[llvm] 68b03ae - Remove SequentialType from the type heirarchy.
Eli Friedman via llvm-commits
llvm-commits at lists.llvm.org
Mon Apr 6 17:04:23 PDT 2020
Author: Eli Friedman
Date: 2020-04-06T17:03:49-07:00
New Revision: 68b03aee1a15678ab5b518148d5e75c9dc0436fd
URL: https://github.com/llvm/llvm-project/commit/68b03aee1a15678ab5b518148d5e75c9dc0436fd
DIFF: https://github.com/llvm/llvm-project/commit/68b03aee1a15678ab5b518148d5e75c9dc0436fd.diff
LOG: Remove SequentialType from the type heirarchy.
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Added:
Modified:
clang/lib/CodeGen/CGExprConstant.cpp
llvm/include/llvm/IR/Constants.h
llvm/include/llvm/IR/DerivedTypes.h
llvm/include/llvm/IR/GetElementPtrTypeIterator.h
llvm/include/llvm/IR/Type.h
llvm/lib/Analysis/BasicAliasAnalysis.cpp
llvm/lib/Analysis/ConstantFolding.cpp
llvm/lib/Analysis/ScalarEvolution.cpp
llvm/lib/Bitcode/Reader/BitcodeReader.cpp
llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
llvm/lib/IR/ConstantFold.cpp
llvm/lib/IR/Constants.cpp
llvm/lib/IR/Core.cpp
llvm/lib/IR/Type.cpp
llvm/lib/Linker/IRMover.cpp
llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp
llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
llvm/lib/Transforms/IPO/GlobalOpt.cpp
llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
llvm/lib/Transforms/Scalar/SROA.cpp
llvm/lib/Transforms/Utils/FunctionComparator.cpp
llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Removed:
################################################################################
diff --git a/clang/lib/CodeGen/CGExprConstant.cpp b/clang/lib/CodeGen/CGExprConstant.cpp
index da5d778a4922..fad7d754f551 100644
--- a/clang/lib/CodeGen/CGExprConstant.cpp
+++ b/clang/lib/CodeGen/CGExprConstant.cpp
@@ -318,12 +318,17 @@ bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
CharUnits Offset = Offsets[Index];
if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
+ // Expand the sequence into its contained elements.
+ // FIXME: This assumes vector elements are byte-sized.
replace(Elems, Index, Index + 1,
llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
[&](unsigned Op) { return CA->getOperand(Op); }));
- if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
+ if (isa<llvm::ArrayType>(CA->getType()) ||
+ isa<llvm::VectorType>(CA->getType())) {
// Array or vector.
- CharUnits ElemSize = getSize(Seq->getElementType());
+ llvm::Type *ElemTy =
+ llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
+ CharUnits ElemSize = getSize(ElemTy);
replace(
Offsets, Index, Index + 1,
llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
@@ -344,6 +349,8 @@ bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
}
if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
+ // Expand the sequence into its contained elements.
+ // FIXME: This assumes vector elements are byte-sized.
// FIXME: If possible, split into two ConstantDataSequentials at Hint.
CharUnits ElemSize = getSize(CDS->getElementType());
replace(Elems, Index, Index + 1,
@@ -359,6 +366,7 @@ bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
}
if (isa<llvm::ConstantAggregateZero>(C)) {
+ // Split into two zeros at the hinted offset.
CharUnits ElemSize = getSize(C);
assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
replace(Elems, Index, Index + 1,
@@ -368,6 +376,7 @@ bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
}
if (isa<llvm::UndefValue>(C)) {
+ // Drop undef; it doesn't contribute to the final layout.
replace(Elems, Index, Index + 1, {});
replace(Offsets, Index, Index + 1, {});
return true;
diff --git a/llvm/include/llvm/IR/Constants.h b/llvm/include/llvm/IR/Constants.h
index 868b038b055d..c41d1582a834 100644
--- a/llvm/include/llvm/IR/Constants.h
+++ b/llvm/include/llvm/IR/Constants.h
@@ -44,7 +44,6 @@ namespace llvm {
class ArrayType;
class IntegerType;
class PointerType;
-class SequentialType;
class StructType;
class VectorType;
template <class ConstantClass> struct ConstantAggrKeyType;
@@ -631,12 +630,6 @@ class ConstantDataSequential : public ConstantData {
/// efficient as getElementAsInteger/Float/Double.
Constant *getElementAsConstant(unsigned i) const;
- /// Specialize the getType() method to always return a SequentialType, which
- /// reduces the amount of casting needed in parts of the compiler.
- inline SequentialType *getType() const {
- return cast<SequentialType>(Value::getType());
- }
-
/// Return the element type of the array/vector.
Type *getElementType() const;
diff --git a/llvm/include/llvm/IR/DerivedTypes.h b/llvm/include/llvm/IR/DerivedTypes.h
index ac3abe3c32dc..2ddd576484b6 100644
--- a/llvm/include/llvm/IR/DerivedTypes.h
+++ b/llvm/include/llvm/IR/DerivedTypes.h
@@ -354,47 +354,22 @@ Type *Type::getStructElementType(unsigned N) const {
return cast<StructType>(this)->getElementType(N);
}
-/// This is the superclass of the array and vector type classes. Both of these
-/// represent "arrays" in memory. The array type represents a specifically sized
-/// array, and the vector type represents a specifically sized array that allows
-/// for use of SIMD instructions. SequentialType holds the common features of
-/// both, which stem from the fact that both lay their components out in memory
-/// identically.
-class SequentialType : public Type {
- Type *ContainedType; ///< Storage for the single contained type.
+/// Class to represent array types.
+class ArrayType : public Type {
+ /// The element type of the array.
+ Type *ContainedType;
+ /// Number of elements in the array.
uint64_t NumElements;
-protected:
- SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
- : Type(ElType->getContext(), TID), ContainedType(ElType),
- NumElements(NumElements) {
- ContainedTys = &ContainedType;
- NumContainedTys = 1;
- }
-
-public:
- SequentialType(const SequentialType &) = delete;
- SequentialType &operator=(const SequentialType &) = delete;
-
- /// For scalable vectors, this will return the minimum number of elements
- /// in the vector.
- uint64_t getNumElements() const { return NumElements; }
- Type *getElementType() const { return ContainedType; }
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast.
- static bool classof(const Type *T) {
- return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
- }
-};
-
-/// Class to represent array types.
-class ArrayType : public SequentialType {
ArrayType(Type *ElType, uint64_t NumEl);
public:
ArrayType(const ArrayType &) = delete;
ArrayType &operator=(const ArrayType &) = delete;
+ uint64_t getNumElements() const { return NumElements; }
+ Type *getElementType() const { return ContainedType; }
+
/// This static method is the primary way to construct an ArrayType
static ArrayType *get(Type *ElementType, uint64_t NumElements);
@@ -412,7 +387,7 @@ uint64_t Type::getArrayNumElements() const {
}
/// Class to represent vector types.
-class VectorType : public SequentialType {
+class VectorType : public Type {
/// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
/// minimum number of elements of type Ty contained within the vector, and
/// 'vscale x' indicates that the total element count is an integer multiple
@@ -426,18 +401,28 @@ class VectorType : public SequentialType {
/// <vscale x 4 x i32> - a vector containing an unknown integer multiple
/// of 4 i32s
+ /// The element type of the vector.
+ Type *ContainedType;
+ /// Minumum number of elements in the vector.
+ uint64_t NumElements;
+
VectorType(Type *ElType, unsigned NumEl, bool Scalable = false);
VectorType(Type *ElType, ElementCount EC);
// If true, the total number of elements is an unknown multiple of the
- // minimum 'NumElements' from SequentialType. Otherwise the total number
- // of elements is exactly equal to 'NumElements'.
+ // minimum 'NumElements'. Otherwise the total number of elements is exactly
+ // equal to 'NumElements'.
bool Scalable;
public:
VectorType(const VectorType &) = delete;
VectorType &operator=(const VectorType &) = delete;
+ /// For scalable vectors, this will return the minimum number of elements
+ /// in the vector.
+ uint64_t getNumElements() const { return NumElements; }
+ Type *getElementType() const { return ContainedType; }
+
/// This static method is the primary way to construct an VectorType.
static VectorType *get(Type *ElementType, ElementCount EC);
static VectorType *get(Type *ElementType, unsigned NumElements,
diff --git a/llvm/include/llvm/IR/GetElementPtrTypeIterator.h b/llvm/include/llvm/IR/GetElementPtrTypeIterator.h
index 9b257abc7c1f..826b21ac1cb9 100644
--- a/llvm/include/llvm/IR/GetElementPtrTypeIterator.h
+++ b/llvm/include/llvm/IR/GetElementPtrTypeIterator.h
@@ -75,9 +75,15 @@ namespace llvm {
generic_gep_type_iterator& operator++() { // Preincrement
Type *Ty = getIndexedType();
- if (auto *STy = dyn_cast<SequentialType>(Ty)) {
- CurTy = STy->getElementType();
- NumElements = STy->getNumElements();
+ if (auto *ATy = dyn_cast<ArrayType>(Ty)) {
+ CurTy = ATy->getElementType();
+ NumElements = ATy->getNumElements();
+ } else if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ CurTy = VTy->getElementType();
+ if (VTy->isScalable())
+ NumElements = Unbounded;
+ else
+ NumElements = VTy->getNumElements();
} else
CurTy = dyn_cast<StructType>(Ty);
++OpIt;
diff --git a/llvm/include/llvm/IR/Type.h b/llvm/include/llvm/IR/Type.h
index d0961dac833d..067c3b2a2311 100644
--- a/llvm/include/llvm/IR/Type.h
+++ b/llvm/include/llvm/IR/Type.h
@@ -110,10 +110,6 @@ class Type {
/// Float).
Type * const *ContainedTys = nullptr;
- static bool isSequentialType(TypeID TyID) {
- return TyID == ArrayTyID || TyID == VectorTyID;
- }
-
public:
/// Print the current type.
/// Omit the type details if \p NoDetails == true.
@@ -358,11 +354,6 @@ class Type {
inline unsigned getStructNumElements() const;
inline Type *getStructElementType(unsigned N) const;
- inline Type *getSequentialElementType() const {
- assert(isSequentialType(getTypeID()) && "Not a sequential type!");
- return ContainedTys[0];
- }
-
inline uint64_t getArrayNumElements() const;
Type *getArrayElementType() const {
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
index 9ab056f4bb3e..a8be2e388539 100644
--- a/llvm/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -1145,11 +1145,11 @@ static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
GEP1->getSourceElementType(), IntermediateIndices);
StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
- if (isa<SequentialType>(Ty)) {
+ if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
// We know that:
// - both GEPs begin indexing from the exact same pointer;
// - the last indices in both GEPs are constants, indexing into a sequential
- // type (array or pointer);
+ // type (array or vector);
// - both GEPs only index through arrays prior to that.
//
// Because array indices greater than the number of elements are valid in
@@ -1157,8 +1157,8 @@ static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
// GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
// partially overlap. We also need to check that the loaded size matches
// the element size, otherwise we could still have overlap.
- const uint64_t ElementSize =
- DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
+ Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
+ const uint64_t ElementSize = DL.getTypeStoreSize(LastElementTy);
if (V1Size != ElementSize || V2Size != ElementSize)
return MayAlias;
diff --git a/llvm/lib/Analysis/ConstantFolding.cpp b/llvm/lib/Analysis/ConstantFolding.cpp
index 721ba735e9db..fe84af0ff120 100644
--- a/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/llvm/lib/Analysis/ConstantFolding.cpp
@@ -463,15 +463,18 @@ bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
- Type *EltTy = C->getType()->getSequentialElementType();
- uint64_t EltSize = DL.getTypeAllocSize(EltTy);
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
uint64_t NumElts;
- if (auto *AT = dyn_cast<ArrayType>(C->getType()))
+ Type *EltTy;
+ if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
NumElts = AT->getNumElements();
- else
+ EltTy = AT->getElementType();
+ } else {
NumElts = C->getType()->getVectorNumElements();
+ EltTy = C->getType()->getVectorElementType();
+ }
+ uint64_t EltSize = DL.getTypeAllocSize(EltTy);
+ uint64_t Index = ByteOffset / EltSize;
+ uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
@@ -936,11 +939,11 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
// Only handle pointers to sized types, not pointers to functions.
if (!Ty->isSized())
return nullptr;
- } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
- Ty = ATy->getElementType();
} else {
- // We've reached some non-indexable type.
- break;
+ Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
+ if (!NextTy)
+ break;
+ Ty = NextTy;
}
// Determine which element of the array the offset points into.
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index b9fd2b422ace..06cbaf0ec7bc 100644
--- a/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -3555,7 +3555,7 @@ ScalarEvolution::getGEPExpr(GEPOperator *GEP,
CurTy = GEP->getSourceElementType();
FirstIter = false;
} else {
- CurTy = cast<SequentialType>(CurTy)->getElementType();
+ CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
}
// For an array, add the element offset, explicitly scaled.
const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
diff --git a/llvm/lib/Bitcode/Reader/BitcodeReader.cpp b/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
index 16d3b79598f1..6a72ed8763c8 100644
--- a/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -2505,7 +2505,11 @@ Error BitcodeReader::parseConstants() {
if (Record.empty())
return error("Invalid record");
- Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
+ Type *EltTy;
+ if (auto *Array = dyn_cast<ArrayType>(CurTy))
+ EltTy = Array->getElementType();
+ else
+ EltTy = cast<VectorType>(CurTy)->getElementType();
if (EltTy->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
diff --git a/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp b/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
index e9ad00d6d4ba..1de3ea898e53 100644
--- a/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -2423,7 +2423,7 @@ void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
} else if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(C)) {
Code = bitc::CST_CODE_DATA;
- Type *EltTy = CDS->getType()->getElementType();
+ Type *EltTy = CDS->getElementType();
if (isa<IntegerType>(EltTy)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(CDS->getElementAsInteger(i));
diff --git a/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 395746d3390a..60f20734fee3 100644
--- a/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -2473,8 +2473,8 @@ static void emitGlobalConstantDataSequential(const DataLayout &DL,
}
unsigned Size = DL.getTypeAllocSize(CDS->getType());
- unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
- CDS->getNumElements();
+ unsigned EmittedSize =
+ DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer->emitZeros(Padding);
diff --git a/llvm/lib/IR/ConstantFold.cpp b/llvm/lib/IR/ConstantFold.cpp
index c4465d9bfa02..0a2837bd8b6a 100644
--- a/llvm/lib/IR/ConstantFold.cpp
+++ b/llvm/lib/IR/ConstantFold.cpp
@@ -124,18 +124,9 @@ static Constant *FoldBitCast(Constant *V, Type *DestTy) {
Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
IdxList.push_back(Zero);
Type *ElTy = PTy->getElementType();
- while (ElTy != DPTy->getElementType()) {
- if (StructType *STy = dyn_cast<StructType>(ElTy)) {
- if (STy->getNumElements() == 0) break;
- ElTy = STy->getElementType(0);
- IdxList.push_back(Zero);
- } else if (SequentialType *STy =
- dyn_cast<SequentialType>(ElTy)) {
- ElTy = STy->getElementType();
- IdxList.push_back(Zero);
- } else {
- break;
- }
+ while (ElTy && ElTy != DPTy->getElementType()) {
+ ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
+ IdxList.push_back(Zero);
}
if (ElTy == DPTy->getElementType())
@@ -954,7 +945,7 @@ Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
NumElts = ST->getNumElements();
else
- NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
+ NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
SmallVector<Constant*, 32> Result;
for (unsigned i = 0; i != NumElts; ++i) {
@@ -969,9 +960,7 @@ Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
return ConstantStruct::get(ST, Result);
- if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
- return ConstantArray::get(AT, Result);
- return ConstantVector::get(Result);
+ return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
}
Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
@@ -2451,12 +2440,12 @@ Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
// The verify makes sure that GEPs into a struct are in range.
continue;
}
- auto *STy = cast<SequentialType>(Ty);
- if (isa<VectorType>(STy)) {
+ if (isa<VectorType>(Ty)) {
// There can be awkward padding in after a non-power of two vector.
Unknown = true;
continue;
}
+ auto *STy = cast<ArrayType>(Ty);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
// It's in range, skip to the next index.
diff --git a/llvm/lib/IR/Constants.cpp b/llvm/lib/IR/Constants.cpp
index 60ab1a595c34..95b7d85faaf2 100644
--- a/llvm/lib/IR/Constants.cpp
+++ b/llvm/lib/IR/Constants.cpp
@@ -923,7 +923,9 @@ void ConstantFP::destroyConstantImpl() {
//===----------------------------------------------------------------------===//
Constant *ConstantAggregateZero::getSequentialElement() const {
- return Constant::getNullValue(getType()->getSequentialElementType());
+ if (auto *AT = dyn_cast<ArrayType>(getType()))
+ return Constant::getNullValue(AT->getElementType());
+ return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
}
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
@@ -931,13 +933,13 @@ Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
}
Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
+ if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
+ if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
@@ -956,7 +958,9 @@ unsigned ConstantAggregateZero::getNumElements() const {
//===----------------------------------------------------------------------===//
UndefValue *UndefValue::getSequentialElement() const {
- return UndefValue::get(getType()->getSequentialElementType());
+ if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
+ return UndefValue::get(ATy->getElementType());
+ return UndefValue::get(cast<VectorType>(getType())->getElementType());
}
UndefValue *UndefValue::getStructElement(unsigned Elt) const {
@@ -964,21 +968,23 @@ UndefValue *UndefValue::getStructElement(unsigned Elt) const {
}
UndefValue *UndefValue::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
+ if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
UndefValue *UndefValue::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
+ if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
unsigned UndefValue::getNumElements() const {
Type *Ty = getType();
- if (auto *ST = dyn_cast<SequentialType>(Ty))
- return ST->getNumElements();
+ if (auto *AT = dyn_cast<ArrayType>(Ty))
+ return AT->getNumElements();
+ if (auto *VT = dyn_cast<VectorType>(Ty))
+ return VT->getNumElements();
return Ty->getStructNumElements();
}
@@ -2536,7 +2542,9 @@ Type *GetElementPtrConstantExpr::getResultElementType() const {
// ConstantData* implementations
Type *ConstantDataSequential::getElementType() const {
- return getType()->getElementType();
+ if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
+ return ATy->getElementType();
+ return cast<VectorType>(getType())->getElementType();
}
StringRef ConstantDataSequential::getRawDataValues() const {
@@ -2589,7 +2597,12 @@ static bool isAllZeros(StringRef Arr) {
/// the correct element type. We take the bytes in as a StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
- assert(isElementTypeCompatible(Ty->getSequentialElementType()));
+#ifndef NDEBUG
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ assert(isElementTypeCompatible(ATy->getElementType()));
+ else
+ assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
+#endif
// If the elements are all zero or there are no elements, return a CAZ, which
// is more dense and canonical.
if (isAllZeros(Elements))
diff --git a/llvm/lib/IR/Core.cpp b/llvm/lib/IR/Core.cpp
index da2e25e77978..d7d6e97626d5 100644
--- a/llvm/lib/IR/Core.cpp
+++ b/llvm/lib/IR/Core.cpp
@@ -753,7 +753,9 @@ LLVMTypeRef LLVMGetElementType(LLVMTypeRef WrappedTy) {
auto *Ty = unwrap<Type>(WrappedTy);
if (auto *PTy = dyn_cast<PointerType>(Ty))
return wrap(PTy->getElementType());
- return wrap(cast<SequentialType>(Ty)->getElementType());
+ if (auto *ATy = dyn_cast<ArrayType>(Ty))
+ return wrap(ATy->getElementType());
+ return wrap(cast<VectorType>(Ty)->getElementType());
}
unsigned LLVMGetNumContainedTypes(LLVMTypeRef Tp) {
diff --git a/llvm/lib/IR/Type.cpp b/llvm/lib/IR/Type.cpp
index b288ab00fde3..17ca43cbbccb 100644
--- a/llvm/lib/IR/Type.cpp
+++ b/llvm/lib/IR/Type.cpp
@@ -553,7 +553,11 @@ bool StructType::indexValid(const Value *V) const {
//===----------------------------------------------------------------------===//
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
- : SequentialType(ArrayTyID, ElType, NumEl) {}
+ : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
+ NumElements(NumEl) {
+ ContainedTys = &ContainedType;
+ NumContainedTys = 1;
+}
ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
assert(isValidElementType(ElementType) && "Invalid type for array element!");
@@ -580,7 +584,11 @@ bool ArrayType::isValidElementType(Type *ElemTy) {
//===----------------------------------------------------------------------===//
VectorType::VectorType(Type *ElType, ElementCount EC)
- : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
+ : Type(ElType->getContext(), VectorTyID), ContainedType(ElType),
+ NumElements(EC.Min), Scalable(EC.Scalable) {
+ ContainedTys = &ContainedType;
+ NumContainedTys = 1;
+}
VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
diff --git a/llvm/lib/Linker/IRMover.cpp b/llvm/lib/Linker/IRMover.cpp
index af934cc8b9be..df7c542d7077 100644
--- a/llvm/lib/Linker/IRMover.cpp
+++ b/llvm/lib/Linker/IRMover.cpp
@@ -173,9 +173,11 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
- } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
- if (DSeqTy->getNumElements() !=
- cast<SequentialType>(SrcTy)->getNumElements())
+ } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
+ if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
+ return false;
+ } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
+ if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
return false;
}
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
index 75671939c275..5c3d9f07cb26 100644
--- a/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
+++ b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
@@ -364,8 +364,13 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
return false;
}
- Type *AT = Alloca->getAllocatedType();
- SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
+ Type *AllocaTy = Alloca->getAllocatedType();
+ VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
+ if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
+ if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
+ ArrayTy->getNumElements() > 0)
+ VectorTy = arrayTypeToVecType(ArrayTy);
+ }
LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
@@ -373,10 +378,8 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
// are just being conservative for now.
// FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
// could also be promoted but we don't currently handle this case
- if (!AllocaTy ||
- AllocaTy->getNumElements() > 16 ||
- AllocaTy->getNumElements() < 2 ||
- !VectorType::isValidElementType(AllocaTy->getElementType())) {
+ if (!VectorTy || VectorTy->getNumElements() > 16 ||
+ VectorTy->getNumElements() < 2) {
LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
return false;
}
@@ -412,10 +415,6 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
}
}
- VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
- if (!VectorTy)
- VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
-
LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
<< *VectorTy << '\n');
@@ -424,7 +423,7 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
IRBuilder<> Builder(Inst);
switch (Inst->getOpcode()) {
case Instruction::Load: {
- if (Inst->getType() == AT)
+ if (Inst->getType() == AllocaTy)
break;
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
@@ -440,7 +439,7 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(Inst);
- if (SI->getValueOperand()->getType() == AT)
+ if (SI->getValueOperand()->getType() == AllocaTy)
break;
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
diff --git a/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp b/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp
index 6d2aadb066cf..789f222c8934 100644
--- a/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp
+++ b/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp
@@ -204,17 +204,7 @@ namespace {
Type *next_type(Type *Ty, Value *Idx) {
if (auto *PTy = dyn_cast<PointerType>(Ty))
return PTy->getElementType();
- // Advance the type.
- if (!Ty->isStructTy()) {
- Type *NexTy = cast<SequentialType>(Ty)->getElementType();
- return NexTy;
- }
- // Otherwise it is a struct type.
- ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
- assert(CI && "Struct type with non-constant index");
- int64_t i = CI->getValue().getSExtValue();
- Type *NextTy = cast<StructType>(Ty)->getElementType(i);
- return NextTy;
+ return GetElementPtrInst::getTypeAtIndex(Ty, Idx);
}
raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index d718574a81c8..c2d6306ca127 100644
--- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -784,13 +784,18 @@ bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
return false;
- if (!isa<StructType>(type) && !isa<SequentialType>(type))
- return true;
+ // FIXME: This isn't the right way to check for padding in vectors with
+ // non-byte-size elements.
+ if (VectorType *seqTy = dyn_cast<VectorType>(type))
+ return isDenselyPacked(seqTy->getElementType(), DL);
- // For homogenous sequential types, check for padding within members.
- if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
+ // For array types, check for padding within members.
+ if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
return isDenselyPacked(seqTy->getElementType(), DL);
+ if (!isa<StructType>(type))
+ return true;
+
// Check for padding within and between elements of a struct.
StructType *StructTy = cast<StructType>(type);
const StructLayout *Layout = DL.getStructLayout(StructTy);
diff --git a/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
index 0ab6333cb3ac..bf40fd8f1467 100644
--- a/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
@@ -128,13 +128,15 @@ static bool isLeakCheckerRoot(GlobalVariable *GV) {
Type *Ty = Types.pop_back_val();
switch (Ty->getTypeID()) {
default: break;
- case Type::PointerTyID: return true;
+ case Type::PointerTyID:
+ return true;
+ case Type::VectorTyID:
+ if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
+ return true;
+ break;
case Type::ArrayTyID:
- case Type::VectorTyID: {
- SequentialType *STy = cast<SequentialType>(Ty);
- Types.push_back(STy->getElementType());
+ Types.push_back(cast<ArrayType>(Ty)->getElementType());
break;
- }
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
if (STy->isOpaque()) return true;
@@ -142,7 +144,8 @@ static bool isLeakCheckerRoot(GlobalVariable *GV) {
E = STy->element_end(); I != E; ++I) {
Type *InnerTy = *I;
if (isa<PointerType>(InnerTy)) return true;
- if (isa<StructType>(InnerTy) || isa<SequentialType>(InnerTy))
+ if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
+ isa<VectorType>(InnerTy))
Types.push_back(InnerTy);
}
break;
@@ -433,13 +436,27 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
return true;
}
+static bool IsSRASequential(Type *T) {
+ return isa<ArrayType>(T) || isa<VectorType>(T);
+}
+static uint64_t GetSRASequentialNumElements(Type *T) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT->getNumElements();
+ return cast<VectorType>(T)->getNumElements();
+}
+static Type *GetSRASequentialElementType(Type *T) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT->getElementType();
+ return cast<VectorType>(T)->getElementType();
+}
static bool CanDoGlobalSRA(GlobalVariable *GV) {
Constant *Init = GV->getInitializer();
if (isa<StructType>(Init->getType())) {
// nothing to check
- } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) {
- if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16))
+ } else if (IsSRASequential(Init->getType())) {
+ if (GetSRASequentialNumElements(Init->getType()) > 16 &&
+ GV->hasNUsesOrMore(16))
return false; // It's not worth it.
} else
return false;
@@ -509,8 +526,8 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
Type *ElTy = nullptr;
if (StructType *STy = dyn_cast<StructType>(Ty))
ElTy = STy->getElementType(ElementIdx);
- else if (SequentialType *STy = dyn_cast<SequentialType>(Ty))
- ElTy = STy->getElementType();
+ else
+ ElTy = GetSRASequentialElementType(Ty);
assert(ElTy);
Constant *In = Init->getAggregateElement(ElementIdx);
@@ -541,7 +558,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size,
STy->getNumElements());
- } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
+ } else {
uint64_t EltSize = DL.getTypeAllocSize(ElTy);
Align EltAlign(DL.getABITypeAlignment(ElTy));
uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
@@ -553,7 +570,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
if (NewAlign > EltAlign)
NGV->setAlignment(NewAlign);
transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
- FragmentSizeInBits, STy->getNumElements());
+ FragmentSizeInBits, GetSRASequentialNumElements(Ty));
}
}
@@ -2424,8 +2441,11 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
}
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
- SequentialType *InitTy = cast<SequentialType>(Init->getType());
- uint64_t NumElts = InitTy->getNumElements();
+ uint64_t NumElts;
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
+ NumElts = ATy->getNumElements();
+ else
+ NumElts = cast<VectorType>(Init->getType())->getNumElements();
// Break up the array into elements.
for (uint64_t i = 0, e = NumElts; i != e; ++i)
@@ -2436,7 +2456,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
if (Init->getType()->isArrayTy())
- return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
+ return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
return ConstantVector::get(Elts);
}
@@ -2558,8 +2578,10 @@ static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
unsigned NumElts;
if (auto *STy = dyn_cast<StructType>(Ty))
NumElts = STy->getNumElements();
+ else if (auto *ATy = dyn_cast<ArrayType>(Ty))
+ NumElts = ATy->getNumElements();
else
- NumElts = cast<SequentialType>(Ty)->getNumElements();
+ NumElts = cast<VectorType>(Ty)->getNumElements();
for (unsigned i = 0, e = NumElts; i != e; ++i)
Elts.push_back(Init->getAggregateElement(i));
}
diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index ea6156f4c56d..9f40b65e542d 100644
--- a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -2132,7 +2132,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Type *Ty = ConstArg->getType();
if (Ty->isVectorTy()) {
unsigned NumElements = Ty->getVectorNumElements();
- Type *EltTy = Ty->getSequentialElementType();
+ Type *EltTy = Ty->getVectorElementType();
SmallVector<Constant *, 16> Elements;
for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
if (ConstantInt *Elt =
diff --git a/llvm/lib/Transforms/Scalar/SROA.cpp b/llvm/lib/Transforms/Scalar/SROA.cpp
index 05025747db8e..fdc17bf21827 100644
--- a/llvm/lib/Transforms/Scalar/SROA.cpp
+++ b/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -3532,11 +3532,22 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
(DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
return nullptr;
- if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
- Type *ElementTy = SeqTy->getElementType();
+ if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
+ Type *ElementTy;
+ uint64_t TyNumElements;
+ if (auto *AT = dyn_cast<ArrayType>(Ty)) {
+ ElementTy = AT->getElementType();
+ TyNumElements = AT->getNumElements();
+ } else {
+ // FIXME: This isn't right for vectors with non-byte-sized or
+ // non-power-of-two sized elements.
+ auto *VT = cast<VectorType>(Ty);
+ ElementTy = VT->getElementType();
+ TyNumElements = VT->getNumElements();
+ }
uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
uint64_t NumSkippedElements = Offset / ElementSize;
- if (NumSkippedElements >= SeqTy->getNumElements())
+ if (NumSkippedElements >= TyNumElements)
return nullptr;
Offset -= NumSkippedElements * ElementSize;
diff --git a/llvm/lib/Transforms/Utils/FunctionComparator.cpp b/llvm/lib/Transforms/Utils/FunctionComparator.cpp
index a9b28754c8e9..760a2cf3a9eb 100644
--- a/llvm/lib/Transforms/Utils/FunctionComparator.cpp
+++ b/llvm/lib/Transforms/Utils/FunctionComparator.cpp
@@ -476,14 +476,24 @@ int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
return 0;
}
- case Type::ArrayTyID:
- case Type::VectorTyID: {
- auto *STyL = cast<SequentialType>(TyL);
- auto *STyR = cast<SequentialType>(TyR);
+ case Type::ArrayTyID: {
+ auto *STyL = cast<ArrayType>(TyL);
+ auto *STyR = cast<ArrayType>(TyR);
if (STyL->getNumElements() != STyR->getNumElements())
return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
return cmpTypes(STyL->getElementType(), STyR->getElementType());
}
+ case Type::VectorTyID: {
+ auto *STyL = cast<VectorType>(TyL);
+ auto *STyR = cast<VectorType>(TyR);
+ if (STyL->getElementCount().Scalable != STyR->getElementCount().Scalable)
+ return cmpNumbers(STyL->getElementCount().Scalable,
+ STyR->getElementCount().Scalable);
+ if (STyL->getElementCount().Min != STyR->getElementCount().Min)
+ return cmpNumbers(STyL->getElementCount().Min,
+ STyR->getElementCount().Min);
+ return cmpTypes(STyL->getElementType(), STyR->getElementType());
+ }
}
}
diff --git a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
index 53678bc97d7e..4b69afb312a7 100644
--- a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -3131,7 +3131,8 @@ unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
unsigned N = 1;
Type *EltTy = T;
- while (isa<StructType>(EltTy) || isa<SequentialType>(EltTy)) {
+ while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
+ isa<VectorType>(EltTy)) {
if (auto *ST = dyn_cast<StructType>(EltTy)) {
// Check that struct is homogeneous.
for (const auto *Ty : ST->elements())
@@ -3139,10 +3140,13 @@ unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
return 0;
N *= ST->getNumElements();
EltTy = *ST->element_begin();
+ } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
+ N *= AT->getNumElements();
+ EltTy = AT->getElementType();
} else {
- auto *SeqT = cast<SequentialType>(EltTy);
- N *= SeqT->getNumElements();
- EltTy = SeqT->getElementType();
+ auto *VT = cast<VectorType>(EltTy);
+ N *= VT->getNumElements();
+ EltTy = VT->getElementType();
}
}
diff --git a/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp b/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
index da58eb7559af..4af83eec969c 100644
--- a/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
+++ b/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
@@ -51,12 +51,16 @@ buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
return result;
}
- if (!isa<llvm::SequentialType>(type)) {
+ llvm::Type *elementType;
+ if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
+ elementType = arrayTy->getElementType();
+ } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
+ elementType = vectorTy->getElementType();
+ } else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
- llvm::Type *elementType = type->getSequentialElementType();
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
@@ -74,9 +78,15 @@ buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
- while (isa<llvm::SequentialType>(type))
- type = type->getSequentialElementType();
- return type;
+ do {
+ if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
+ type = arrayTy->getElementType();
+ } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
+ type = vectorTy->getElementType();
+ } else {
+ return type;
+ }
+ } while (1);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
@@ -106,17 +116,24 @@ llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
return llvm::ConstantExpr::getBitCast(
functionMapping.lookup(funcAttr.getValue()), llvmType);
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
- auto *sequentialType = cast<llvm::SequentialType>(llvmType);
- auto *elementType = sequentialType->getElementType();
- uint64_t numElements = sequentialType->getNumElements();
+ llvm::Type *elementType;
+ uint64_t numElements;
+ if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
+ elementType = arrayTy->getElementType();
+ numElements = arrayTy->getNumElements();
+ } else {
+ auto *vectorTy = cast<llvm::VectorType>(llvmType);
+ elementType = vectorTy->getElementType();
+ numElements = vectorTy->getNumElements();
+ }
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
+ bool elementTypeSequential =
+ isa<llvm::ArrayType>(elementType) || isa<llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
- isa<llvm::SequentialType>(elementType) ? splatAttr
- : splatAttr.getSplatValue(),
- loc);
+ elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
More information about the llvm-commits
mailing list