"
+ }
+ }
+ }
+ node {
+ name: "dense/bias/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense/bias"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "dense_1/kernel"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "dense_1/kernel"
+ }
+ }
+ }
+ node {
+ name: "dense_1/kernel/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1/kernel"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "dense_1/bias"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "dense_1/bias"
+ }
+ }
+ }
+ node {
+ name: "dense_1/bias/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1/bias"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "total"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "total"
+ }
+ }
+ }
+ node {
+ name: "total/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "total"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "count"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "count"
+ }
+ }
+ }
+ node {
+ name: "count/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "count"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "total_1"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "total_1"
+ }
+ }
+ }
+ node {
+ name: "total_1/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "total_1"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "count_1"
+ op: "VarHandleOp"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ }
+ }
+ }
+ attr {
+ key: "shared_name"
+ value {
+ s: "count_1"
+ }
+ }
+ }
+ node {
+ name: "count_1/Read/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "count_1"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ }
+ node {
+ name: "NoOp"
+ op: "NoOp"
+ }
+ node {
+ name: "Const"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ }
+ string_val: "\n\277\001\n\030\010\001\022\024layer_with_weights-0\n\013\010\001\022\007layer-0\n\030\010\002\022\024layer_with_weights-1\n\013\010\002\022\007layer-1\n\r\010\003\022\toptimizer\n\031\010\004\022\025regularization_losses\n\r\010\005\022\tvariables\n\027\010\006\022\023trainable_variables\n\r\010\007\022\tkeras_api\n\016\010\010\022\nsignatures\nh\n\n\010\t\022\006kernel\n\010\010\n\022\004bias\n\031\010\013\022\025regularization_losses\n\r\010\014\022\tvariables\n\027\010\r\022\023trainable_variables\n\r\010\016\022\tkeras_api\nh\n\n\010\017\022\006kernel\n\010\010\020\022\004bias\n\031\010\021\022\025regularization_losses\n\r\010\022\022\tvariables\n\027\010\023\022\023trainable_variables\n\r\010\024\022\tkeras_api\n\000\n\000\n\034\n\005\010\t\022\0010\n\005\010\n\022\0011\n\005\010\017\022\0012\n\005\010\020\022\0013\n\034\n\005\010\t\022\0010\n\005\010\n\022\0011\n\005\010\017\022\0012\n\005\010\020\022\0013\n\255\001\n\n\010\025\022\006layers\n\037\010\026\022\033layer_regularization_losses\n\033\010\027\022\027non_trainable_variables\n\021\010\030\022\rlayer_metrics\n\031\010\004\022\025regularization_losses\n\013\010\031\022\007metrics\n\r\010\005\022\tvariables\n\027\010\006\022\023trainable_variables\n\000\nX\022V\n\016VARIABLE_VALUE\022\014dense/kernel\0326layer_with_weights-0/kernel/.ATTRIBUTES/VARIABLE_VALUE\nT\022R\n\016VARIABLE_VALUE\022\ndense/bias\0324layer_with_weights-0/bias/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\016\n\005\010\t\022\0010\n\005\010\n\022\0011\n\016\n\005\010\t\022\0010\n\005\010\n\022\0011\n\255\001\n\n\010\032\022\006layers\n\037\010\033\022\033layer_regularization_losses\n\033\010\034\022\027non_trainable_variables\n\021\010\035\022\rlayer_metrics\n\031\010\013\022\025regularization_losses\n\013\010\036\022\007metrics\n\r\010\014\022\tvariables\n\027\010\r\022\023trainable_variables\nZ\022X\n\016VARIABLE_VALUE\022\016dense_1/kernel\0326layer_with_weights-1/kernel/.ATTRIBUTES/VARIABLE_VALUE\nV\022T\n\016VARIABLE_VALUE\022\014dense_1/bias\0324layer_with_weights-1/bias/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\016\n\005\010\017\022\0010\n\005\010\020\022\0011\n\016\n\005\010\017\022\0010\n\005\010\020\022\0011\n\255\001\n\n\010\037\022\006layers\n\037\010 \022\033layer_regularization_losses\n\033\010!\022\027non_trainable_variables\n\021\010\"\022\rlayer_metrics\n\031\010\021\022\025regularization_losses\n\013\010#\022\007metrics\n\r\010\022\022\tvariables\n\027\010\023\022\023trainable_variables\n\016\n\005\010\001\022\0010\n\005\010\002\022\0011\n\000\n\000\n\000\n\016\n\005\010$\022\0010\n\005\010%\022\0011\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n4\n\t\010&\022\005total\n\t\010\'\022\005count\n\r\010(\022\tvariables\n\r\010)\022\tkeras_api\nD\n\t\010*\022\005total\n\t\010+\022\005count\n\016\010,\022\n_fn_kwargs\n\r\010-\022\tvariables\n\r\010.\022\tkeras_api\nO\022M\n\016VARIABLE_VALUE\022\005total\0324keras_api/metrics/0/total/.ATTRIBUTES/VARIABLE_VALUE\nO\022M\n\016VARIABLE_VALUE\022\005count\0324keras_api/metrics/0/count/.ATTRIBUTES/VARIABLE_VALUE\n\016\n\005\010&\022\0010\n\005\010\'\022\0011\n\017\n\r\010(\022\tvariables\nQ\022O\n\016VARIABLE_VALUE\022\007total_1\0324keras_api/metrics/1/total/.ATTRIBUTES/VARIABLE_VALUE\nQ\022O\n\016VARIABLE_VALUE\022\007count_1\0324keras_api/metrics/1/count/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\016\n\005\010*\022\0010\n\005\010+\022\0011\n\017\n\r\010-\022\tvariables"
+ }
+ }
+ }
+ }
+ node {
+ name: "serving_default_input_1"
+ op: "Placeholder"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ node {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "serving_default_input_1"
+ input: "dense/kernel"
+ input: "dense/bias"
+ input: "dense_1/kernel"
+ input: "dense_1/bias"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_signature_wrapper_6671"
+ }
+ }
+ }
+ }
+ node {
+ name: "saver_filename"
+ op: "Placeholder"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "shape"
+ value {
+ shape {
+ }
+ }
+ }
+ }
+ node {
+ name: "StatefulPartitionedCall_1"
+ op: "StatefulPartitionedCall"
+ input: "saver_filename"
+ input: "dense/kernel/Read/ReadVariableOp"
+ input: "dense/bias/Read/ReadVariableOp"
+ input: "dense_1/kernel/Read/ReadVariableOp"
+ input: "dense_1/bias/Read/ReadVariableOp"
+ input: "total/Read/ReadVariableOp"
+ input: "count/Read/ReadVariableOp"
+ input: "total_1/Read/ReadVariableOp"
+ input: "count_1/Read/ReadVariableOp"
+ input: "Const"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_STRING
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_STRING
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_STRING
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference__traced_save_6824"
+ }
+ }
+ }
+ }
+ node {
+ name: "StatefulPartitionedCall_2"
+ op: "StatefulPartitionedCall"
+ input: "saver_filename"
+ input: "dense/kernel"
+ input: "dense/bias"
+ input: "dense_1/kernel"
+ input: "dense_1/bias"
+ input: "total"
+ input: "count"
+ input: "total_1"
+ input: "count_1"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_STRING
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_STRING
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference__traced_restore_6860"
+ }
+ }
+ }
+ }
+ library {
+ function {
+ signature {
+ name: "__inference__traced_restore_6860"
+ input_arg {
+ name: "file_prefix"
+ type: DT_STRING
+ }
+ input_arg {
+ name: "assignvariableop_dense_kernel"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_1_dense_bias"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_2_dense_1_kernel"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_3_dense_1_bias"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_4_total"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_5_count"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_6_total_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "assignvariableop_7_count_1"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity_9"
+ type: DT_STRING
+ }
+ is_stateful: true
+ control_output: "AssignVariableOp"
+ control_output: "AssignVariableOp_1"
+ control_output: "AssignVariableOp_2"
+ control_output: "AssignVariableOp_3"
+ control_output: "AssignVariableOp_4"
+ control_output: "AssignVariableOp_5"
+ control_output: "AssignVariableOp_6"
+ control_output: "AssignVariableOp_7"
+ control_output: "RestoreV2"
+ control_output: "RestoreV2_1"
+ }
+ node_def {
+ name: "RestoreV2/tensor_names"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 8
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 8
+ }
+ }
+ string_val: "layer_with_weights-0/kernel/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-0/bias/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-1/kernel/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-1/bias/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/0/total/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/0/count/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/1/total/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/1/count/.ATTRIBUTES/VARIABLE_VALUE"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2/tensor_names"
+ }
+ }
+ node_def {
+ name: "RestoreV2/shape_and_slices"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 8
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 8
+ }
+ }
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2/shape_and_slices"
+ }
+ }
+ node_def {
+ name: "RestoreV2"
+ op: "RestoreV2"
+ input: "file_prefix"
+ input: "RestoreV2/tensor_names:output:0"
+ input: "RestoreV2/shape_and_slices:output:0"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtypes"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "RestoreV2:tensors:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp"
+ op: "AssignVariableOp"
+ input: "assignvariableop_dense_kernel"
+ input: "Identity:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp"
+ }
+ }
+ node_def {
+ name: "Identity_1"
+ op: "Identity"
+ input: "RestoreV2:tensors:1"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_1"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_1"
+ op: "AssignVariableOp"
+ input: "assignvariableop_1_dense_bias"
+ input: "Identity_1:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_1"
+ }
+ }
+ node_def {
+ name: "Identity_2"
+ op: "Identity"
+ input: "RestoreV2:tensors:2"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_2"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_2"
+ op: "AssignVariableOp"
+ input: "assignvariableop_2_dense_1_kernel"
+ input: "Identity_2:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_2"
+ }
+ }
+ node_def {
+ name: "Identity_3"
+ op: "Identity"
+ input: "RestoreV2:tensors:3"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_3"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_3"
+ op: "AssignVariableOp"
+ input: "assignvariableop_3_dense_1_bias"
+ input: "Identity_3:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_3"
+ }
+ }
+ node_def {
+ name: "Identity_4"
+ op: "Identity"
+ input: "RestoreV2:tensors:4"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_4"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_4"
+ op: "AssignVariableOp"
+ input: "assignvariableop_4_total"
+ input: "Identity_4:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_4"
+ }
+ }
+ node_def {
+ name: "Identity_5"
+ op: "Identity"
+ input: "RestoreV2:tensors:5"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_5"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_5"
+ op: "AssignVariableOp"
+ input: "assignvariableop_5_count"
+ input: "Identity_5:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_5"
+ }
+ }
+ node_def {
+ name: "Identity_6"
+ op: "Identity"
+ input: "RestoreV2:tensors:6"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_6"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_6"
+ op: "AssignVariableOp"
+ input: "assignvariableop_6_total_1"
+ input: "Identity_6:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_6"
+ }
+ }
+ node_def {
+ name: "Identity_7"
+ op: "Identity"
+ input: "RestoreV2:tensors:7"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_7"
+ }
+ }
+ node_def {
+ name: "AssignVariableOp_7"
+ op: "AssignVariableOp"
+ input: "assignvariableop_7_count_1"
+ input: "Identity_7:output:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "AssignVariableOp_7"
+ }
+ }
+ node_def {
+ name: "RestoreV2_1/tensor_names"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 1
+ }
+ }
+ string_val: "_CHECKPOINTABLE_OBJECT_GRAPH"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2_1/tensor_names"
+ }
+ }
+ node_def {
+ name: "RestoreV2_1/shape_and_slices"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 1
+ }
+ }
+ string_val: ""
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2_1/shape_and_slices"
+ }
+ }
+ node_def {
+ name: "RestoreV2_1"
+ op: "RestoreV2"
+ input: "file_prefix"
+ input: "RestoreV2_1/tensor_names:output:0"
+ input: "RestoreV2_1/shape_and_slices:output:0"
+ input: "^RestoreV2"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtypes"
+ value {
+ list {
+ type: DT_STRING
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "RestoreV2_1"
+ }
+ }
+ node_def {
+ name: "NoOp"
+ op: "NoOp"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "NoOp"
+ }
+ }
+ node_def {
+ name: "Identity_8"
+ op: "Identity"
+ input: "file_prefix"
+ input: "^AssignVariableOp"
+ input: "^AssignVariableOp_1"
+ input: "^AssignVariableOp_2"
+ input: "^AssignVariableOp_3"
+ input: "^AssignVariableOp_4"
+ input: "^AssignVariableOp_5"
+ input: "^AssignVariableOp_6"
+ input: "^AssignVariableOp_7"
+ input: "^NoOp"
+ device: "/device:CPU:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_8"
+ }
+ }
+ node_def {
+ name: "Identity_9"
+ op: "Identity"
+ input: "Identity_8:output:0"
+ input: "^AssignVariableOp"
+ input: "^AssignVariableOp_1"
+ input: "^AssignVariableOp_2"
+ input: "^AssignVariableOp_3"
+ input: "^AssignVariableOp_4"
+ input: "^AssignVariableOp_5"
+ input: "^AssignVariableOp_6"
+ input: "^AssignVariableOp_7"
+ input: "^RestoreV2"
+ input: "^RestoreV2_1"
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_9"
+ }
+ }
+ ret {
+ key: "identity_9"
+ value: "Identity_9:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "AssignVariableOp"
+ value: "AssignVariableOp"
+ }
+ control_ret {
+ key: "AssignVariableOp_1"
+ value: "AssignVariableOp_1"
+ }
+ control_ret {
+ key: "AssignVariableOp_2"
+ value: "AssignVariableOp_2"
+ }
+ control_ret {
+ key: "AssignVariableOp_3"
+ value: "AssignVariableOp_3"
+ }
+ control_ret {
+ key: "AssignVariableOp_4"
+ value: "AssignVariableOp_4"
+ }
+ control_ret {
+ key: "AssignVariableOp_5"
+ value: "AssignVariableOp_5"
+ }
+ control_ret {
+ key: "AssignVariableOp_6"
+ value: "AssignVariableOp_6"
+ }
+ control_ret {
+ key: "AssignVariableOp_7"
+ value: "AssignVariableOp_7"
+ }
+ control_ret {
+ key: "RestoreV2"
+ value: "RestoreV2"
+ }
+ control_ret {
+ key: "RestoreV2_1"
+ value: "RestoreV2_1"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "file_prefix"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 5
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 6
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 7
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 8
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_fn_6629"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_2"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "input_1"
+ input: "unknown"
+ input: "unknown_0"
+ input: "unknown_1"
+ input: "unknown_2"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6618"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6587"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_6555"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_6557"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6581"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6583"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "dense/StatefulPartitionedCall"
+ control_output: "dense_1/StatefulPartitionedCall"
+ }
+ node_def {
+ name: "dense/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "input_1"
+ input: "dense_6555"
+ input: "dense_6557"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "dense_1/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "dense/StatefulPartitionedCall:output:0"
+ input: "dense_1_6581"
+ input: "dense_1_6583"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/StatefulPartitionedCall:output:0"
+ input: "^dense/StatefulPartitionedCall"
+ input: "^dense_1/StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "dense/StatefulPartitionedCall"
+ value: "dense/StatefulPartitionedCall"
+ }
+ control_ret {
+ key: "dense_1/StatefulPartitionedCall"
+ value: "dense_1/StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6618"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_6607"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_6609"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6612"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6614"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "dense/StatefulPartitionedCall"
+ control_output: "dense_1/StatefulPartitionedCall"
+ }
+ node_def {
+ name: "dense/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "dense_6607"
+ input: "dense_6609"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "dense_1/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "dense/StatefulPartitionedCall:output:0"
+ input: "dense_1_6612"
+ input: "dense_1_6614"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/StatefulPartitionedCall:output:0"
+ input: "^dense/StatefulPartitionedCall"
+ input: "^dense_1/StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "dense/StatefulPartitionedCall"
+ value: "dense/StatefulPartitionedCall"
+ }
+ control_ret {
+ key: "dense_1/StatefulPartitionedCall"
+ value: "dense_1/StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_fn_6656"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_2"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "input_1"
+ input: "unknown"
+ input: "unknown_0"
+ input: "unknown_1"
+ input: "unknown_2"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6645"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6764"
+ input_arg {
+ name: "inputs"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "MatMul"
+ op: "MatMul"
+ input: "inputs"
+ input: "MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul"
+ }
+ }
+ node_def {
+ name: "BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "BiasAdd"
+ op: "BiasAdd"
+ input: "MatMul:product:0"
+ input: "BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_layer_call_fn_6754"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "unknown"
+ input: "unknown_0"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference__traced_save_6824"
+ input_arg {
+ name: "file_prefix"
+ type: DT_STRING
+ }
+ input_arg {
+ name: "savev2_dense_kernel_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_dense_bias_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_dense_1_kernel_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_dense_1_bias_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_total_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_count_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_total_1_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_count_1_read_readvariableop"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "savev2_1_const"
+ type: DT_STRING
+ }
+ output_arg {
+ name: "identity_1"
+ type: DT_STRING
+ }
+ is_stateful: true
+ control_output: "MergeV2Checkpoints"
+ control_output: "SaveV2"
+ control_output: "SaveV2_1"
+ }
+ node_def {
+ name: "StaticRegexFullMatch"
+ op: "StaticRegexFullMatch"
+ input: "file_prefix"
+ device: "/device:CPU:*"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "pattern"
+ value {
+ s: "^s3://.*"
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StaticRegexFullMatch"
+ }
+ }
+ node_def {
+ name: "Const"
+ op: "Const"
+ device: "/device:CPU:*"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ }
+ string_val: ".part"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Const"
+ }
+ }
+ node_def {
+ name: "Const_1"
+ op: "Const"
+ device: "/device:CPU:*"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ }
+ string_val: "_temp_6f1e5fef49bb4c06ace07a8a95dfbb1b/part"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Const_1"
+ }
+ }
+ node_def {
+ name: "Select"
+ op: "Select"
+ input: "StaticRegexFullMatch:output:0"
+ input: "Const:output:0"
+ input: "Const_1:output:0"
+ device: "/device:CPU:*"
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Select"
+ }
+ }
+ node_def {
+ name: "StringJoin"
+ op: "StringJoin"
+ input: "file_prefix"
+ input: "Select:output:0"
+ device: "/device:CPU:*"
+ attr {
+ key: "N"
+ value {
+ i: 2
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StringJoin"
+ }
+ }
+ node_def {
+ name: "num_shards"
+ op: "Const"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_INT32
+ tensor_shape {
+ }
+ int_val: 2
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "num_shards"
+ }
+ }
+ node_def {
+ name: "ShardedFilename/shard"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_INT32
+ tensor_shape {
+ }
+ int_val: 0
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "ShardedFilename/shard"
+ }
+ }
+ node_def {
+ name: "ShardedFilename"
+ op: "ShardedFilename"
+ input: "StringJoin:output:0"
+ input: "ShardedFilename/shard:output:0"
+ input: "num_shards:output:0"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "ShardedFilename"
+ }
+ }
+ node_def {
+ name: "SaveV2/tensor_names"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 8
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 8
+ }
+ }
+ string_val: "layer_with_weights-0/kernel/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-0/bias/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-1/kernel/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "layer_with_weights-1/bias/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/0/total/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/0/count/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/1/total/.ATTRIBUTES/VARIABLE_VALUE"
+ string_val: "keras_api/metrics/1/count/.ATTRIBUTES/VARIABLE_VALUE"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2/tensor_names"
+ }
+ }
+ node_def {
+ name: "SaveV2/shape_and_slices"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 8
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 8
+ }
+ }
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ string_val: ""
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2/shape_and_slices"
+ }
+ }
+ node_def {
+ name: "SaveV2"
+ op: "SaveV2"
+ input: "ShardedFilename:filename:0"
+ input: "SaveV2/tensor_names:output:0"
+ input: "SaveV2/shape_and_slices:output:0"
+ input: "savev2_dense_kernel_read_readvariableop"
+ input: "savev2_dense_bias_read_readvariableop"
+ input: "savev2_dense_1_kernel_read_readvariableop"
+ input: "savev2_dense_1_bias_read_readvariableop"
+ input: "savev2_total_read_readvariableop"
+ input: "savev2_count_read_readvariableop"
+ input: "savev2_total_1_read_readvariableop"
+ input: "savev2_count_1_read_readvariableop"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtypes"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ type: DT_FLOAT
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2"
+ }
+ }
+ node_def {
+ name: "ShardedFilename_1/shard"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_INT32
+ tensor_shape {
+ }
+ int_val: 1
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "ShardedFilename_1/shard"
+ }
+ }
+ node_def {
+ name: "ShardedFilename_1"
+ op: "ShardedFilename"
+ input: "StringJoin:output:0"
+ input: "ShardedFilename_1/shard:output:0"
+ input: "num_shards:output:0"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "ShardedFilename_1"
+ }
+ }
+ node_def {
+ name: "SaveV2_1/tensor_names"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 1
+ }
+ }
+ string_val: "_CHECKPOINTABLE_OBJECT_GRAPH"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2_1/tensor_names"
+ }
+ }
+ node_def {
+ name: "SaveV2_1/shape_and_slices"
+ op: "Const"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "value"
+ value {
+ tensor {
+ dtype: DT_STRING
+ tensor_shape {
+ dim {
+ size: 1
+ }
+ }
+ string_val: ""
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2_1/shape_and_slices"
+ }
+ }
+ node_def {
+ name: "SaveV2_1"
+ op: "SaveV2"
+ input: "ShardedFilename_1:filename:0"
+ input: "SaveV2_1/tensor_names:output:0"
+ input: "SaveV2_1/shape_and_slices:output:0"
+ input: "savev2_1_const"
+ input: "^SaveV2"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "dtypes"
+ value {
+ list {
+ type: DT_STRING
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "SaveV2_1"
+ }
+ }
+ node_def {
+ name: "MergeV2Checkpoints/checkpoint_prefixes"
+ op: "Pack"
+ input: "ShardedFilename:filename:0"
+ input: "ShardedFilename_1:filename:0"
+ input: "^SaveV2"
+ input: "^SaveV2_1"
+ device: "/device:CPU:0"
+ attr {
+ key: "N"
+ value {
+ i: 2
+ }
+ }
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 2
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MergeV2Checkpoints/checkpoint_prefixes"
+ }
+ }
+ node_def {
+ name: "MergeV2Checkpoints"
+ op: "MergeV2Checkpoints"
+ input: "MergeV2Checkpoints/checkpoint_prefixes:output:0"
+ input: "file_prefix"
+ input: "^SaveV2_1"
+ device: "/device:CPU:0"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MergeV2Checkpoints"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "file_prefix"
+ input: "^MergeV2Checkpoints"
+ device: "/device:CPU:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ node_def {
+ name: "Identity_1"
+ op: "Identity"
+ input: "Identity:output:0"
+ input: "^MergeV2Checkpoints"
+ input: "^SaveV2"
+ input: "^SaveV2_1"
+ attr {
+ key: "T"
+ value {
+ type: DT_STRING
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity_1"
+ }
+ }
+ ret {
+ key: "identity_1"
+ value: "Identity_1:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ }
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ shape {
+ }
+ shape {
+ }
+ shape {
+ }
+ shape {
+ }
+ shape {
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "MergeV2Checkpoints"
+ value: "MergeV2Checkpoints"
+ }
+ control_ret {
+ key: "SaveV2"
+ value: "SaveV2"
+ }
+ control_ret {
+ key: "SaveV2_1"
+ value: "SaveV2_1"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "file_prefix"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 5
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 6
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 7
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 8
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 9
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6689"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "dense/Cast"
+ op: "Cast"
+ input: "inputs"
+ attr {
+ key: "DstT"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "SrcT"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/Cast"
+ }
+ }
+ node_def {
+ name: "dense/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense/MatMul"
+ op: "MatMul"
+ input: "dense/Cast:y:0"
+ input: "dense/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/MatMul"
+ }
+ }
+ node_def {
+ name: "dense/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense/BiasAdd"
+ op: "BiasAdd"
+ input: "dense/MatMul:product:0"
+ input: "dense/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/BiasAdd"
+ }
+ }
+ node_def {
+ name: "dense/Relu"
+ op: "Relu"
+ input: "dense/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/Relu"
+ }
+ }
+ node_def {
+ name: "dense_1/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense_1/MatMul"
+ op: "MatMul"
+ input: "dense/Relu:activations:0"
+ input: "dense_1/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/MatMul"
+ }
+ }
+ node_def {
+ name: "dense_1/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense_1/BiasAdd"
+ op: "BiasAdd"
+ input: "dense_1/MatMul:product:0"
+ input: "dense_1/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/BiasAdd"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6745"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "Cast"
+ op: "Cast"
+ input: "inputs"
+ attr {
+ key: "DstT"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "SrcT"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Cast"
+ }
+ }
+ node_def {
+ name: "MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "MatMul"
+ op: "MatMul"
+ input: "Cast:y:0"
+ input: "MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul"
+ }
+ }
+ node_def {
+ name: "BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "BiasAdd"
+ op: "BiasAdd"
+ input: "MatMul:product:0"
+ input: "BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd"
+ }
+ }
+ node_def {
+ name: "Relu"
+ op: "Relu"
+ input: "BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Relu"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "Relu:activations:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_1_layer_call_fn_6773"
+ input_arg {
+ name: "inputs"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "unknown"
+ input: "unknown_0"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference__wrapped_model_6528"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "sequential_dense_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "sequential_dense_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "sequential_dense_1_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "sequential_dense_1_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "sequential/dense/Cast"
+ op: "Cast"
+ input: "input_1"
+ attr {
+ key: "DstT"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "SrcT"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/Cast"
+ }
+ }
+ node_def {
+ name: "sequential/dense/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "sequential_dense_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "sequential/dense/MatMul"
+ op: "MatMul"
+ input: "sequential/dense/Cast:y:0"
+ input: "sequential/dense/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/MatMul"
+ }
+ }
+ node_def {
+ name: "sequential/dense/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "sequential_dense_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "sequential/dense/BiasAdd"
+ op: "BiasAdd"
+ input: "sequential/dense/MatMul:product:0"
+ input: "sequential/dense/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/BiasAdd"
+ }
+ }
+ node_def {
+ name: "sequential/dense/Relu"
+ op: "Relu"
+ input: "sequential/dense/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense/Relu"
+ }
+ }
+ node_def {
+ name: "sequential/dense_1/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "sequential_dense_1_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense_1/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "sequential/dense_1/MatMul"
+ op: "MatMul"
+ input: "sequential/dense/Relu:activations:0"
+ input: "sequential/dense_1/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense_1/MatMul"
+ }
+ }
+ node_def {
+ name: "sequential/dense_1/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "sequential_dense_1_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense_1/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "sequential/dense_1/BiasAdd"
+ op: "BiasAdd"
+ input: "sequential/dense_1/MatMul:product:0"
+ input: "sequential/dense_1/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "sequential/dense_1/BiasAdd"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "sequential/dense_1/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "Cast"
+ op: "Cast"
+ input: "inputs"
+ attr {
+ key: "DstT"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "SrcT"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Cast"
+ }
+ }
+ node_def {
+ name: "MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "MatMul"
+ op: "MatMul"
+ input: "Cast:y:0"
+ input: "MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul"
+ }
+ }
+ node_def {
+ name: "BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "BiasAdd"
+ op: "BiasAdd"
+ input: "MatMul:product:0"
+ input: "BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd"
+ }
+ }
+ node_def {
+ name: "Relu"
+ op: "Relu"
+ input: "BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Relu"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "Relu:activations:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6601"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_6590"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_6592"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6595"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6597"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "dense/StatefulPartitionedCall"
+ control_output: "dense_1/StatefulPartitionedCall"
+ }
+ node_def {
+ name: "dense/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "input_1"
+ input: "dense_6590"
+ input: "dense_6592"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "dense_1/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "dense/StatefulPartitionedCall:output:0"
+ input: "dense_1_6595"
+ input: "dense_1_6597"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/StatefulPartitionedCall:output:0"
+ input: "^dense/StatefulPartitionedCall"
+ input: "^dense_1/StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "dense/StatefulPartitionedCall"
+ value: "dense/StatefulPartitionedCall"
+ }
+ control_ret {
+ key: "dense_1/StatefulPartitionedCall"
+ value: "dense_1/StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_fn_6733"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_2"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "unknown"
+ input: "unknown_0"
+ input: "unknown_1"
+ input: "unknown_2"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6645"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6645"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_6634"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_6636"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6639"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_6641"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "dense/StatefulPartitionedCall"
+ control_output: "dense_1/StatefulPartitionedCall"
+ }
+ node_def {
+ name: "dense/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "dense_6634"
+ input: "dense_6636"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_layer_call_and_return_conditional_losses_6544"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "dense_1/StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "dense/StatefulPartitionedCall:output:0"
+ input: "dense_1_6639"
+ input: "dense_1_6641"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_FLOAT
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/StatefulPartitionedCall:output:0"
+ input: "^dense/StatefulPartitionedCall"
+ input: "^dense_1/StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "dense/StatefulPartitionedCall"
+ value: "dense/StatefulPartitionedCall"
+ }
+ control_ret {
+ key: "dense_1/StatefulPartitionedCall"
+ value: "dense_1/StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_dense_1_layer_call_and_return_conditional_losses_6570"
+ input_arg {
+ name: "inputs"
+ type: DT_FLOAT
+ }
+ input_arg {
+ name: "matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "MatMul"
+ op: "MatMul"
+ input: "inputs"
+ input: "MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "MatMul"
+ }
+ }
+ node_def {
+ name: "BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "BiasAdd"
+ op: "BiasAdd"
+ input: "MatMul:product:0"
+ input: "BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "BiasAdd"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_signature_wrapper_6671"
+ input_arg {
+ name: "input_1"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_2"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "input_1"
+ input: "unknown"
+ input: "unknown_0"
+ input: "unknown_1"
+ input: "unknown_2"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference__wrapped_model_6528"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "input_1"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_fn_6720"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "unknown"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_0"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_1"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "unknown_2"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ control_output: "StatefulPartitionedCall"
+ }
+ node_def {
+ name: "StatefulPartitionedCall"
+ op: "StatefulPartitionedCall"
+ input: "inputs"
+ input: "unknown"
+ input: "unknown_0"
+ input: "unknown_1"
+ input: "unknown_2"
+ attr {
+ key: "Tin"
+ value {
+ list {
+ type: DT_INT32
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ type: DT_RESOURCE
+ }
+ }
+ }
+ attr {
+ key: "Tout"
+ value {
+ list {
+ type: DT_FLOAT
+ }
+ }
+ }
+ attr {
+ key: "_collective_manager_ids"
+ value {
+ list {
+ }
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_read_only_resource_inputs"
+ value {
+ list {
+ i: 1
+ i: 2
+ i: 3
+ i: 4
+ }
+ }
+ }
+ attr {
+ key: "config_proto"
+ value {
+ s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001"
+ }
+ }
+ attr {
+ key: "f"
+ value {
+ func {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6618"
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "StatefulPartitionedCall"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "StatefulPartitionedCall:output:0"
+ input: "^StatefulPartitionedCall"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ control_ret {
+ key: "StatefulPartitionedCall"
+ value: "StatefulPartitionedCall"
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ function {
+ signature {
+ name: "__inference_sequential_layer_call_and_return_conditional_losses_6707"
+ input_arg {
+ name: "inputs"
+ type: DT_INT32
+ }
+ input_arg {
+ name: "dense_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_matmul_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ input_arg {
+ name: "dense_1_biasadd_readvariableop_resource"
+ type: DT_RESOURCE
+ }
+ output_arg {
+ name: "identity"
+ type: DT_FLOAT
+ }
+ is_stateful: true
+ }
+ node_def {
+ name: "dense/Cast"
+ op: "Cast"
+ input: "inputs"
+ attr {
+ key: "DstT"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "SrcT"
+ value {
+ type: DT_INT32
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/Cast"
+ }
+ }
+ node_def {
+ name: "dense/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense/MatMul"
+ op: "MatMul"
+ input: "dense/Cast:y:0"
+ input: "dense/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/MatMul"
+ }
+ }
+ node_def {
+ name: "dense/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense/BiasAdd"
+ op: "BiasAdd"
+ input: "dense/MatMul:product:0"
+ input: "dense/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/BiasAdd"
+ }
+ }
+ node_def {
+ name: "dense/Relu"
+ op: "Relu"
+ input: "dense/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense/Relu"
+ }
+ }
+ node_def {
+ name: "dense_1/MatMul/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1_matmul_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/MatMul/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense_1/MatMul"
+ op: "MatMul"
+ input: "dense/Relu:activations:0"
+ input: "dense_1/MatMul/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/MatMul"
+ }
+ }
+ node_def {
+ name: "dense_1/BiasAdd/ReadVariableOp"
+ op: "ReadVariableOp"
+ input: "dense_1_biasadd_readvariableop_resource"
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "dtype"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/BiasAdd/ReadVariableOp"
+ }
+ }
+ node_def {
+ name: "dense_1/BiasAdd"
+ op: "BiasAdd"
+ input: "dense_1/MatMul:product:0"
+ input: "dense_1/BiasAdd/ReadVariableOp:value:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "dense_1/BiasAdd"
+ }
+ }
+ node_def {
+ name: "Identity"
+ op: "Identity"
+ input: "dense_1/BiasAdd:output:0"
+ attr {
+ key: "T"
+ value {
+ type: DT_FLOAT
+ }
+ }
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ }
+ experimental_debug_info {
+ original_node_names: "Identity"
+ }
+ }
+ ret {
+ key: "identity"
+ value: "Identity:output:0"
+ }
+ attr {
+ key: "_input_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 0
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ }
+ attr {
+ key: "_user_specified_name"
+ value {
+ s: "inputs"
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 1
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 2
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 3
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ arg_attr {
+ key: 4
+ value {
+ attr {
+ key: "_output_shapes"
+ value {
+ list {
+ shape {
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ versions {
+ producer: 331
+ min_consumer: 12
+ }
+ }
+ saver_def {
+ filename_tensor_name: "saver_filename:0"
+ save_tensor_name: "StatefulPartitionedCall_1:0"
+ restore_op_name: "StatefulPartitionedCall_2"
+ version: V2
+ }
+ collection_def {
+ key: "saved_model_main_op"
+ value {
+ node_list {
+ value: "NoOp"
+ }
+ }
+ }
+ signature_def {
+ key: "__saved_model_init_op"
+ value {
+ outputs {
+ key: "__saved_model_init_op"
+ value {
+ name: "NoOp"
+ tensor_shape {
+ unknown_rank: true
+ }
+ }
+ }
+ }
+ }
+ signature_def {
+ key: "serving_default"
+ value {
+ inputs {
+ key: "input_1"
+ value {
+ name: "serving_default_input_1:0"
+ dtype: DT_INT32
+ tensor_shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ }
+ }
+ outputs {
+ key: "output_1"
+ value {
+ name: "StatefulPartitionedCall:0"
+ dtype: DT_FLOAT
+ tensor_shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ }
+ }
+ method_name: "tensorflow/serving/predict"
+ }
+ }
+ object_graph_def {
+ nodes {
+ children {
+ node_id: 1
+ local_name: "layer_with_weights-0"
+ }
+ children {
+ node_id: 1
+ local_name: "layer-0"
+ }
+ children {
+ node_id: 2
+ local_name: "layer_with_weights-1"
+ }
+ children {
+ node_id: 2
+ local_name: "layer-1"
+ }
+ children {
+ node_id: 3
+ local_name: "optimizer"
+ }
+ children {
+ node_id: 4
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 5
+ local_name: "variables"
+ }
+ children {
+ node_id: 6
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 7
+ local_name: "keras_api"
+ }
+ children {
+ node_id: 8
+ local_name: "signatures"
+ }
+ children {
+ node_id: 47
+ local_name: "__call__"
+ }
+ children {
+ node_id: 48
+ local_name: "_default_save_signature"
+ }
+ children {
+ node_id: 49
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ user_object {
+ identifier: "_tf_keras_sequential"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ metadata: "{\"class_name\": \"Sequential\", \"name\": \"sequential\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"config\": {\"name\": \"sequential\", \"layers\": [{\"class_name\": \"Dense\", \"config\": {\"name\": \"dense\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 100, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 1, \"activation\": \"linear\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"build_input_shape\": {\"class_name\": \"__tuple__\", \"items\": [null, 214]}}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 214}}}, \"build_input_shape\": {\"class_name\": \"__tuple__\", \"items\": [null, 214]}, \"is_graph_network\": false, \"keras_version\": \"2.2.4-tf\", \"backend\": \"tensorflow\", \"model_config\": {\"class_name\": \"Sequential\", \"config\": {\"name\": \"sequential\", \"layers\": [{\"class_name\": \"Dense\", \"config\": {\"name\": \"dense\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 100, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}, {\"class_name\": \"Dense\", \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 1, \"activation\": \"linear\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}}], \"build_input_shape\": {\"class_name\": \"__tuple__\", \"items\": [null, 214]}}}, \"training_config\": {\"loss\": \"mean_absolute_error\", \"metrics\": [\"mean_squared_error\"], \"weighted_metrics\": null, \"loss_weights\": null, \"sample_weight_mode\": null, \"optimizer_config\": {\"class_name\": \"Adam\", \"config\": {\"name\": \"Adam\", \"learning_rate\": 0.0003000000142492354, \"decay\": 0.0, \"beta_1\": 0.8999999761581421, \"beta_2\": 0.9990000128746033, \"epsilon\": 1e-07, \"amsgrad\": false}}}}"
+ }
+ }
+ nodes {
+ children {
+ node_id: 9
+ local_name: "kernel"
+ }
+ children {
+ node_id: 10
+ local_name: "bias"
+ }
+ children {
+ node_id: 11
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 12
+ local_name: "variables"
+ }
+ children {
+ node_id: 13
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 14
+ local_name: "keras_api"
+ }
+ children {
+ node_id: 50
+ local_name: "__call__"
+ }
+ children {
+ node_id: 51
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ user_object {
+ identifier: "_tf_keras_layer"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ metadata: "{\"class_name\": \"Dense\", \"name\": \"dense\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 100, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 214}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [null, 214]}}"
+ }
+ }
+ nodes {
+ children {
+ node_id: 15
+ local_name: "kernel"
+ }
+ children {
+ node_id: 16
+ local_name: "bias"
+ }
+ children {
+ node_id: 17
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 18
+ local_name: "variables"
+ }
+ children {
+ node_id: 19
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 20
+ local_name: "keras_api"
+ }
+ children {
+ node_id: 52
+ local_name: "__call__"
+ }
+ children {
+ node_id: 53
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ user_object {
+ identifier: "_tf_keras_layer"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ metadata: "{\"class_name\": \"Dense\", \"name\": \"dense_1\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 1, \"activation\": \"linear\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 100}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [null, 100]}}"
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "optimizer"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 9
+ local_name: "0"
+ }
+ children {
+ node_id: 10
+ local_name: "1"
+ }
+ children {
+ node_id: 15
+ local_name: "2"
+ }
+ children {
+ node_id: 16
+ local_name: "3"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 9
+ local_name: "0"
+ }
+ children {
+ node_id: 10
+ local_name: "1"
+ }
+ children {
+ node_id: 15
+ local_name: "2"
+ }
+ children {
+ node_id: 16
+ local_name: "3"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 21
+ local_name: "layers"
+ }
+ children {
+ node_id: 22
+ local_name: "layer_regularization_losses"
+ }
+ children {
+ node_id: 23
+ local_name: "non_trainable_variables"
+ }
+ children {
+ node_id: 24
+ local_name: "layer_metrics"
+ }
+ children {
+ node_id: 4
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 25
+ local_name: "metrics"
+ }
+ children {
+ node_id: 5
+ local_name: "variables"
+ }
+ children {
+ node_id: 6
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 47
+ local_name: "__call__"
+ }
+ children {
+ node_id: 48
+ local_name: "_default_save_signature"
+ }
+ children {
+ node_id: 49
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ children {
+ node_id: 49
+ local_name: "call_and_return_conditional_losses"
+ }
+ user_object {
+ identifier: "_generic_user_object"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 54
+ local_name: "serving_default"
+ }
+ user_object {
+ identifier: "signature_map"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ dim {
+ size: 214
+ }
+ dim {
+ size: 100
+ }
+ }
+ trainable: true
+ name: "dense/kernel"
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ dim {
+ size: 100
+ }
+ }
+ trainable: true
+ name: "dense/bias"
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 9
+ local_name: "0"
+ }
+ children {
+ node_id: 10
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 9
+ local_name: "0"
+ }
+ children {
+ node_id: 10
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 26
+ local_name: "layers"
+ }
+ children {
+ node_id: 27
+ local_name: "layer_regularization_losses"
+ }
+ children {
+ node_id: 28
+ local_name: "non_trainable_variables"
+ }
+ children {
+ node_id: 29
+ local_name: "layer_metrics"
+ }
+ children {
+ node_id: 11
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 30
+ local_name: "metrics"
+ }
+ children {
+ node_id: 12
+ local_name: "variables"
+ }
+ children {
+ node_id: 13
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 50
+ local_name: "__call__"
+ }
+ children {
+ node_id: 51
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ children {
+ node_id: 51
+ local_name: "call_and_return_conditional_losses"
+ }
+ user_object {
+ identifier: "_generic_user_object"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ dim {
+ size: 100
+ }
+ dim {
+ size: 1
+ }
+ }
+ trainable: true
+ name: "dense_1/kernel"
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ dim {
+ size: 1
+ }
+ }
+ trainable: true
+ name: "dense_1/bias"
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 15
+ local_name: "0"
+ }
+ children {
+ node_id: 16
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 15
+ local_name: "0"
+ }
+ children {
+ node_id: 16
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 31
+ local_name: "layers"
+ }
+ children {
+ node_id: 32
+ local_name: "layer_regularization_losses"
+ }
+ children {
+ node_id: 33
+ local_name: "non_trainable_variables"
+ }
+ children {
+ node_id: 34
+ local_name: "layer_metrics"
+ }
+ children {
+ node_id: 17
+ local_name: "regularization_losses"
+ }
+ children {
+ node_id: 35
+ local_name: "metrics"
+ }
+ children {
+ node_id: 18
+ local_name: "variables"
+ }
+ children {
+ node_id: 19
+ local_name: "trainable_variables"
+ }
+ children {
+ node_id: 52
+ local_name: "__call__"
+ }
+ children {
+ node_id: 53
+ local_name: "call_and_return_all_conditional_losses"
+ }
+ children {
+ node_id: 53
+ local_name: "call_and_return_conditional_losses"
+ }
+ user_object {
+ identifier: "_generic_user_object"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 1
+ local_name: "0"
+ }
+ children {
+ node_id: 2
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_dict_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 36
+ local_name: "0"
+ }
+ children {
+ node_id: 37
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_dict_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_dict_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 38
+ local_name: "total"
+ }
+ children {
+ node_id: 39
+ local_name: "count"
+ }
+ children {
+ node_id: 40
+ local_name: "variables"
+ }
+ children {
+ node_id: 41
+ local_name: "keras_api"
+ }
+ user_object {
+ identifier: "_tf_keras_metric"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ metadata: "{\"class_name\": \"Mean\", \"name\": \"loss\", \"dtype\": \"float32\", \"config\": {\"name\": \"loss\", \"dtype\": \"float32\"}}"
+ }
+ }
+ nodes {
+ children {
+ node_id: 42
+ local_name: "total"
+ }
+ children {
+ node_id: 43
+ local_name: "count"
+ }
+ children {
+ node_id: 44
+ local_name: "_fn_kwargs"
+ }
+ children {
+ node_id: 45
+ local_name: "variables"
+ }
+ children {
+ node_id: 46
+ local_name: "keras_api"
+ }
+ user_object {
+ identifier: "_tf_keras_metric"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ metadata: "{\"class_name\": \"MeanMetricWrapper\", \"name\": \"mean_squared_error\", \"dtype\": \"float32\", \"config\": {\"name\": \"mean_squared_error\", \"dtype\": \"float32\", \"fn\": \"mean_squared_error\"}}"
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ }
+ synchronization: VARIABLE_SYNCHRONIZATION_ON_READ
+ aggregation: VARIABLE_AGGREGATION_SUM
+ name: "total"
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ }
+ synchronization: VARIABLE_SYNCHRONIZATION_ON_READ
+ aggregation: VARIABLE_AGGREGATION_SUM
+ name: "count"
+ }
+ }
+ nodes {
+ children {
+ node_id: 38
+ local_name: "0"
+ }
+ children {
+ node_id: 39
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 40
+ local_name: "variables"
+ }
+ user_object {
+ identifier: "_generic_user_object"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ }
+ synchronization: VARIABLE_SYNCHRONIZATION_ON_READ
+ aggregation: VARIABLE_AGGREGATION_SUM
+ name: "total"
+ }
+ }
+ nodes {
+ variable {
+ dtype: DT_FLOAT
+ shape {
+ }
+ synchronization: VARIABLE_SYNCHRONIZATION_ON_READ
+ aggregation: VARIABLE_AGGREGATION_SUM
+ name: "count"
+ }
+ }
+ nodes {
+ user_object {
+ identifier: "trackable_dict_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 42
+ local_name: "0"
+ }
+ children {
+ node_id: 43
+ local_name: "1"
+ }
+ user_object {
+ identifier: "trackable_list_wrapper"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ children {
+ node_id: 45
+ local_name: "variables"
+ }
+ user_object {
+ identifier: "_generic_user_object"
+ version {
+ producer: 1
+ min_consumer: 1
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_sequential_layer_call_fn_6629"
+ concrete_functions: "__inference_sequential_layer_call_fn_6733"
+ concrete_functions: "__inference_sequential_layer_call_fn_6720"
+ concrete_functions: "__inference_sequential_layer_call_fn_6656"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ values {
+ string_value: "training"
+ }
+ values {
+ string_value: "mask"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ list_value {
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ dict_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference__wrapped_model_6528"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ string_value: "args"
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ input_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_sequential_layer_call_and_return_conditional_losses_6689"
+ concrete_functions: "__inference_sequential_layer_call_and_return_conditional_losses_6587"
+ concrete_functions: "__inference_sequential_layer_call_and_return_conditional_losses_6707"
+ concrete_functions: "__inference_sequential_layer_call_and_return_conditional_losses_6601"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ values {
+ string_value: "training"
+ }
+ values {
+ string_value: "mask"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ list_value {
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ dict_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_dense_layer_call_fn_6754"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_dense_layer_call_and_return_conditional_losses_6745"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_dense_1_layer_call_fn_6773"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ function {
+ concrete_functions: "__inference_dense_1_layer_call_and_return_conditional_losses_6764"
+ function_spec {
+ fullargspec {
+ named_tuple_value {
+ name: "FullArgSpec"
+ values {
+ key: "args"
+ value {
+ list_value {
+ values {
+ string_value: "self"
+ }
+ values {
+ string_value: "inputs"
+ }
+ }
+ }
+ }
+ values {
+ key: "varargs"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "varkw"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "defaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlyargs"
+ value {
+ list_value {
+ }
+ }
+ }
+ values {
+ key: "kwonlydefaults"
+ value {
+ none_value {
+ }
+ }
+ }
+ values {
+ key: "annotations"
+ value {
+ dict_value {
+ }
+ }
+ }
+ }
+ }
+ is_method: true
+ input_signature {
+ none_value {
+ }
+ }
+ }
+ }
+ }
+ nodes {
+ bare_concrete_function {
+ concrete_function_name: "__inference_signature_wrapper_6671"
+ argument_keywords: "input_1"
+ allowed_positional_arguments: 1
+ }
+ }
+ concrete_functions {
+ key: "__inference__wrapped_model_6528"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ dict_value {
+ fields {
+ key: "output_1"
+ value {
+ tensor_spec_value {
+ name: "output_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_dense_1_layer_call_and_return_conditional_losses_6764"
+ value {
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_dense_1_layer_call_fn_6773"
+ value {
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_dense_layer_call_and_return_conditional_losses_6745"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_dense_layer_call_fn_6754"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 100
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_and_return_conditional_losses_6587"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: true
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_and_return_conditional_losses_6601"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_and_return_conditional_losses_6689"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: true
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_and_return_conditional_losses_6707"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "0"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ values {
+ list_value {
+ }
+ }
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_fn_6629"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: true
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_fn_6656"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_fn_6720"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: true
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_sequential_layer_call_fn_6733"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ values {
+ tensor_spec_value {
+ name: "inputs"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ values {
+ bool_value: false
+ }
+ values {
+ none_value {
+ }
+ }
+ }
+ }
+ values {
+ dict_value {
+ }
+ }
+ }
+ }
+ output_signature {
+ tensor_spec_value {
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ concrete_functions {
+ key: "__inference_signature_wrapper_6671"
+ value {
+ bound_inputs: 9
+ bound_inputs: 10
+ bound_inputs: 15
+ bound_inputs: 16
+ canonicalized_input_signature {
+ tuple_value {
+ values {
+ tuple_value {
+ }
+ }
+ values {
+ dict_value {
+ fields {
+ key: "input_1"
+ value {
+ tensor_spec_value {
+ name: "input_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 214
+ }
+ }
+ dtype: DT_INT32
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ output_signature {
+ dict_value {
+ fields {
+ key: "output_1"
+ value {
+ tensor_spec_value {
+ name: "output_1"
+ shape {
+ dim {
+ size: -1
+ }
+ dim {
+ size: 1
+ }
+ }
+ dtype: DT_FLOAT
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
diff --git a/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.data-00000-of-00001 b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.data-00000-of-00001
new file mode 100644
index 000000000000..98807d26ee9f
Binary files /dev/null and b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.data-00000-of-00001
diff er
diff --git a/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.index b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.index
new file mode 100644
index 000000000000..c20d8afabf38
Binary files /dev/null and b/llvm/unittests/Analysis/Inputs/ir2native_x86_64_model/variables/variables.index
diff er
diff --git a/llvm/unittests/Analysis/TFUtilsTest.cpp b/llvm/unittests/Analysis/TFUtilsTest.cpp
new file mode 100644
index 000000000000..4c775c4c0b93
--- /dev/null
+++ b/llvm/unittests/Analysis/TFUtilsTest.cpp
@@ -0,0 +1,98 @@
+//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Utils/TFUtils.h"
+#include "llvm/AsmParser/Parser.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Testing/Support/SupportHelpers.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+extern const char *TestMainArgv0;
+
+static std::string getModelPath() {
+ SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
+ llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
+ return std::string(InputsDir);
+}
+
+// Test observable behavior when no model is provided.
+TEST(TFUtilsTest, NoModel) {
+ TFModelEvaluator Evaluator("", {}, {});
+ EXPECT_FALSE(Evaluator.isValid());
+}
+
+// Test we can correctly load a savedmodel and evaluate it.
+TEST(TFUtilsTest, LoadAndExecuteTest) {
+ // We use the ir2native model for test. We know it has one feature of
+ // dimension (1, 214)
+ std::vector<std::string> InputNames{"serving_default_input_1"};
+ std::vector<std::string> OutputName{"StatefulPartitionedCall"};
+ const static int64_t KnownSize = 214;
+
+ TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
+ static const std::vector<int64_t> Dim{1, KnownSize};
+
+ EXPECT_TRUE(Evaluator.isValid());
+ Evaluator.initInput(0, TF_INT32, Dim);
+
+ int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
+ // Fill it up with 1's, we know the output.
+ for (auto I = 0; I < KnownSize; ++I) {
+ V[I] = 1;
+ }
+ {
+ auto ER = Evaluator.evaluate();
+ EXPECT_TRUE(ER.hasValue());
+ float Ret = *ER->getTensorValue<float>(0);
+ EXPECT_EQ(static_cast<size_t>(Ret), 80);
+ }
+ // The input vector should be unchanged
+ for (auto I = 0; I < KnownSize; ++I) {
+ EXPECT_EQ(V[I], 1);
+ }
+ // Zero-out the unused position '0' of the instruction histogram, which is
+ // after the first 9 calculated values. Should the the same result.
+ V[9] = 0;
+ {
+ auto ER = Evaluator.evaluate();
+ EXPECT_TRUE(ER.hasValue());
+ float Ret = *ER->getTensorValue<float>(0);
+ EXPECT_EQ(static_cast<size_t>(Ret), 80);
+ }
+}
+
+// Test incorrect input setup
+TEST(TFUtilsTest, EvalError) {
+ // We use the ir2native model for test. We know it has one feature of
+ // dimension (1, 214)
+ std::vector<std::string> InputNames{"serving_default_input_1"};
+ std::vector<std::string> OutputName{"StatefulPartitionedCall"};
+ const static int64_t KnownSize = 213;
+
+ TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
+ static const std::vector<int64_t> Dim{1, KnownSize};
+
+ EXPECT_TRUE(Evaluator.isValid());
+ Evaluator.initInput(0, TF_INT32, Dim);
+
+ int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
+ // Fill it up with 1's, we know the output.
+ for (auto I = 0; I < KnownSize; ++I) {
+ V[I] = 1;
+ }
+ auto ER = Evaluator.evaluate();
+ EXPECT_FALSE(ER.hasValue());
+ EXPECT_FALSE(Evaluator.isValid());
+}
More information about the llvm-commits
mailing list