[llvm] r364084 - [SLP] Look-ahead operand reordering heuristic.
Simon Pilgrim via llvm-commits
llvm-commits at lists.llvm.org
Fri Jun 21 10:57:01 PDT 2019
Author: rksimon
Date: Fri Jun 21 10:57:01 2019
New Revision: 364084
URL: http://llvm.org/viewvc/llvm-project?rev=364084&view=rev
Log:
[SLP] Look-ahead operand reordering heuristic.
This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D60897
Modified:
llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp
llvm/trunk/test/Transforms/SLPVectorizer/X86/lookahead.ll
Modified: llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp?rev=364084&r1=364083&r2=364084&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp (original)
+++ llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp Fri Jun 21 10:57:01 2019
@@ -147,6 +147,12 @@ static cl::opt<unsigned> MinTreeSize(
"slp-min-tree-size", cl::init(3), cl::Hidden,
cl::desc("Only vectorize small trees if they are fully vectorizable"));
+// The maximum depth that the look-ahead score heuristic will explore.
+// The higher this value, the higher the compilation time overhead.
+static cl::opt<int> LookAheadMaxDepth(
+ "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
+ cl::desc("The maximum look-ahead depth for operand reordering scores"));
+
static cl::opt<bool>
ViewSLPTree("view-slp-tree", cl::Hidden,
cl::desc("Display the SLP trees with Graphviz"));
@@ -708,6 +714,7 @@ public:
const DataLayout &DL;
ScalarEvolution &SE;
+ const BoUpSLP &R;
/// \returns the operand data at \p OpIdx and \p Lane.
OperandData &getData(unsigned OpIdx, unsigned Lane) {
@@ -733,6 +740,207 @@ public:
std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
}
+ // The hard-coded scores listed here are not very important. When computing
+ // the scores of matching one sub-tree with another, we are basically
+ // counting the number of values that are matching. So even if all scores
+ // are set to 1, we would still get a decent matching result.
+ // However, sometimes we have to break ties. For example we may have to
+ // choose between matching loads vs matching opcodes. This is what these
+ // scores are helping us with: they provide the order of preference.
+
+ /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
+ static const int ScoreConsecutiveLoads = 3;
+ /// Constants.
+ static const int ScoreConstants = 2;
+ /// Instructions with the same opcode.
+ static const int ScoreSameOpcode = 2;
+ /// Instructions with alt opcodes (e.g, add + sub).
+ static const int ScoreAltOpcodes = 1;
+ /// Identical instructions (a.k.a. splat or broadcast).
+ static const int ScoreSplat = 1;
+ /// Matching with an undef is preferable to failing.
+ static const int ScoreUndef = 1;
+ /// Score for failing to find a decent match.
+ static const int ScoreFail = 0;
+ /// User external to the vectorized code.
+ static const int ExternalUseCost = 1;
+ /// The user is internal but in a different lane.
+ static const int UserInDiffLaneCost = ExternalUseCost;
+
+ /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
+ static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
+ ScalarEvolution &SE) {
+ auto *LI1 = dyn_cast<LoadInst>(V1);
+ auto *LI2 = dyn_cast<LoadInst>(V2);
+ if (LI1 && LI2)
+ return isConsecutiveAccess(LI1, LI2, DL, SE)
+ ? VLOperands::ScoreConsecutiveLoads
+ : VLOperands::ScoreFail;
+
+ auto *C1 = dyn_cast<Constant>(V1);
+ auto *C2 = dyn_cast<Constant>(V2);
+ if (C1 && C2)
+ return VLOperands::ScoreConstants;
+
+ auto *I1 = dyn_cast<Instruction>(V1);
+ auto *I2 = dyn_cast<Instruction>(V2);
+ if (I1 && I2) {
+ if (I1 == I2)
+ return VLOperands::ScoreSplat;
+ InstructionsState S = getSameOpcode({I1, I2});
+ // Note: Only consider instructions with <= 2 operands to avoid
+ // complexity explosion.
+ if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
+ return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
+ : VLOperands::ScoreSameOpcode;
+ }
+
+ if (isa<UndefValue>(V2))
+ return VLOperands::ScoreUndef;
+
+ return VLOperands::ScoreFail;
+ }
+
+ /// Holds the values and their lane that are taking part in the look-ahead
+ /// score calculation. This is used in the external uses cost calculation.
+ SmallDenseMap<Value *, int> InLookAheadValues;
+
+ /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
+ /// either external to the vectorized code, or require shuffling.
+ int getExternalUsesCost(const std::pair<Value *, int> &LHS,
+ const std::pair<Value *, int> &RHS) {
+ int Cost = 0;
+ SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS};
+ for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
+ Value *V = Values[Idx].first;
+ // Calculate the absolute lane, using the minimum relative lane of LHS
+ // and RHS as base and Idx as the offset.
+ int Ln = std::min(LHS.second, RHS.second) + Idx;
+ assert(Ln >= 0 && "Bad lane calculation");
+ for (User *U : V->users()) {
+ if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
+ // The user is in the VectorizableTree. Check if we need to insert.
+ auto It = llvm::find(UserTE->Scalars, U);
+ assert(It != UserTE->Scalars.end() && "U is in UserTE");
+ int UserLn = std::distance(UserTE->Scalars.begin(), It);
+ assert(UserLn >= 0 && "Bad lane");
+ if (UserLn != Ln)
+ Cost += UserInDiffLaneCost;
+ } else {
+ // Check if the user is in the look-ahead code.
+ auto It2 = InLookAheadValues.find(U);
+ if (It2 != InLookAheadValues.end()) {
+ // The user is in the look-ahead code. Check the lane.
+ if (It2->second != Ln)
+ Cost += UserInDiffLaneCost;
+ } else {
+ // The user is neither in SLP tree nor in the look-ahead code.
+ Cost += ExternalUseCost;
+ }
+ }
+ }
+ }
+ return Cost;
+ }
+
+ /// Go through the operands of \p LHS and \p RHS recursively until \p
+ /// MaxLevel, and return the cummulative score. For example:
+ /// \verbatim
+ /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
+ /// \ / \ / \ / \ /
+ /// + + + +
+ /// G1 G2 G3 G4
+ /// \endverbatim
+ /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
+ /// each level recursively, accumulating the score. It starts from matching
+ /// the additions at level 0, then moves on to the loads (level 1). The
+ /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
+ /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
+ /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
+ /// Please note that the order of the operands does not matter, as we
+ /// evaluate the score of all profitable combinations of operands. In
+ /// other words the score of G1 and G4 is the same as G1 and G2. This
+ /// heuristic is based on ideas described in:
+ /// Look-ahead SLP: Auto-vectorization in the presence of commutative
+ /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
+ /// LuÃs F. W. Góes
+ int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
+ const std::pair<Value *, int> &RHS, int CurrLevel,
+ int MaxLevel) {
+
+ Value *V1 = LHS.first;
+ Value *V2 = RHS.first;
+ // Get the shallow score of V1 and V2.
+ int ShallowScoreAtThisLevel =
+ std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
+ getExternalUsesCost(LHS, RHS));
+ int Lane1 = LHS.second;
+ int Lane2 = RHS.second;
+
+ // If reached MaxLevel,
+ // or if V1 and V2 are not instructions,
+ // or if they are SPLAT,
+ // or if they are not consecutive, early return the current cost.
+ auto *I1 = dyn_cast<Instruction>(V1);
+ auto *I2 = dyn_cast<Instruction>(V2);
+ if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
+ ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
+ (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
+ return ShallowScoreAtThisLevel;
+ assert(I1 && I2 && "Should have early exited.");
+
+ // Keep track of in-tree values for determining the external-use cost.
+ InLookAheadValues[V1] = Lane1;
+ InLookAheadValues[V2] = Lane2;
+
+ // Contains the I2 operand indexes that got matched with I1 operands.
+ SmallSet<int, 4> Op2Used;
+
+ // Recursion towards the operands of I1 and I2. We are trying all possbile
+ // operand pairs, and keeping track of the best score.
+ for (int OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
+ OpIdx1 != NumOperands1; ++OpIdx1) {
+ // Try to pair op1I with the best operand of I2.
+ int MaxTmpScore = 0;
+ int MaxOpIdx2 = -1;
+ // If I2 is commutative try all combinations.
+ int FromIdx = isCommutative(I2) ? 0 : OpIdx1;
+ int ToIdx = isCommutative(I2) ? I2->getNumOperands() : OpIdx1 + 1;
+ assert(FromIdx < ToIdx && "Bad index");
+ for (int OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
+ // Skip operands already paired with OpIdx1.
+ if (Op2Used.count(OpIdx2))
+ continue;
+ // Recursively calculate the cost at each level
+ int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
+ {I2->getOperand(OpIdx2), Lane2},
+ CurrLevel + 1, MaxLevel);
+ // Look for the best score.
+ if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
+ MaxTmpScore = TmpScore;
+ MaxOpIdx2 = OpIdx2;
+ }
+ }
+ if (MaxOpIdx2 >= 0) {
+ // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
+ Op2Used.insert(MaxOpIdx2);
+ ShallowScoreAtThisLevel += MaxTmpScore;
+ }
+ }
+ return ShallowScoreAtThisLevel;
+ }
+
+ /// \Returns the look-ahead score, which tells us how much the sub-trees
+ /// rooted at \p LHS and \p RHS match, the more they match the higher the
+ /// score. This helps break ties in an informed way when we cannot decide on
+ /// the order of the operands by just considering the immediate
+ /// predecessors.
+ int getLookAheadScore(const std::pair<Value *, int> &LHS,
+ const std::pair<Value *, int> &RHS) {
+ InLookAheadValues.clear();
+ return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
+ }
+
// Search all operands in Ops[*][Lane] for the one that matches best
// Ops[OpIdx][LastLane] and return its opreand index.
// If no good match can be found, return None.
@@ -750,9 +958,6 @@ public:
// The linearized opcode of the operand at OpIdx, Lane.
bool OpIdxAPO = getData(OpIdx, Lane).APO;
- const unsigned BestScore = 2;
- const unsigned GoodScore = 1;
-
// The best operand index and its score.
// Sometimes we have more than one option (e.g., Opcode and Undefs), so we
// are using the score to differentiate between the two.
@@ -781,41 +986,19 @@ public:
// Look for an operand that matches the current mode.
switch (RMode) {
case ReorderingMode::Load:
- if (isa<LoadInst>(Op)) {
- // Figure out which is left and right, so that we can check for
- // consecutive loads
- bool LeftToRight = Lane > LastLane;
- Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
- Value *OpRight = (LeftToRight) ? Op : OpLastLane;
- if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
- cast<LoadInst>(OpRight), DL, SE))
- BestOp.Idx = Idx;
- }
- break;
- case ReorderingMode::Opcode:
- // We accept both Instructions and Undefs, but with different scores.
- if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
- cast<Instruction>(Op)->getOpcode() ==
- cast<Instruction>(OpLastLane)->getOpcode()) ||
- (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
- isa<UndefValue>(Op)) {
- // An instruction has a higher score than an undef.
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
- }
- break;
case ReorderingMode::Constant:
- if (isa<Constant>(Op)) {
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
+ case ReorderingMode::Opcode: {
+ bool LeftToRight = Lane > LastLane;
+ Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
+ Value *OpRight = (LeftToRight) ? Op : OpLastLane;
+ unsigned Score =
+ getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
+ if (Score > BestOp.Score) {
+ BestOp.Idx = Idx;
+ BestOp.Score = Score;
}
break;
+ }
case ReorderingMode::Splat:
if (Op == OpLastLane)
BestOp.Idx = Idx;
@@ -946,8 +1129,8 @@ public:
public:
/// Initialize with all the operands of the instruction vector \p RootVL.
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
- ScalarEvolution &SE)
- : DL(DL), SE(SE) {
+ ScalarEvolution &SE, const BoUpSLP &R)
+ : DL(DL), SE(SE), R(R) {
// Append all the operands of RootVL.
appendOperandsOfVL(RootVL);
}
@@ -1169,7 +1352,8 @@ private:
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right,
const DataLayout &DL,
- ScalarEvolution &SE);
+ ScalarEvolution &SE,
+ const BoUpSLP &R);
struct TreeEntry {
using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
TreeEntry(VecTreeTy &Container) : Container(Container) {}
@@ -2371,7 +2555,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
// Commutative predicate - collect + sort operands of the instructions
// so that each side is more likely to have the same opcode.
assert(P0 == SwapP0 && "Commutative Predicate mismatch");
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
+ reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
} else {
// Collect operands - commute if it uses the swapped predicate.
for (Value *V : VL) {
@@ -2415,7 +2599,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
// have the same opcode.
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
+ reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
@@ -2584,7 +2768,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Val
// Reorder operands if reordering would enable vectorization.
if (isa<BinaryOperator>(VL0)) {
ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
+ reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
@@ -3299,13 +3483,15 @@ int BoUpSLP::getGatherCost(ArrayRef<Valu
// Perform operand reordering on the instructions in VL and return the reordered
// operands in Left and Right.
-void BoUpSLP::reorderInputsAccordingToOpcode(
- ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right, const DataLayout &DL,
- ScalarEvolution &SE) {
+void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
+ SmallVectorImpl<Value *> &Left,
+ SmallVectorImpl<Value *> &Right,
+ const DataLayout &DL,
+ ScalarEvolution &SE,
+ const BoUpSLP &R) {
if (VL.empty())
return;
- VLOperands Ops(VL, DL, SE);
+ VLOperands Ops(VL, DL, SE, R);
// Reorder the operands in place.
Ops.reorder();
Left = Ops.getVL(0);
Modified: llvm/trunk/test/Transforms/SLPVectorizer/X86/lookahead.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/SLPVectorizer/X86/lookahead.ll?rev=364084&r1=364083&r2=364084&view=diff
==============================================================================
--- llvm/trunk/test/Transforms/SLPVectorizer/X86/lookahead.ll (original)
+++ llvm/trunk/test/Transforms/SLPVectorizer/X86/lookahead.ll Fri Jun 21 10:57:01 2019
@@ -27,22 +27,19 @@ define void @lookahead_basic(double* %ar
; CHECK-NEXT: [[IDX5:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 5
; CHECK-NEXT: [[IDX6:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 6
; CHECK-NEXT: [[IDX7:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 7
-; CHECK-NEXT: [[A_0:%.*]] = load double, double* [[IDX0]], align 8
-; CHECK-NEXT: [[A_1:%.*]] = load double, double* [[IDX1]], align 8
-; CHECK-NEXT: [[B_0:%.*]] = load double, double* [[IDX2]], align 8
-; CHECK-NEXT: [[B_1:%.*]] = load double, double* [[IDX3]], align 8
-; CHECK-NEXT: [[C_0:%.*]] = load double, double* [[IDX4]], align 8
-; CHECK-NEXT: [[C_1:%.*]] = load double, double* [[IDX5]], align 8
-; CHECK-NEXT: [[D_0:%.*]] = load double, double* [[IDX6]], align 8
-; CHECK-NEXT: [[D_1:%.*]] = load double, double* [[IDX7]], align 8
-; CHECK-NEXT: [[SUBAB_0:%.*]] = fsub fast double [[A_0]], [[B_0]]
-; CHECK-NEXT: [[SUBCD_0:%.*]] = fsub fast double [[C_0]], [[D_0]]
-; CHECK-NEXT: [[SUBAB_1:%.*]] = fsub fast double [[A_1]], [[B_1]]
-; CHECK-NEXT: [[SUBCD_1:%.*]] = fsub fast double [[C_1]], [[D_1]]
-; CHECK-NEXT: [[ADDABCD_0:%.*]] = fadd fast double [[SUBAB_0]], [[SUBCD_0]]
-; CHECK-NEXT: [[ADDCDAB_1:%.*]] = fadd fast double [[SUBCD_1]], [[SUBAB_1]]
-; CHECK-NEXT: store double [[ADDABCD_0]], double* [[IDX0]], align 8
-; CHECK-NEXT: store double [[ADDCDAB_1]], double* [[IDX1]], align 8
+; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[IDX0]] to <2 x double>*
+; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
+; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[IDX2]] to <2 x double>*
+; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
+; CHECK-NEXT: [[TMP4:%.*]] = bitcast double* [[IDX4]] to <2 x double>*
+; CHECK-NEXT: [[TMP5:%.*]] = load <2 x double>, <2 x double>* [[TMP4]], align 8
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast double* [[IDX6]] to <2 x double>*
+; CHECK-NEXT: [[TMP7:%.*]] = load <2 x double>, <2 x double>* [[TMP6]], align 8
+; CHECK-NEXT: [[TMP8:%.*]] = fsub fast <2 x double> [[TMP1]], [[TMP3]]
+; CHECK-NEXT: [[TMP9:%.*]] = fsub fast <2 x double> [[TMP5]], [[TMP7]]
+; CHECK-NEXT: [[TMP10:%.*]] = fadd fast <2 x double> [[TMP8]], [[TMP9]]
+; CHECK-NEXT: [[TMP11:%.*]] = bitcast double* [[IDX0]] to <2 x double>*
+; CHECK-NEXT: store <2 x double> [[TMP10]], <2 x double>* [[TMP11]], align 8
; CHECK-NEXT: ret void
;
entry:
@@ -164,22 +161,23 @@ define void @lookahead_alt2(double* %arr
; CHECK-NEXT: [[IDX5:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 5
; CHECK-NEXT: [[IDX6:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 6
; CHECK-NEXT: [[IDX7:%.*]] = getelementptr inbounds double, double* [[ARRAY]], i64 7
-; CHECK-NEXT: [[A_0:%.*]] = load double, double* [[IDX0]], align 8
-; CHECK-NEXT: [[A_1:%.*]] = load double, double* [[IDX1]], align 8
-; CHECK-NEXT: [[B_0:%.*]] = load double, double* [[IDX2]], align 8
-; CHECK-NEXT: [[B_1:%.*]] = load double, double* [[IDX3]], align 8
-; CHECK-NEXT: [[C_0:%.*]] = load double, double* [[IDX4]], align 8
-; CHECK-NEXT: [[C_1:%.*]] = load double, double* [[IDX5]], align 8
-; CHECK-NEXT: [[D_0:%.*]] = load double, double* [[IDX6]], align 8
-; CHECK-NEXT: [[D_1:%.*]] = load double, double* [[IDX7]], align 8
-; CHECK-NEXT: [[ADDAB_0:%.*]] = fadd fast double [[A_0]], [[B_0]]
-; CHECK-NEXT: [[SUBCD_0:%.*]] = fsub fast double [[C_0]], [[D_0]]
-; CHECK-NEXT: [[ADDCD_1:%.*]] = fadd fast double [[C_1]], [[D_1]]
-; CHECK-NEXT: [[SUBAB_1:%.*]] = fsub fast double [[A_1]], [[B_1]]
-; CHECK-NEXT: [[ADDABCD_0:%.*]] = fadd fast double [[ADDAB_0]], [[SUBCD_0]]
-; CHECK-NEXT: [[ADDCDAB_1:%.*]] = fadd fast double [[ADDCD_1]], [[SUBAB_1]]
-; CHECK-NEXT: store double [[ADDABCD_0]], double* [[IDX0]], align 8
-; CHECK-NEXT: store double [[ADDCDAB_1]], double* [[IDX1]], align 8
+; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[IDX0]] to <2 x double>*
+; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
+; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[IDX2]] to <2 x double>*
+; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
+; CHECK-NEXT: [[TMP4:%.*]] = bitcast double* [[IDX4]] to <2 x double>*
+; CHECK-NEXT: [[TMP5:%.*]] = load <2 x double>, <2 x double>* [[TMP4]], align 8
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast double* [[IDX6]] to <2 x double>*
+; CHECK-NEXT: [[TMP7:%.*]] = load <2 x double>, <2 x double>* [[TMP6]], align 8
+; CHECK-NEXT: [[TMP8:%.*]] = fsub fast <2 x double> [[TMP5]], [[TMP7]]
+; CHECK-NEXT: [[TMP9:%.*]] = fadd fast <2 x double> [[TMP5]], [[TMP7]]
+; CHECK-NEXT: [[TMP10:%.*]] = shufflevector <2 x double> [[TMP8]], <2 x double> [[TMP9]], <2 x i32> <i32 0, i32 3>
+; CHECK-NEXT: [[TMP11:%.*]] = fadd fast <2 x double> [[TMP1]], [[TMP3]]
+; CHECK-NEXT: [[TMP12:%.*]] = fsub fast <2 x double> [[TMP1]], [[TMP3]]
+; CHECK-NEXT: [[TMP13:%.*]] = shufflevector <2 x double> [[TMP11]], <2 x double> [[TMP12]], <2 x i32> <i32 0, i32 3>
+; CHECK-NEXT: [[TMP14:%.*]] = fadd fast <2 x double> [[TMP13]], [[TMP10]]
+; CHECK-NEXT: [[TMP15:%.*]] = bitcast double* [[IDX0]] to <2 x double>*
+; CHECK-NEXT: store <2 x double> [[TMP14]], <2 x double>* [[TMP15]], align 8
; CHECK-NEXT: ret void
;
entry:
@@ -239,29 +237,28 @@ define void @lookahead_external_uses(dou
; CHECK-NEXT: [[IDXB2:%.*]] = getelementptr inbounds double, double* [[B]], i64 2
; CHECK-NEXT: [[IDXA2:%.*]] = getelementptr inbounds double, double* [[A]], i64 2
; CHECK-NEXT: [[IDXB1:%.*]] = getelementptr inbounds double, double* [[B]], i64 1
-; CHECK-NEXT: [[B0:%.*]] = load double, double* [[IDXB0]], align 8
+; CHECK-NEXT: [[A0:%.*]] = load double, double* [[IDXA0]], align 8
; CHECK-NEXT: [[C0:%.*]] = load double, double* [[IDXC0]], align 8
; CHECK-NEXT: [[D0:%.*]] = load double, double* [[IDXD0]], align 8
-; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[IDXA0]] to <2 x double>*
-; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
+; CHECK-NEXT: [[A1:%.*]] = load double, double* [[IDXA1]], align 8
; CHECK-NEXT: [[B2:%.*]] = load double, double* [[IDXB2]], align 8
; CHECK-NEXT: [[A2:%.*]] = load double, double* [[IDXA2]], align 8
-; CHECK-NEXT: [[B1:%.*]] = load double, double* [[IDXB1]], align 8
-; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x double> undef, double [[B0]], i32 0
-; CHECK-NEXT: [[TMP3:%.*]] = insertelement <2 x double> [[TMP2]], double [[B2]], i32 1
-; CHECK-NEXT: [[TMP4:%.*]] = fsub fast <2 x double> [[TMP1]], [[TMP3]]
-; CHECK-NEXT: [[TMP5:%.*]] = insertelement <2 x double> undef, double [[C0]], i32 0
-; CHECK-NEXT: [[TMP6:%.*]] = insertelement <2 x double> [[TMP5]], double [[A2]], i32 1
-; CHECK-NEXT: [[TMP7:%.*]] = insertelement <2 x double> undef, double [[D0]], i32 0
-; CHECK-NEXT: [[TMP8:%.*]] = insertelement <2 x double> [[TMP7]], double [[B1]], i32 1
-; CHECK-NEXT: [[TMP9:%.*]] = fsub fast <2 x double> [[TMP6]], [[TMP8]]
-; CHECK-NEXT: [[TMP10:%.*]] = fadd fast <2 x double> [[TMP4]], [[TMP9]]
+; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[IDXB0]] to <2 x double>*
+; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
+; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x double> undef, double [[C0]], i32 0
+; CHECK-NEXT: [[TMP3:%.*]] = insertelement <2 x double> [[TMP2]], double [[A1]], i32 1
+; CHECK-NEXT: [[TMP4:%.*]] = insertelement <2 x double> undef, double [[D0]], i32 0
+; CHECK-NEXT: [[TMP5:%.*]] = insertelement <2 x double> [[TMP4]], double [[B2]], i32 1
+; CHECK-NEXT: [[TMP6:%.*]] = fsub fast <2 x double> [[TMP3]], [[TMP5]]
+; CHECK-NEXT: [[TMP7:%.*]] = insertelement <2 x double> undef, double [[A0]], i32 0
+; CHECK-NEXT: [[TMP8:%.*]] = insertelement <2 x double> [[TMP7]], double [[A2]], i32 1
+; CHECK-NEXT: [[TMP9:%.*]] = fsub fast <2 x double> [[TMP8]], [[TMP1]]
+; CHECK-NEXT: [[TMP10:%.*]] = fadd fast <2 x double> [[TMP9]], [[TMP6]]
; CHECK-NEXT: [[IDXS0:%.*]] = getelementptr inbounds double, double* [[S:%.*]], i64 0
; CHECK-NEXT: [[IDXS1:%.*]] = getelementptr inbounds double, double* [[S]], i64 1
; CHECK-NEXT: [[TMP11:%.*]] = bitcast double* [[IDXS0]] to <2 x double>*
; CHECK-NEXT: store <2 x double> [[TMP10]], <2 x double>* [[TMP11]], align 8
-; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x double> [[TMP1]], i32 1
-; CHECK-NEXT: store double [[TMP12]], double* [[EXT1:%.*]], align 8
+; CHECK-NEXT: store double [[A1]], double* [[EXT1:%.*]], align 8
; CHECK-NEXT: ret void
;
entry:
More information about the llvm-commits
mailing list