[llvm] r358553 - Revert "Add basic loop fusion pass." Per request.

Eric Christopher via llvm-commits llvm-commits at lists.llvm.org
Tue Apr 16 21:55:24 PDT 2019


Author: echristo
Date: Tue Apr 16 21:55:24 2019
New Revision: 358553

URL: http://llvm.org/viewvc/llvm-project?rev=358553&view=rev
Log:
Revert "Add basic loop fusion pass." Per request.

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

Removed:
    llvm/trunk/include/llvm/Transforms/Scalar/LoopFuse.h
    llvm/trunk/lib/Transforms/Scalar/LoopFuse.cpp
    llvm/trunk/test/Transforms/LoopFusion/
Modified:
    llvm/trunk/include/llvm/InitializePasses.h
    llvm/trunk/include/llvm/Transforms/Scalar.h
    llvm/trunk/lib/Passes/PassBuilder.cpp
    llvm/trunk/lib/Passes/PassRegistry.def
    llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
    llvm/trunk/lib/Transforms/Scalar/Scalar.cpp

Modified: llvm/trunk/include/llvm/InitializePasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/include/llvm/InitializePasses.h (original)
+++ llvm/trunk/include/llvm/InitializePasses.h Tue Apr 16 21:55:24 2019
@@ -219,7 +219,6 @@ void initializeLoopDeletionLegacyPassPas
 void initializeLoopDistributeLegacyPass(PassRegistry&);
 void initializeLoopExtractorPass(PassRegistry&);
 void initializeLoopGuardWideningLegacyPassPass(PassRegistry&);
-void initializeLoopFuseLegacyPass(PassRegistry&);
 void initializeLoopIdiomRecognizeLegacyPassPass(PassRegistry&);
 void initializeLoopInfoWrapperPassPass(PassRegistry&);
 void initializeLoopInstSimplifyLegacyPassPass(PassRegistry&);

Modified: llvm/trunk/include/llvm/Transforms/Scalar.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Scalar.h?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Transforms/Scalar.h (original)
+++ llvm/trunk/include/llvm/Transforms/Scalar.h Tue Apr 16 21:55:24 2019
@@ -460,12 +460,6 @@ FunctionPass *createLoopDistributePass()
 
 //===----------------------------------------------------------------------===//
 //
-// LoopFuse - Fuse loops.
-//
-FunctionPass *createLoopFusePass();
-
-//===----------------------------------------------------------------------===//
-//
 // LoopLoadElimination - Perform loop-aware load elimination.
 //
 FunctionPass *createLoopLoadEliminationPass();

Removed: llvm/trunk/include/llvm/Transforms/Scalar/LoopFuse.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Scalar/LoopFuse.h?rev=358552&view=auto
==============================================================================
--- llvm/trunk/include/llvm/Transforms/Scalar/LoopFuse.h (original)
+++ llvm/trunk/include/llvm/Transforms/Scalar/LoopFuse.h (removed)
@@ -1,30 +0,0 @@
-//===- LoopFuse.h - Loop Fusion Pass ----------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements the Loop Fusion pass.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_SCALAR_LOOPFUSE_H
-#define LLVM_TRANSFORMS_SCALAR_LOOPFUSE_H
-
-#include "llvm/IR/PassManager.h"
-
-namespace llvm {
-
-class Function;
-
-class LoopFusePass : public PassInfoMixin<LoopFusePass> {
-public:
-  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
-};
-
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_SCALAR_LOOPFUSE_H

Modified: llvm/trunk/lib/Passes/PassBuilder.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Passes/PassBuilder.cpp?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/lib/Passes/PassBuilder.cpp (original)
+++ llvm/trunk/lib/Passes/PassBuilder.cpp Tue Apr 16 21:55:24 2019
@@ -122,7 +122,6 @@
 #include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
 #include "llvm/Transforms/Scalar/LoopDeletion.h"
 #include "llvm/Transforms/Scalar/LoopDistribute.h"
-#include "llvm/Transforms/Scalar/LoopFuse.h"
 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"

Modified: llvm/trunk/lib/Passes/PassRegistry.def
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Passes/PassRegistry.def?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/lib/Passes/PassRegistry.def (original)
+++ llvm/trunk/lib/Passes/PassRegistry.def Tue Apr 16 21:55:24 2019
@@ -197,7 +197,6 @@ FUNCTION_PASS("partially-inline-libcalls
 FUNCTION_PASS("lcssa", LCSSAPass())
 FUNCTION_PASS("loop-data-prefetch", LoopDataPrefetchPass())
 FUNCTION_PASS("loop-load-elim", LoopLoadEliminationPass())
-FUNCTION_PASS("loop-fuse", LoopFusePass())
 FUNCTION_PASS("loop-distribute", LoopDistributePass())
 FUNCTION_PASS("loop-vectorize", LoopVectorizePass())
 FUNCTION_PASS("pgo-memop-opt", PGOMemOPSizeOpt())

Modified: llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt (original)
+++ llvm/trunk/lib/Transforms/Scalar/CMakeLists.txt Tue Apr 16 21:55:24 2019
@@ -28,7 +28,6 @@ add_llvm_library(LLVMScalarOpts
   LoopDeletion.cpp
   LoopDataPrefetch.cpp
   LoopDistribute.cpp
-  LoopFuse.cpp
   LoopIdiomRecognize.cpp
   LoopInstSimplify.cpp
   LoopInterchange.cpp

Removed: llvm/trunk/lib/Transforms/Scalar/LoopFuse.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopFuse.cpp?rev=358552&view=auto
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/LoopFuse.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/LoopFuse.cpp (removed)
@@ -1,1212 +0,0 @@
-//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements the loop fusion pass.
-/// The implementation is largely based on the following document:
-///
-///       Code Transformations to Augment the Scope of Loop Fusion in a
-///         Production Compiler
-///       Christopher Mark Barton
-///       MSc Thesis
-///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
-///
-/// The general approach taken is to collect sets of control flow equivalent
-/// loops and test whether they can be fused. The necessary conditions for
-/// fusion are:
-///    1. The loops must be adjacent (there cannot be any statements between
-///       the two loops).
-///    2. The loops must be conforming (they must execute the same number of
-///       iterations).
-///    3. The loops must be control flow equivalent (if one loop executes, the
-///       other is guaranteed to execute).
-///    4. There cannot be any negative distance dependencies between the loops.
-/// If all of these conditions are satisfied, it is safe to fuse the loops.
-///
-/// This implementation creates FusionCandidates that represent the loop and the
-/// necessary information needed by fusion. It then operates on the fusion
-/// candidates, first confirming that the candidate is eligible for fusion. The
-/// candidates are then collected into control flow equivalent sets, sorted in
-/// dominance order. Each set of control flow equivalent candidates is then
-/// traversed, attempting to fuse pairs of candidates in the set. If all
-/// requirements for fusion are met, the two candidates are fused, creating a
-/// new (fused) candidate which is then added back into the set to consider for
-/// additional fusion.
-///
-/// This implementation currently does not make any modifications to remove
-/// conditions for fusion. Code transformations to make loops conform to each of
-/// the conditions for fusion are discussed in more detail in the document
-/// above. These can be added to the current implementation in the future.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopFuse.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/DependenceAnalysis.h"
-#include "llvm/Analysis/DomTreeUpdater.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-fusion"
-
-STATISTIC(FuseCounter, "Count number of loop fusions performed");
-STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
-STATISTIC(InvalidPreheader, "Loop has invalid preheader");
-STATISTIC(InvalidHeader, "Loop has invalid header");
-STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
-STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
-STATISTIC(InvalidLatch, "Loop has invalid latch");
-STATISTIC(InvalidLoop, "Loop is invalid");
-STATISTIC(AddressTakenBB, "Basic block has address taken");
-STATISTIC(MayThrowException, "Loop may throw an exception");
-STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
-STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
-STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
-STATISTIC(InvalidTripCount,
-          "Loop does not have invariant backedge taken count");
-STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
-STATISTIC(NonEqualTripCount, "Candidate trip counts are not the same");
-STATISTIC(NonAdjacent, "Candidates are not adjacent");
-STATISTIC(NonEmptyPreheader, "Candidate has a non-empty preheader");
-
-enum FusionDependenceAnalysisChoice {
-  FUSION_DEPENDENCE_ANALYSIS_SCEV,
-  FUSION_DEPENDENCE_ANALYSIS_DA,
-  FUSION_DEPENDENCE_ANALYSIS_ALL,
-};
-
-static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
-    "loop-fusion-dependence-analysis",
-    cl::desc("Which dependence analysis should loop fusion use?"),
-    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
-                          "Use the scalar evolution interface"),
-               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
-                          "Use the dependence analysis interface"),
-               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
-                          "Use all available analyses")),
-    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
-
-#ifndef NDEBUG
-static cl::opt<bool>
-    VerboseFusionDebugging("loop-fusion-verbose-debug",
-                           cl::desc("Enable verbose debugging for Loop Fusion"),
-                           cl::Hidden, cl::init(false), cl::ZeroOrMore);
-#endif
-
-/// This class is used to represent a candidate for loop fusion. When it is
-/// constructed, it checks the conditions for loop fusion to ensure that it
-/// represents a valid candidate. It caches several parts of a loop that are
-/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
-/// of continually querying the underlying Loop to retrieve these values. It is
-/// assumed these will not change throughout loop fusion.
-///
-/// The invalidate method should be used to indicate that the FusionCandidate is
-/// no longer a valid candidate for fusion. Similarly, the isValid() method can
-/// be used to ensure that the FusionCandidate is still valid for fusion.
-struct FusionCandidate {
-  /// Cache of parts of the loop used throughout loop fusion. These should not
-  /// need to change throughout the analysis and transformation.
-  /// These parts are cached to avoid repeatedly looking up in the Loop class.
-
-  /// Preheader of the loop this candidate represents
-  BasicBlock *Preheader;
-  /// Header of the loop this candidate represents
-  BasicBlock *Header;
-  /// Blocks in the loop that exit the loop
-  BasicBlock *ExitingBlock;
-  /// The successor block of this loop (where the exiting blocks go to)
-  BasicBlock *ExitBlock;
-  /// Latch of the loop
-  BasicBlock *Latch;
-  /// The loop that this fusion candidate represents
-  Loop *L;
-  /// Vector of instructions in this loop that read from memory
-  SmallVector<Instruction *, 16> MemReads;
-  /// Vector of instructions in this loop that write to memory
-  SmallVector<Instruction *, 16> MemWrites;
-  /// Are all of the members of this fusion candidate still valid
-  bool Valid;
-
-  /// Dominator and PostDominator trees are needed for the
-  /// FusionCandidateCompare function, required by FusionCandidateSet to
-  /// determine where the FusionCandidate should be inserted into the set. These
-  /// are used to establish ordering of the FusionCandidates based on dominance.
-  const DominatorTree *DT;
-  const PostDominatorTree *PDT;
-
-  FusionCandidate(Loop *L, const DominatorTree *DT,
-                  const PostDominatorTree *PDT)
-      : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
-        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
-        Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT) {
-
-    // Walk over all blocks in the loop and check for conditions that may
-    // prevent fusion. For each block, walk over all instructions and collect
-    // the memory reads and writes If any instructions that prevent fusion are
-    // found, invalidate this object and return.
-    for (BasicBlock *BB : L->blocks()) {
-      if (BB->hasAddressTaken()) {
-        AddressTakenBB++;
-        invalidate();
-        return;
-      }
-
-      for (Instruction &I : *BB) {
-        if (I.mayThrow()) {
-          MayThrowException++;
-          invalidate();
-          return;
-        }
-        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
-          if (SI->isVolatile()) {
-            ContainsVolatileAccess++;
-            invalidate();
-            return;
-          }
-        }
-        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
-          if (LI->isVolatile()) {
-            ContainsVolatileAccess++;
-            invalidate();
-            return;
-          }
-        }
-        if (I.mayWriteToMemory())
-          MemWrites.push_back(&I);
-        if (I.mayReadFromMemory())
-          MemReads.push_back(&I);
-      }
-    }
-  }
-
-  /// Check if all members of the class are valid.
-  bool isValid() const {
-    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
-           !L->isInvalid() && Valid;
-  }
-
-  /// Verify that all members are in sync with the Loop object.
-  void verify() const {
-    assert(isValid() && "Candidate is not valid!!");
-    assert(!L->isInvalid() && "Loop is invalid!");
-    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
-    assert(Header == L->getHeader() && "Header is out of sync");
-    assert(ExitingBlock == L->getExitingBlock() &&
-           "Exiting Blocks is out of sync");
-    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
-    assert(Latch == L->getLoopLatch() && "Latch is out of sync");
-  }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-  LLVM_DUMP_METHOD void dump() const {
-    dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
-           << "\n"
-           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
-           << "\tExitingBB: "
-           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
-           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
-           << "\n"
-           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n";
-  }
-#endif
-
-private:
-  // This is only used internally for now, to clear the MemWrites and MemReads
-  // list and setting Valid to false. I can't envision other uses of this right
-  // now, since once FusionCandidates are put into the FusionCandidateSet they
-  // are immutable. Thus, any time we need to change/update a FusionCandidate,
-  // we must create a new one and insert it into the FusionCandidateSet to
-  // ensure the FusionCandidateSet remains ordered correctly.
-  void invalidate() {
-    MemWrites.clear();
-    MemReads.clear();
-    Valid = false;
-  }
-};
-
-inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
-                                     const FusionCandidate &FC) {
-  if (FC.isValid())
-    OS << FC.Preheader->getName();
-  else
-    OS << "<Invalid>";
-
-  return OS;
-}
-
-struct FusionCandidateCompare {
-  /// Comparison functor to sort two Control Flow Equivalent fusion candidates
-  /// into dominance order.
-  /// If LHS dominates RHS and RHS post-dominates LHS, return true;
-  /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
-  bool operator()(const FusionCandidate &LHS,
-                  const FusionCandidate &RHS) const {
-    const DominatorTree *DT = LHS.DT;
-    const PostDominatorTree *PDT = LHS.PDT;
-
-    assert(DT && PDT && "Expecting valid dominator tree");
-
-    if (DT->dominates(LHS.Preheader, RHS.Preheader)) {
-      // Verify RHS Postdominates LHS
-      assert(PDT->dominates(RHS.Preheader, LHS.Preheader));
-      return true;
-    }
-
-    if (DT->dominates(RHS.Preheader, LHS.Preheader)) {
-      // RHS dominates LHS
-      // Verify LHS post-dominates RHS
-      assert(PDT->dominates(LHS.Preheader, RHS.Preheader));
-      return false;
-    }
-    // If LHS does not dominate RHS and RHS does not dominate LHS then there is
-    // no dominance relationship between the two FusionCandidates. Thus, they
-    // should not be in the same set together.
-    llvm_unreachable(
-        "No dominance relationship between these fusion candidates!");
-  }
-};
-
-namespace {
-using LoopVector = SmallVector<Loop *, 4>;
-
-// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
-// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
-// dominates FC1 and FC1 post-dominates FC0.
-// std::set was chosen because we want a sorted data structure with stable
-// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
-// loops by moving intervening code around. When this intervening code contains
-// loops, those loops will be moved also. The corresponding FusionCandidates
-// will also need to be moved accordingly. As this is done, having stable
-// iterators will simplify the logic. Similarly, having an efficient insert that
-// keeps the FusionCandidateSet sorted will also simplify the implementation.
-using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
-using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
-} // namespace
-
-inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
-                                     const FusionCandidateSet &CandSet) {
-  for (auto IT : CandSet)
-    OS << IT << "\n";
-
-  return OS;
-}
-
-static void
-printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
-  LLVM_DEBUG(dbgs() << "Fusion Candidates: \n");
-  for (const auto &CandidateSet : FusionCandidates) {
-    LLVM_DEBUG({
-      dbgs() << "*** Fusion Candidate Set ***\n";
-      dbgs() << CandidateSet;
-      dbgs() << "****************************\n";
-    });
-  }
-}
-
-/// Collect all loops in function at the same nest level, starting at the
-/// outermost level.
-///
-/// This data structure collects all loops at the same nest level for a
-/// given function (specified by the LoopInfo object). It starts at the
-/// outermost level.
-struct LoopDepthTree {
-  using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
-  using iterator = LoopsOnLevelTy::iterator;
-  using const_iterator = LoopsOnLevelTy::const_iterator;
-
-  LoopDepthTree(LoopInfo &LI) : Depth(1) {
-    if (!LI.empty())
-      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
-  }
-
-  /// Test whether a given loop has been removed from the function, and thus is
-  /// no longer valid.
-  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
-
-  /// Record that a given loop has been removed from the function and is no
-  /// longer valid.
-  void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
-
-  /// Descend the tree to the next (inner) nesting level
-  void descend() {
-    LoopsOnLevelTy LoopsOnNextLevel;
-
-    for (const LoopVector &LV : *this)
-      for (Loop *L : LV)
-        if (!isRemovedLoop(L) && L->begin() != L->end())
-          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
-
-    LoopsOnLevel = LoopsOnNextLevel;
-    RemovedLoops.clear();
-    Depth++;
-  }
-
-  bool empty() const { return size() == 0; }
-  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
-  unsigned getDepth() const { return Depth; }
-
-  iterator begin() { return LoopsOnLevel.begin(); }
-  iterator end() { return LoopsOnLevel.end(); }
-  const_iterator begin() const { return LoopsOnLevel.begin(); }
-  const_iterator end() const { return LoopsOnLevel.end(); }
-
-private:
-  /// Set of loops that have been removed from the function and are no longer
-  /// valid.
-  SmallPtrSet<const Loop *, 8> RemovedLoops;
-
-  /// Depth of the current level, starting at 1 (outermost loops).
-  unsigned Depth;
-
-  /// Vector of loops at the current depth level that have the same parent loop
-  LoopsOnLevelTy LoopsOnLevel;
-};
-
-#ifndef NDEBUG
-static void printLoopVector(const LoopVector &LV) {
-  dbgs() << "****************************\n";
-  for (auto L : LV)
-    printLoop(*L, dbgs());
-  dbgs() << "****************************\n";
-}
-#endif
-
-static void reportLoopFusion(const FusionCandidate &FC0,
-                             const FusionCandidate &FC1,
-                             OptimizationRemarkEmitter &ORE) {
-  using namespace ore;
-  ORE.emit(
-      OptimizationRemark(DEBUG_TYPE, "LoopFusion", FC0.Preheader->getParent())
-      << "Fused " << NV("Cand1", StringRef(FC0.Preheader->getName()))
-      << " with " << NV("Cand2", StringRef(FC1.Preheader->getName())));
-}
-
-struct LoopFuser {
-private:
-  // Sets of control flow equivalent fusion candidates for a given nest level.
-  FusionCandidateCollection FusionCandidates;
-
-  LoopDepthTree LDT;
-  DomTreeUpdater DTU;
-
-  LoopInfo &LI;
-  DominatorTree &DT;
-  DependenceInfo &DI;
-  ScalarEvolution &SE;
-  PostDominatorTree &PDT;
-  OptimizationRemarkEmitter &ORE;
-
-public:
-  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
-            ScalarEvolution &SE, PostDominatorTree &PDT,
-            OptimizationRemarkEmitter &ORE, const DataLayout &DL)
-      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
-        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
-
-  /// This is the main entry point for loop fusion. It will traverse the
-  /// specified function and collect candidate loops to fuse, starting at the
-  /// outermost nesting level and working inwards.
-  bool fuseLoops(Function &F) {
-#ifndef NDEBUG
-    if (VerboseFusionDebugging) {
-      LI.print(dbgs());
-    }
-#endif
-
-    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
-                      << "\n");
-    bool Changed = false;
-
-    while (!LDT.empty()) {
-      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
-                        << LDT.getDepth() << "\n";);
-
-      for (const LoopVector &LV : LDT) {
-        assert(LV.size() > 0 && "Empty loop set was build!");
-
-        // Skip singleton loop sets as they do not offer fusion opportunities on
-        // this level.
-        if (LV.size() == 1)
-          continue;
-#ifndef NDEBUG
-        if (VerboseFusionDebugging) {
-          LLVM_DEBUG({
-            dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
-            printLoopVector(LV);
-          });
-        }
-#endif
-
-        collectFusionCandidates(LV);
-        Changed |= fuseCandidates();
-      }
-
-      // Finished analyzing candidates at this level.
-      // Descend to the next level and clear all of the candidates currently
-      // collected. Note that it will not be possible to fuse any of the
-      // existing candidates with new candidates because the new candidates will
-      // be at a different nest level and thus not be control flow equivalent
-      // with all of the candidates collected so far.
-      LLVM_DEBUG(dbgs() << "Descend one level!\n");
-      LDT.descend();
-      FusionCandidates.clear();
-    }
-
-    if (Changed)
-      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
-
-#ifndef NDEBUG
-    assert(DT.verify());
-    assert(PDT.verify());
-    LI.verify(DT);
-    SE.verify();
-#endif
-
-    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
-    return Changed;
-  }
-
-private:
-  /// Determine if two fusion candidates are control flow equivalent.
-  ///
-  /// Two fusion candidates are control flow equivalent if when one executes,
-  /// the other is guaranteed to execute. This is determined using dominators
-  /// and post-dominators: if A dominates B and B post-dominates A then A and B
-  /// are control-flow equivalent.
-  bool isControlFlowEquivalent(const FusionCandidate &FC0,
-                               const FusionCandidate &FC1) const {
-    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
-
-    if (DT.dominates(FC0.Preheader, FC1.Preheader))
-      return PDT.dominates(FC1.Preheader, FC0.Preheader);
-
-    if (DT.dominates(FC1.Preheader, FC0.Preheader))
-      return PDT.dominates(FC0.Preheader, FC1.Preheader);
-
-    return false;
-  }
-
-  /// Determine if a fusion candidate (representing a loop) is eligible for
-  /// fusion. Note that this only checks whether a single loop can be fused - it
-  /// does not check whether it is *legal* to fuse two loops together.
-  bool eligibleForFusion(const FusionCandidate &FC) const {
-    if (!FC.isValid()) {
-      LLVM_DEBUG(dbgs() << "FC " << FC << " has invalid CFG requirements!\n");
-      if (!FC.Preheader)
-        InvalidPreheader++;
-      if (!FC.Header)
-        InvalidHeader++;
-      if (!FC.ExitingBlock)
-        InvalidExitingBlock++;
-      if (!FC.ExitBlock)
-        InvalidExitBlock++;
-      if (!FC.Latch)
-        InvalidLatch++;
-      if (FC.L->isInvalid())
-        InvalidLoop++;
-
-      return false;
-    }
-
-    // Require ScalarEvolution to be able to determine a trip count.
-    if (!SE.hasLoopInvariantBackedgeTakenCount(FC.L)) {
-      LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName()
-                        << " trip count not computable!\n");
-      InvalidTripCount++;
-      return false;
-    }
-
-    if (!FC.L->isLoopSimplifyForm()) {
-      LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName()
-                        << " is not in simplified form!\n");
-      NotSimplifiedForm++;
-      return false;
-    }
-
-    return true;
-  }
-
-  /// Iterate over all loops in the given loop set and identify the loops that
-  /// are eligible for fusion. Place all eligible fusion candidates into Control
-  /// Flow Equivalent sets, sorted by dominance.
-  void collectFusionCandidates(const LoopVector &LV) {
-    for (Loop *L : LV) {
-      FusionCandidate CurrCand(L, &DT, &PDT);
-      if (!eligibleForFusion(CurrCand))
-        continue;
-
-      // Go through each list in FusionCandidates and determine if L is control
-      // flow equivalent with the first loop in that list. If it is, append LV.
-      // If not, go to the next list.
-      // If no suitable list is found, start another list and add it to
-      // FusionCandidates.
-      bool FoundSet = false;
-
-      for (auto &CurrCandSet : FusionCandidates) {
-        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
-          CurrCandSet.insert(CurrCand);
-          FoundSet = true;
-#ifndef NDEBUG
-          if (VerboseFusionDebugging)
-            LLVM_DEBUG(dbgs() << "Adding " << CurrCand
-                              << " to existing candidate set\n");
-#endif
-          break;
-        }
-      }
-      if (!FoundSet) {
-        // No set was found. Create a new set and add to FusionCandidates
-#ifndef NDEBUG
-        if (VerboseFusionDebugging)
-          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
-#endif
-        FusionCandidateSet NewCandSet;
-        NewCandSet.insert(CurrCand);
-        FusionCandidates.push_back(NewCandSet);
-      }
-      NumFusionCandidates++;
-    }
-  }
-
-  /// Determine if it is beneficial to fuse two loops.
-  ///
-  /// For now, this method simply returns true because we want to fuse as much
-  /// as possible (primarily to test the pass). This method will evolve, over
-  /// time, to add heuristics for profitability of fusion.
-  bool isBeneficialFusion(const FusionCandidate &FC0,
-                          const FusionCandidate &FC1) {
-    return true;
-  }
-
-  /// Determine if two fusion candidates have the same trip count (i.e., they
-  /// execute the same number of iterations).
-  ///
-  /// Note that for now this method simply returns a boolean value because there
-  /// are no mechanisms in loop fusion to handle different trip counts. In the
-  /// future, this behaviour can be extended to adjust one of the loops to make
-  /// the trip counts equal (e.g., loop peeling). When this is added, this
-  /// interface may need to change to return more information than just a
-  /// boolean value.
-  bool identicalTripCounts(const FusionCandidate &FC0,
-                           const FusionCandidate &FC1) const {
-    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
-    if (isa<SCEVCouldNotCompute>(TripCount0)) {
-      UncomputableTripCount++;
-      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
-      return false;
-    }
-
-    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
-    if (isa<SCEVCouldNotCompute>(TripCount1)) {
-      UncomputableTripCount++;
-      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
-      return false;
-    }
-    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
-                      << *TripCount1 << " are "
-                      << (TripCount0 == TripCount1 ? "identical" : "different")
-                      << "\n");
-
-    return (TripCount0 == TripCount1);
-  }
-
-  /// Walk each set of control flow equivalent fusion candidates and attempt to
-  /// fuse them. This does a single linear traversal of all candidates in the
-  /// set. The conditions for legal fusion are checked at this point. If a pair
-  /// of fusion candidates passes all legality checks, they are fused together
-  /// and a new fusion candidate is created and added to the FusionCandidateSet.
-  /// The original fusion candidates are then removed, as they are no longer
-  /// valid.
-  bool fuseCandidates() {
-    bool Fused = false;
-    LLVM_DEBUG(printFusionCandidates(FusionCandidates));
-    for (auto &CandidateSet : FusionCandidates) {
-      if (CandidateSet.size() < 2)
-        continue;
-
-      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
-                        << CandidateSet << "\n");
-
-      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
-        assert(!LDT.isRemovedLoop(FC0->L) &&
-               "Should not have removed loops in CandidateSet!");
-        auto FC1 = FC0;
-        for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
-          assert(!LDT.isRemovedLoop(FC1->L) &&
-                 "Should not have removed loops in CandidateSet!");
-
-          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
-                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
-
-          FC0->verify();
-          FC1->verify();
-
-          if (!identicalTripCounts(*FC0, *FC1)) {
-            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
-                                 "counts. Not fusing.\n");
-            NonEqualTripCount++;
-            continue;
-          }
-
-          if (!isAdjacent(*FC0, *FC1)) {
-            LLVM_DEBUG(dbgs()
-                       << "Fusion candidates are not adjacent. Not fusing.\n");
-            NonAdjacent++;
-            continue;
-          }
-
-          // For now we skip fusing if the second candidate has any instructions
-          // in the preheader. This is done because we currently do not have the
-          // safety checks to determine if it is save to move the preheader of
-          // the second candidate past the body of the first candidate. Once
-          // these checks are added, this condition can be removed.
-          if (!isEmptyPreheader(*FC1)) {
-            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
-                                 "preheader. Not fusing.\n");
-            NonEmptyPreheader++;
-            continue;
-          }
-
-          if (!dependencesAllowFusion(*FC0, *FC1)) {
-            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
-            continue;
-          }
-
-          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
-          LLVM_DEBUG(dbgs()
-                     << "\tFusion appears to be "
-                     << (BeneficialToFuse ? "" : "un") << "profitable!\n");
-          if (!BeneficialToFuse)
-            continue;
-
-          // All analysis has completed and has determined that fusion is legal
-          // and profitable. At this point, start transforming the code and
-          // perform fusion.
-
-          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
-                            << *FC1 << "\n");
-
-          // Report fusion to the Optimization Remarks.
-          // Note this needs to be done *before* performFusion because
-          // performFusion will change the original loops, making it not
-          // possible to identify them after fusion is complete.
-          reportLoopFusion(*FC0, *FC1, ORE);
-
-          FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT);
-          FusedCand.verify();
-          assert(eligibleForFusion(FusedCand) &&
-                 "Fused candidate should be eligible for fusion!");
-
-          // Notify the loop-depth-tree that these loops are not valid objects
-          // anymore.
-          LDT.removeLoop(FC1->L);
-
-          CandidateSet.erase(FC0);
-          CandidateSet.erase(FC1);
-
-          auto InsertPos = CandidateSet.insert(FusedCand);
-
-          assert(InsertPos.second &&
-                 "Unable to insert TargetCandidate in CandidateSet!");
-
-          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
-          // of the FC1 loop will attempt to fuse the new (fused) loop with the
-          // remaining candidates in the current candidate set.
-          FC0 = FC1 = InsertPos.first;
-
-          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
-                            << "\n");
-
-          Fused = true;
-        }
-      }
-    }
-    return Fused;
-  }
-
-  /// Rewrite all additive recurrences in a SCEV to use a new loop.
-  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
-  public:
-    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
-                       bool UseMax = true)
-        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
-          NewL(NewL) {}
-
-    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
-      const Loop *ExprL = Expr->getLoop();
-      SmallVector<const SCEV *, 2> Operands;
-      if (ExprL == &OldL) {
-        Operands.append(Expr->op_begin(), Expr->op_end());
-        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
-      }
-
-      if (OldL.contains(ExprL)) {
-        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
-        if (!UseMax || !Pos || !Expr->isAffine()) {
-          Valid = false;
-          return Expr;
-        }
-        return visit(Expr->getStart());
-      }
-
-      for (const SCEV *Op : Expr->operands())
-        Operands.push_back(visit(Op));
-      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
-    }
-
-    bool wasValidSCEV() const { return Valid; }
-
-  private:
-    bool Valid, UseMax;
-    const Loop &OldL, &NewL;
-  };
-
-  /// Return false if the access functions of \p I0 and \p I1 could cause
-  /// a negative dependence.
-  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
-                            Instruction &I1, bool EqualIsInvalid) {
-    Value *Ptr0 = getLoadStorePointerOperand(&I0);
-    Value *Ptr1 = getLoadStorePointerOperand(&I1);
-    if (!Ptr0 || !Ptr1)
-      return false;
-
-    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
-    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
-#ifndef NDEBUG
-    if (VerboseFusionDebugging)
-      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
-                        << *SCEVPtr1 << "\n");
-#endif
-    AddRecLoopReplacer Rewriter(SE, L0, L1);
-    SCEVPtr0 = Rewriter.visit(SCEVPtr0);
-#ifndef NDEBUG
-    if (VerboseFusionDebugging)
-      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
-                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
-#endif
-    if (!Rewriter.wasValidSCEV())
-      return false;
-
-    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
-    //       L0) and the other is not. We could check if it is monotone and test
-    //       the beginning and end value instead.
-
-    BasicBlock *L0Header = L0.getHeader();
-    auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
-      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
-      if (!AddRec)
-        return false;
-      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
-             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
-    };
-    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
-      return false;
-
-    ICmpInst::Predicate Pred =
-        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
-    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
-#ifndef NDEBUG
-    if (VerboseFusionDebugging)
-      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
-                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
-                        << "\n");
-#endif
-    return IsAlwaysGE;
-  }
-
-  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
-  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
-  /// specified by @p DepChoice are used to determine this.
-  bool dependencesAllowFusion(const FusionCandidate &FC0,
-                              const FusionCandidate &FC1, Instruction &I0,
-                              Instruction &I1, bool AnyDep,
-                              FusionDependenceAnalysisChoice DepChoice) {
-#ifndef NDEBUG
-    if (VerboseFusionDebugging) {
-      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
-                        << DepChoice << "\n");
-    }
-#endif
-    switch (DepChoice) {
-    case FUSION_DEPENDENCE_ANALYSIS_SCEV:
-      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
-    case FUSION_DEPENDENCE_ANALYSIS_DA: {
-      auto DepResult = DI.depends(&I0, &I1, true);
-      if (!DepResult)
-        return true;
-#ifndef NDEBUG
-      if (VerboseFusionDebugging) {
-        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
-                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
-                          << (DepResult->isOrdered() ? "true" : "false")
-                          << "]\n");
-        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
-                          << "\n");
-      }
-#endif
-
-      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
-        LLVM_DEBUG(
-            dbgs() << "TODO: Implement pred/succ dependence handling!\n");
-
-      // TODO: Can we actually use the dependence info analysis here?
-      return false;
-    }
-
-    case FUSION_DEPENDENCE_ANALYSIS_ALL:
-      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
-                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
-             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
-                                    FUSION_DEPENDENCE_ANALYSIS_DA);
-    }
-
-    llvm_unreachable("Unknown fusion dependence analysis choice!");
-  }
-
-  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
-  bool dependencesAllowFusion(const FusionCandidate &FC0,
-                              const FusionCandidate &FC1) {
-    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
-                      << "\n");
-    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
-    assert(DT.dominates(FC0.Preheader, FC1.Preheader));
-
-    for (Instruction *WriteL0 : FC0.MemWrites) {
-      for (Instruction *WriteL1 : FC1.MemWrites)
-        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
-                                    /* AnyDep */ false,
-                                    FusionDependenceAnalysis)) {
-          InvalidDependencies++;
-          return false;
-        }
-      for (Instruction *ReadL1 : FC1.MemReads)
-        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
-                                    /* AnyDep */ false,
-                                    FusionDependenceAnalysis)) {
-          InvalidDependencies++;
-          return false;
-        }
-    }
-
-    for (Instruction *WriteL1 : FC1.MemWrites) {
-      for (Instruction *WriteL0 : FC0.MemWrites)
-        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
-                                    /* AnyDep */ false,
-                                    FusionDependenceAnalysis)) {
-          InvalidDependencies++;
-          return false;
-        }
-      for (Instruction *ReadL0 : FC0.MemReads)
-        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
-                                    /* AnyDep */ false,
-                                    FusionDependenceAnalysis)) {
-          InvalidDependencies++;
-          return false;
-        }
-    }
-
-    // Walk through all uses in FC1. For each use, find the reaching def. If the
-    // def is located in FC0 then it is is not safe to fuse.
-    for (BasicBlock *BB : FC1.L->blocks())
-      for (Instruction &I : *BB)
-        for (auto &Op : I.operands())
-          if (Instruction *Def = dyn_cast<Instruction>(Op))
-            if (FC0.L->contains(Def->getParent())) {
-              InvalidDependencies++;
-              return false;
-            }
-
-    return true;
-  }
-
-  /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
-  /// case, there is no code in between the two fusion candidates, thus making
-  /// them adjacent.
-  bool isAdjacent(const FusionCandidate &FC0,
-                  const FusionCandidate &FC1) const {
-    return FC0.ExitBlock == FC1.Preheader;
-  }
-
-  bool isEmptyPreheader(const FusionCandidate &FC) const {
-    return FC.Preheader->size() == 1;
-  }
-
-  /// Fuse two fusion candidates, creating a new fused loop.
-  ///
-  /// This method contains the mechanics of fusing two loops, represented by \p
-  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
-  /// postdominates \p FC0 (making them control flow equivalent). It also
-  /// assumes that the other conditions for fusion have been met: adjacent,
-  /// identical trip counts, and no negative distance dependencies exist that
-  /// would prevent fusion. Thus, there is no checking for these conditions in
-  /// this method.
-  ///
-  /// Fusion is performed by rewiring the CFG to update successor blocks of the
-  /// components of tho loop. Specifically, the following changes are done:
-  ///
-  ///   1. The preheader of \p FC1 is removed as it is no longer necessary
-  ///   (because it is currently only a single statement block).
-  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
-  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
-  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
-  ///
-  /// All of these modifications are done with dominator tree updates, thus
-  /// keeping the dominator (and post dominator) information up-to-date.
-  ///
-  /// This can be improved in the future by actually merging blocks during
-  /// fusion. For example, the preheader of \p FC1 can be merged with the
-  /// preheader of \p FC0. This would allow loops with more than a single
-  /// statement in the preheader to be fused. Similarly, the latch blocks of the
-  /// two loops could also be fused into a single block. This will require
-  /// analysis to prove it is safe to move the contents of the block past
-  /// existing code, which currently has not been implemented.
-  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
-    assert(FC0.isValid() && FC1.isValid() &&
-           "Expecting valid fusion candidates");
-
-    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
-               dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
-
-    assert(FC1.Preheader == FC0.ExitBlock);
-    assert(FC1.Preheader->size() == 1 &&
-           FC1.Preheader->getSingleSuccessor() == FC1.Header);
-
-    // Remember the phi nodes originally in the header of FC0 in order to rewire
-    // them later. However, this is only necessary if the new loop carried
-    // values might not dominate the exiting branch. While we do not generally
-    // test if this is the case but simply insert intermediate phi nodes, we
-    // need to make sure these intermediate phi nodes have different
-    // predecessors. To this end, we filter the special case where the exiting
-    // block is the latch block of the first loop. Nothing needs to be done
-    // anyway as all loop carried values dominate the latch and thereby also the
-    // exiting branch.
-    SmallVector<PHINode *, 8> OriginalFC0PHIs;
-    if (FC0.ExitingBlock != FC0.Latch)
-      for (PHINode &PHI : FC0.Header->phis())
-        OriginalFC0PHIs.push_back(&PHI);
-
-    // Replace incoming blocks for header PHIs first.
-    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
-    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
-
-    // Then modify the control flow and update DT and PDT.
-    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
-
-    // The old exiting block of the first loop (FC0) has to jump to the header
-    // of the second as we need to execute the code in the second header block
-    // regardless of the trip count. That is, if the trip count is 0, so the
-    // back edge is never taken, we still have to execute both loop headers,
-    // especially (but not only!) if the second is a do-while style loop.
-    // However, doing so might invalidate the phi nodes of the first loop as
-    // the new values do only need to dominate their latch and not the exiting
-    // predicate. To remedy this potential problem we always introduce phi
-    // nodes in the header of the second loop later that select the loop carried
-    // value, if the second header was reached through an old latch of the
-    // first, or undef otherwise. This is sound as exiting the first implies the
-    // second will exit too, __without__ taking the back-edge. [Their
-    // trip-counts are equal after all.
-    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
-    // to FC1.Header? I think this is basically what the three sequences are
-    // trying to accomplish; however, doing this directly in the CFG may mean
-    // the DT/PDT becomes invalid
-    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
-                                                         FC1.Header);
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(
-        DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(
-        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
-
-    // The pre-header of L1 is not necessary anymore.
-    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
-    FC1.Preheader->getTerminator()->eraseFromParent();
-    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(
-        DominatorTree::Delete, FC1.Preheader, FC1.Header));
-
-    // Moves the phi nodes from the second to the first loops header block.
-    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
-      if (SE.isSCEVable(PHI->getType()))
-        SE.forgetValue(PHI);
-      if (PHI->hasNUsesOrMore(1))
-        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
-      else
-        PHI->eraseFromParent();
-    }
-
-    // Introduce new phi nodes in the second loop header to ensure
-    // exiting the first and jumping to the header of the second does not break
-    // the SSA property of the phis originally in the first loop. See also the
-    // comment above.
-    Instruction *L1HeaderIP = &FC1.Header->front();
-    for (PHINode *LCPHI : OriginalFC0PHIs) {
-      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
-      assert(L1LatchBBIdx >= 0 &&
-             "Expected loop carried value to be rewired at this point!");
-
-      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
-
-      PHINode *L1HeaderPHI = PHINode::Create(
-          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
-      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
-      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
-                               FC0.ExitingBlock);
-
-      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
-    }
-
-    // Replace latch terminator destinations.
-    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
-    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
-
-    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
-    // performed the updates above.
-    if (FC0.Latch != FC0.ExitingBlock)
-      TreeUpdates.emplace_back(DominatorTree::UpdateType(
-          DominatorTree::Insert, FC0.Latch, FC1.Header));
-
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
-                                                       FC0.Latch, FC0.Header));
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
-                                                       FC1.Latch, FC0.Header));
-    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
-                                                       FC1.Latch, FC1.Header));
-
-    // Update DT/PDT
-    DTU.applyUpdates(TreeUpdates);
-
-    LI.removeBlock(FC1.Preheader);
-    DTU.deleteBB(FC1.Preheader);
-    DTU.flush();
-
-    // Is there a way to keep SE up-to-date so we don't need to forget the loops
-    // and rebuild the information in subsequent passes of fusion?
-    SE.forgetLoop(FC1.L);
-    SE.forgetLoop(FC0.L);
-
-    // Merge the loops.
-    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
-                                        FC1.L->block_end());
-    for (BasicBlock *BB : Blocks) {
-      FC0.L->addBlockEntry(BB);
-      FC1.L->removeBlockFromLoop(BB);
-      if (LI.getLoopFor(BB) != FC1.L)
-        continue;
-      LI.changeLoopFor(BB, FC0.L);
-    }
-    while (!FC1.L->empty()) {
-      const auto &ChildLoopIt = FC1.L->begin();
-      Loop *ChildLoop = *ChildLoopIt;
-      FC1.L->removeChildLoop(ChildLoopIt);
-      FC0.L->addChildLoop(ChildLoop);
-    }
-
-    // Delete the now empty loop L1.
-    LI.erase(FC1.L);
-
-#ifndef NDEBUG
-    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
-    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
-    assert(PDT.verify());
-    LI.verify(DT);
-    SE.verify();
-#endif
-
-    FuseCounter++;
-
-    LLVM_DEBUG(dbgs() << "Fusion done:\n");
-
-    return FC0.L;
-  }
-};
-
-struct LoopFuseLegacy : public FunctionPass {
-
-  static char ID;
-
-  LoopFuseLegacy() : FunctionPass(ID) {
-    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
-  }
-
-  void getAnalysisUsage(AnalysisUsage &AU) const override {
-    AU.addRequiredID(LoopSimplifyID);
-    AU.addRequired<ScalarEvolutionWrapperPass>();
-    AU.addRequired<LoopInfoWrapperPass>();
-    AU.addRequired<DominatorTreeWrapperPass>();
-    AU.addRequired<PostDominatorTreeWrapperPass>();
-    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
-    AU.addRequired<DependenceAnalysisWrapperPass>();
-
-    AU.addPreserved<ScalarEvolutionWrapperPass>();
-    AU.addPreserved<LoopInfoWrapperPass>();
-    AU.addPreserved<DominatorTreeWrapperPass>();
-    AU.addPreserved<PostDominatorTreeWrapperPass>();
-  }
-
-  bool runOnFunction(Function &F) override {
-    if (skipFunction(F))
-      return false;
-    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
-    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
-    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
-    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
-    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
-
-    const DataLayout &DL = F.getParent()->getDataLayout();
-    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
-    return LF.fuseLoops(F);
-  }
-};
-
-PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
-  auto &LI = AM.getResult<LoopAnalysis>(F);
-  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
-  auto &DI = AM.getResult<DependenceAnalysis>(F);
-  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
-  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
-  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
-
-  const DataLayout &DL = F.getParent()->getDataLayout();
-  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
-  bool Changed = LF.fuseLoops(F);
-  if (!Changed)
-    return PreservedAnalyses::all();
-
-  PreservedAnalyses PA;
-  PA.preserve<DominatorTreeAnalysis>();
-  PA.preserve<PostDominatorTreeAnalysis>();
-  PA.preserve<ScalarEvolutionAnalysis>();
-  PA.preserve<LoopAnalysis>();
-  return PA;
-}
-
-char LoopFuseLegacy::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
-                      false)
-INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
-
-FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }

Modified: llvm/trunk/lib/Transforms/Scalar/Scalar.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/Scalar.cpp?rev=358553&r1=358552&r2=358553&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Scalar/Scalar.cpp (original)
+++ llvm/trunk/lib/Transforms/Scalar/Scalar.cpp Tue Apr 16 21:55:24 2019
@@ -62,7 +62,6 @@ void llvm::initializeScalarOpts(PassRegi
   initializeJumpThreadingPass(Registry);
   initializeLegacyLICMPassPass(Registry);
   initializeLegacyLoopSinkPassPass(Registry);
-  initializeLoopFuseLegacyPass(Registry);
   initializeLoopDataPrefetchLegacyPassPass(Registry);
   initializeLoopDeletionLegacyPassPass(Registry);
   initializeLoopAccessLegacyAnalysisPass(Registry);




More information about the llvm-commits mailing list