[llvm] 1984a27 - [DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass.

Tom Weaver via llvm-commits llvm-commits at lists.llvm.org
Mon Nov 11 06:02:54 PST 2019


Author: Tom Weaver
Date: 2019-11-11T13:47:13Z
New Revision: 1984a27db58e9053371ab6d6dc288c81c8a071ac

URL: https://github.com/llvm/llvm-project/commit/1984a27db58e9053371ab6d6dc288c81c8a071ac
DIFF: https://github.com/llvm/llvm-project/commit/1984a27db58e9053371ab6d6dc288c81c8a071ac.diff

LOG: [DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass.

Reviewed By: aprantl, vsk

Differential revision: https://reviews.llvm.org/D69943

Added: 
    llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
    llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
    llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll

Modified: 
    

Removed: 
    


################################################################################
diff  --git a/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej b/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
new file mode 100644
index 000000000000..83c547675403
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/Reassociate.cpp.rej
@@ -0,0 +1,2506 @@
+--- llvm/lib/Transforms/Scalar/Reassociate.cpp
++++ llvm/lib/Transforms/Scalar/Reassociate.cpp
+@@ -1,2501 +1,2503 @@
+ //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
+ //
+ // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+ // See https://llvm.org/LICENSE.txt for license information.
+ // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This pass reassociates commutative expressions in an order that is designed
+ // to promote better constant propagation, GCSE, LICM, PRE, etc.
+ //
+ // For example: 4 + (x + 5) -> x + (4 + 5)
+ //
+ // In the implementation of this algorithm, constants are assigned rank = 0,
+ // function arguments are rank = 1, and other values are assigned ranks
+ // corresponding to the reverse post order traversal of current function
+ // (starting at 2), which effectively gives values in deep loops higher rank
+ // than values not in loops.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/Transforms/Scalar/Reassociate.h"
+ #include "llvm/ADT/APFloat.h"
+ #include "llvm/ADT/APInt.h"
+ #include "llvm/ADT/DenseMap.h"
+ #include "llvm/ADT/PostOrderIterator.h"
+ #include "llvm/ADT/SetVector.h"
+ #include "llvm/ADT/SmallPtrSet.h"
+ #include "llvm/ADT/SmallSet.h"
+ #include "llvm/ADT/SmallVector.h"
+ #include "llvm/ADT/Statistic.h"
+ #include "llvm/Analysis/GlobalsModRef.h"
+ #include "llvm/Transforms/Utils/Local.h"
+ #include "llvm/Analysis/ValueTracking.h"
+ #include "llvm/IR/Argument.h"
+ #include "llvm/IR/BasicBlock.h"
+ #include "llvm/IR/CFG.h"
+ #include "llvm/IR/Constant.h"
+ #include "llvm/IR/Constants.h"
+ #include "llvm/IR/Function.h"
+ #include "llvm/IR/IRBuilder.h"
+ #include "llvm/IR/InstrTypes.h"
+ #include "llvm/IR/Instruction.h"
+ #include "llvm/IR/Instructions.h"
+ #include "llvm/IR/IntrinsicInst.h"
+ #include "llvm/IR/Operator.h"
+ #include "llvm/IR/PassManager.h"
+ #include "llvm/IR/PatternMatch.h"
+ #include "llvm/IR/Type.h"
+ #include "llvm/IR/User.h"
+ #include "llvm/IR/Value.h"
+ #include "llvm/IR/ValueHandle.h"
+ #include "llvm/Pass.h"
+ #include "llvm/Support/Casting.h"
+ #include "llvm/Support/Debug.h"
+ #include "llvm/Support/ErrorHandling.h"
+ #include "llvm/Support/raw_ostream.h"
+ #include "llvm/Transforms/Scalar.h"
+ #include <algorithm>
+ #include <cassert>
+ #include <utility>
+ 
+ using namespace llvm;
+ using namespace reassociate;
+ using namespace PatternMatch;
+ 
+ #define DEBUG_TYPE "reassociate"
+ 
+ STATISTIC(NumChanged, "Number of insts reassociated");
+ STATISTIC(NumAnnihil, "Number of expr tree annihilated");
+ STATISTIC(NumFactor , "Number of multiplies factored");
+ 
+ #ifndef NDEBUG
+ /// Print out the expression identified in the Ops list.
+ static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
+   Module *M = I->getModule();
+   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
+        << *Ops[0].Op->getType() << '\t';
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+     dbgs() << "[ ";
+     Ops[i].Op->printAsOperand(dbgs(), false, M);
+     dbgs() << ", #" << Ops[i].Rank << "] ";
+   }
+ }
+ #endif
+ 
+ /// Utility class representing a non-constant Xor-operand. We classify
+ /// non-constant Xor-Operands into two categories:
+ ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
+ ///  C2)
+ ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
+ ///          constant.
+ ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
+ ///          operand as "E | 0"
+ class llvm::reassociate::XorOpnd {
+ public:
+   XorOpnd(Value *V);
+ 
+   bool isInvalid() const { return SymbolicPart == nullptr; }
+   bool isOrExpr() const { return isOr; }
+   Value *getValue() const { return OrigVal; }
+   Value *getSymbolicPart() const { return SymbolicPart; }
+   unsigned getSymbolicRank() const { return SymbolicRank; }
+   const APInt &getConstPart() const { return ConstPart; }
+ 
+   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
+   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
+ 
+ private:
+   Value *OrigVal;
+   Value *SymbolicPart;
+   APInt ConstPart;
+   unsigned SymbolicRank;
+   bool isOr;
+ };
+ 
+ XorOpnd::XorOpnd(Value *V) {
+   assert(!isa<ConstantInt>(V) && "No ConstantInt");
+   OrigVal = V;
+   Instruction *I = dyn_cast<Instruction>(V);
+   SymbolicRank = 0;
+ 
+   if (I && (I->getOpcode() == Instruction::Or ||
+             I->getOpcode() == Instruction::And)) {
+     Value *V0 = I->getOperand(0);
+     Value *V1 = I->getOperand(1);
+     const APInt *C;
+     if (match(V0, m_APInt(C)))
+       std::swap(V0, V1);
+ 
+     if (match(V1, m_APInt(C))) {
+       ConstPart = *C;
+       SymbolicPart = V0;
+       isOr = (I->getOpcode() == Instruction::Or);
+       return;
+     }
+   }
+ 
+   // view the operand as "V | 0"
+   SymbolicPart = V;
+   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
+   isOr = true;
+ }
+ 
+ /// Return true if V is an instruction of the specified opcode and if it
+ /// only has one use.
+ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
+   auto *I = dyn_cast<Instruction>(V);
+   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
+     if (!isa<FPMathOperator>(I) || I->isFast())
+       return cast<BinaryOperator>(I);
+   return nullptr;
+ }
+ 
+ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
+                                         unsigned Opcode2) {
+   auto *I = dyn_cast<Instruction>(V);
+   if (I && I->hasOneUse() &&
+       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
+     if (!isa<FPMathOperator>(I) || I->isFast())
+       return cast<BinaryOperator>(I);
+   return nullptr;
+ }
+ 
+ void ReassociatePass::BuildRankMap(Function &F,
+                                    ReversePostOrderTraversal<Function*> &RPOT) {
+   unsigned Rank = 2;
+ 
+   // Assign distinct ranks to function arguments.
+   for (auto &Arg : F.args()) {
+     ValueRankMap[&Arg] = ++Rank;
+     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
+                       << "\n");
+   }
+ 
+   // Traverse basic blocks in ReversePostOrder
+   for (BasicBlock *BB : RPOT) {
+     unsigned BBRank = RankMap[BB] = ++Rank << 16;
+ 
+     // Walk the basic block, adding precomputed ranks for any instructions that
+     // we cannot move.  This ensures that the ranks for these instructions are
+     // all 
diff erent in the block.
+     for (Instruction &I : *BB)
+       if (mayBeMemoryDependent(I))
+         ValueRankMap[&I] = ++BBRank;
+   }
+ }
+ 
+ unsigned ReassociatePass::getRank(Value *V) {
+   Instruction *I = dyn_cast<Instruction>(V);
+   if (!I) {
+     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
+     return 0;  // Otherwise it's a global or constant, rank 0.
+   }
+ 
+   if (unsigned Rank = ValueRankMap[I])
+     return Rank;    // Rank already known?
+ 
+   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
+   // we can reassociate expressions for code motion!  Since we do not recurse
+   // for PHI nodes, we cannot have infinite recursion here, because there
+   // cannot be loops in the value graph that do not go through PHI nodes.
+   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
+   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
+     Rank = std::max(Rank, getRank(I->getOperand(i)));
+ 
+   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
+   // assures us that X and ~X will have the same rank.
+   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
+       !match(I, m_FNeg(m_Value())))
+     ++Rank;
+ 
+   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
+                     << "\n");
+ 
+   return ValueRankMap[I] = Rank;
+ }
+ 
+ // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
+ void ReassociatePass::canonicalizeOperands(Instruction *I) {
+   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
+   assert(I->isCommutative() && "Expected commutative operator.");
+ 
+   Value *LHS = I->getOperand(0);
+   Value *RHS = I->getOperand(1);
+   if (LHS == RHS || isa<Constant>(RHS))
+     return;
+   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
+     cast<BinaryOperator>(I)->swapOperands();
+ }
+ 
+ static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
+                                  Instruction *InsertBefore, Value *FlagsOp) {
+   if (S1->getType()->isIntOrIntVectorTy())
+     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
+   else {
+     BinaryOperator *Res =
+         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
+     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+     return Res;
+   }
+ }
+ 
+ static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
+                                  Instruction *InsertBefore, Value *FlagsOp) {
+   if (S1->getType()->isIntOrIntVectorTy())
+     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
+   else {
+     BinaryOperator *Res =
+       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
+     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+     return Res;
+   }
+ }
+ 
+ static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
+                                  Instruction *InsertBefore, Value *FlagsOp) {
+   if (S1->getType()->isIntOrIntVectorTy())
+     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
+   else {
+     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
+     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+     return Res;
+   }
+ }
+ 
+ /// Replace 0-X with X*-1.
+ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
+   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
+          "Expected a Negate!");
+   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
+   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
+   Type *Ty = Neg->getType();
+   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
+     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
+ 
+   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
+   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
+   Res->takeName(Neg);
+   Neg->replaceAllUsesWith(Res);
+   Res->setDebugLoc(Neg->getDebugLoc());
+   return Res;
+ }
+ 
+ /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
+ /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
+ /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
+ /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
+ /// even x in Bitwidth-bit arithmetic.
+ static unsigned CarmichaelShift(unsigned Bitwidth) {
+   if (Bitwidth < 3)
+     return Bitwidth - 1;
+   return Bitwidth - 2;
+ }
+ 
+ /// Add the extra weight 'RHS' to the existing weight 'LHS',
+ /// reducing the combined weight using any special properties of the operation.
+ /// The existing weight LHS represents the computation X op X op ... op X where
+ /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
+ /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
+ /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
+ /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
+ static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
+   // If we were working with infinite precision arithmetic then the combined
+   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
+   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
+   // for nilpotent operations and addition, but not for idempotent operations
+   // and multiplication), so it is important to correctly reduce the combined
+   // weight back into range if wrapping would be wrong.
+ 
+   // If RHS is zero then the weight didn't change.
+   if (RHS.isMinValue())
+     return;
+   // If LHS is zero then the combined weight is RHS.
+   if (LHS.isMinValue()) {
+     LHS = RHS;
+     return;
+   }
+   // From this point on we know that neither LHS nor RHS is zero.
+ 
+   if (Instruction::isIdempotent(Opcode)) {
+     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
+     // weight of 1.  Keeping weights at zero or one also means that wrapping is
+     // not a problem.
+     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+     return; // Return a weight of 1.
+   }
+   if (Instruction::isNilpotent(Opcode)) {
+     // Nilpotent means X op X === 0, so reduce weights modulo 2.
+     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+     LHS = 0; // 1 + 1 === 0 modulo 2.
+     return;
+   }
+   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
+     // TODO: Reduce the weight by exploiting nsw/nuw?
+     LHS += RHS;
+     return;
+   }
+ 
+   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
+          "Unknown associative operation!");
+   unsigned Bitwidth = LHS.getBitWidth();
+   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
+   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
+   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
+   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
+   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
+   // which by a happy accident means that they can always be represented using
+   // Bitwidth bits.
+   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
+   // the Carmichael number).
+   if (Bitwidth > 3) {
+     /// CM - The value of Carmichael's lambda function.
+     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
+     // Any weight W >= Threshold can be replaced with W - CM.
+     APInt Threshold = CM + Bitwidth;
+     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
+     // For Bitwidth 4 or more the following sum does not overflow.
+     LHS += RHS;
+     while (LHS.uge(Threshold))
+       LHS -= CM;
+   } else {
+     // To avoid problems with overflow do everything the same as above but using
+     // a larger type.
+     unsigned CM = 1U << CarmichaelShift(Bitwidth);
+     unsigned Threshold = CM + Bitwidth;
+     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
+            "Weights not reduced!");
+     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
+     while (Total >= Threshold)
+       Total -= CM;
+     LHS = Total;
+   }
+ }
+ 
+ using RepeatedValue = std::pair<Value*, APInt>;
+ 
+ /// Given an associative binary expression, return the leaf
+ /// nodes in Ops along with their weights (how many times the leaf occurs).  The
+ /// original expression is the same as
+ ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
+ /// op
+ ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
+ /// op
+ ///   ...
+ /// op
+ ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
+ ///
+ /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
+ ///
+ /// This routine may modify the function, in which case it returns 'true'.  The
+ /// changes it makes may well be destructive, changing the value computed by 'I'
+ /// to something completely 
diff erent.  Thus if the routine returns 'true' then
+ /// you MUST either replace I with a new expression computed from the Ops array,
+ /// or use RewriteExprTree to put the values back in.
+ ///
+ /// A leaf node is either not a binary operation of the same kind as the root
+ /// node 'I' (i.e. is not a binary operator at all, or is, but with a 
diff erent
+ /// opcode), or is the same kind of binary operator but has a use which either
+ /// does not belong to the expression, or does belong to the expression but is
+ /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
+ /// of the expression, while for non-leaf nodes (except for the root 'I') every
+ /// use is a non-leaf node of the expression.
+ ///
+ /// For example:
+ ///           expression graph        node names
+ ///
+ ///                     +        |        I
+ ///                    / \       |
+ ///                   +   +      |      A,  B
+ ///                  / \ / \     |
+ ///                 *   +   *    |    C,  D,  E
+ ///                / \ / \ / \   |
+ ///                   +   *      |      F,  G
+ ///
+ /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
+ /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
+ ///
+ /// The expression is maximal: if some instruction is a binary operator of the
+ /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
+ /// then the instruction also belongs to the expression, is not a leaf node of
+ /// it, and its operands also belong to the expression (but may be leaf nodes).
+ ///
+ /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
+ /// order to ensure that every non-root node in the expression has *exactly one*
+ /// use by a non-leaf node of the expression.  This destruction means that the
+ /// caller MUST either replace 'I' with a new expression or use something like
+ /// RewriteExprTree to put the values back in if the routine indicates that it
+ /// made a change by returning 'true'.
+ ///
+ /// In the above example either the right operand of A or the left operand of B
+ /// will be replaced by undef.  If it is B's operand then this gives:
+ ///
+ ///                     +        |        I
+ ///                    / \       |
+ ///                   +   +      |      A,  B - operand of B replaced with undef
+ ///                  / \   \     |
+ ///                 *   +   *    |    C,  D,  E
+ ///                / \ / \ / \   |
+ ///                   +   *      |      F,  G
+ ///
+ /// Note that such undef operands can only be reached by passing through 'I'.
+ /// For example, if you visit operands recursively starting from a leaf node
+ /// then you will never see such an undef operand unless you get back to 'I',
+ /// which requires passing through a phi node.
+ ///
+ /// Note that this routine may also mutate binary operators of the wrong type
+ /// that have all uses inside the expression (i.e. only used by non-leaf nodes
+ /// of the expression) if it can turn them into binary operators of the right
+ /// type and thus make the expression bigger.
+ static bool LinearizeExprTree(Instruction *I,
+                               SmallVectorImpl<RepeatedValue> &Ops) {
+   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
+          "Expected a UnaryOperator or BinaryOperator!");
+   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
+   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
+   unsigned Opcode = I->getOpcode();
+   assert(I->isAssociative() && I->isCommutative() &&
+          "Expected an associative and commutative operation!");
+ 
+   // Visit all operands of the expression, keeping track of their weight (the
+   // number of paths from the expression root to the operand, or if you like
+   // the number of times that operand occurs in the linearized expression).
+   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
+   // while A has weight two.
+ 
+   // Worklist of non-leaf nodes (their operands are in the expression too) along
+   // with their weights, representing a certain number of paths to the operator.
+   // If an operator occurs in the worklist multiple times then we found multiple
+   // ways to get to it.
+   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
+   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
+   bool Changed = false;
+ 
+   // Leaves of the expression are values that either aren't the right kind of
+   // operation (eg: a constant, or a multiply in an add tree), or are, but have
+   // some uses that are not inside the expression.  For example, in I = X + X,
+   // X = A + B, the value X has two uses (by I) that are in the expression.  If
+   // X has any other uses, for example in a return instruction, then we consider
+   // X to be a leaf, and won't analyze it further.  When we first visit a value,
+   // if it has more than one use then at first we conservatively consider it to
+   // be a leaf.  Later, as the expression is explored, we may discover some more
+   // uses of the value from inside the expression.  If all uses turn out to be
+   // from within the expression (and the value is a binary operator of the right
+   // kind) then the value is no longer considered to be a leaf, and its operands
+   // are explored.
+ 
+   // Leaves - Keeps track of the set of putative leaves as well as the number of
+   // paths to each leaf seen so far.
+   using LeafMap = DenseMap<Value *, APInt>;
+   LeafMap Leaves; // Leaf -> Total weight so far.
+   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
+ 
+ #ifndef NDEBUG
+   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
+ #endif
+   while (!Worklist.empty()) {
+     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
+     I = P.first; // We examine the operands of this binary operator.
+ 
+     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
+       Value *Op = I->getOperand(OpIdx);
+       APInt Weight = P.second; // Number of paths to this operand.
+       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
+       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
+ 
+       // If this is a binary operation of the right kind with only one use then
+       // add its operands to the expression.
+       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
+         assert(Visited.insert(Op).second && "Not first visit!");
+         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
+         Worklist.push_back(std::make_pair(BO, Weight));
+         continue;
+       }
+ 
+       // Appears to be a leaf.  Is the operand already in the set of leaves?
+       LeafMap::iterator It = Leaves.find(Op);
+       if (It == Leaves.end()) {
+         // Not in the leaf map.  Must be the first time we saw this operand.
+         assert(Visited.insert(Op).second && "Not first visit!");
+         if (!Op->hasOneUse()) {
+           // This value has uses not accounted for by the expression, so it is
+           // not safe to modify.  Mark it as being a leaf.
+           LLVM_DEBUG(dbgs()
+                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
+           LeafOrder.push_back(Op);
+           Leaves[Op] = Weight;
+           continue;
+         }
+         // No uses outside the expression, try morphing it.
+       } else {
+         // Already in the leaf map.
+         assert(It != Leaves.end() && Visited.count(Op) &&
+                "In leaf map but not visited!");
+ 
+         // Update the number of paths to the leaf.
+         IncorporateWeight(It->second, Weight, Opcode);
+ 
+ #if 0   // TODO: Re-enable once PR13021 is fixed.
+         // The leaf already has one use from inside the expression.  As we want
+         // exactly one such use, drop this new use of the leaf.
+         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
+         I->setOperand(OpIdx, UndefValue::get(I->getType()));
+         Changed = true;
+ 
+         // If the leaf is a binary operation of the right kind and we now see
+         // that its multiple original uses were in fact all by nodes belonging
+         // to the expression, then no longer consider it to be a leaf and add
+         // its operands to the expression.
+         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
+           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
+           Worklist.push_back(std::make_pair(BO, It->second));
+           Leaves.erase(It);
+           continue;
+         }
+ #endif
+ 
+         // If we still have uses that are not accounted for by the expression
+         // then it is not safe to modify the value.
+         if (!Op->hasOneUse())
+           continue;
+ 
+         // No uses outside the expression, try morphing it.
+         Weight = It->second;
+         Leaves.erase(It); // Since the value may be morphed below.
+       }
+ 
+       // At this point we have a value which, first of all, is not a binary
+       // expression of the right kind, and secondly, is only used inside the
+       // expression.  This means that it can safely be modified.  See if we
+       // can usefully morph it into an expression of the right kind.
+       assert((!isa<Instruction>(Op) ||
+               cast<Instruction>(Op)->getOpcode() != Opcode
+               || (isa<FPMathOperator>(Op) &&
+                   !cast<Instruction>(Op)->isFast())) &&
+              "Should have been handled above!");
+       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
+ 
+       // If this is a multiply expression, turn any internal negations into
+       // multiplies by -1 so they can be reassociated.
+       if (Instruction *Tmp = dyn_cast<Instruction>(Op))
+         if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
+             (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
+           LLVM_DEBUG(dbgs()
+                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
+           Tmp = LowerNegateToMultiply(Tmp);
+           LLVM_DEBUG(dbgs() << *Tmp << '\n');
+           Worklist.push_back(std::make_pair(Tmp, Weight));
+           Changed = true;
+           continue;
+         }
+ 
+       // Failed to morph into an expression of the right type.  This really is
+       // a leaf.
+       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
+       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
+       LeafOrder.push_back(Op);
+       Leaves[Op] = Weight;
+     }
+   }
+ 
+   // The leaves, repeated according to their weights, represent the linearized
+   // form of the expression.
+   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
+     Value *V = LeafOrder[i];
+     LeafMap::iterator It = Leaves.find(V);
+     if (It == Leaves.end())
+       // Node initially thought to be a leaf wasn't.
+       continue;
+     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
+     APInt Weight = It->second;
+     if (Weight.isMinValue())
+       // Leaf already output or weight reduction eliminated it.
+       continue;
+     // Ensure the leaf is only output once.
+     It->second = 0;
+     Ops.push_back(std::make_pair(V, Weight));
+   }
+ 
+   // For nilpotent operations or addition there may be no operands, for example
+   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
+   // in both cases the weight reduces to 0 causing the value to be skipped.
+   if (Ops.empty()) {
+     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
+     assert(Identity && "Associative operation without identity!");
+     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
+   }
+ 
+   return Changed;
+ }
+ 
+ /// Now that the operands for this expression tree are
+ /// linearized and optimized, emit them in-order.
+ void ReassociatePass::RewriteExprTree(BinaryOperator *I,
+                                       SmallVectorImpl<ValueEntry> &Ops) {
+   assert(Ops.size() > 1 && "Single values should be used directly!");
+ 
+   // Since our optimizations should never increase the number of operations, the
+   // new expression can usually be written reusing the existing binary operators
+   // from the original expression tree, without creating any new instructions,
+   // though the rewritten expression may have a completely 
diff erent topology.
+   // We take care to not change anything if the new expression will be the same
+   // as the original.  If more than trivial changes (like commuting operands)
+   // were made then we are obliged to clear out any optional subclass data like
+   // nsw flags.
+ 
+   /// NodesToRewrite - Nodes from the original expression available for writing
+   /// the new expression into.
+   SmallVector<BinaryOperator*, 8> NodesToRewrite;
+   unsigned Opcode = I->getOpcode();
+   BinaryOperator *Op = I;
+ 
+   /// NotRewritable - The operands being written will be the leaves of the new
+   /// expression and must not be used as inner nodes (via NodesToRewrite) by
+   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
+   /// (if they were they would have been incorporated into the expression and so
+   /// would not be leaves), so most of the time there is no danger of this.  But
+   /// in rare cases a leaf may become reassociable if an optimization kills uses
+   /// of it, or it may momentarily become reassociable during rewriting (below)
+   /// due it being removed as an operand of one of its uses.  Ensure that misuse
+   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
+   /// leaves and refusing to reuse any of them as inner nodes.
+   SmallPtrSet<Value*, 8> NotRewritable;
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+     NotRewritable.insert(Ops[i].Op);
+ 
+   // ExpressionChanged - Non-null if the rewritten expression 
diff ers from the
+   // original in some non-trivial way, requiring the clearing of optional flags.
+   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
+   BinaryOperator *ExpressionChanged = nullptr;
+   for (unsigned i = 0; ; ++i) {
+     // The last operation (which comes earliest in the IR) is special as both
+     // operands will come from Ops, rather than just one with the other being
+     // a subexpression.
+     if (i+2 == Ops.size()) {
+       Value *NewLHS = Ops[i].Op;
+       Value *NewRHS = Ops[i+1].Op;
+       Value *OldLHS = Op->getOperand(0);
+       Value *OldRHS = Op->getOperand(1);
+ 
+       if (NewLHS == OldLHS && NewRHS == OldRHS)
+         // Nothing changed, leave it alone.
+         break;
+ 
+       if (NewLHS == OldRHS && NewRHS == OldLHS) {
+         // The order of the operands was reversed.  Swap them.
+         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
+         Op->swapOperands();
+         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
+         MadeChange = true;
+         ++NumChanged;
+         break;
+       }
+ 
+       // The new operation 
diff ers non-trivially from the original. Overwrite
+       // the old operands with the new ones.
+       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
+       if (NewLHS != OldLHS) {
+         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
+         if (BO && !NotRewritable.count(BO))
+           NodesToRewrite.push_back(BO);
+         Op->setOperand(0, NewLHS);
+       }
+       if (NewRHS != OldRHS) {
+         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
+         if (BO && !NotRewritable.count(BO))
+           NodesToRewrite.push_back(BO);
+         Op->setOperand(1, NewRHS);
+       }
+       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
+ 
+       ExpressionChanged = Op;
+       MadeChange = true;
+       ++NumChanged;
+ 
+       break;
+     }
+ 
+     // Not the last operation.  The left-hand side will be a sub-expression
+     // while the right-hand side will be the current element of Ops.
+     Value *NewRHS = Ops[i].Op;
+     if (NewRHS != Op->getOperand(1)) {
+       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
+       if (NewRHS == Op->getOperand(0)) {
+         // The new right-hand side was already present as the left operand.  If
+         // we are lucky then swapping the operands will sort out both of them.
+         Op->swapOperands();
+       } else {
+         // Overwrite with the new right-hand side.
+         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
+         if (BO && !NotRewritable.count(BO))
+           NodesToRewrite.push_back(BO);
+         Op->setOperand(1, NewRHS);
+         ExpressionChanged = Op;
+       }
+       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
+       MadeChange = true;
+       ++NumChanged;
+     }
+ 
+     // Now deal with the left-hand side.  If this is already an operation node
+     // from the original expression then just rewrite the rest of the expression
+     // into it.
+     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
+     if (BO && !NotRewritable.count(BO)) {
+       Op = BO;
+       continue;
+     }
+ 
+     // Otherwise, grab a spare node from the original expression and use that as
+     // the left-hand side.  If there are no nodes left then the optimizers made
+     // an expression with more nodes than the original!  This usually means that
+     // they did something stupid but it might mean that the problem was just too
+     // hard (finding the mimimal number of multiplications needed to realize a
+     // multiplication expression is NP-complete).  Whatever the reason, smart or
+     // stupid, create a new node if there are none left.
+     BinaryOperator *NewOp;
+     if (NodesToRewrite.empty()) {
+       Constant *Undef = UndefValue::get(I->getType());
+       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
+                                      Undef, Undef, "", I);
+       if (NewOp->getType()->isFPOrFPVectorTy())
+         NewOp->setFastMathFlags(I->getFastMathFlags());
+     } else {
+       NewOp = NodesToRewrite.pop_back_val();
+     }
+ 
+     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
+     Op->setOperand(0, NewOp);
+     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
+     ExpressionChanged = Op;
+     MadeChange = true;
+     ++NumChanged;
+     Op = NewOp;
+   }
+ 
+   // If the expression changed non-trivially then clear out all subclass data
+   // starting from the operator specified in ExpressionChanged, and compactify
+   // the operators to just before the expression root to guarantee that the
+   // expression tree is dominated by all of Ops.
+   if (ExpressionChanged)
+     do {
+       // Preserve FastMathFlags.
+       if (isa<FPMathOperator>(I)) {
+         FastMathFlags Flags = I->getFastMathFlags();
+         ExpressionChanged->clearSubclassOptionalData();
+         ExpressionChanged->setFastMathFlags(Flags);
+       } else
+         ExpressionChanged->clearSubclassOptionalData();
+ 
+       if (ExpressionChanged == I)
+         break;
+ 
+       // Discard any debug info related to the expressions that has changed (we
+       // can leave debug infor related to the root, since the result of the
+       // expression tree should be the same even after reassociation).
+       replaceDbgUsesWithUndef(ExpressionChanged);
+ 
+       ExpressionChanged->moveBefore(I);
+       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
+     } while (true);
+ 
+   // Throw away any left over nodes from the original expression.
+   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
+     RedoInsts.insert(NodesToRewrite[i]);
+ }
+ 
+ /// Insert instructions before the instruction pointed to by BI,
+ /// that computes the negative version of the value specified.  The negative
+ /// version of the value is returned, and BI is left pointing at the instruction
+ /// that should be processed next by the reassociation pass.
+ /// Also add intermediate instructions to the redo list that are modified while
+ /// pushing the negates through adds.  These will be revisited to see if
+ /// additional opportunities have been exposed.
+ static Value *NegateValue(Value *V, Instruction *BI,
+                           ReassociatePass::OrderedSet &ToRedo) {
+   if (auto *C = dyn_cast<Constant>(V))
+     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
+                                               ConstantExpr::getNeg(C);
+ 
+   // We are trying to expose opportunity for reassociation.  One of the things
+   // that we want to do to achieve this is to push a negation as deep into an
+   // expression chain as possible, to expose the add instructions.  In practice,
+   // this means that we turn this:
+   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
+   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
+   // the constants.  We assume that instcombine will clean up the mess later if
+   // we introduce tons of unnecessary negation instructions.
+   //
+   if (BinaryOperator *I =
+           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
+     // Push the negates through the add.
+     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
+     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
+     if (I->getOpcode() == Instruction::Add) {
+       I->setHasNoUnsignedWrap(false);
+       I->setHasNoSignedWrap(false);
+     }
+ 
+     // We must move the add instruction here, because the neg instructions do
+     // not dominate the old add instruction in general.  By moving it, we are
+     // assured that the neg instructions we just inserted dominate the
+     // instruction we are about to insert after them.
+     //
+     I->moveBefore(BI);
+     I->setName(I->getName()+".neg");
+ 
+     // Add the intermediate negates to the redo list as processing them later
+     // could expose more reassociating opportunities.
+     ToRedo.insert(I);
+     return I;
+   }
+ 
+   // Okay, we need to materialize a negated version of V with an instruction.
+   // Scan the use lists of V to see if we have one already.
+   for (User *U : V->users()) {
+     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
+       continue;
+ 
+     // We found one!  Now we have to make sure that the definition dominates
+     // this use.  We do this by moving it to the entry block (if it is a
+     // non-instruction value) or right after the definition.  These negates will
+     // be zapped by reassociate later, so we don't need much finesse here.
+     Instruction *TheNeg = cast<Instruction>(U);
+ 
+     // Verify that the negate is in this function, V might be a constant expr.
+     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
+       continue;
+ 
+     bool FoundCatchSwitch = false;
+ 
+     BasicBlock::iterator InsertPt;
+     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
+       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
+         InsertPt = II->getNormalDest()->begin();
+       } else {
+         InsertPt = ++InstInput->getIterator();
+       }
+ 
+       const BasicBlock *BB = InsertPt->getParent();
+ 
+       // Make sure we don't move anything before PHIs or exception
+       // handling pads.
+       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
+                                        InsertPt->isEHPad())) {
+         if (isa<CatchSwitchInst>(InsertPt))
+           // A catchswitch cannot have anything in the block except
+           // itself and PHIs.  We'll bail out below.
+           FoundCatchSwitch = true;
+         ++InsertPt;
+       }
+     } else {
+       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
+     }
+ 
+     // We found a catchswitch in the block where we want to move the
+     // neg.  We cannot move anything into that block.  Bail and just
+     // create the neg before BI, as if we hadn't found an existing
+     // neg.
+     if (FoundCatchSwitch)
+       break;
+ 
+     TheNeg->moveBefore(&*InsertPt);
+     if (TheNeg->getOpcode() == Instruction::Sub) {
+       TheNeg->setHasNoUnsignedWrap(false);
+       TheNeg->setHasNoSignedWrap(false);
+     } else {
+       TheNeg->andIRFlags(BI);
+     }
+     ToRedo.insert(TheNeg);
+     return TheNeg;
+   }
+ 
+   // Insert a 'neg' instruction that subtracts the value from zero to get the
+   // negation.
+   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
+   ToRedo.insert(NewNeg);
+   return NewNeg;
+ }
+ 
+ /// Return true if we should break up this subtract of X-Y into (X + -Y).
+ static bool ShouldBreakUpSubtract(Instruction *Sub) {
+   // If this is a negation, we can't split it up!
+   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 
+     return false;
+ 
+   // Don't breakup X - undef.
+   if (isa<UndefValue>(Sub->getOperand(1)))
+     return false;
+ 
+   // Don't bother to break this up unless either the LHS is an associable add or
+   // subtract or if this is only used by one.
+   Value *V0 = Sub->getOperand(0);
+   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
+       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
+     return true;
+   Value *V1 = Sub->getOperand(1);
+   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
+       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
+     return true;
+   Value *VB = Sub->user_back();
+   if (Sub->hasOneUse() &&
+       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
+        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
+     return true;
+ 
+   return false;
+ }
+ 
+ /// If we have (X-Y), and if either X is an add, or if this is only used by an
+ /// add, transform this into (X+(0-Y)) to promote better reassociation.
+ static BinaryOperator *BreakUpSubtract(Instruction *Sub,
+                                        ReassociatePass::OrderedSet &ToRedo) {
+   // Convert a subtract into an add and a neg instruction. This allows sub
+   // instructions to be commuted with other add instructions.
+   //
+   // Calculate the negative value of Operand 1 of the sub instruction,
+   // and set it as the RHS of the add instruction we just made.
+   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
+   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
+   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
+   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
+   New->takeName(Sub);
+ 
+   // Everyone now refers to the add instruction.
+   Sub->replaceAllUsesWith(New);
+   New->setDebugLoc(Sub->getDebugLoc());
+ 
+   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
+   return New;
+ }
+ 
+ /// If this is a shift of a reassociable multiply or is used by one, change
+ /// this into a multiply by a constant to assist with further reassociation.
+ static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
+   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
+   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
+ 
+   BinaryOperator *Mul =
+     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
+   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
+   Mul->takeName(Shl);
+ 
+   // Everyone now refers to the mul instruction.
+   Shl->replaceAllUsesWith(Mul);
+   Mul->setDebugLoc(Shl->getDebugLoc());
+ 
+   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
+   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
+   // handling.
+   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
+   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
+   if (NSW && NUW)
+     Mul->setHasNoSignedWrap(true);
+   Mul->setHasNoUnsignedWrap(NUW);
+   return Mul;
+ }
+ 
+ /// Scan backwards and forwards among values with the same rank as element i
+ /// to see if X exists.  If X does not exist, return i.  This is useful when
+ /// scanning for 'x' when we see '-x' because they both get the same rank.
+ static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
+                                   unsigned i, Value *X) {
+   unsigned XRank = Ops[i].Rank;
+   unsigned e = Ops.size();
+   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
+     if (Ops[j].Op == X)
+       return j;
+     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+       if (Instruction *I2 = dyn_cast<Instruction>(X))
+         if (I1->isIdenticalTo(I2))
+           return j;
+   }
+   // Scan backwards.
+   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
+     if (Ops[j].Op == X)
+       return j;
+     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+       if (Instruction *I2 = dyn_cast<Instruction>(X))
+         if (I1->isIdenticalTo(I2))
+           return j;
+   }
+   return i;
+ }
+ 
+ /// Emit a tree of add instructions, summing Ops together
+ /// and returning the result.  Insert the tree before I.
+ static Value *EmitAddTreeOfValues(Instruction *I,
+                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
+   if (Ops.size() == 1) return Ops.back();
+ 
+   Value *V1 = Ops.back();
+   Ops.pop_back();
+   Value *V2 = EmitAddTreeOfValues(I, Ops);
+   return CreateAdd(V2, V1, "reass.add", I, I);
+ }
+ 
+ /// If V is an expression tree that is a multiplication sequence,
+ /// and if this sequence contains a multiply by Factor,
+ /// remove Factor from the tree and return the new tree.
+ Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
+   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+   if (!BO)
+     return nullptr;
+ 
+   SmallVector<RepeatedValue, 8> Tree;
+   MadeChange |= LinearizeExprTree(BO, Tree);
+   SmallVector<ValueEntry, 8> Factors;
+   Factors.reserve(Tree.size());
+   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+     RepeatedValue E = Tree[i];
+     Factors.append(E.second.getZExtValue(),
+                    ValueEntry(getRank(E.first), E.first));
+   }
+ 
+   bool FoundFactor = false;
+   bool NeedsNegate = false;
+   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
+     if (Factors[i].Op == Factor) {
+       FoundFactor = true;
+       Factors.erase(Factors.begin()+i);
+       break;
+     }
+ 
+     // If this is a negative version of this factor, remove it.
+     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
+       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
+         if (FC1->getValue() == -FC2->getValue()) {
+           FoundFactor = NeedsNegate = true;
+           Factors.erase(Factors.begin()+i);
+           break;
+         }
+     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
+       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
+         const APFloat &F1 = FC1->getValueAPF();
+         APFloat F2(FC2->getValueAPF());
+         F2.changeSign();
+         if (F1.compare(F2) == APFloat::cmpEqual) {
+           FoundFactor = NeedsNegate = true;
+           Factors.erase(Factors.begin() + i);
+           break;
+         }
+       }
+     }
+   }
+ 
+   if (!FoundFactor) {
+     // Make sure to restore the operands to the expression tree.
+     RewriteExprTree(BO, Factors);
+     return nullptr;
+   }
+ 
+   BasicBlock::iterator InsertPt = ++BO->getIterator();
+ 
+   // If this was just a single multiply, remove the multiply and return the only
+   // remaining operand.
+   if (Factors.size() == 1) {
+     RedoInsts.insert(BO);
+     V = Factors[0].Op;
+   } else {
+     RewriteExprTree(BO, Factors);
+     V = BO;
+   }
+ 
+   if (NeedsNegate)
+     V = CreateNeg(V, "neg", &*InsertPt, BO);
+ 
+   return V;
+ }
+ 
+ /// If V is a single-use multiply, recursively add its operands as factors,
+ /// otherwise add V to the list of factors.
+ ///
+ /// Ops is the top-level list of add operands we're trying to factor.
+ static void FindSingleUseMultiplyFactors(Value *V,
+                                          SmallVectorImpl<Value*> &Factors) {
+   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+   if (!BO) {
+     Factors.push_back(V);
+     return;
+   }
+ 
+   // Otherwise, add the LHS and RHS to the list of factors.
+   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
+   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
+ }
+ 
+ /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
+ /// This optimizes based on identities.  If it can be reduced to a single Value,
+ /// it is returned, otherwise the Ops list is mutated as necessary.
+ static Value *OptimizeAndOrXor(unsigned Opcode,
+                                SmallVectorImpl<ValueEntry> &Ops) {
+   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
+   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+     // First, check for X and ~X in the operand list.
+     assert(i < Ops.size());
+     Value *X;
+     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
+       unsigned FoundX = FindInOperandList(Ops, i, X);
+       if (FoundX != i) {
+         if (Opcode == Instruction::And)   // ...&X&~X = 0
+           return Constant::getNullValue(X->getType());
+ 
+         if (Opcode == Instruction::Or)    // ...|X|~X = -1
+           return Constant::getAllOnesValue(X->getType());
+       }
+     }
+ 
+     // Next, check for duplicate pairs of values, which we assume are next to
+     // each other, due to our sorting criteria.
+     assert(i < Ops.size());
+     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
+       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
+         // Drop duplicate values for And and Or.
+         Ops.erase(Ops.begin()+i);
+         --i; --e;
+         ++NumAnnihil;
+         continue;
+       }
+ 
+       // Drop pairs of values for Xor.
+       assert(Opcode == Instruction::Xor);
+       if (e == 2)
+         return Constant::getNullValue(Ops[0].Op->getType());
+ 
+       // Y ^ X^X -> Y
+       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+       i -= 1; e -= 2;
+       ++NumAnnihil;
+     }
+   }
+   return nullptr;
+ }
+ 
+ /// Helper function of CombineXorOpnd(). It creates a bitwise-and
+ /// instruction with the given two operands, and return the resulting
+ /// instruction. There are two special cases: 1) if the constant operand is 0,
+ /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
+ /// be returned.
+ static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
+                              const APInt &ConstOpnd) {
+   if (ConstOpnd.isNullValue())
+     return nullptr;
+ 
+   if (ConstOpnd.isAllOnesValue())
+     return Opnd;
+ 
+   Instruction *I = BinaryOperator::CreateAnd(
+       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
+       InsertBefore);
+   I->setDebugLoc(InsertBefore->getDebugLoc());
+   return I;
+ }
+ 
+ // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
+ // into "R ^ C", where C would be 0, and R is a symbolic value.
+ //
+ // If it was successful, true is returned, and the "R" and "C" is returned
+ // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
+ // and both "Res" and "ConstOpnd" remain unchanged.
+ bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+                                      APInt &ConstOpnd, Value *&Res) {
+   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
+   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
+   //                       = (x & ~c1) ^ (c1 ^ c2)
+   // It is useful only when c1 == c2.
+   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
+     return false;
+ 
+   if (!Opnd1->getValue()->hasOneUse())
+     return false;
+ 
+   const APInt &C1 = Opnd1->getConstPart();
+   if (C1 != ConstOpnd)
+     return false;
+ 
+   Value *X = Opnd1->getSymbolicPart();
+   Res = createAndInstr(I, X, ~C1);
+   // ConstOpnd was C2, now C1 ^ C2.
+   ConstOpnd ^= C1;
+ 
+   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+     RedoInsts.insert(T);
+   return true;
+ }
+ 
+ // Helper function of OptimizeXor(). It tries to simplify
+ // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
+ // symbolic value.
+ //
+ // If it was successful, true is returned, and the "R" and "C" is returned
+ // via "Res" and "ConstOpnd", respectively (If the entire expression is
+ // evaluated to a constant, the Res is set to NULL); otherwise, false is
+ // returned, and both "Res" and "ConstOpnd" remain unchanged.
+ bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+                                      XorOpnd *Opnd2, APInt &ConstOpnd,
+                                      Value *&Res) {
+   Value *X = Opnd1->getSymbolicPart();
+   if (X != Opnd2->getSymbolicPart())
+     return false;
+ 
+   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
+   int DeadInstNum = 1;
+   if (Opnd1->getValue()->hasOneUse())
+     DeadInstNum++;
+   if (Opnd2->getValue()->hasOneUse())
+     DeadInstNum++;
+ 
+   // Xor-Rule 2:
+   //  (x | c1) ^ (x & c2)
+   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
+   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
+   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
+   //
+   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
+     if (Opnd2->isOrExpr())
+       std::swap(Opnd1, Opnd2);
+ 
+     const APInt &C1 = Opnd1->getConstPart();
+     const APInt &C2 = Opnd2->getConstPart();
+     APInt C3((~C1) ^ C2);
+ 
+     // Do not increase code size!
+     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
+       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
+       if (NewInstNum > DeadInstNum)
+         return false;
+     }
+ 
+     Res = createAndInstr(I, X, C3);
+     ConstOpnd ^= C1;
+   } else if (Opnd1->isOrExpr()) {
+     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
+     //
+     const APInt &C1 = Opnd1->getConstPart();
+     const APInt &C2 = Opnd2->getConstPart();
+     APInt C3 = C1 ^ C2;
+ 
+     // Do not increase code size
+     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
+       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
+       if (NewInstNum > DeadInstNum)
+         return false;
+     }
+ 
+     Res = createAndInstr(I, X, C3);
+     ConstOpnd ^= C3;
+   } else {
+     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
+     //
+     const APInt &C1 = Opnd1->getConstPart();
+     const APInt &C2 = Opnd2->getConstPart();
+     APInt C3 = C1 ^ C2;
+     Res = createAndInstr(I, X, C3);
+   }
+ 
+   // Put the original operands in the Redo list; hope they will be deleted
+   // as dead code.
+   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+     RedoInsts.insert(T);
+   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
+     RedoInsts.insert(T);
+ 
+   return true;
+ }
+ 
+ /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
+ /// to a single Value, it is returned, otherwise the Ops list is mutated as
+ /// necessary.
+ Value *ReassociatePass::OptimizeXor(Instruction *I,
+                                     SmallVectorImpl<ValueEntry> &Ops) {
+   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
+     return V;
+ 
+   if (Ops.size() == 1)
+     return nullptr;
+ 
+   SmallVector<XorOpnd, 8> Opnds;
+   SmallVector<XorOpnd*, 8> OpndPtrs;
+   Type *Ty = Ops[0].Op->getType();
+   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
+ 
+   // Step 1: Convert ValueEntry to XorOpnd
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+     Value *V = Ops[i].Op;
+     const APInt *C;
+     // TODO: Support non-splat vectors.
+     if (match(V, m_APInt(C))) {
+       ConstOpnd ^= *C;
+     } else {
+       XorOpnd O(V);
+       O.setSymbolicRank(getRank(O.getSymbolicPart()));
+       Opnds.push_back(O);
+     }
+   }
+ 
+   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
+   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
+   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
+   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
+   //  when new elements are added to the vector.
+   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
+     OpndPtrs.push_back(&Opnds[i]);
+ 
+   // Step 2: Sort the Xor-Operands in a way such that the operands containing
+   //  the same symbolic value cluster together. For instance, the input operand
+   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
+   //  ("x | 123", "x & 789", "y & 456").
+   //
+   //  The purpose is twofold:
+   //  1) Cluster together the operands sharing the same symbolic-value.
+   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
+   //     could potentially shorten crital path, and expose more loop-invariants.
+   //     Note that values' rank are basically defined in RPO order (FIXME).
+   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
+   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
+   //     "z" in the order of X-Y-Z is better than any other orders.
+   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
+     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
+   });
+ 
+   // Step 3: Combine adjacent operands
+   XorOpnd *PrevOpnd = nullptr;
+   bool Changed = false;
+   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
+     XorOpnd *CurrOpnd = OpndPtrs[i];
+     // The combined value
+     Value *CV;
+ 
+     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
+     if (!ConstOpnd.isNullValue() &&
+         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
+       Changed = true;
+       if (CV)
+         *CurrOpnd = XorOpnd(CV);
+       else {
+         CurrOpnd->Invalidate();
+         continue;
+       }
+     }
+ 
+     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
+       PrevOpnd = CurrOpnd;
+       continue;
+     }
+ 
+     // step 3.2: When previous and current operands share the same symbolic
+     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
+     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
+       // Remove previous operand
+       PrevOpnd->Invalidate();
+       if (CV) {
+         *CurrOpnd = XorOpnd(CV);
+         PrevOpnd = CurrOpnd;
+       } else {
+         CurrOpnd->Invalidate();
+         PrevOpnd = nullptr;
+       }
+       Changed = true;
+     }
+   }
+ 
+   // Step 4: Reassemble the Ops
+   if (Changed) {
+     Ops.clear();
+     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
+       XorOpnd &O = Opnds[i];
+       if (O.isInvalid())
+         continue;
+       ValueEntry VE(getRank(O.getValue()), O.getValue());
+       Ops.push_back(VE);
+     }
+     if (!ConstOpnd.isNullValue()) {
+       Value *C = ConstantInt::get(Ty, ConstOpnd);
+       ValueEntry VE(getRank(C), C);
+       Ops.push_back(VE);
+     }
+     unsigned Sz = Ops.size();
+     if (Sz == 1)
+       return Ops.back().Op;
+     if (Sz == 0) {
+       assert(ConstOpnd.isNullValue());
+       return ConstantInt::get(Ty, ConstOpnd);
+     }
+   }
+ 
+   return nullptr;
+ }
+ 
+ /// Optimize a series of operands to an 'add' instruction.  This
+ /// optimizes based on identities.  If it can be reduced to a single Value, it
+ /// is returned, otherwise the Ops list is mutated as necessary.
+ Value *ReassociatePass::OptimizeAdd(Instruction *I,
+                                     SmallVectorImpl<ValueEntry> &Ops) {
+   // Scan the operand lists looking for X and -X pairs.  If we find any, we
+   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
+   // scan for any
+   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
+ 
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+     Value *TheOp = Ops[i].Op;
+     // Check to see if we've seen this operand before.  If so, we factor all
+     // instances of the operand together.  Due to our sorting criteria, we know
+     // that these need to be next to each other in the vector.
+     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
+       // Rescan the list, remove all instances of this operand from the expr.
+       unsigned NumFound = 0;
+       do {
+         Ops.erase(Ops.begin()+i);
+         ++NumFound;
+       } while (i != Ops.size() && Ops[i].Op == TheOp);
+ 
+       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
+                         << '\n');
+       ++NumFactor;
+ 
+       // Insert a new multiply.
+       Type *Ty = TheOp->getType();
+       Constant *C = Ty->isIntOrIntVectorTy() ?
+         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
+       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
+ 
+       // Now that we have inserted a multiply, optimize it. This allows us to
+       // handle cases that require multiple factoring steps, such as this:
+       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
+       RedoInsts.insert(Mul);
+ 
+       // If every add operand was a duplicate, return the multiply.
+       if (Ops.empty())
+         return Mul;
+ 
+       // Otherwise, we had some input that didn't have the dupe, such as
+       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
+       // things being added by this operation.
+       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
+ 
+       --i;
+       e = Ops.size();
+       continue;
+     }
+ 
+     // Check for X and -X or X and ~X in the operand list.
+     Value *X;
+     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
+         !match(TheOp, m_FNeg(m_Value(X))))
+       continue;
+ 
+     unsigned FoundX = FindInOperandList(Ops, i, X);
+     if (FoundX == i)
+       continue;
+ 
+     // Remove X and -X from the operand list.
+     if (Ops.size() == 2 &&
+         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
+       return Constant::getNullValue(X->getType());
+ 
+     // Remove X and ~X from the operand list.
+     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
+       return Constant::getAllOnesValue(X->getType());
+ 
+     Ops.erase(Ops.begin()+i);
+     if (i < FoundX)
+       --FoundX;
+     else
+       --i;   // Need to back up an extra one.
+     Ops.erase(Ops.begin()+FoundX);
+     ++NumAnnihil;
+     --i;     // Revisit element.
+     e -= 2;  // Removed two elements.
+ 
+     // if X and ~X we append -1 to the operand list.
+     if (match(TheOp, m_Not(m_Value()))) {
+       Value *V = Constant::getAllOnesValue(X->getType());
+       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
+       e += 1;
+     }
+   }
+ 
+   // Scan the operand list, checking to see if there are any common factors
+   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
+   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
+   // To efficiently find this, we count the number of times a factor occurs
+   // for any ADD operands that are MULs.
+   DenseMap<Value*, unsigned> FactorOccurrences;
+ 
+   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
+   // where they are actually the same multiply.
+   unsigned MaxOcc = 0;
+   Value *MaxOccVal = nullptr;
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+     BinaryOperator *BOp =
+         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
+     if (!BOp)
+       continue;
+ 
+     // Compute all of the factors of this added value.
+     SmallVector<Value*, 8> Factors;
+     FindSingleUseMultiplyFactors(BOp, Factors);
+     assert(Factors.size() > 1 && "Bad linearize!");
+ 
+     // Add one to FactorOccurrences for each unique factor in this op.
+     SmallPtrSet<Value*, 8> Duplicates;
+     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
+       Value *Factor = Factors[i];
+       if (!Duplicates.insert(Factor).second)
+         continue;
+ 
+       unsigned Occ = ++FactorOccurrences[Factor];
+       if (Occ > MaxOcc) {
+         MaxOcc = Occ;
+         MaxOccVal = Factor;
+       }
+ 
+       // If Factor is a negative constant, add the negated value as a factor
+       // because we can percolate the negate out.  Watch for minint, which
+       // cannot be positivified.
+       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
+         if (CI->isNegative() && !CI->isMinValue(true)) {
+           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
+           if (!Duplicates.insert(Factor).second)
+             continue;
+           unsigned Occ = ++FactorOccurrences[Factor];
+           if (Occ > MaxOcc) {
+             MaxOcc = Occ;
+             MaxOccVal = Factor;
+           }
+         }
+       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
+         if (CF->isNegative()) {
+           APFloat F(CF->getValueAPF());
+           F.changeSign();
+           Factor = ConstantFP::get(CF->getContext(), F);
+           if (!Duplicates.insert(Factor).second)
+             continue;
+           unsigned Occ = ++FactorOccurrences[Factor];
+           if (Occ > MaxOcc) {
+             MaxOcc = Occ;
+             MaxOccVal = Factor;
+           }
+         }
+       }
+     }
+   }
+ 
+   // If any factor occurred more than one time, we can pull it out.
+   if (MaxOcc > 1) {
+     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
+                       << '\n');
+     ++NumFactor;
+ 
+     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
+     // this, we could otherwise run into situations where removing a factor
+     // from an expression will drop a use of maxocc, and this can cause
+     // RemoveFactorFromExpression on successive values to behave 
diff erently.
+     Instruction *DummyInst =
+         I->getType()->isIntOrIntVectorTy()
+             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
+             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
+ 
+     SmallVector<WeakTrackingVH, 4> NewMulOps;
+     for (unsigned i = 0; i != Ops.size(); ++i) {
+       // Only try to remove factors from expressions we're allowed to.
+       BinaryOperator *BOp =
+           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
+       if (!BOp)
+         continue;
+ 
+       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
+         // The factorized operand may occur several times.  Convert them all in
+         // one fell swoop.
+         for (unsigned j = Ops.size(); j != i;) {
+           --j;
+           if (Ops[j].Op == Ops[i].Op) {
+             NewMulOps.push_back(V);
+             Ops.erase(Ops.begin()+j);
+           }
+         }
+         --i;
+       }
+     }
+ 
+     // No need for extra uses anymore.
+     DummyInst->deleteValue();
+ 
+     unsigned NumAddedValues = NewMulOps.size();
+     Value *V = EmitAddTreeOfValues(I, NewMulOps);
+ 
+     // Now that we have inserted the add tree, optimize it. This allows us to
+     // handle cases that require multiple factoring steps, such as this:
+     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
+     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
+     (void)NumAddedValues;
+     if (Instruction *VI = dyn_cast<Instruction>(V))
+       RedoInsts.insert(VI);
+ 
+     // Create the multiply.
+     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
+ 
+     // Rerun associate on the multiply in case the inner expression turned into
+     // a multiply.  We want to make sure that we keep things in canonical form.
+     RedoInsts.insert(V2);
+ 
+     // If every add operand included the factor (e.g. "A*B + A*C"), then the
+     // entire result expression is just the multiply "A*(B+C)".
+     if (Ops.empty())
+       return V2;
+ 
+     // Otherwise, we had some input that didn't have the factor, such as
+     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
+     // things being added by this operation.
+     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
+   }
+ 
+   return nullptr;
+ }
+ 
+ /// Build up a vector of value/power pairs factoring a product.
+ ///
+ /// Given a series of multiplication operands, build a vector of factors and
+ /// the powers each is raised to when forming the final product. Sort them in
+ /// the order of descending power.
+ ///
+ ///      (x*x)          -> [(x, 2)]
+ ///     ((x*x)*x)       -> [(x, 3)]
+ ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
+ ///
+ /// \returns Whether any factors have a power greater than one.
+ static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
+                                    SmallVectorImpl<Factor> &Factors) {
+   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
+   // Compute the sum of powers of simplifiable factors.
+   unsigned FactorPowerSum = 0;
+   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
+     Value *Op = Ops[Idx-1].Op;
+ 
+     // Count the number of occurrences of this value.
+     unsigned Count = 1;
+     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
+       ++Count;
+     // Track for simplification all factors which occur 2 or more times.
+     if (Count > 1)
+       FactorPowerSum += Count;
+   }
+ 
+   // We can only simplify factors if the sum of the powers of our simplifiable
+   // factors is 4 or higher. When that is the case, we will *always* have
+   // a simplification. This is an important invariant to prevent cyclicly
+   // trying to simplify already minimal formations.
+   if (FactorPowerSum < 4)
+     return false;
+ 
+   // Now gather the simplifiable factors, removing them from Ops.
+   FactorPowerSum = 0;
+   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
+     Value *Op = Ops[Idx-1].Op;
+ 
+     // Count the number of occurrences of this value.
+     unsigned Count = 1;
+     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
+       ++Count;
+     if (Count == 1)
+       continue;
+     // Move an even number of occurrences to Factors.
+     Count &= ~1U;
+     Idx -= Count;
+     FactorPowerSum += Count;
+     Factors.push_back(Factor(Op, Count));
+     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
+   }
+ 
+   // None of the adjustments above should have reduced the sum of factor powers
+   // below our mininum of '4'.
+   assert(FactorPowerSum >= 4);
+ 
+   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
+     return LHS.Power > RHS.Power;
+   });
+   return true;
+ }
+ 
+ /// Build a tree of multiplies, computing the product of Ops.
+ static Value *buildMultiplyTree(IRBuilder<> &Builder,
+                                 SmallVectorImpl<Value*> &Ops) {
+   if (Ops.size() == 1)
+     return Ops.back();
+ 
+   Value *LHS = Ops.pop_back_val();
+   do {
+     if (LHS->getType()->isIntOrIntVectorTy())
+       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+     else
+       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
+   } while (!Ops.empty());
+ 
+   return LHS;
+ }
+ 
+ /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
+ ///
+ /// Given a vector of values raised to various powers, where no two values are
+ /// equal and the powers are sorted in decreasing order, compute the minimal
+ /// DAG of multiplies to compute the final product, and return that product
+ /// value.
+ Value *
+ ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
+                                          SmallVectorImpl<Factor> &Factors) {
+   assert(Factors[0].Power);
+   SmallVector<Value *, 4> OuterProduct;
+   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
+        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
+     if (Factors[Idx].Power != Factors[LastIdx].Power) {
+       LastIdx = Idx;
+       continue;
+     }
+ 
+     // We want to multiply across all the factors with the same power so that
+     // we can raise them to that power as a single entity. Build a mini tree
+     // for that.
+     SmallVector<Value *, 4> InnerProduct;
+     InnerProduct.push_back(Factors[LastIdx].Base);
+     do {
+       InnerProduct.push_back(Factors[Idx].Base);
+       ++Idx;
+     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
+ 
+     // Reset the base value of the first factor to the new expression tree.
+     // We'll remove all the factors with the same power in a second pass.
+     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
+     if (Instruction *MI = dyn_cast<Instruction>(M))
+       RedoInsts.insert(MI);
+ 
+     LastIdx = Idx;
+   }
+   // Unique factors with equal powers -- we've folded them into the first one's
+   // base.
+   Factors.erase(std::unique(Factors.begin(), Factors.end(),
+                             [](const Factor &LHS, const Factor &RHS) {
+                               return LHS.Power == RHS.Power;
+                             }),
+                 Factors.end());
+ 
+   // Iteratively collect the base of each factor with an add power into the
+   // outer product, and halve each power in preparation for squaring the
+   // expression.
+   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
+     if (Factors[Idx].Power & 1)
+       OuterProduct.push_back(Factors[Idx].Base);
+     Factors[Idx].Power >>= 1;
+   }
+   if (Factors[0].Power) {
+     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
+     OuterProduct.push_back(SquareRoot);
+     OuterProduct.push_back(SquareRoot);
+   }
+   if (OuterProduct.size() == 1)
+     return OuterProduct.front();
+ 
+   Value *V = buildMultiplyTree(Builder, OuterProduct);
+   return V;
+ }
+ 
+ Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
+                                     SmallVectorImpl<ValueEntry> &Ops) {
+   // We can only optimize the multiplies when there is a chain of more than
+   // three, such that a balanced tree might require fewer total multiplies.
+   if (Ops.size() < 4)
+     return nullptr;
+ 
+   // Try to turn linear trees of multiplies without other uses of the
+   // intermediate stages into minimal multiply DAGs with perfect sub-expression
+   // re-use.
+   SmallVector<Factor, 4> Factors;
+   if (!collectMultiplyFactors(Ops, Factors))
+     return nullptr; // All distinct factors, so nothing left for us to do.
+ 
+   IRBuilder<> Builder(I);
+   // The reassociate transformation for FP operations is performed only
+   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
+   // to the newly generated operations.
+   if (auto FPI = dyn_cast<FPMathOperator>(I))
+     Builder.setFastMathFlags(FPI->getFastMathFlags());
+ 
+   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
+   if (Ops.empty())
+     return V;
+ 
+   ValueEntry NewEntry = ValueEntry(getRank(V), V);
+   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
+   return nullptr;
+ }
+ 
+ Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
+                                            SmallVectorImpl<ValueEntry> &Ops) {
+   // Now that we have the linearized expression tree, try to optimize it.
+   // Start by folding any constants that we found.
+   Constant *Cst = nullptr;
+   unsigned Opcode = I->getOpcode();
+   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
+     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
+     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
+   }
+   // If there was nothing but constants then we are done.
+   if (Ops.empty())
+     return Cst;
+ 
+   // Put the combined constant back at the end of the operand list, except if
+   // there is no point.  For example, an add of 0 gets dropped here, while a
+   // multiplication by zero turns the whole expression into zero.
+   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
+     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
+       return Cst;
+     Ops.push_back(ValueEntry(0, Cst));
+   }
+ 
+   if (Ops.size() == 1) return Ops[0].Op;
+ 
+   // Handle destructive annihilation due to identities between elements in the
+   // argument list here.
+   unsigned NumOps = Ops.size();
+   switch (Opcode) {
+   default: break;
+   case Instruction::And:
+   case Instruction::Or:
+     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
+       return Result;
+     break;
+ 
+   case Instruction::Xor:
+     if (Value *Result = OptimizeXor(I, Ops))
+       return Result;
+     break;
+ 
+   case Instruction::Add:
+   case Instruction::FAdd:
+     if (Value *Result = OptimizeAdd(I, Ops))
+       return Result;
+     break;
+ 
+   case Instruction::Mul:
+   case Instruction::FMul:
+     if (Value *Result = OptimizeMul(I, Ops))
+       return Result;
+     break;
+   }
+ 
+   if (Ops.size() != NumOps)
+     return OptimizeExpression(I, Ops);
+   return nullptr;
+ }
+ 
+ // Remove dead instructions and if any operands are trivially dead add them to
+ // Insts so they will be removed as well.
+ void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
+                                                 OrderedSet &Insts) {
+   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
+   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
+   ValueRankMap.erase(I);
+   Insts.remove(I);
+   RedoInsts.remove(I);
++  llvm::salvageDebugInfoOrMarkUndef(*I);
+   I->eraseFromParent();
+   for (auto Op : Ops)
+     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
+       if (OpInst->use_empty())
+         Insts.insert(OpInst);
+ }
+ 
+ /// Zap the given instruction, adding interesting operands to the work list.
+ void ReassociatePass::EraseInst(Instruction *I) {
+   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
+   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
+ 
+   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
+   // Erase the dead instruction.
+   ValueRankMap.erase(I);
+   RedoInsts.remove(I);
++  llvm::salvageDebugInfoOrMarkUndef(*I);
+   I->eraseFromParent();
+   // Optimize its operands.
+   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
+   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
+       // If this is a node in an expression tree, climb to the expression root
+       // and add that since that's where optimization actually happens.
+       unsigned Opcode = Op->getOpcode();
+       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
+              Visited.insert(Op).second)
+         Op = Op->user_back();
+ 
+       // The instruction we're going to push may be coming from a
+       // dead block, and Reassociate skips the processing of unreachable
+       // blocks because it's a waste of time and also because it can
+       // lead to infinite loop due to LLVM's non-standard definition
+       // of dominance.
+       if (ValueRankMap.find(Op) != ValueRankMap.end())
+         RedoInsts.insert(Op);
+     }
+ 
+   MadeChange = true;
+ }
+ 
+ /// Recursively analyze an expression to build a list of instructions that have
+ /// negative floating-point constant operands. The caller can then transform
+ /// the list to create positive constants for better reassociation and CSE.
+ static void getNegatibleInsts(Value *V,
+                               SmallVectorImpl<Instruction *> &Candidates) {
+   // Handle only one-use instructions. Combining negations does not justify
+   // replicating instructions.
+   Instruction *I;
+   if (!match(V, m_OneUse(m_Instruction(I))))
+     return;
+ 
+   // Handle expressions of multiplications and divisions.
+   // TODO: This could look through floating-point casts.
+   const APFloat *C;
+   switch (I->getOpcode()) {
+     case Instruction::FMul:
+       // Not expecting non-canonical code here. Bail out and wait.
+       if (match(I->getOperand(0), m_Constant()))
+         break;
+ 
+       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
+         Candidates.push_back(I);
+         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
+       }
+       getNegatibleInsts(I->getOperand(0), Candidates);
+       getNegatibleInsts(I->getOperand(1), Candidates);
+       break;
+     case Instruction::FDiv:
+       // Not expecting non-canonical code here. Bail out and wait.
+       if (match(I->getOperand(0), m_Constant()) &&
+           match(I->getOperand(1), m_Constant()))
+         break;
+ 
+       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
+           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
+         Candidates.push_back(I);
+         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
+       }
+       getNegatibleInsts(I->getOperand(0), Candidates);
+       getNegatibleInsts(I->getOperand(1), Candidates);
+       break;
+     default:
+       break;
+   }
+ }
+ 
+ /// Given an fadd/fsub with an operand that is a one-use instruction
+ /// (the fadd/fsub), try to change negative floating-point constants into
+ /// positive constants to increase potential for reassociation and CSE.
+ Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
+                                                               Instruction *Op,
+                                                               Value *OtherOp) {
+   assert((I->getOpcode() == Instruction::FAdd ||
+           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
+ 
+   // Collect instructions with negative FP constants from the subtree that ends
+   // in Op.
+   SmallVector<Instruction *, 4> Candidates;
+   getNegatibleInsts(Op, Candidates);
+   if (Candidates.empty())
+     return nullptr;
+ 
+   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
+   // resulting subtract will be broken up later.  This can get us into an
+   // infinite loop during reassociation.
+   bool IsFSub = I->getOpcode() == Instruction::FSub;
+   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
+   if (NeedsSubtract && ShouldBreakUpSubtract(I))
+     return nullptr;
+ 
+   for (Instruction *Negatible : Candidates) {
+     const APFloat *C;
+     if (match(Negatible->getOperand(0), m_APFloat(C))) {
+       assert(!match(Negatible->getOperand(1), m_Constant()) &&
+              "Expecting only 1 constant operand");
+       assert(C->isNegative() && "Expected negative FP constant");
+       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
+       MadeChange = true;
+     }
+     if (match(Negatible->getOperand(1), m_APFloat(C))) {
+       assert(!match(Negatible->getOperand(0), m_Constant()) &&
+              "Expecting only 1 constant operand");
+       assert(C->isNegative() && "Expected negative FP constant");
+       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
+       MadeChange = true;
+     }
+   }
+   assert(MadeChange == true && "Negative constant candidate was not changed");
+ 
+   // Negations cancelled out.
+   if (Candidates.size() % 2 == 0)
+     return I;
+ 
+   // Negate the final operand in the expression by flipping the opcode of this
+   // fadd/fsub.
+   assert(Candidates.size() % 2 == 1 && "Expected odd number");
+   IRBuilder<> Builder(I);
+   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
+                           : Builder.CreateFSubFMF(OtherOp, Op, I);
+   I->replaceAllUsesWith(NewInst);
+   RedoInsts.insert(I);
+   return dyn_cast<Instruction>(NewInst);
+ }
+ 
+ /// Canonicalize expressions that contain a negative floating-point constant
+ /// of the following form:
+ ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
+ ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
+ ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
+ ///
+ /// The fadd/fsub opcode may be switched to allow folding a negation into the
+ /// input instruction.
+ Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
+   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
+   Value *X;
+   Instruction *Op;
+   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
+     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
+       I = R;
+   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
+     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
+       I = R;
+   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
+     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
+       I = R;
+   return I;
+ }
+ 
+ /// Inspect and optimize the given instruction. Note that erasing
+ /// instructions is not allowed.
+ void ReassociatePass::OptimizeInst(Instruction *I) {
+   // Only consider operations that we understand.
+   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
+     return;
+ 
+   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
+     // If an operand of this shift is a reassociable multiply, or if the shift
+     // is used by a reassociable multiply or add, turn into a multiply.
+     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
+         (I->hasOneUse() &&
+          (isReassociableOp(I->user_back(), Instruction::Mul) ||
+           isReassociableOp(I->user_back(), Instruction::Add)))) {
+       Instruction *NI = ConvertShiftToMul(I);
+       RedoInsts.insert(I);
+       MadeChange = true;
+       I = NI;
+     }
+ 
+   // Commute binary operators, to canonicalize the order of their operands.
+   // This can potentially expose more CSE opportunities, and makes writing other
+   // transformations simpler.
+   if (I->isCommutative())
+     canonicalizeOperands(I);
+ 
+   // Canonicalize negative constants out of expressions.
+   if (Instruction *Res = canonicalizeNegFPConstants(I))
+     I = Res;
+ 
+   // Don't optimize floating-point instructions unless they are 'fast'.
+   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
+     return;
+ 
+   // Do not reassociate boolean (i1) expressions.  We want to preserve the
+   // original order of evaluation for short-circuited comparisons that
+   // SimplifyCFG has folded to AND/OR expressions.  If the expression
+   // is not further optimized, it is likely to be transformed back to a
+   // short-circuited form for code gen, and the source order may have been
+   // optimized for the most likely conditions.
+   if (I->getType()->isIntegerTy(1))
+     return;
+ 
+   // If this is a subtract instruction which is not already in negate form,
+   // see if we can convert it to X+-Y.
+   if (I->getOpcode() == Instruction::Sub) {
+     if (ShouldBreakUpSubtract(I)) {
+       Instruction *NI = BreakUpSubtract(I, RedoInsts);
+       RedoInsts.insert(I);
+       MadeChange = true;
+       I = NI;
+     } else if (match(I, m_Neg(m_Value()))) {
+       // Otherwise, this is a negation.  See if the operand is a multiply tree
+       // and if this is not an inner node of a multiply tree.
+       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
+           (!I->hasOneUse() ||
+            !isReassociableOp(I->user_back(), Instruction::Mul))) {
+         Instruction *NI = LowerNegateToMultiply(I);
+         // If the negate was simplified, revisit the users to see if we can
+         // reassociate further.
+         for (User *U : NI->users()) {
+           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
+             RedoInsts.insert(Tmp);
+         }
+         RedoInsts.insert(I);
+         MadeChange = true;
+         I = NI;
+       }
+     }
+   } else if (I->getOpcode() == Instruction::FNeg ||
+              I->getOpcode() == Instruction::FSub) {
+     if (ShouldBreakUpSubtract(I)) {
+       Instruction *NI = BreakUpSubtract(I, RedoInsts);
+       RedoInsts.insert(I);
+       MadeChange = true;
+       I = NI;
+     } else if (match(I, m_FNeg(m_Value()))) {
+       // Otherwise, this is a negation.  See if the operand is a multiply tree
+       // and if this is not an inner node of a multiply tree.
+       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
+                                            I->getOperand(0);
+       if (isReassociableOp(Op, Instruction::FMul) &&
+           (!I->hasOneUse() ||
+            !isReassociableOp(I->user_back(), Instruction::FMul))) {
+         // If the negate was simplified, revisit the users to see if we can
+         // reassociate further.
+         Instruction *NI = LowerNegateToMultiply(I);
+         for (User *U : NI->users()) {
+           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
+             RedoInsts.insert(Tmp);
+         }
+         RedoInsts.insert(I);
+         MadeChange = true;
+         I = NI;
+       }
+     }
+   }
+ 
+   // If this instruction is an associative binary operator, process it.
+   if (!I->isAssociative()) return;
+   BinaryOperator *BO = cast<BinaryOperator>(I);
+ 
+   // If this is an interior node of a reassociable tree, ignore it until we
+   // get to the root of the tree, to avoid N^2 analysis.
+   unsigned Opcode = BO->getOpcode();
+   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
+     // During the initial run we will get to the root of the tree.
+     // But if we get here while we are redoing instructions, there is no
+     // guarantee that the root will be visited. So Redo later
+     if (BO->user_back() != BO &&
+         BO->getParent() == BO->user_back()->getParent())
+       RedoInsts.insert(BO->user_back());
+     return;
+   }
+ 
+   // If this is an add tree that is used by a sub instruction, ignore it
+   // until we process the subtract.
+   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
+       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
+     return;
+   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
+       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
+     return;
+ 
+   ReassociateExpression(BO);
+ }
+ 
+ void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
+   // First, walk the expression tree, linearizing the tree, collecting the
+   // operand information.
+   SmallVector<RepeatedValue, 8> Tree;
+   MadeChange |= LinearizeExprTree(I, Tree);
+   SmallVector<ValueEntry, 8> Ops;
+   Ops.reserve(Tree.size());
+   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+     RepeatedValue E = Tree[i];
+     Ops.append(E.second.getZExtValue(),
+                ValueEntry(getRank(E.first), E.first));
+   }
+ 
+   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
+ 
+   // Now that we have linearized the tree to a list and have gathered all of
+   // the operands and their ranks, sort the operands by their rank.  Use a
+   // stable_sort so that values with equal ranks will have their relative
+   // positions maintained (and so the compiler is deterministic).  Note that
+   // this sorts so that the highest ranking values end up at the beginning of
+   // the vector.
+   llvm::stable_sort(Ops);
+ 
+   // Now that we have the expression tree in a convenient
+   // sorted form, optimize it globally if possible.
+   if (Value *V = OptimizeExpression(I, Ops)) {
+     if (V == I)
+       // Self-referential expression in unreachable code.
+       return;
+     // This expression tree simplified to something that isn't a tree,
+     // eliminate it.
+     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
+     I->replaceAllUsesWith(V);
+     if (Instruction *VI = dyn_cast<Instruction>(V))
+       if (I->getDebugLoc())
+         VI->setDebugLoc(I->getDebugLoc());
+     RedoInsts.insert(I);
+     ++NumAnnihil;
+     return;
+   }
+ 
+   // We want to sink immediates as deeply as possible except in the case where
+   // this is a multiply tree used only by an add, and the immediate is a -1.
+   // In this case we reassociate to put the negation on the outside so that we
+   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
+   if (I->hasOneUse()) {
+     if (I->getOpcode() == Instruction::Mul &&
+         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
+         isa<ConstantInt>(Ops.back().Op) &&
+         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
+       ValueEntry Tmp = Ops.pop_back_val();
+       Ops.insert(Ops.begin(), Tmp);
+     } else if (I->getOpcode() == Instruction::FMul &&
+                cast<Instruction>(I->user_back())->getOpcode() ==
+                    Instruction::FAdd &&
+                isa<ConstantFP>(Ops.back().Op) &&
+                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
+       ValueEntry Tmp = Ops.pop_back_val();
+       Ops.insert(Ops.begin(), Tmp);
+     }
+   }
+ 
+   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
+ 
+   if (Ops.size() == 1) {
+     if (Ops[0].Op == I)
+       // Self-referential expression in unreachable code.
+       return;
+ 
+     // This expression tree simplified to something that isn't a tree,
+     // eliminate it.
+     I->replaceAllUsesWith(Ops[0].Op);
+     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
+       OI->setDebugLoc(I->getDebugLoc());
+     RedoInsts.insert(I);
+     return;
+   }
+ 
+   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
+     // Find the pair with the highest count in the pairmap and move it to the
+     // back of the list so that it can later be CSE'd.
+     // example:
+     //   a*b*c*d*e
+     // if c*e is the most "popular" pair, we can express this as
+     //   (((c*e)*d)*b)*a
+     unsigned Max = 1;
+     unsigned BestRank = 0;
+     std::pair<unsigned, unsigned> BestPair;
+     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
+     for (unsigned i = 0; i < Ops.size() - 1; ++i)
+       for (unsigned j = i + 1; j < Ops.size(); ++j) {
+         unsigned Score = 0;
+         Value *Op0 = Ops[i].Op;
+         Value *Op1 = Ops[j].Op;
+         if (std::less<Value *>()(Op1, Op0))
+           std::swap(Op0, Op1);
+         auto it = PairMap[Idx].find({Op0, Op1});
+         if (it != PairMap[Idx].end()) {
+           // Functions like BreakUpSubtract() can erase the Values we're using
+           // as keys and create new Values after we built the PairMap. There's a
+           // small chance that the new nodes can have the same address as
+           // something already in the table. We shouldn't accumulate the stored
+           // score in that case as it refers to the wrong Value.
+           if (it->second.isValid())
+             Score += it->second.Score;
+         }
+ 
+         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
+         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
+           BestPair = {i, j};
+           Max = Score;
+           BestRank = MaxRank;
+         }
+       }
+     if (Max > 1) {
+       auto Op0 = Ops[BestPair.first];
+       auto Op1 = Ops[BestPair.second];
+       Ops.erase(&Ops[BestPair.second]);
+       Ops.erase(&Ops[BestPair.first]);
+       Ops.push_back(Op0);
+       Ops.push_back(Op1);
+     }
+   }
+   // Now that we ordered and optimized the expressions, splat them back into
+   // the expression tree, removing any unneeded nodes.
+   RewriteExprTree(I, Ops);
+ }
+ 
+ void
+ ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
+   // Make a "pairmap" of how often each operand pair occurs.
+   for (BasicBlock *BI : RPOT) {
+     for (Instruction &I : *BI) {
+       if (!I.isAssociative())
+         continue;
+ 
+       // Ignore nodes that aren't at the root of trees.
+       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
+         continue;
+ 
+       // Collect all operands in a single reassociable expression.
+       // Since Reassociate has already been run once, we can assume things
+       // are already canonical according to Reassociation's regime.
+       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
+       SmallVector<Value *, 8> Ops;
+       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
+         Value *Op = Worklist.pop_back_val();
+         Instruction *OpI = dyn_cast<Instruction>(Op);
+         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
+           Ops.push_back(Op);
+           continue;
+         }
+         // Be paranoid about self-referencing expressions in unreachable code.
+         if (OpI->getOperand(0) != OpI)
+           Worklist.push_back(OpI->getOperand(0));
+         if (OpI->getOperand(1) != OpI)
+           Worklist.push_back(OpI->getOperand(1));
+       }
+       // Skip extremely long expressions.
+       if (Ops.size() > GlobalReassociateLimit)
+         continue;
+ 
+       // Add all pairwise combinations of operands to the pair map.
+       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
+       SmallSet<std::pair<Value *, Value*>, 32> Visited;
+       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
+         for (unsigned j = i + 1; j < Ops.size(); ++j) {
+           // Canonicalize operand orderings.
+           Value *Op0 = Ops[i];
+           Value *Op1 = Ops[j];
+           if (std::less<Value *>()(Op1, Op0))
+             std::swap(Op0, Op1);
+           if (!Visited.insert({Op0, Op1}).second)
+             continue;
+           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
+           if (!res.second) {
+             // If either key value has been erased then we've got the same
+             // address by coincidence. That can't happen here because nothing is
+             // erasing values but it can happen by the time we're querying the
+             // map.
+             assert(res.first->second.isValid() && "WeakVH invalidated");
+             ++res.first->second.Score;
+           }
+         }
+       }
+     }
+   }
+ }
+ 
+ PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
+   // Get the functions basic blocks in Reverse Post Order. This order is used by
+   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
+   // blocks (it has been seen that the analysis in this pass could hang when
+   // analysing dead basic blocks).
+   ReversePostOrderTraversal<Function *> RPOT(&F);
+ 
+   // Calculate the rank map for F.
+   BuildRankMap(F, RPOT);
+ 
+   // Build the pair map before running reassociate.
+   // Technically this would be more accurate if we did it after one round
+   // of reassociation, but in practice it doesn't seem to help much on
+   // real-world code, so don't waste the compile time running reassociate
+   // twice.
+   // If a user wants, they could expicitly run reassociate twice in their
+   // pass pipeline for further potential gains.
+   // It might also be possible to update the pair map during runtime, but the
+   // overhead of that may be large if there's many reassociable chains.
+   BuildPairMap(RPOT);
+ 
+   MadeChange = false;
+ 
+   // Traverse the same blocks that were analysed by BuildRankMap.
+   for (BasicBlock *BI : RPOT) {
+     assert(RankMap.count(&*BI) && "BB should be ranked.");
+     // Optimize every instruction in the basic block.
+     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
+       if (isInstructionTriviallyDead(&*II)) {
+         EraseInst(&*II++);
+       } else {
+         OptimizeInst(&*II);
+         assert(II->getParent() == &*BI && "Moved to a 
diff erent block!");
+         ++II;
+       }
+ 
+     // Make a copy of all the instructions to be redone so we can remove dead
+     // instructions.
+     OrderedSet ToRedo(RedoInsts);
+     // Iterate over all instructions to be reevaluated and remove trivially dead
+     // instructions. If any operand of the trivially dead instruction becomes
+     // dead mark it for deletion as well. Continue this process until all
+     // trivially dead instructions have been removed.
+     while (!ToRedo.empty()) {
+       Instruction *I = ToRedo.pop_back_val();
+       if (isInstructionTriviallyDead(I)) {
+         RecursivelyEraseDeadInsts(I, ToRedo);
+         MadeChange = true;
+       }
+     }
+ 
+     // Now that we have removed dead instructions, we can reoptimize the
+     // remaining instructions.
+     while (!RedoInsts.empty()) {
+       Instruction *I = RedoInsts.front();
+       RedoInsts.erase(RedoInsts.begin());
+       if (isInstructionTriviallyDead(I))
+         EraseInst(I);
+       else
+         OptimizeInst(I);
+     }
+   }
+ 
+   // We are done with the rank map and pair map.
+   RankMap.clear();
+   ValueRankMap.clear();
+   for (auto &Entry : PairMap)
+     Entry.clear();
+ 
+   if (MadeChange) {
+     PreservedAnalyses PA;
+     PA.preserveSet<CFGAnalyses>();
+     PA.preserve<GlobalsAA>();
+     return PA;
+   }
+ 
+   return PreservedAnalyses::all();
+ }
+ 
+ namespace {
+ 
+   class ReassociateLegacyPass : public FunctionPass {
+     ReassociatePass Impl;
+ 
+   public:
+     static char ID; // Pass identification, replacement for typeid
+ 
+     ReassociateLegacyPass() : FunctionPass(ID) {
+       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
+     }
+ 
+     bool runOnFunction(Function &F) override {
+       if (skipFunction(F))
+         return false;
+ 
+       FunctionAnalysisManager DummyFAM;
+       auto PA = Impl.run(F, DummyFAM);
+       return !PA.areAllPreserved();
+     }
+ 
+     void getAnalysisUsage(AnalysisUsage &AU) const override {
+       AU.setPreservesCFG();
+       AU.addPreserved<GlobalsAAWrapperPass>();
+     }
+   };
+ 
+ } // end anonymous namespace
+ 
+ char ReassociateLegacyPass::ID = 0;
+ 
+ INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
+                 "Reassociate expressions", false, false)
+ 
+ // Public interface to the Reassociate pass
+ FunctionPass *llvm::createReassociatePass() {
+   return new ReassociateLegacyPass();
+ }

diff  --git a/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll b/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
new file mode 100644
index 000000000000..34e0b9a04bb3
--- /dev/null
+++ b/llvm/test/Transforms/Reassociate/reassociate_salvages_debug_info.ll
@@ -0,0 +1,50 @@
+; RUN: opt < %s -reassociate -S | FileCheck %s
+
+; Check that reassociate pass now salvages debug info when dropping instructions.
+
+define hidden i32 @main(i32 %argc, i8** %argv) {
+entry:
+  ; CHECK: call void @llvm.dbg.value(metadata i32 %argc, metadata [[VAR_B:![0-9]+]], metadata !DIExpression(DW_OP_plus_uconst, 1, DW_OP_stack_value))
+  %add = add nsw i32 %argc, 1, !dbg !26
+  call void @llvm.dbg.value(metadata i32 %add, metadata !22, metadata !DIExpression()), !dbg !25
+  %add1 = add nsw i32 %argc, %add, !dbg !27
+  ret i32 %add1, !dbg !28
+}
+
+declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
+declare void @llvm.dbg.value(metadata, metadata, metadata) #1
+
+!llvm.dbg.cu = !{!0}
+!llvm.module.flags = !{!3, !4, !5, !6}
+!llvm.ident = !{!7}
+
+!0 = distinct !DICompileUnit(language: DW_LANG_C_plus_plus_14, file: !1, producer: "clang version 10.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, debugInfoForProfiling: true, nameTableKind: None)
+!1 = !DIFile(filename: "test2.cpp", directory: "C:\")
+!2 = !{}
+!3 = !{i32 2, !"Dwarf Version", i32 4}
+!4 = !{i32 2, !"Debug Info Version", i32 3}
+!5 = !{i32 1, !"wchar_size", i32 2}
+!6 = !{i32 7, !"PIC Level", i32 2}
+!7 = !{!"clang version 10.0.0"}
+!8 = distinct !DISubprogram(name: "main", scope: !9, file: !9, line: 1, type: !10, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition, unit: !0, retainedNodes: !18)
+!9 = !DIFile(filename: "./test2.cpp", directory: "C:\")
+!10 = !DISubroutineType(types: !11)
+!11 = !{!12, !13, !14}
+!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
+!13 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !12)
+!14 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !15, size: 64)
+!15 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !16, size: 64)
+!16 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !17)
+!17 = !DIBasicType(name: "char", size: 8, encoding: DW_ATE_signed_char)
+!18 = !{!19, !20, !21, !22, !23, !24}
+!19 = !DILocalVariable(name: "argc", arg: 1, scope: !8, file: !9, line: 1, type: !13)
+!20 = !DILocalVariable(name: "argv", arg: 2, scope: !8, file: !9, line: 1, type: !14)
+!21 = !DILocalVariable(name: "a", scope: !8, file: !9, line: 2, type: !12)
+; CHECK: [[VAR_B]] = !DILocalVariable(name: "b"
+!22 = !DILocalVariable(name: "b", scope: !8, file: !9, line: 3, type: !12)
+!23 = !DILocalVariable(name: "to_return", scope: !8, file: !9, line: 4, type: !12)
+!24 = !DILocalVariable(name: "result", scope: !8, file: !9, line: 5, type: !12)
+!25 = !DILocation(line: 0, scope: !8)
+!26 = !DILocation(line: 3, scope: !8)
+!27 = !DILocation(line: 4, scope: !8)
+!28 = !DILocation(line: 6, scope: !8)

diff  --git a/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll b/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll
new file mode 100644
index 000000000000..98c51c5cf8bb
--- /dev/null
+++ b/llvm/test/Transforms/Reassociate/undef_intrinsics_when_deleting_instructions.ll
@@ -0,0 +1,95 @@
+; RUN: opt < %s -reassociate -S | FileCheck %s
+
+; Check that reassociate pass now undefs debug intrinsics that reference a value
+; that gets dropped and cannot be salvaged.
+
+define hidden i32 @main() local_unnamed_addr {
+entry:
+  %foo = alloca i32, align 4, !dbg !20
+  %foo.0.foo.0..sroa_cast = bitcast i32* %foo to i8*, !dbg !20
+  call void @llvm.lifetime.start.p0i8(i64 4, i8* nonnull %foo.0.foo.0..sroa_cast), !dbg !20
+  store volatile i32 4, i32* %foo, align 4, !dbg !20, !tbaa !21
+  %foo.0.foo.0. = load volatile i32, i32* %foo, align 4, !dbg !25, !tbaa !21
+  %foo.0.foo.0.15 = load volatile i32, i32* %foo, align 4, !dbg !27, !tbaa !21
+  %foo.0.foo.0.16 = load volatile i32, i32* %foo, align 4, !dbg !28, !tbaa !21
+  ; CHECK-NOT: %add = add nsw i32 %foo.0.foo.0., %foo.0.foo.0.15
+  %add = add nsw i32 %foo.0.foo.0., %foo.0.foo.0.15, !dbg !29
+  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_A:![0-9]+]], metadata !DIExpression())
+  call void @llvm.dbg.value(metadata i32 %add, metadata !19, metadata !DIExpression()), !dbg !26
+  %foo.0.foo.0.17 = load volatile i32, i32* %foo, align 4, !dbg !30, !tbaa !21
+  %cmp = icmp eq i32 %foo.0.foo.0.17, 4, !dbg !30
+  br i1 %cmp, label %if.then, label %if.end, !dbg !32
+
+  ; CHECK-LABEL: if.then:
+if.then:
+  ; CHECK-NOT: %add1 = add nsw i32 %add, %foo.0.foo.0.16
+  %add1 = add nsw i32 %add, %foo.0.foo.0.16, !dbg !33
+  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_A]], metadata !DIExpression())
+  call void @llvm.dbg.value(metadata i32 %add1, metadata !19, metadata !DIExpression()), !dbg !26
+  ; CHECK: call void @llvm.dbg.value(metadata i32 undef, metadata [[VAR_CHEESE:![0-9]+]], metadata !DIExpression())
+  call void @llvm.dbg.value(metadata i32 %add, metadata !18, metadata !DIExpression()), !dbg !26
+  %sub = add nsw i32 %add, -12, !dbg !34
+  %sub3 = sub nsw i32 %add1, %sub, !dbg !34
+  %mul = mul nsw i32 %sub3, 20, !dbg !36
+  %div = sdiv i32 %mul, 3, !dbg !37
+  br label %if.end, !dbg !38
+
+if.end:
+  %a.0 = phi i32 [ %div, %if.then ], [ 0, %entry ], !dbg !39
+  call void @llvm.lifetime.end.p0i8(i64 4, i8* nonnull %foo.0.foo.0..sroa_cast), !dbg !40
+  ret i32 %a.0, !dbg !41
+}
+
+declare void @llvm.lifetime.start.p0i8(i64 immarg, i8* nocapture) #1
+declare void @llvm.dbg.declare(metadata, metadata, metadata) #2
+declare void @llvm.lifetime.end.p0i8(i64 immarg, i8* nocapture) #1
+declare void @llvm.dbg.value(metadata, metadata, metadata) #2
+
+!llvm.dbg.cu = !{!0}
+!llvm.module.flags = !{!3, !4, !5, !6}
+!llvm.ident = !{!7}
+
+!0 = distinct !DICompileUnit(language: DW_LANG_C_plus_plus_14, file: !1, producer: "clang version 10.0.0", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, debugInfoForProfiling: true, nameTableKind: None)
+!1 = !DIFile(filename: "test.cpp", directory: "F:\")
+!2 = !{}
+!3 = !{i32 2, !"Dwarf Version", i32 4}
+!4 = !{i32 2, !"Debug Info Version", i32 3}
+!5 = !{i32 1, !"wchar_size", i32 2}
+!6 = !{i32 7, !"PIC Level", i32 2}
+!7 = !{!"clang version 10.0.0"}
+!8 = distinct !DISubprogram(name: "main", scope: !9, file: !9, line: 1, type: !10, scopeLine: 1, flags: DIFlagPrototyped, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !0, retainedNodes: !13)
+!9 = !DIFile(filename: "./test.cpp", directory: "F:\")
+!10 = !DISubroutineType(types: !11)
+!11 = !{!12}
+!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
+!13 = !{!14, !16, !17, !18, !19}
+!14 = !DILocalVariable(name: "foo", scope: !8, file: !9, line: 2, type: !15)
+!15 = !DIDerivedType(tag: DW_TAG_volatile_type, baseType: !12)
+!16 = !DILocalVariable(name: "read1", scope: !8, file: !9, line: 3, type: !12)
+!17 = !DILocalVariable(name: "read2", scope: !8, file: !9, line: 4, type: !12)
+; CHECK: [[VAR_CHEESE]] = !DILocalVariable(name: "cheese"
+!18 = !DILocalVariable(name: "cheese", scope: !8, file: !9, line: 6, type: !12)
+; CHECK: [[VAR_A]] = !DILocalVariable(name: "a"
+!19 = !DILocalVariable(name: "a", scope: !8, file: !9, line: 7, type: !12)
+!20 = !DILocation(line: 2, scope: !8)
+!21 = !{!22, !22, i64 0}
+!22 = !{!"int", !23, i64 0}
+!23 = !{!"omnipotent char", !24, i64 0}
+!24 = !{!"Simple C++ TBAA"}
+!25 = !DILocation(line: 3, scope: !8)
+!26 = !DILocation(line: 0, scope: !8)
+!27 = !DILocation(line: 4, scope: !8)
+!28 = !DILocation(line: 6, scope: !8)
+!29 = !DILocation(line: 7, scope: !8)
+!30 = !DILocation(line: 10, scope: !31)
+!31 = distinct !DILexicalBlock(scope: !8, file: !9, line: 10)
+!32 = !DILocation(line: 10, scope: !8)
+!33 = !DILocation(line: 8, scope: !8)
+!34 = !DILocation(line: 12, scope: !35)
+!35 = distinct !DILexicalBlock(scope: !31, file: !9, line: 10)
+!36 = !DILocation(line: 13, scope: !35)
+!37 = !DILocation(line: 14, scope: !35)
+!38 = !DILocation(line: 15, scope: !35)
+!39 = !DILocation(line: 0, scope: !31)
+!40 = !DILocation(line: 20, scope: !8)
+!41 = !DILocation(line: 19, scope: !8)


        


More information about the llvm-commits mailing list