[llvm] b567ff2 - [ARM][MVE] Tail-predication: support constant trip count

Sjoerd Meijer via llvm-commits llvm-commits at lists.llvm.org
Mon Jan 27 03:10:42 PST 2020


Author: Sjoerd Meijer
Date: 2020-01-27T11:05:26Z
New Revision: b567ff2fa05c7df1b3bf74e7a79daa7aa5bd5912

URL: https://github.com/llvm/llvm-project/commit/b567ff2fa05c7df1b3bf74e7a79daa7aa5bd5912
DIFF: https://github.com/llvm/llvm-project/commit/b567ff2fa05c7df1b3bf74e7a79daa7aa5bd5912.diff

LOG: [ARM][MVE] Tail-predication: support constant trip count

We had support for runtime trip count values, but not constants, and this adds
supports for that.

And added a minor optimisation while I was add it: don't invoke Cleanup when
there's nothing to clean up.

Differential Revision: https://reviews.llvm.org/D73198

Added: 
    llvm/test/CodeGen/Thumb2/LowOverheadLoops/tail-pred-const.ll

Modified: 
    llvm/lib/Target/ARM/MVETailPredication.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Target/ARM/MVETailPredication.cpp b/llvm/lib/Target/ARM/MVETailPredication.cpp
index f50962f96891..151385de7850 100644
--- a/llvm/lib/Target/ARM/MVETailPredication.cpp
+++ b/llvm/lib/Target/ARM/MVETailPredication.cpp
@@ -55,6 +55,27 @@ DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
                        cl::desc("Disable MVE Tail Predication"));
 namespace {
 
+// Bookkeeping for pattern matching the loop trip count and the number of
+// elements processed by the loop.
+struct TripCountPattern {
+  // The Predicate used by the masked loads/stores, i.e. an icmp instruction
+  // which calculates active/inactive lanes
+  Instruction *Predicate = nullptr;
+
+  // The add instruction that increments the IV
+  Value *TripCount = nullptr;
+
+  // The number of elements processed by the vector loop.
+  Value *NumElements = nullptr;
+
+  VectorType *VecTy = nullptr;
+  Instruction *Shuffle = nullptr;
+  Instruction *Induction = nullptr;
+
+  TripCountPattern(Instruction *P, Value *TC, VectorType *VT)
+      : Predicate(P), TripCount(TC), VecTy(VT){};
+};
+
 class MVETailPredication : public LoopPass {
   SmallVector<IntrinsicInst*, 4> MaskedInsts;
   Loop *L = nullptr;
@@ -85,7 +106,6 @@ class MVETailPredication : public LoopPass {
   bool runOnLoop(Loop *L, LPPassManager&) override;
 
 private:
-
   /// Perform the relevant checks on the loop and convert if possible.
   bool TryConvert(Value *TripCount);
 
@@ -94,18 +114,16 @@ class MVETailPredication : public LoopPass {
   bool IsPredicatedVectorLoop();
 
   /// Compute a value for the total number of elements that the predicated
-  /// loop will process.
-  Value *ComputeElements(Value *TripCount, VectorType *VecTy);
+  /// loop will process if it is a runtime value.
+  bool ComputeRuntimeElements(TripCountPattern &TCP);
 
   /// Is the icmp that generates an i1 vector, based upon a loop counter
   /// and a limit that is defined outside the loop.
-  bool isTailPredicate(Instruction *Predicate, Value *NumElements);
+  bool isTailPredicate(TripCountPattern &TCP);
 
   /// Insert the intrinsic to represent the effect of tail predication.
-  void InsertVCTPIntrinsic(Instruction *Predicate,
-                           DenseMap<Instruction*, Instruction*> &NewPredicates,
-                           VectorType *VecTy,
-                           Value *NumElements);
+  void InsertVCTPIntrinsic(TripCountPattern &TCP,
+                           DenseMap<Instruction *, Instruction *> &NewPredicates);
 
   /// Rematerialize the iteration count in exit blocks, which enables
   /// ARMLowOverheadLoops to better optimise away loop update statements inside
@@ -213,6 +231,7 @@ bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
   if (!Decrement)
     return false;
 
+  ClonedVCTPInExitBlock = false;
   LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
              << *Decrement << "\n");
 
@@ -225,17 +244,17 @@ bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
   return false;
 }
 
-bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
-  // Look for the following:
-
-  // %trip.count.minus.1 = add i32 %N, -1
-  // %broadcast.splatinsert10 = insertelement <4 x i32> undef,
-  //                                          i32 %trip.count.minus.1, i32 0
-  // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
-  //                                    <4 x i32> undef,
-  //                                    <4 x i32> zeroinitializer
-  // ...
-  // ...
+// Pattern match predicates/masks and determine if they use the loop induction
+// variable to control the number of elements processed by the loop. If so,
+// the loop is a candidate for tail-predication.
+bool MVETailPredication::isTailPredicate(TripCountPattern &TCP) {
+  using namespace PatternMatch;
+
+  // Pattern match the loop body and find the add with takes the index iv
+  // and adds a constant vector to it:
+  //
+  // vector.body:
+  // ..
   // %index = phi i32
   // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
   // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
@@ -244,49 +263,11 @@ bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
   // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
   // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
 
-  // And return whether V == %pred.
-
-  using namespace PatternMatch;
-
-  CmpInst::Predicate Pred;
-  Instruction *Shuffle = nullptr;
-  Instruction *Induction = nullptr;
-
-  // The vector icmp
-  if (!match(I, m_ICmp(Pred, m_Instruction(Induction),
-                       m_Instruction(Shuffle))) ||
-      Pred != ICmpInst::ICMP_ULE)
-    return false;
-
-  // First find the stuff outside the loop which is setting up the limit
-  // vector....
-  // The invariant shuffle that broadcast the limit into a vector.
-  Instruction *Insert = nullptr;
-  if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
-                                      m_Zero())))
-    return false;
-
-  // Insert the limit into a vector.
-  Instruction *BECount = nullptr;
-  if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount),
-                                     m_Zero())))
-    return false;
-
-  // The limit calculation, backedge count.
-  Value *TripCount = nullptr;
-  if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
-    return false;
-
-  if (TripCount != NumElements || !L->isLoopInvariant(BECount))
-    return false;
-
-  // Now back to searching inside the loop body...
-  // Find the add with takes the index iv and adds a constant vector to it.
   Instruction *BroadcastSplat = nullptr;
   Constant *Const = nullptr;
-  if (!match(Induction, m_Add(m_Instruction(BroadcastSplat),
-                              m_Constant(Const))))
-   return false;
+  if (!match(TCP.Induction,
+             m_Add(m_Instruction(BroadcastSplat), m_Constant(Const))))
+    return false;
 
   // Check that we're adding <0, 1, 2, 3...
   if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
@@ -297,9 +278,10 @@ bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
   } else
     return false;
 
+  Instruction *Insert = nullptr;
   // The shuffle which broadcasts the index iv into a vector.
-  if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
-                                             m_Zero())))
+  if (!match(BroadcastSplat,
+             m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_Zero())))
     return false;
 
   // The insert element which initialises a vector with the index iv.
@@ -327,7 +309,7 @@ bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
   return LHS == Phi;
 }
 
-static VectorType* getVectorType(IntrinsicInst *I) {
+static VectorType *getVectorType(IntrinsicInst *I) {
   unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
   auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
   return cast<VectorType>(PtrTy->getElementType());
@@ -361,17 +343,108 @@ bool MVETailPredication::IsPredicatedVectorLoop() {
   return !MaskedInsts.empty();
 }
 
-Value* MVETailPredication::ComputeElements(Value *TripCount,
-                                           VectorType *VecTy) {
-  const SCEV *TripCountSE = SE->getSCEV(TripCount);
-  ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()),
-                                     VecTy->getNumElements());
+// Pattern match the predicate, which is an icmp with a constant vector of this
+// form:
+//
+//   icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
+//
+// and return the constant, i.e. 32002 in this example. This is assumed to be
+// the scalar loop iteration count: the number of loop elements by the
+// the vector loop. Further checks are performed in function isTailPredicate(),
+// to verify 'induction' behaves as an induction variable.
+//
+static bool ComputeConstElements(TripCountPattern &TCP) {
+  if (!dyn_cast<ConstantInt>(TCP.TripCount))
+    return false;
+
+  ConstantInt *VF = ConstantInt::get(
+      cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
+  using namespace PatternMatch;
+  CmpInst::Predicate CC;
+
+  if (!match(TCP.Predicate, m_ICmp(CC, m_Instruction(TCP.Induction),
+                                   m_AnyIntegralConstant())) ||
+      CC != ICmpInst::ICMP_ULT)
+    return false;
+
+  LLVM_DEBUG(dbgs() << "ARM TP: icmp with constants: "; TCP.Predicate->dump(););
+  Value *ConstVec = TCP.Predicate->getOperand(1);
+
+  auto *CDS = dyn_cast<ConstantDataSequential>(ConstVec);
+  if (!CDS || CDS->getNumElements() != VF->getSExtValue())
+    return false;
+
+  if ((TCP.NumElements = CDS->getSplatValue())) {
+    assert(dyn_cast<ConstantInt>(TCP.NumElements)->getSExtValue() %
+                   VF->getSExtValue() !=
+               0 &&
+           "tail-predication: trip count should not be a multiple of the VF");
+    LLVM_DEBUG(dbgs() << "ARM TP: Found const elem count: " << *TCP.NumElements
+                      << "\n");
+    return true;
+  }
+  return false;
+}
+
+// Pattern match the loop iteration count setup:
+//
+// %trip.count.minus.1 = add i32 %N, -1
+// %broadcast.splatinsert10 = insertelement <4 x i32> undef,
+//                                          i32 %trip.count.minus.1, i32 0
+// %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
+//                                    <4 x i32> undef,
+//                                    <4 x i32> zeroinitializer
+// ..
+// vector.body:
+// ..
+//
+static bool MatchElemCountLoopSetup(Loop *L, Instruction *Shuffle,
+                                    Value *NumElements) {
+  using namespace PatternMatch;
+  Instruction *Insert = nullptr;
+
+  if (!match(Shuffle,
+             m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_Zero())))
+    return false;
+
+  // Insert the limit into a vector.
+  Instruction *BECount = nullptr;
+  if (!match(Insert,
+             m_InsertElement(m_Undef(), m_Instruction(BECount), m_Zero())))
+    return false;
+
+  // The limit calculation, backedge count.
+  Value *TripCount = nullptr;
+  if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
+    return false;
+
+  if (TripCount != NumElements || !L->isLoopInvariant(BECount))
+    return false;
+
+  return true;
+}
+
+bool MVETailPredication::ComputeRuntimeElements(TripCountPattern &TCP) {
+  using namespace PatternMatch;
+  const SCEV *TripCountSE = SE->getSCEV(TCP.TripCount);
+  ConstantInt *VF = ConstantInt::get(
+      cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
 
   if (VF->equalsInt(1))
-    return nullptr;
+    return false;
+
+  CmpInst::Predicate Pred;
+  if (!match(TCP.Predicate, m_ICmp(Pred, m_Instruction(TCP.Induction),
+                                   m_Instruction(TCP.Shuffle))) ||
+      Pred != ICmpInst::ICMP_ULE)
+    return false;
+
+  LLVM_DEBUG(dbgs() << "Computing number of elements for vector trip count: ";
+             TCP.TripCount->dump());
 
-  // TODO: Support constant trip counts.
-  auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* {
+  // Otherwise, continue and try to pattern match the vector iteration
+  // count expression
+  auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr * {
     if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
       if (Const->getAPInt() != -VF->getValue())
         return nullptr;
@@ -380,7 +453,7 @@ Value* MVETailPredication::ComputeElements(Value *TripCount,
     return dyn_cast<SCEVMulExpr>(S->getOperand(1));
   };
 
-  auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* {
+  auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr * {
     if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
       if (Const->getValue() != VF)
         return nullptr;
@@ -389,7 +462,7 @@ Value* MVETailPredication::ComputeElements(Value *TripCount,
     return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
   };
 
-  auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* {
+  auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV * {
     if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
       if (Const->getValue() != VF)
         return nullptr;
@@ -426,15 +499,20 @@ Value* MVETailPredication::ComputeElements(Value *TripCount,
               Elems = Res;
 
   if (!Elems)
-    return nullptr;
+    return false;
 
   Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
   if (!isSafeToExpandAt(Elems, InsertPt, *SE))
-    return nullptr;
+    return false;
 
   auto DL = L->getHeader()->getModule()->getDataLayout();
   SCEVExpander Expander(*SE, DL, "elements");
-  return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
+  TCP.NumElements = Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
+
+  if (!MatchElemCountLoopSetup(L, TCP.Shuffle, TCP.NumElements))
+    return false;
+
+  return true;
 }
 
 // Look through the exit block to see whether there's a duplicate predicate
@@ -499,24 +577,23 @@ static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
   return ClonedVCTPInExitBlock;
 }
 
-void MVETailPredication::InsertVCTPIntrinsic(Instruction *Predicate,
-    DenseMap<Instruction*, Instruction*> &NewPredicates,
-    VectorType *VecTy, Value *NumElements) {
+void MVETailPredication::InsertVCTPIntrinsic(TripCountPattern &TCP,
+    DenseMap<Instruction*, Instruction*> &NewPredicates) {
   IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
   Module *M = L->getHeader()->getModule();
   Type *Ty = IntegerType::get(M->getContext(), 32);
 
   // Insert a phi to count the number of elements processed by the loop.
   PHINode *Processed = Builder.CreatePHI(Ty, 2);
-  Processed->addIncoming(NumElements, L->getLoopPreheader());
+  Processed->addIncoming(TCP.NumElements, L->getLoopPreheader());
 
   // Insert the intrinsic to represent the effect of tail predication.
-  Builder.SetInsertPoint(cast<Instruction>(Predicate));
+  Builder.SetInsertPoint(cast<Instruction>(TCP.Predicate));
   ConstantInt *Factor =
-    ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements());
+    ConstantInt::get(cast<IntegerType>(Ty), TCP.VecTy->getNumElements());
 
   Intrinsic::ID VCTPID;
-  switch (VecTy->getNumElements()) {
+  switch (TCP.VecTy->getNumElements()) {
   default:
     llvm_unreachable("unexpected number of lanes");
   case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
@@ -531,8 +608,8 @@ void MVETailPredication::InsertVCTPIntrinsic(Instruction *Predicate,
   }
   Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
   Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
-  Predicate->replaceAllUsesWith(TailPredicate);
-  NewPredicates[Predicate] = cast<Instruction>(TailPredicate);
+  TCP.Predicate->replaceAllUsesWith(TailPredicate);
+  NewPredicates[TCP.Predicate] = cast<Instruction>(TailPredicate);
 
   // Add the incoming value to the new phi.
   // TODO: This add likely already exists in the loop.
@@ -545,7 +622,7 @@ void MVETailPredication::InsertVCTPIntrinsic(Instruction *Predicate,
 
 bool MVETailPredication::TryConvert(Value *TripCount) {
   if (!IsPredicatedVectorLoop()) {
-    LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop");
+    LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
     return false;
   }
 
@@ -563,22 +640,24 @@ bool MVETailPredication::TryConvert(Value *TripCount) {
     if (!Predicate || Predicates.count(Predicate))
       continue;
 
-    VectorType *VecTy = getVectorType(I);
-    Value *NumElements = ComputeElements(TripCount, VecTy);
-    if (!NumElements)
+    TripCountPattern TCP(Predicate, TripCount, getVectorType(I));
+
+    if (!(ComputeConstElements(TCP) || ComputeRuntimeElements(TCP)))
       continue;
 
-    if (!isTailPredicate(Predicate, NumElements)) {
+    if (!isTailPredicate(TCP)) {
       LLVM_DEBUG(dbgs() << "ARM TP: Not tail predicate: " << *Predicate << "\n");
       continue;
     }
 
     LLVM_DEBUG(dbgs() << "ARM TP: Found tail predicate: " << *Predicate << "\n");
     Predicates.insert(Predicate);
-
-    InsertVCTPIntrinsic(Predicate, NewPredicates, VecTy, NumElements);
+    InsertVCTPIntrinsic(TCP, NewPredicates);
   }
 
+  if (!NewPredicates.size())
+    return false;
+
   // Now clean up.
   ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L);
   return true;

diff  --git a/llvm/test/CodeGen/Thumb2/LowOverheadLoops/tail-pred-const.ll b/llvm/test/CodeGen/Thumb2/LowOverheadLoops/tail-pred-const.ll
new file mode 100644
index 000000000000..96ee13bd5957
--- /dev/null
+++ b/llvm/test/CodeGen/Thumb2/LowOverheadLoops/tail-pred-const.ll
@@ -0,0 +1,329 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt -mtriple=thumbv8.1m.main -mve-tail-predication -disable-mve-tail-predication=false -mattr=+mve %s -S -o - | FileCheck %s
+
+define dso_local void @foo(i32* noalias nocapture %A, i32* noalias nocapture readonly %B, i32* noalias nocapture readonly %C, i32* noalias nocapture readnone %D, i32 %N) local_unnamed_addr #0 {
+; CHECK-LABEL: @foo(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    call void @llvm.set.loop.iterations.i32(i32 8001)
+; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
+; CHECK:       vector.body:
+; CHECK-NEXT:    [[LSR_IV14:%.*]] = phi i32* [ [[SCEVGEP15:%.*]], [[VECTOR_BODY]] ], [ [[A:%.*]], [[ENTRY:%.*]] ]
+; CHECK-NEXT:    [[LSR_IV11:%.*]] = phi i32* [ [[SCEVGEP12:%.*]], [[VECTOR_BODY]] ], [ [[C:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[LSR_IV:%.*]] = phi i32* [ [[SCEVGEP:%.*]], [[VECTOR_BODY]] ], [ [[B:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 8001, [[ENTRY]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[TMP1:%.*]] = phi i32 [ 32002, [[ENTRY]] ], [ [[TMP3:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[LSR_IV1416:%.*]] = bitcast i32* [[LSR_IV14]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV1113:%.*]] = bitcast i32* [[LSR_IV11]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV10:%.*]] = bitcast i32* [[LSR_IV]] to <4 x i32>*
+; CHECK-NEXT:    [[TMP2:%.*]] = call <4 x i1> @llvm.arm.mve.vctp32(i32 [[TMP1]])
+; CHECK-NEXT:    [[TMP3]] = sub i32 [[TMP1]], 4
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV10]], i32 4, <4 x i1> [[TMP2]], <4 x i32> undef)
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD9:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV1113]], i32 4, <4 x i1> [[TMP2]], <4 x i32> undef)
+; CHECK-NEXT:    [[TMP4:%.*]] = add nsw <4 x i32> [[WIDE_MASKED_LOAD9]], [[WIDE_MASKED_LOAD]]
+; CHECK-NEXT:    call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> [[TMP4]], <4 x i32>* [[LSR_IV1416]], i32 4, <4 x i1> [[TMP2]])
+; CHECK-NEXT:    [[SCEVGEP]] = getelementptr i32, i32* [[LSR_IV]], i32 4
+; CHECK-NEXT:    [[SCEVGEP12]] = getelementptr i32, i32* [[LSR_IV11]], i32 4
+; CHECK-NEXT:    [[SCEVGEP15]] = getelementptr i32, i32* [[LSR_IV14]], i32 4
+; CHECK-NEXT:    [[TMP5]] = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 [[TMP0]], i32 1)
+; CHECK-NEXT:    [[TMP6:%.*]] = icmp ne i32 [[TMP5]], 0
+; CHECK-NEXT:    br i1 [[TMP6]], label [[VECTOR_BODY]], label [[FOR_COND_CLEANUP:%.*]]
+; CHECK:       for.cond.cleanup:
+; CHECK-NEXT:    ret void
+;
+entry:
+  call void @llvm.set.loop.iterations.i32(i32 8001)
+  br label %vector.body
+
+vector.body:
+  %lsr.iv14 = phi i32* [ %scevgep15, %vector.body ], [ %A, %entry ]
+  %lsr.iv11 = phi i32* [ %scevgep12, %vector.body ], [ %C, %entry ]
+  %lsr.iv = phi i32* [ %scevgep, %vector.body ], [ %B, %entry ]
+  %index = phi i32 [ 0, %entry ], [ %index.next, %vector.body ]
+  %0 = phi i32 [ 8001, %entry ], [ %3, %vector.body ]
+  %lsr.iv1416 = bitcast i32* %lsr.iv14 to <4 x i32>*
+  %lsr.iv1113 = bitcast i32* %lsr.iv11 to <4 x i32>*
+  %lsr.iv10 = bitcast i32* %lsr.iv to <4 x i32>*
+  %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
+  %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
+  %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
+  %1 = icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
+  %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv10, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %wide.masked.load9 = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv1113, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %2 = add nsw <4 x i32> %wide.masked.load9, %wide.masked.load
+  call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> %2, <4 x i32>* %lsr.iv1416, i32 4, <4 x i1> %1)
+  %index.next = add i32 %index, 4
+  %scevgep = getelementptr i32, i32* %lsr.iv, i32 4
+  %scevgep12 = getelementptr i32, i32* %lsr.iv11, i32 4
+  %scevgep15 = getelementptr i32, i32* %lsr.iv14, i32 4
+  %3 = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %0, i32 1)
+  %4 = icmp ne i32 %3, 0
+  br i1 %4, label %vector.body, label %for.cond.cleanup
+
+for.cond.cleanup:
+  ret void
+}
+
+; Silly test case: the loop count is constant and a multiple of the vectorisation
+; factor. So, the vectoriser should not produce masked loads/stores and there's
+; nothing to tail-predicate here, just checking.
+define dso_local void @foo2(i32* noalias nocapture %A, i32* noalias nocapture readonly %B, i32* noalias nocapture readonly %C, i32* noalias nocapture readnone %D, i32 %N) local_unnamed_addr #0 {
+; CHECK-LABEL: @foo2(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    call void @llvm.set.loop.iterations.i32(i32 2000)
+; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
+; CHECK:       vector.body:
+; CHECK-NEXT:    [[LSR_IV14:%.*]] = phi i32* [ [[SCEVGEP15:%.*]], [[VECTOR_BODY]] ], [ [[A:%.*]], [[ENTRY:%.*]] ]
+; CHECK-NEXT:    [[LSR_IV11:%.*]] = phi i32* [ [[SCEVGEP12:%.*]], [[VECTOR_BODY]] ], [ [[C:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[LSR_IV:%.*]] = phi i32* [ [[SCEVGEP:%.*]], [[VECTOR_BODY]] ], [ [[B:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 2000, [[ENTRY]] ], [ [[TMP2:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[LSR_IV1416:%.*]] = bitcast i32* [[LSR_IV14]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV1113:%.*]] = bitcast i32* [[LSR_IV11]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV10:%.*]] = bitcast i32* [[LSR_IV]] to <4 x i32>*
+; CHECK-NEXT:    [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[LSR_IV10]], align 4
+; CHECK-NEXT:    [[WIDE_LOAD9:%.*]] = load <4 x i32>, <4 x i32>* [[LSR_IV1113]], align 4
+; CHECK-NEXT:    [[TMP1:%.*]] = add nsw <4 x i32> [[WIDE_LOAD9]], [[WIDE_LOAD]]
+; CHECK-NEXT:    store <4 x i32> [[TMP1]], <4 x i32>* [[LSR_IV1416]], align 4
+; CHECK-NEXT:    [[SCEVGEP]] = getelementptr i32, i32* [[LSR_IV]], i32 4
+; CHECK-NEXT:    [[SCEVGEP12]] = getelementptr i32, i32* [[LSR_IV11]], i32 4
+; CHECK-NEXT:    [[SCEVGEP15]] = getelementptr i32, i32* [[LSR_IV14]], i32 4
+; CHECK-NEXT:    [[TMP2]] = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 [[TMP0]], i32 1)
+; CHECK-NEXT:    [[TMP3:%.*]] = icmp ne i32 [[TMP2]], 0
+; CHECK-NEXT:    br i1 [[TMP3]], label [[VECTOR_BODY]], label [[FOR_COND_CLEANUP:%.*]]
+; CHECK:       for.cond.cleanup:
+; CHECK-NEXT:    ret void
+;
+entry:
+  call void @llvm.set.loop.iterations.i32(i32 2000)
+  br label %vector.body
+
+vector.body:
+  %lsr.iv14 = phi i32* [ %scevgep15, %vector.body ], [ %A, %entry ]
+  %lsr.iv11 = phi i32* [ %scevgep12, %vector.body ], [ %C, %entry ]
+  %lsr.iv = phi i32* [ %scevgep, %vector.body ], [ %B, %entry ]
+  %0 = phi i32 [ 2000, %entry ], [ %2, %vector.body ]
+  %lsr.iv1416 = bitcast i32* %lsr.iv14 to <4 x i32>*
+  %lsr.iv1113 = bitcast i32* %lsr.iv11 to <4 x i32>*
+  %lsr.iv10 = bitcast i32* %lsr.iv to <4 x i32>*
+  %wide.load = load <4 x i32>, <4 x i32>* %lsr.iv10, align 4
+  %wide.load9 = load <4 x i32>, <4 x i32>* %lsr.iv1113, align 4
+  %1 = add nsw <4 x i32> %wide.load9, %wide.load
+  store <4 x i32> %1, <4 x i32>* %lsr.iv1416, align 4
+  %scevgep = getelementptr i32, i32* %lsr.iv, i32 4
+  %scevgep12 = getelementptr i32, i32* %lsr.iv11, i32 4
+  %scevgep15 = getelementptr i32, i32* %lsr.iv14, i32 4
+  %2 = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %0, i32 1)
+  %3 = icmp ne i32 %2, 0
+  br i1 %3, label %vector.body, label %for.cond.cleanup
+
+for.cond.cleanup:
+  ret void
+}
+
+; Check that the icmp is a ult
+define dso_local void @foo3(i32* noalias nocapture %A, i32* noalias nocapture readonly %B, i32* noalias nocapture readonly %C, i32* noalias nocapture readnone %D, i32 %N) local_unnamed_addr #0 {
+; CHECK-LABEL: @foo3(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    call void @llvm.set.loop.iterations.i32(i32 8001)
+; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
+; CHECK:       vector.body:
+; CHECK-NEXT:    [[LSR_IV14:%.*]] = phi i32* [ [[SCEVGEP15:%.*]], [[VECTOR_BODY]] ], [ [[A:%.*]], [[ENTRY:%.*]] ]
+; CHECK-NEXT:    [[LSR_IV11:%.*]] = phi i32* [ [[SCEVGEP12:%.*]], [[VECTOR_BODY]] ], [ [[C:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[LSR_IV:%.*]] = phi i32* [ [[SCEVGEP:%.*]], [[VECTOR_BODY]] ], [ [[B:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[INDEX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 8001, [[ENTRY]] ], [ [[TMP3:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[LSR_IV1416:%.*]] = bitcast i32* [[LSR_IV14]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV1113:%.*]] = bitcast i32* [[LSR_IV11]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV10:%.*]] = bitcast i32* [[LSR_IV]] to <4 x i32>*
+; CHECK-NEXT:    [[BROADCAST_SPLATINSERT:%.*]] = insertelement <4 x i32> undef, i32 [[INDEX]], i32 0
+; CHECK-NEXT:    [[BROADCAST_SPLAT:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT]], <4 x i32> undef, <4 x i32> zeroinitializer
+; CHECK-NEXT:    [[INDUCTION:%.*]] = add <4 x i32> [[BROADCAST_SPLAT]], <i32 0, i32 1, i32 2, i32 3>
+; CHECK-NEXT:    [[TMP1:%.*]] = icmp ugt <4 x i32> [[INDUCTION]], <i32 32002, i32 32002, i32 32002, i32 32002>
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV10]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD9:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV1113]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[TMP2:%.*]] = add nsw <4 x i32> [[WIDE_MASKED_LOAD9]], [[WIDE_MASKED_LOAD]]
+; CHECK-NEXT:    call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> [[TMP2]], <4 x i32>* [[LSR_IV1416]], i32 4, <4 x i1> [[TMP1]])
+; CHECK-NEXT:    [[INDEX_NEXT]] = add i32 [[INDEX]], 4
+; CHECK-NEXT:    [[SCEVGEP]] = getelementptr i32, i32* [[LSR_IV]], i32 4
+; CHECK-NEXT:    [[SCEVGEP12]] = getelementptr i32, i32* [[LSR_IV11]], i32 4
+; CHECK-NEXT:    [[SCEVGEP15]] = getelementptr i32, i32* [[LSR_IV14]], i32 4
+; CHECK-NEXT:    [[TMP3]] = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 [[TMP0]], i32 1)
+; CHECK-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
+; CHECK-NEXT:    br i1 [[TMP4]], label [[VECTOR_BODY]], label [[FOR_COND_CLEANUP:%.*]]
+; CHECK:       for.cond.cleanup:
+; CHECK-NEXT:    ret void
+;
+entry:
+  call void @llvm.set.loop.iterations.i32(i32 8001)
+  br label %vector.body
+
+vector.body:
+  %lsr.iv14 = phi i32* [ %scevgep15, %vector.body ], [ %A, %entry ]
+  %lsr.iv11 = phi i32* [ %scevgep12, %vector.body ], [ %C, %entry ]
+  %lsr.iv = phi i32* [ %scevgep, %vector.body ], [ %B, %entry ]
+  %index = phi i32 [ 0, %entry ], [ %index.next, %vector.body ]
+  %0 = phi i32 [ 8001, %entry ], [ %3, %vector.body ]
+  %lsr.iv1416 = bitcast i32* %lsr.iv14 to <4 x i32>*
+  %lsr.iv1113 = bitcast i32* %lsr.iv11 to <4 x i32>*
+  %lsr.iv10 = bitcast i32* %lsr.iv to <4 x i32>*
+  %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
+  %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
+  %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
+
+; UGT here:
+  %1 = icmp ugt <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
+  %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv10, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %wide.masked.load9 = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv1113, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %2 = add nsw <4 x i32> %wide.masked.load9, %wide.masked.load
+  call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> %2, <4 x i32>* %lsr.iv1416, i32 4, <4 x i1> %1)
+  %index.next = add i32 %index, 4
+  %scevgep = getelementptr i32, i32* %lsr.iv, i32 4
+  %scevgep12 = getelementptr i32, i32* %lsr.iv11, i32 4
+  %scevgep15 = getelementptr i32, i32* %lsr.iv14, i32 4
+  %3 = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %0, i32 1)
+  %4 = icmp ne i32 %3, 0
+  br i1 %4, label %vector.body, label %for.cond.cleanup
+
+for.cond.cleanup:
+  ret void
+}
+
+; Check that this loop behaves as expected, i.e, that the loop increment is
+; an increment and not a decrement.
+define dso_local void @foo4(i32* noalias nocapture %A, i32* noalias nocapture readonly %B, i32* noalias nocapture readonly %C, i32* noalias nocapture readnone %D, i32 %N) local_unnamed_addr #0 {
+; CHECK-LABEL: @foo4(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    call void @llvm.set.loop.iterations.i32(i32 8001)
+; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
+; CHECK:       vector.body:
+; CHECK-NEXT:    [[LSR_IV14:%.*]] = phi i32* [ [[SCEVGEP15:%.*]], [[VECTOR_BODY]] ], [ [[A:%.*]], [[ENTRY:%.*]] ]
+; CHECK-NEXT:    [[LSR_IV11:%.*]] = phi i32* [ [[SCEVGEP12:%.*]], [[VECTOR_BODY]] ], [ [[C:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[LSR_IV:%.*]] = phi i32* [ [[SCEVGEP:%.*]], [[VECTOR_BODY]] ], [ [[B:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[INDEX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 8001, [[ENTRY]] ], [ [[TMP3:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[LSR_IV1416:%.*]] = bitcast i32* [[LSR_IV14]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV1113:%.*]] = bitcast i32* [[LSR_IV11]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV10:%.*]] = bitcast i32* [[LSR_IV]] to <4 x i32>*
+; CHECK-NEXT:    [[BROADCAST_SPLATINSERT:%.*]] = insertelement <4 x i32> undef, i32 [[INDEX]], i32 0
+; CHECK-NEXT:    [[BROADCAST_SPLAT:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT]], <4 x i32> undef, <4 x i32> zeroinitializer
+; CHECK-NEXT:    [[INDUCTION:%.*]] = add <4 x i32> [[BROADCAST_SPLAT]], <i32 0, i32 1, i32 2, i32 3>
+; CHECK-NEXT:    [[TMP1:%.*]] = icmp ult <4 x i32> [[INDUCTION]], <i32 32002, i32 32002, i32 32002, i32 32002>
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV10]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD9:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV1113]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[TMP2:%.*]] = add nsw <4 x i32> [[WIDE_MASKED_LOAD9]], [[WIDE_MASKED_LOAD]]
+; CHECK-NEXT:    call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> [[TMP2]], <4 x i32>* [[LSR_IV1416]], i32 4, <4 x i1> [[TMP1]])
+; CHECK-NEXT:    [[INDEX_NEXT]] = sub i32 [[INDEX]], 4
+; CHECK-NEXT:    [[SCEVGEP]] = getelementptr i32, i32* [[LSR_IV]], i32 4
+; CHECK-NEXT:    [[SCEVGEP12]] = getelementptr i32, i32* [[LSR_IV11]], i32 4
+; CHECK-NEXT:    [[SCEVGEP15]] = getelementptr i32, i32* [[LSR_IV14]], i32 4
+; CHECK-NEXT:    [[TMP3]] = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 [[TMP0]], i32 1)
+; CHECK-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
+; CHECK-NEXT:    br i1 [[TMP4]], label [[VECTOR_BODY]], label [[FOR_COND_CLEANUP:%.*]]
+; CHECK:       for.cond.cleanup:
+; CHECK-NEXT:    ret void
+;
+entry:
+  call void @llvm.set.loop.iterations.i32(i32 8001)
+  br label %vector.body
+
+vector.body:
+  %lsr.iv14 = phi i32* [ %scevgep15, %vector.body ], [ %A, %entry ]
+  %lsr.iv11 = phi i32* [ %scevgep12, %vector.body ], [ %C, %entry ]
+  %lsr.iv = phi i32* [ %scevgep, %vector.body ], [ %B, %entry ]
+  %index = phi i32 [ 0, %entry ], [ %index.next, %vector.body ]
+  %0 = phi i32 [ 8001, %entry ], [ %3, %vector.body ]
+  %lsr.iv1416 = bitcast i32* %lsr.iv14 to <4 x i32>*
+  %lsr.iv1113 = bitcast i32* %lsr.iv11 to <4 x i32>*
+  %lsr.iv10 = bitcast i32* %lsr.iv to <4 x i32>*
+  %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
+  %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
+  %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
+  %1 = icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
+  %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv10, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %wide.masked.load9 = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv1113, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %2 = add nsw <4 x i32> %wide.masked.load9, %wide.masked.load
+  call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> %2, <4 x i32>* %lsr.iv1416, i32 4, <4 x i1> %1)
+
+; Counting down:
+  %index.next = sub i32 %index, 4
+  %scevgep = getelementptr i32, i32* %lsr.iv, i32 4
+  %scevgep12 = getelementptr i32, i32* %lsr.iv11, i32 4
+  %scevgep15 = getelementptr i32, i32* %lsr.iv14, i32 4
+  %3 = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %0, i32 1)
+  %4 = icmp ne i32 %3, 0
+  br i1 %4, label %vector.body, label %for.cond.cleanup
+
+for.cond.cleanup:
+  ret void
+}
+
+define dso_local void @foo5(i32* noalias nocapture %A, i32* noalias nocapture readonly %B, i32* noalias nocapture readonly %C, i32* noalias nocapture readnone %D, i32 %N) local_unnamed_addr #0 {
+; CHECK-LABEL: @foo5(
+; CHECK-NEXT:  entry:
+; CHECK-NEXT:    call void @llvm.set.loop.iterations.i32(i32 8001)
+; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
+; CHECK:       vector.body:
+; CHECK-NEXT:    [[LSR_IV14:%.*]] = phi i32* [ [[SCEVGEP15:%.*]], [[VECTOR_BODY]] ], [ [[A:%.*]], [[ENTRY:%.*]] ]
+; CHECK-NEXT:    [[LSR_IV11:%.*]] = phi i32* [ [[SCEVGEP12:%.*]], [[VECTOR_BODY]] ], [ [[C:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[LSR_IV:%.*]] = phi i32* [ [[SCEVGEP:%.*]], [[VECTOR_BODY]] ], [ [[B:%.*]], [[ENTRY]] ]
+; CHECK-NEXT:    [[INDEX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 8001, [[ENTRY]] ], [ [[TMP3:%.*]], [[VECTOR_BODY]] ]
+; CHECK-NEXT:    [[LSR_IV1416:%.*]] = bitcast i32* [[LSR_IV14]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV1113:%.*]] = bitcast i32* [[LSR_IV11]] to <4 x i32>*
+; CHECK-NEXT:    [[LSR_IV10:%.*]] = bitcast i32* [[LSR_IV]] to <4 x i32>*
+; CHECK-NEXT:    [[BROADCAST_SPLATINSERT:%.*]] = insertelement <4 x i32> undef, i32 [[INDEX]], i32 0
+; CHECK-NEXT:    [[BROADCAST_SPLAT:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT]], <4 x i32> undef, <4 x i32> zeroinitializer
+; CHECK-NEXT:    [[INDUCTION:%.*]] = add <4 x i32> [[BROADCAST_SPLAT]], <i32 0, i32 1, i32 2, i32 3>
+; CHECK-NEXT:    [[TMP1:%.*]] = icmp ult <4 x i32> [[INDUCTION]], <i32 0, i32 3200, i32 32002, i32 32002>
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV10]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[WIDE_MASKED_LOAD9:%.*]] = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* [[LSR_IV1113]], i32 4, <4 x i1> [[TMP1]], <4 x i32> undef)
+; CHECK-NEXT:    [[TMP2:%.*]] = add nsw <4 x i32> [[WIDE_MASKED_LOAD9]], [[WIDE_MASKED_LOAD]]
+; CHECK-NEXT:    call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> [[TMP2]], <4 x i32>* [[LSR_IV1416]], i32 4, <4 x i1> [[TMP1]])
+; CHECK-NEXT:    [[INDEX_NEXT]] = add i32 [[INDEX]], 4
+; CHECK-NEXT:    [[SCEVGEP]] = getelementptr i32, i32* [[LSR_IV]], i32 4
+; CHECK-NEXT:    [[SCEVGEP12]] = getelementptr i32, i32* [[LSR_IV11]], i32 4
+; CHECK-NEXT:    [[SCEVGEP15]] = getelementptr i32, i32* [[LSR_IV14]], i32 4
+; CHECK-NEXT:    [[TMP3]] = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 [[TMP0]], i32 1)
+; CHECK-NEXT:    [[TMP4:%.*]] = icmp ne i32 [[TMP3]], 0
+; CHECK-NEXT:    br i1 [[TMP4]], label [[VECTOR_BODY]], label [[FOR_COND_CLEANUP:%.*]]
+; CHECK:       for.cond.cleanup:
+; CHECK-NEXT:    ret void
+;
+entry:
+  call void @llvm.set.loop.iterations.i32(i32 8001)
+  br label %vector.body
+
+vector.body:
+  %lsr.iv14 = phi i32* [ %scevgep15, %vector.body ], [ %A, %entry ]
+  %lsr.iv11 = phi i32* [ %scevgep12, %vector.body ], [ %C, %entry ]
+  %lsr.iv = phi i32* [ %scevgep, %vector.body ], [ %B, %entry ]
+  %index = phi i32 [ 0, %entry ], [ %index.next, %vector.body ]
+  %0 = phi i32 [ 8001, %entry ], [ %3, %vector.body ]
+  %lsr.iv1416 = bitcast i32* %lsr.iv14 to <4 x i32>*
+  %lsr.iv1113 = bitcast i32* %lsr.iv11 to <4 x i32>*
+  %lsr.iv10 = bitcast i32* %lsr.iv to <4 x i32>*
+  %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
+  %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
+  %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
+
+; non-uniform constant vector here:
+  %1 = icmp ult <4 x i32> %induction, <i32 0, i32 3200, i32 32002, i32 32002>
+  %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv10, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %wide.masked.load9 = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %lsr.iv1113, i32 4, <4 x i1> %1, <4 x i32> undef)
+  %2 = add nsw <4 x i32> %wide.masked.load9, %wide.masked.load
+  call void @llvm.masked.store.v4i32.p0v4i32(<4 x i32> %2, <4 x i32>* %lsr.iv1416, i32 4, <4 x i1> %1)
+  %index.next = add i32 %index, 4
+  %scevgep = getelementptr i32, i32* %lsr.iv, i32 4
+  %scevgep12 = getelementptr i32, i32* %lsr.iv11, i32 4
+  %scevgep15 = getelementptr i32, i32* %lsr.iv14, i32 4
+  %3 = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %0, i32 1)
+  %4 = icmp ne i32 %3, 0
+  br i1 %4, label %vector.body, label %for.cond.cleanup
+
+for.cond.cleanup:
+  ret void
+}
+
+declare <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>*, i32 immarg, <4 x i1>, <4 x i32>) #1
+declare void @llvm.masked.store.v4i32.p0v4i32(<4 x i32>, <4 x i32>*, i32 immarg, <4 x i1>) #2
+declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 , i32 )
+declare void @llvm.set.loop.iterations.i32(i32)


        


More information about the llvm-commits mailing list