[llvm] r350621 - Revert "Revert "Resubmit rL345008 "Split MachinePipeliner code into header and cpp files"""
Lama Saba via llvm-commits
llvm-commits at lists.llvm.org
Tue Jan 8 05:30:36 PST 2019
Author: lsaba
Date: Tue Jan 8 05:30:36 2019
New Revision: 350621
URL: http://llvm.org/viewvc/llvm-project?rev=350621&view=rev
Log:
Revert "Revert "Resubmit rL345008 "Split MachinePipeliner code into header and cpp files"""
This reverts commit rL350497
reported remaining issues seem to be unrelated to modules or this change.
more info: https://reviews.llvm.org/D56084
Added:
llvm/trunk/include/llvm/CodeGen/MachinePipeliner.h
Modified:
llvm/trunk/lib/CodeGen/MachinePipeliner.cpp
Added: llvm/trunk/include/llvm/CodeGen/MachinePipeliner.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/MachinePipeliner.h?rev=350621&view=auto
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/MachinePipeliner.h (added)
+++ llvm/trunk/include/llvm/CodeGen/MachinePipeliner.h Tue Jan 8 05:30:36 2019
@@ -0,0 +1,615 @@
+//===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
+//
+// Software pipelining (SWP) is an instruction scheduling technique for loops
+// that overlap loop iterations and exploits ILP via a compiler transformation.
+//
+// Swing Modulo Scheduling is an implementation of software pipelining
+// that generates schedules that are near optimal in terms of initiation
+// interval, register requirements, and stage count. See the papers:
+//
+// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
+// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
+// Conference on Parallel Architectures and Compilation Techiniques.
+//
+// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
+// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
+// Transactions on Computers, Vol. 50, No. 3, 2001.
+//
+// "An Implementation of Swing Modulo Scheduling With Extensions for
+// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
+// Urbana-Chambpain, 2005.
+//
+//
+// The SMS algorithm consists of three main steps after computing the minimal
+// initiation interval (MII).
+// 1) Analyze the dependence graph and compute information about each
+// instruction in the graph.
+// 2) Order the nodes (instructions) by priority based upon the heuristics
+// described in the algorithm.
+// 3) Attempt to schedule the nodes in the specified order using the MII.
+//
+//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_CODEGEN_MACHINEPIPELINER_H
+#define LLVM_LIB_CODEGEN_MACHINEPIPELINER_H
+
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+
+namespace llvm {
+
+class NodeSet;
+class SMSchedule;
+
+extern cl::opt<bool> SwpEnableCopyToPhi;
+
+/// The main class in the implementation of the target independent
+/// software pipeliner pass.
+class MachinePipeliner : public MachineFunctionPass {
+public:
+ MachineFunction *MF = nullptr;
+ const MachineLoopInfo *MLI = nullptr;
+ const MachineDominatorTree *MDT = nullptr;
+ const InstrItineraryData *InstrItins;
+ const TargetInstrInfo *TII = nullptr;
+ RegisterClassInfo RegClassInfo;
+
+#ifndef NDEBUG
+ static int NumTries;
+#endif
+
+ /// Cache the target analysis information about the loop.
+ struct LoopInfo {
+ MachineBasicBlock *TBB = nullptr;
+ MachineBasicBlock *FBB = nullptr;
+ SmallVector<MachineOperand, 4> BrCond;
+ MachineInstr *LoopInductionVar = nullptr;
+ MachineInstr *LoopCompare = nullptr;
+ };
+ LoopInfo LI;
+
+ static char ID;
+
+ MachinePipeliner() : MachineFunctionPass(ID) {
+ initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ void preprocessPhiNodes(MachineBasicBlock &B);
+ bool canPipelineLoop(MachineLoop &L);
+ bool scheduleLoop(MachineLoop &L);
+ bool swingModuloScheduler(MachineLoop &L);
+};
+
+/// This class builds the dependence graph for the instructions in a loop,
+/// and attempts to schedule the instructions using the SMS algorithm.
+class SwingSchedulerDAG : public ScheduleDAGInstrs {
+ MachinePipeliner &Pass;
+ /// The minimum initiation interval between iterations for this schedule.
+ unsigned MII = 0;
+ /// Set to true if a valid pipelined schedule is found for the loop.
+ bool Scheduled = false;
+ MachineLoop &Loop;
+ LiveIntervals &LIS;
+ const RegisterClassInfo &RegClassInfo;
+
+ /// A toplogical ordering of the SUnits, which is needed for changing
+ /// dependences and iterating over the SUnits.
+ ScheduleDAGTopologicalSort Topo;
+
+ struct NodeInfo {
+ int ASAP = 0;
+ int ALAP = 0;
+ int ZeroLatencyDepth = 0;
+ int ZeroLatencyHeight = 0;
+
+ NodeInfo() = default;
+ };
+ /// Computed properties for each node in the graph.
+ std::vector<NodeInfo> ScheduleInfo;
+
+ enum OrderKind { BottomUp = 0, TopDown = 1 };
+ /// Computed node ordering for scheduling.
+ SetVector<SUnit *> NodeOrder;
+
+ using NodeSetType = SmallVector<NodeSet, 8>;
+ using ValueMapTy = DenseMap<unsigned, unsigned>;
+ using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
+ using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
+
+ /// Instructions to change when emitting the final schedule.
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
+
+ /// We may create a new instruction, so remember it because it
+ /// must be deleted when the pass is finished.
+ SmallPtrSet<MachineInstr *, 4> NewMIs;
+
+ /// Ordered list of DAG postprocessing steps.
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
+
+ /// Helper class to implement Johnson's circuit finding algorithm.
+ class Circuits {
+ std::vector<SUnit> &SUnits;
+ SetVector<SUnit *> Stack;
+ BitVector Blocked;
+ SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
+ SmallVector<SmallVector<int, 4>, 16> AdjK;
+ // Node to Index from ScheduleDAGTopologicalSort
+ std::vector<int> *Node2Idx;
+ unsigned NumPaths;
+ static unsigned MaxPaths;
+
+ public:
+ Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
+ : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
+ Node2Idx = new std::vector<int>(SUs.size());
+ unsigned Idx = 0;
+ for (const auto &NodeNum : Topo)
+ Node2Idx->at(NodeNum) = Idx++;
+ }
+
+ ~Circuits() { delete Node2Idx; }
+
+ /// Reset the data structures used in the circuit algorithm.
+ void reset() {
+ Stack.clear();
+ Blocked.reset();
+ B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
+ NumPaths = 0;
+ }
+
+ void createAdjacencyStructure(SwingSchedulerDAG *DAG);
+ bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
+ void unblock(int U);
+ };
+
+ struct CopyToPhiMutation : public ScheduleDAGMutation {
+ void apply(ScheduleDAGInstrs *DAG) override;
+ };
+
+public:
+ SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
+ const RegisterClassInfo &rci)
+ : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
+ RegClassInfo(rci), Topo(SUnits, &ExitSU) {
+ P.MF->getSubtarget().getSMSMutations(Mutations);
+ if (SwpEnableCopyToPhi)
+ Mutations.push_back(llvm::make_unique<CopyToPhiMutation>());
+ }
+
+ void schedule() override;
+ void finishBlock() override;
+
+ /// Return true if the loop kernel has been scheduled.
+ bool hasNewSchedule() { return Scheduled; }
+
+ /// Return the earliest time an instruction may be scheduled.
+ int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
+
+ /// Return the latest time an instruction my be scheduled.
+ int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
+
+ /// The mobility function, which the number of slots in which
+ /// an instruction may be scheduled.
+ int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
+
+ /// The depth, in the dependence graph, for a node.
+ unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
+
+ /// The maximum unweighted length of a path from an arbitrary node to the
+ /// given node in which each edge has latency 0
+ int getZeroLatencyDepth(SUnit *Node) {
+ return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
+ }
+
+ /// The height, in the dependence graph, for a node.
+ unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
+
+ /// The maximum unweighted length of a path from the given node to an
+ /// arbitrary node in which each edge has latency 0
+ int getZeroLatencyHeight(SUnit *Node) {
+ return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
+ }
+
+ /// Return true if the dependence is a back-edge in the data dependence graph.
+ /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
+ /// using an anti dependence from a Phi to an instruction.
+ bool isBackedge(SUnit *Source, const SDep &Dep) {
+ if (Dep.getKind() != SDep::Anti)
+ return false;
+ return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
+ }
+
+ bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
+
+ /// The distance function, which indicates that operation V of iteration I
+ /// depends on operations U of iteration I-distance.
+ unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
+ // Instructions that feed a Phi have a distance of 1. Computing larger
+ // values for arrays requires data dependence information.
+ if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
+ return 1;
+ return 0;
+ }
+
+ /// Set the Minimum Initiation Interval for this schedule attempt.
+ void setMII(unsigned mii) { MII = mii; }
+
+ void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
+
+ void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
+
+ /// Return the new base register that was stored away for the changed
+ /// instruction.
+ unsigned getInstrBaseReg(SUnit *SU) {
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end())
+ return It->second.first;
+ return 0;
+ }
+
+ void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
+ Mutations.push_back(std::move(Mutation));
+ }
+
+ static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
+
+private:
+ void addLoopCarriedDependences(AliasAnalysis *AA);
+ void updatePhiDependences();
+ void changeDependences();
+ unsigned calculateResMII();
+ unsigned calculateRecMII(NodeSetType &RecNodeSets);
+ void findCircuits(NodeSetType &NodeSets);
+ void fuseRecs(NodeSetType &NodeSets);
+ void removeDuplicateNodes(NodeSetType &NodeSets);
+ void computeNodeFunctions(NodeSetType &NodeSets);
+ void registerPressureFilter(NodeSetType &NodeSets);
+ void colocateNodeSets(NodeSetType &NodeSets);
+ void checkNodeSets(NodeSetType &NodeSets);
+ void groupRemainingNodes(NodeSetType &NodeSets);
+ void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded);
+ void computeNodeOrder(NodeSetType &NodeSets);
+ void checkValidNodeOrder(const NodeSetType &Circuits) const;
+ bool schedulePipeline(SMSchedule &Schedule);
+ void generatePipelinedLoop(SMSchedule &Schedule);
+ void generateProlog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs);
+ void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
+ void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs);
+ void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule);
+ void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
+ ValueMapTy *VRMap);
+ bool computeDelta(MachineInstr &MI, unsigned &Delta);
+ void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
+ unsigned Num);
+ MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum);
+ MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum,
+ SMSchedule &Schedule);
+ void updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum, unsigned InstrStageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap);
+ MachineInstr *findDefInLoop(unsigned Reg);
+ unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
+ unsigned LoopStage, ValueMapTy *VRMap,
+ MachineBasicBlock *BB);
+ void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap);
+ void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
+ InstrMapTy &InstrMap, unsigned CurStageNum,
+ unsigned PhiNum, MachineInstr *Phi,
+ unsigned OldReg, unsigned NewReg,
+ unsigned PrevReg = 0);
+ bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
+ unsigned &OffsetPos, unsigned &NewBase,
+ int64_t &NewOffset);
+ void postprocessDAG();
+};
+
+/// A NodeSet contains a set of SUnit DAG nodes with additional information
+/// that assigns a priority to the set.
+class NodeSet {
+ SetVector<SUnit *> Nodes;
+ bool HasRecurrence = false;
+ unsigned RecMII = 0;
+ int MaxMOV = 0;
+ unsigned MaxDepth = 0;
+ unsigned Colocate = 0;
+ SUnit *ExceedPressure = nullptr;
+ unsigned Latency = 0;
+
+public:
+ using iterator = SetVector<SUnit *>::const_iterator;
+
+ NodeSet() = default;
+ NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
+ Latency = 0;
+ for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
+ for (const SDep &Succ : Nodes[i]->Succs)
+ if (Nodes.count(Succ.getSUnit()))
+ Latency += Succ.getLatency();
+ }
+
+ bool insert(SUnit *SU) { return Nodes.insert(SU); }
+
+ void insert(iterator S, iterator E) { Nodes.insert(S, E); }
+
+ template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
+ return Nodes.remove_if(P);
+ }
+
+ unsigned count(SUnit *SU) const { return Nodes.count(SU); }
+
+ bool hasRecurrence() { return HasRecurrence; };
+
+ unsigned size() const { return Nodes.size(); }
+
+ bool empty() const { return Nodes.empty(); }
+
+ SUnit *getNode(unsigned i) const { return Nodes[i]; };
+
+ void setRecMII(unsigned mii) { RecMII = mii; };
+
+ void setColocate(unsigned c) { Colocate = c; };
+
+ void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
+
+ bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
+
+ int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
+
+ int getRecMII() { return RecMII; }
+
+ /// Summarize node functions for the entire node set.
+ void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
+ for (SUnit *SU : *this) {
+ MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
+ MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
+ }
+ }
+
+ unsigned getLatency() { return Latency; }
+
+ unsigned getMaxDepth() { return MaxDepth; }
+
+ void clear() {
+ Nodes.clear();
+ RecMII = 0;
+ HasRecurrence = false;
+ MaxMOV = 0;
+ MaxDepth = 0;
+ Colocate = 0;
+ ExceedPressure = nullptr;
+ }
+
+ operator SetVector<SUnit *> &() { return Nodes; }
+
+ /// Sort the node sets by importance. First, rank them by recurrence MII,
+ /// then by mobility (least mobile done first), and finally by depth.
+ /// Each node set may contain a colocate value which is used as the first
+ /// tie breaker, if it's set.
+ bool operator>(const NodeSet &RHS) const {
+ if (RecMII == RHS.RecMII) {
+ if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
+ return Colocate < RHS.Colocate;
+ if (MaxMOV == RHS.MaxMOV)
+ return MaxDepth > RHS.MaxDepth;
+ return MaxMOV < RHS.MaxMOV;
+ }
+ return RecMII > RHS.RecMII;
+ }
+
+ bool operator==(const NodeSet &RHS) const {
+ return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
+ MaxDepth == RHS.MaxDepth;
+ }
+
+ bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
+
+ iterator begin() { return Nodes.begin(); }
+ iterator end() { return Nodes.end(); }
+
+ void print(raw_ostream &os) const {
+ os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
+ << " depth " << MaxDepth << " col " << Colocate << "\n";
+ for (const auto &I : Nodes)
+ os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
+ os << "\n";
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
+#endif
+};
+
+/// This class represents the scheduled code. The main data structure is a
+/// map from scheduled cycle to instructions. During scheduling, the
+/// data structure explicitly represents all stages/iterations. When
+/// the algorithm finshes, the schedule is collapsed into a single stage,
+/// which represents instructions from different loop iterations.
+///
+/// The SMS algorithm allows negative values for cycles, so the first cycle
+/// in the schedule is the smallest cycle value.
+class SMSchedule {
+private:
+ /// Map from execution cycle to instructions.
+ DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
+
+ /// Map from instruction to execution cycle.
+ std::map<SUnit *, int> InstrToCycle;
+
+ /// Map for each register and the max difference between its uses and def.
+ /// The first element in the pair is the max difference in stages. The
+ /// second is true if the register defines a Phi value and loop value is
+ /// scheduled before the Phi.
+ std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
+
+ /// Keep track of the first cycle value in the schedule. It starts
+ /// as zero, but the algorithm allows negative values.
+ int FirstCycle = 0;
+
+ /// Keep track of the last cycle value in the schedule.
+ int LastCycle = 0;
+
+ /// The initiation interval (II) for the schedule.
+ int InitiationInterval = 0;
+
+ /// Target machine information.
+ const TargetSubtargetInfo &ST;
+
+ /// Virtual register information.
+ MachineRegisterInfo &MRI;
+
+ std::unique_ptr<DFAPacketizer> Resources;
+
+public:
+ SMSchedule(MachineFunction *mf)
+ : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
+ Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
+
+ void reset() {
+ ScheduledInstrs.clear();
+ InstrToCycle.clear();
+ RegToStageDiff.clear();
+ FirstCycle = 0;
+ LastCycle = 0;
+ InitiationInterval = 0;
+ }
+
+ /// Set the initiation interval for this schedule.
+ void setInitiationInterval(int ii) { InitiationInterval = ii; }
+
+ /// Return the first cycle in the completed schedule. This
+ /// can be a negative value.
+ int getFirstCycle() const { return FirstCycle; }
+
+ /// Return the last cycle in the finalized schedule.
+ int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
+
+ /// Return the cycle of the earliest scheduled instruction in the dependence
+ /// chain.
+ int earliestCycleInChain(const SDep &Dep);
+
+ /// Return the cycle of the latest scheduled instruction in the dependence
+ /// chain.
+ int latestCycleInChain(const SDep &Dep);
+
+ void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
+ bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
+
+ /// Iterators for the cycle to instruction map.
+ using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
+ using const_sched_iterator =
+ DenseMap<int, std::deque<SUnit *>>::const_iterator;
+
+ /// Return true if the instruction is scheduled at the specified stage.
+ bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
+ return (stageScheduled(SU) == (int)StageNum);
+ }
+
+ /// Return the stage for a scheduled instruction. Return -1 if
+ /// the instruction has not been scheduled.
+ int stageScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ if (it == InstrToCycle.end())
+ return -1;
+ return (it->second - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the cycle for a scheduled instruction. This function normalizes
+ /// the first cycle to be 0.
+ unsigned cycleScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
+ return (it->second - FirstCycle) % InitiationInterval;
+ }
+
+ /// Return the maximum stage count needed for this schedule.
+ unsigned getMaxStageCount() {
+ return (LastCycle - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the max. number of stages/iterations that can occur between a
+ /// register definition and its uses.
+ unsigned getStagesForReg(int Reg, unsigned CurStage) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
+ return 1;
+ return Stages.first;
+ }
+
+ /// The number of stages for a Phi is a little different than other
+ /// instructions. The minimum value computed in RegToStageDiff is 1
+ /// because we assume the Phi is needed for at least 1 iteration.
+ /// This is not the case if the loop value is scheduled prior to the
+ /// Phi in the same stage. This function returns the number of stages
+ /// or iterations needed between the Phi definition and any uses.
+ unsigned getStagesForPhi(int Reg) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (Stages.second)
+ return Stages.first;
+ return Stages.first - 1;
+ }
+
+ /// Return the instructions that are scheduled at the specified cycle.
+ std::deque<SUnit *> &getInstructions(int cycle) {
+ return ScheduledInstrs[cycle];
+ }
+
+ bool isValidSchedule(SwingSchedulerDAG *SSD);
+ void finalizeSchedule(SwingSchedulerDAG *SSD);
+ void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts);
+ bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
+ bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
+ MachineOperand &MO);
+ void print(raw_ostream &os) const;
+ void dump() const;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_MACHINEPIPELINER_H
Modified: llvm/trunk/lib/CodeGen/MachinePipeliner.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/MachinePipeliner.cpp?rev=350621&r1=350620&r2=350621&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/MachinePipeliner.cpp (original)
+++ llvm/trunk/lib/CodeGen/MachinePipeliner.cpp Tue Jan 8 05:30:36 2019
@@ -9,34 +9,6 @@
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
-// Software pipelining (SWP) is an instruction scheduling technique for loops
-// that overlap loop iterations and exploits ILP via a compiler transformation.
-//
-// Swing Modulo Scheduling is an implementation of software pipelining
-// that generates schedules that are near optimal in terms of initiation
-// interval, register requirements, and stage count. See the papers:
-//
-// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
-// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
-// Conference on Parallel Architectures and Compilation Techiniques.
-//
-// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
-// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
-// Transactions on Computers, Vol. 50, No. 3, 2001.
-//
-// "An Implementation of Swing Modulo Scheduling With Extensions for
-// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
-// Urbana-Chambpain, 2005.
-//
-//
-// The SMS algorithm consists of three main steps after computing the minimal
-// initiation interval (MII).
-// 1) Analyze the dependence graph and compute information about each
-// instruction in the graph.
-// 2) Order the nodes (instructions) by priority based upon the heuristics
-// described in the algorithm.
-// 3) Attempt to schedule the nodes in the specified order using the MII.
-//
// This SMS implementation is a target-independent back-end pass. When enabled,
// the pass runs just prior to the register allocation pass, while the machine
// IR is in SSA form. If software pipelining is successful, then the original
@@ -83,13 +55,11 @@
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
@@ -171,575 +141,15 @@ static cl::opt<bool> SwpIgnoreRecMII("pi
cl::ReallyHidden, cl::init(false),
cl::ZeroOrMore, cl::desc("Ignore RecMII"));
+namespace llvm {
+
// A command line option to enable the CopyToPhi DAG mutation.
-static cl::opt<bool>
+cl::opt<bool>
SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
cl::init(true), cl::ZeroOrMore,
cl::desc("Enable CopyToPhi DAG Mutation"));
-namespace {
-
-class NodeSet;
-class SMSchedule;
-
-/// The main class in the implementation of the target independent
-/// software pipeliner pass.
-class MachinePipeliner : public MachineFunctionPass {
-public:
- MachineFunction *MF = nullptr;
- const MachineLoopInfo *MLI = nullptr;
- const MachineDominatorTree *MDT = nullptr;
- const InstrItineraryData *InstrItins;
- const TargetInstrInfo *TII = nullptr;
- RegisterClassInfo RegClassInfo;
-
-#ifndef NDEBUG
- static int NumTries;
-#endif
-
- /// Cache the target analysis information about the loop.
- struct LoopInfo {
- MachineBasicBlock *TBB = nullptr;
- MachineBasicBlock *FBB = nullptr;
- SmallVector<MachineOperand, 4> BrCond;
- MachineInstr *LoopInductionVar = nullptr;
- MachineInstr *LoopCompare = nullptr;
- };
- LoopInfo LI;
-
- static char ID;
-
- MachinePipeliner() : MachineFunctionPass(ID) {
- initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<LiveIntervals>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
-private:
- void preprocessPhiNodes(MachineBasicBlock &B);
- bool canPipelineLoop(MachineLoop &L);
- bool scheduleLoop(MachineLoop &L);
- bool swingModuloScheduler(MachineLoop &L);
-};
-
-/// This class builds the dependence graph for the instructions in a loop,
-/// and attempts to schedule the instructions using the SMS algorithm.
-class SwingSchedulerDAG : public ScheduleDAGInstrs {
- MachinePipeliner &Pass;
- /// The minimum initiation interval between iterations for this schedule.
- unsigned MII = 0;
- /// Set to true if a valid pipelined schedule is found for the loop.
- bool Scheduled = false;
- MachineLoop &Loop;
- LiveIntervals &LIS;
- const RegisterClassInfo &RegClassInfo;
-
- /// A toplogical ordering of the SUnits, which is needed for changing
- /// dependences and iterating over the SUnits.
- ScheduleDAGTopologicalSort Topo;
-
- struct NodeInfo {
- int ASAP = 0;
- int ALAP = 0;
- int ZeroLatencyDepth = 0;
- int ZeroLatencyHeight = 0;
-
- NodeInfo() = default;
- };
- /// Computed properties for each node in the graph.
- std::vector<NodeInfo> ScheduleInfo;
-
- enum OrderKind { BottomUp = 0, TopDown = 1 };
- /// Computed node ordering for scheduling.
- SetVector<SUnit *> NodeOrder;
-
- using NodeSetType = SmallVector<NodeSet, 8>;
- using ValueMapTy = DenseMap<unsigned, unsigned>;
- using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
- using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
-
- /// Instructions to change when emitting the final schedule.
- DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
-
- /// We may create a new instruction, so remember it because it
- /// must be deleted when the pass is finished.
- SmallPtrSet<MachineInstr *, 4> NewMIs;
-
- /// Ordered list of DAG postprocessing steps.
- std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
-
- /// Helper class to implement Johnson's circuit finding algorithm.
- class Circuits {
- std::vector<SUnit> &SUnits;
- SetVector<SUnit *> Stack;
- BitVector Blocked;
- SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
- SmallVector<SmallVector<int, 4>, 16> AdjK;
- // Node to Index from ScheduleDAGTopologicalSort
- std::vector<int> *Node2Idx;
- unsigned NumPaths;
- static unsigned MaxPaths;
-
- public:
- Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
- : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
- Node2Idx = new std::vector<int>(SUs.size());
- unsigned Idx = 0;
- for (const auto &NodeNum : Topo)
- Node2Idx->at(NodeNum) = Idx++;
- }
-
- ~Circuits() { delete Node2Idx; }
-
- /// Reset the data structures used in the circuit algorithm.
- void reset() {
- Stack.clear();
- Blocked.reset();
- B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
- NumPaths = 0;
- }
-
- void createAdjacencyStructure(SwingSchedulerDAG *DAG);
- bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
- void unblock(int U);
- };
-
- struct CopyToPhiMutation : public ScheduleDAGMutation {
- void apply(ScheduleDAGInstrs *DAG) override;
- };
-
-public:
- SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
- const RegisterClassInfo &rci)
- : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
- RegClassInfo(rci), Topo(SUnits, &ExitSU) {
- P.MF->getSubtarget().getSMSMutations(Mutations);
- if (SwpEnableCopyToPhi)
- Mutations.push_back(llvm::make_unique<CopyToPhiMutation>());
- }
-
- void schedule() override;
- void finishBlock() override;
-
- /// Return true if the loop kernel has been scheduled.
- bool hasNewSchedule() { return Scheduled; }
-
- /// Return the earliest time an instruction may be scheduled.
- int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
-
- /// Return the latest time an instruction my be scheduled.
- int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
-
- /// The mobility function, which the number of slots in which
- /// an instruction may be scheduled.
- int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
-
- /// The depth, in the dependence graph, for a node.
- unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
-
- /// The maximum unweighted length of a path from an arbitrary node to the
- /// given node in which each edge has latency 0
- int getZeroLatencyDepth(SUnit *Node) {
- return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
- }
-
- /// The height, in the dependence graph, for a node.
- unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
-
- /// The maximum unweighted length of a path from the given node to an
- /// arbitrary node in which each edge has latency 0
- int getZeroLatencyHeight(SUnit *Node) {
- return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
- }
-
- /// Return true if the dependence is a back-edge in the data dependence graph.
- /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
- /// using an anti dependence from a Phi to an instruction.
- bool isBackedge(SUnit *Source, const SDep &Dep) {
- if (Dep.getKind() != SDep::Anti)
- return false;
- return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
- }
-
- bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
-
- /// The distance function, which indicates that operation V of iteration I
- /// depends on operations U of iteration I-distance.
- unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
- // Instructions that feed a Phi have a distance of 1. Computing larger
- // values for arrays requires data dependence information.
- if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
- return 1;
- return 0;
- }
-
- /// Set the Minimum Initiation Interval for this schedule attempt.
- void setMII(unsigned mii) { MII = mii; }
-
- void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
-
- void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
-
- /// Return the new base register that was stored away for the changed
- /// instruction.
- unsigned getInstrBaseReg(SUnit *SU) {
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end())
- return It->second.first;
- return 0;
- }
-
- void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
- Mutations.push_back(std::move(Mutation));
- }
-
- static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
-
-private:
- void addLoopCarriedDependences(AliasAnalysis *AA);
- void updatePhiDependences();
- void changeDependences();
- unsigned calculateResMII();
- unsigned calculateRecMII(NodeSetType &RecNodeSets);
- void findCircuits(NodeSetType &NodeSets);
- void fuseRecs(NodeSetType &NodeSets);
- void removeDuplicateNodes(NodeSetType &NodeSets);
- void computeNodeFunctions(NodeSetType &NodeSets);
- void registerPressureFilter(NodeSetType &NodeSets);
- void colocateNodeSets(NodeSetType &NodeSets);
- void checkNodeSets(NodeSetType &NodeSets);
- void groupRemainingNodes(NodeSetType &NodeSets);
- void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
- SetVector<SUnit *> &NodesAdded);
- void computeNodeOrder(NodeSetType &NodeSets);
- void checkValidNodeOrder(const NodeSetType &Circuits) const;
- bool schedulePipeline(SMSchedule &Schedule);
- void generatePipelinedLoop(SMSchedule &Schedule);
- void generateProlog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
- MBBVectorTy &PrologBBs);
- void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
- MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
- void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum,
- unsigned CurStageNum, bool IsLast);
- void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum,
- unsigned CurStageNum, bool IsLast);
- void removeDeadInstructions(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs);
- void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule);
- void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
- ValueMapTy *VRMap);
- bool computeDelta(MachineInstr &MI, unsigned &Delta);
- void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
- unsigned Num);
- MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum);
- MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum,
- SMSchedule &Schedule);
- void updateInstruction(MachineInstr *NewMI, bool LastDef,
- unsigned CurStageNum, unsigned InstrStageNum,
- SMSchedule &Schedule, ValueMapTy *VRMap);
- MachineInstr *findDefInLoop(unsigned Reg);
- unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
- unsigned LoopStage, ValueMapTy *VRMap,
- MachineBasicBlock *BB);
- void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
- SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap);
- void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
- InstrMapTy &InstrMap, unsigned CurStageNum,
- unsigned PhiNum, MachineInstr *Phi,
- unsigned OldReg, unsigned NewReg,
- unsigned PrevReg = 0);
- bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
- unsigned &OffsetPos, unsigned &NewBase,
- int64_t &NewOffset);
- void postprocessDAG();
-};
-
-/// A NodeSet contains a set of SUnit DAG nodes with additional information
-/// that assigns a priority to the set.
-class NodeSet {
- SetVector<SUnit *> Nodes;
- bool HasRecurrence = false;
- unsigned RecMII = 0;
- int MaxMOV = 0;
- unsigned MaxDepth = 0;
- unsigned Colocate = 0;
- SUnit *ExceedPressure = nullptr;
- unsigned Latency = 0;
-
-public:
- using iterator = SetVector<SUnit *>::const_iterator;
-
- NodeSet() = default;
- NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
- Latency = 0;
- for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
- for (const SDep &Succ : Nodes[i]->Succs)
- if (Nodes.count(Succ.getSUnit()))
- Latency += Succ.getLatency();
- }
-
- bool insert(SUnit *SU) { return Nodes.insert(SU); }
-
- void insert(iterator S, iterator E) { Nodes.insert(S, E); }
-
- template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
- return Nodes.remove_if(P);
- }
-
- unsigned count(SUnit *SU) const { return Nodes.count(SU); }
-
- bool hasRecurrence() { return HasRecurrence; };
-
- unsigned size() const { return Nodes.size(); }
-
- bool empty() const { return Nodes.empty(); }
-
- SUnit *getNode(unsigned i) const { return Nodes[i]; };
-
- void setRecMII(unsigned mii) { RecMII = mii; };
-
- void setColocate(unsigned c) { Colocate = c; };
-
- void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
-
- bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
-
- int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
-
- int getRecMII() { return RecMII; }
-
- /// Summarize node functions for the entire node set.
- void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
- for (SUnit *SU : *this) {
- MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
- MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
- }
- }
-
- unsigned getLatency() { return Latency; }
-
- unsigned getMaxDepth() { return MaxDepth; }
-
- void clear() {
- Nodes.clear();
- RecMII = 0;
- HasRecurrence = false;
- MaxMOV = 0;
- MaxDepth = 0;
- Colocate = 0;
- ExceedPressure = nullptr;
- }
-
- operator SetVector<SUnit *> &() { return Nodes; }
-
- /// Sort the node sets by importance. First, rank them by recurrence MII,
- /// then by mobility (least mobile done first), and finally by depth.
- /// Each node set may contain a colocate value which is used as the first
- /// tie breaker, if it's set.
- bool operator>(const NodeSet &RHS) const {
- if (RecMII == RHS.RecMII) {
- if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
- return Colocate < RHS.Colocate;
- if (MaxMOV == RHS.MaxMOV)
- return MaxDepth > RHS.MaxDepth;
- return MaxMOV < RHS.MaxMOV;
- }
- return RecMII > RHS.RecMII;
- }
-
- bool operator==(const NodeSet &RHS) const {
- return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
- MaxDepth == RHS.MaxDepth;
- }
-
- bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
-
- iterator begin() { return Nodes.begin(); }
- iterator end() { return Nodes.end(); }
-
- void print(raw_ostream &os) const {
- os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
- << " depth " << MaxDepth << " col " << Colocate << "\n";
- for (const auto &I : Nodes)
- os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
- os << "\n";
- }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
-#endif
-};
-
-/// This class represents the scheduled code. The main data structure is a
-/// map from scheduled cycle to instructions. During scheduling, the
-/// data structure explicitly represents all stages/iterations. When
-/// the algorithm finshes, the schedule is collapsed into a single stage,
-/// which represents instructions from different loop iterations.
-///
-/// The SMS algorithm allows negative values for cycles, so the first cycle
-/// in the schedule is the smallest cycle value.
-class SMSchedule {
-private:
- /// Map from execution cycle to instructions.
- DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
-
- /// Map from instruction to execution cycle.
- std::map<SUnit *, int> InstrToCycle;
-
- /// Map for each register and the max difference between its uses and def.
- /// The first element in the pair is the max difference in stages. The
- /// second is true if the register defines a Phi value and loop value is
- /// scheduled before the Phi.
- std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
-
- /// Keep track of the first cycle value in the schedule. It starts
- /// as zero, but the algorithm allows negative values.
- int FirstCycle = 0;
-
- /// Keep track of the last cycle value in the schedule.
- int LastCycle = 0;
-
- /// The initiation interval (II) for the schedule.
- int InitiationInterval = 0;
-
- /// Target machine information.
- const TargetSubtargetInfo &ST;
-
- /// Virtual register information.
- MachineRegisterInfo &MRI;
-
- std::unique_ptr<DFAPacketizer> Resources;
-
-public:
- SMSchedule(MachineFunction *mf)
- : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
- Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
-
- void reset() {
- ScheduledInstrs.clear();
- InstrToCycle.clear();
- RegToStageDiff.clear();
- FirstCycle = 0;
- LastCycle = 0;
- InitiationInterval = 0;
- }
-
- /// Set the initiation interval for this schedule.
- void setInitiationInterval(int ii) { InitiationInterval = ii; }
-
- /// Return the first cycle in the completed schedule. This
- /// can be a negative value.
- int getFirstCycle() const { return FirstCycle; }
-
- /// Return the last cycle in the finalized schedule.
- int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
-
- /// Return the cycle of the earliest scheduled instruction in the dependence
- /// chain.
- int earliestCycleInChain(const SDep &Dep);
-
- /// Return the cycle of the latest scheduled instruction in the dependence
- /// chain.
- int latestCycleInChain(const SDep &Dep);
-
- void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
- int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
- bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
-
- /// Iterators for the cycle to instruction map.
- using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
- using const_sched_iterator =
- DenseMap<int, std::deque<SUnit *>>::const_iterator;
-
- /// Return true if the instruction is scheduled at the specified stage.
- bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
- return (stageScheduled(SU) == (int)StageNum);
- }
-
- /// Return the stage for a scheduled instruction. Return -1 if
- /// the instruction has not been scheduled.
- int stageScheduled(SUnit *SU) const {
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
- if (it == InstrToCycle.end())
- return -1;
- return (it->second - FirstCycle) / InitiationInterval;
- }
-
- /// Return the cycle for a scheduled instruction. This function normalizes
- /// the first cycle to be 0.
- unsigned cycleScheduled(SUnit *SU) const {
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
- assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
- return (it->second - FirstCycle) % InitiationInterval;
- }
-
- /// Return the maximum stage count needed for this schedule.
- unsigned getMaxStageCount() {
- return (LastCycle - FirstCycle) / InitiationInterval;
- }
-
- /// Return the max. number of stages/iterations that can occur between a
- /// register definition and its uses.
- unsigned getStagesForReg(int Reg, unsigned CurStage) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
- return 1;
- return Stages.first;
- }
-
- /// The number of stages for a Phi is a little different than other
- /// instructions. The minimum value computed in RegToStageDiff is 1
- /// because we assume the Phi is needed for at least 1 iteration.
- /// This is not the case if the loop value is scheduled prior to the
- /// Phi in the same stage. This function returns the number of stages
- /// or iterations needed between the Phi definition and any uses.
- unsigned getStagesForPhi(int Reg) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if (Stages.second)
- return Stages.first;
- return Stages.first - 1;
- }
-
- /// Return the instructions that are scheduled at the specified cycle.
- std::deque<SUnit *> &getInstructions(int cycle) {
- return ScheduledInstrs[cycle];
- }
-
- bool isValidSchedule(SwingSchedulerDAG *SSD);
- void finalizeSchedule(SwingSchedulerDAG *SSD);
- void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
- std::deque<SUnit *> &Insts);
- bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
- bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
- MachineOperand &MO);
- void print(raw_ostream &os) const;
- void dump() const;
-};
-
-} // end anonymous namespace
+} // end namespace llvm
unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
char MachinePipeliner::ID = 0;
More information about the llvm-commits
mailing list