[compiler-rt] r348335 - [XRay] Move-only Allocator, FunctionCallTrie, and Array
Hans Wennborg via llvm-commits
llvm-commits at lists.llvm.org
Wed Dec 5 08:11:48 PST 2018
There have been discussions now and then on the mailing list about the
minimum supported GCC version, but I don't think there's any definite
answer.
GCC 4.8.4 is what comes with Ubuntu 14.04, which people seem to care
about. For example we provide 14.04-built binaries in the LLVM
releases, and get pinged when we forget to.
For Chromium, yes, we could disable XRay because it's not used.
I don't know the code, so I can't really judge the trade-off between
using this language feature and supporting gcc 4.8. Personally, I
think there's a lot of value in portability though.
On Wed, Dec 5, 2018 at 1:50 PM Dean Michael Berris <dberris at google.com> wrote:
>
> Hi Hans,
>
> This looks like a compiler deficiency/bug, but I'm not sure how to
> work around this. We actually need the semantics ensured by the
> placement-new with brace initialisation (for aggregate init) with the
> implementation here.
>
> Is GCC 4.8 still actually supported by the LLVM project? If yes, do we
> know when we're going to drop support for GCC 4.8? This patch and the
> ones dependent on it landing also require a compiler that can ensure
> that aggregate-init via placement-new with brace initialisation works
> as specified.
>
> I can probably reinstate the constructors and using the non-braced
> init construction call for placement new, but that's actually going to
> needlessly complicate the implementation here.
>
> Does Chromium use XRay yet, and if not can we instead disable XRay
> from the standalone builds being done by Chromium with older
> compilers?
>
> Thanks in advance.
>
> Cheers
> On Wed, Dec 5, 2018 at 9:23 PM Hans Wennborg <hwennborg at google.com> wrote:
> >
> > I see you landed some follow-ups for the build breakage, but this is
> > still breaking Chromium's toolchain build (e.g.
> > https://logs.chromium.org/v/?s=chromium%2Fbb%2Fchromium.clang%2FToTLinux%2F4554%2F%2B%2Frecipes%2Fsteps%2Fgclient_runhooks%2F0%2Fstdout)
> >
> > It seems the new code doesn't compile with GCC 4.8 (I used
> > https://commondatastorage.googleapis.com/chromium-browser-clang/tools/gcc485precise.tgz
> > but our builders use stock 4.8.4) when building compiler-rt
> > stand-alone.
> >
> > I've reverted in r348346 in the meantime.
> >
> > To reproduce:
> >
> > $ CC=/work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/gcc
> > CXX=/work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/g++
> > cmake -GNinja -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=ON
> > -DLLVM_CONFIG_PATH=/work/llvm/build.release/bin/llvm-config
> > ../projects/compiler-rt/
> > $ $ ninja lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
> > [1/1] Building CXX object
> > lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
> > FAILED: lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
> > /work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/g++
> > -DXRAY_HAS_EXCEPTIONS=1 -I/work/llvm/projects/compiler-rt/lib/xray/..
> > -I/work/llvm/projects/compiler-rt/lib/xray/../../include -Wall
> > -std=c++11 -Wno-unused-parameter -O3 -DNDEBUG -m64 -fPIC
> > -fno-builtin -fno-exceptions -fomit-frame-pointer -funwind-tables
> > -fno-stack-protector -fvisibility=hidden -fno-lto -O3 -g
> > -Wno-variadic-macros -Wno-non-virtual-dtor -fno-rtti -MD -MT
> > lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
> > -MF lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o.d
> > -o lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
> > -c /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc
> > In file included from
> > /work/llvm/projects/compiler-rt/lib/xray/xray_function_call_trie.h:20:0,
> > from
> > /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.h:21,
> > from
> > /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:15:
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
> > instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
> > Args = {const __xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
> > const::NodeAndTarget&}; T =
> > __xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
> > const::NodeAndTarget]’:
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
> > required from ‘T* __xray::Array<T>::Append(const T&) [with T =
> > __xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
> > const::NodeAndTarget]’
> > /work/llvm/projects/compiler-rt/lib/xray/xray_function_call_trie.h:517:54:
> > required from here
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
> > error: could not convert ‘{std::forward<const
> > __xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
> > const::NodeAndTarget&>((* & args#0))}’ from ‘<brace-enclosed
> > initializer list>’ to
> > ‘__xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
> > const::NodeAndTarget’
> > new (AlignedOffset) T{std::forward<Args>(args)...};
> > ^
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
> > instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
> > Args = {const __xray::profileCollectorService::{anonymous}::ThreadTrie&};
> > T = __xray::profileCollectorService::{anonymous}::ThreadTrie]’:
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
> > required from ‘T* __xray::Array<T>::Append(const T&) [with T =
> > __xray::profileCollectorService::{anonymous}::ThreadTrie]’
> > /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:98:34:
> > required from here
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
> > error: could not convert ‘{std::forward<const
> > __xray::profileCollectorService::{anonymous}::ThreadTrie&>((* &
> > args#0))}’ from
> > ‘<brace-enclosed initializer list>’ to
> > ‘__xray::profileCollectorService::{anonymous}::ThreadTrie’
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
> > instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
> > Args = {const __xray::profileCollectorService::{anonymous}::ProfileBuffer&};
> > T = __xray::profileCollectorService::{anonymous}::ProfileBuffer]’:
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
> > required from ‘T* __xray::Array<T>::Append(const T&) [with T =
> > __xray::profileCollectorService::{anonymous}::ProfileBuffer]
> > ’
> > /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:244:44:
> > required from here
> > /work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
> > error: could not convert ‘{std::forward<const
> > __xray::profileCollectorService::{anonymous}::ProfileBuffer&>((* &
> > args#0))}’ from ‘<brace-enclosed initializer list>’ to
> > ‘__xray::profileCollectorService::{anonymous}::ProfileBuffer’
> >
> >
> >
> > On Wed, Dec 5, 2018 at 7:47 AM Dean Michael Berris via llvm-commits
> > <llvm-commits at lists.llvm.org> wrote:
> > >
> > > Author: dberris
> > > Date: Tue Dec 4 22:44:34 2018
> > > New Revision: 348335
> > >
> > > URL: http://llvm.org/viewvc/llvm-project?rev=348335&view=rev
> > > Log:
> > > [XRay] Move-only Allocator, FunctionCallTrie, and Array
> > >
> > > Summary:
> > > This change makes the allocator and function call trie implementations
> > > move-aware and remove the FunctionCallTrie's reliance on a
> > > heap-allocated set of allocators.
> > >
> > > The change makes it possible to always have storage associated with
> > > Allocator instances, not necessarily having heap-allocated memory
> > > obtainable from these allocator instances. We also use thread-local
> > > uninitialised storage.
> > >
> > > We've also re-worked the segmented array implementation to have more
> > > precondition and post-condition checks when built in debug mode. This
> > > enables us to better implement some of the operations with surrounding
> > > documentation as well. The `trim` algorithm now has more documentation
> > > on the implementation, reducing the requirement to handle special
> > > conditions, and being more rigorous on the computations involved.
> > >
> > > In this change we also introduce an initialisation guard, through which
> > > we prevent an initialisation operation from racing with a cleanup
> > > operation.
> > >
> > > We also ensure that the ThreadTries array is not destroyed while copies
> > > into the elements are still being performed by other threads submitting
> > > profiles.
> > >
> > > Note that this change still has an issue with accessing thread-local
> > > storage from signal handlers that are instrumented with XRay. We also
> > > learn that with the testing of this patch, that there will be cases
> > > where calls to mmap(...) (through internal_mmap(...)) might be called in
> > > signal handlers, but are not async-signal-safe. Subsequent patches will
> > > address this, by re-using the `BufferQueue` type used in the FDR mode
> > > implementation for pre-allocated memory segments per active, tracing
> > > thread.
> > >
> > > We still want to land this change despite the known issues, with fixes
> > > forthcoming.
> > >
> > > Reviewers: mboerger, jfb
> > >
> > > Subscribers: jfb, llvm-commits
> > >
> > > Differential Revision: https://reviews.llvm.org/D54989
> > >
> > > Modified:
> > > compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc
> > > compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc
> > > compiler-rt/trunk/lib/xray/xray_allocator.h
> > > compiler-rt/trunk/lib/xray/xray_function_call_trie.h
> > > compiler-rt/trunk/lib/xray/xray_profile_collector.cc
> > > compiler-rt/trunk/lib/xray/xray_profiling.cc
> > > compiler-rt/trunk/lib/xray/xray_segmented_array.h
> > >
> > > Modified: compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc (original)
> > > +++ compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc Tue Dec 4 22:44:34 2018
> > > @@ -309,6 +309,36 @@ TEST(FunctionCallTrieTest, MergeInto) {
> > > EXPECT_EQ(F2.Callees.size(), 0u);
> > > }
> > >
> > > +TEST(FunctionCallTrieTest, PlacementNewOnAlignedStorage) {
> > > + profilingFlags()->setDefaults();
> > > + typename std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
> > > + alignof(FunctionCallTrie::Allocators)>::type
> > > + AllocatorsStorage;
> > > + new (&AllocatorsStorage)
> > > + FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> > > + auto *A =
> > > + reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> > > +
> > > + typename std::aligned_storage<sizeof(FunctionCallTrie),
> > > + alignof(FunctionCallTrie)>::type FCTStorage;
> > > + new (&FCTStorage) FunctionCallTrie(*A);
> > > + auto *T = reinterpret_cast<FunctionCallTrie *>(&FCTStorage);
> > > +
> > > + // Put some data into it.
> > > + T->enterFunction(1, 0, 0);
> > > + T->exitFunction(1, 1, 0);
> > > +
> > > + // Re-initialize the objects in storage.
> > > + T->~FunctionCallTrie();
> > > + A->~Allocators();
> > > + new (A) FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> > > + new (T) FunctionCallTrie(*A);
> > > +
> > > + // Then put some data into it again.
> > > + T->enterFunction(1, 0, 0);
> > > + T->exitFunction(1, 1, 0);
> > > +}
> > > +
> > > } // namespace
> > >
> > > } // namespace __xray
> > >
> > > Modified: compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc (original)
> > > +++ compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc Tue Dec 4 22:44:34 2018
> > > @@ -221,5 +221,91 @@ TEST(SegmentedArrayTest, SimulateStackBe
> > > }
> > > }
> > >
> > > +TEST(SegmentedArrayTest, PlacementNewOnAlignedStorage) {
> > > + using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType;
> > > + typename std::aligned_storage<sizeof(AllocatorType),
> > > + alignof(AllocatorType)>::type AllocatorStorage;
> > > + new (&AllocatorStorage) AllocatorType(1 << 10);
> > > + auto *A = reinterpret_cast<AllocatorType *>(&AllocatorStorage);
> > > + typename std::aligned_storage<sizeof(Array<ShadowStackEntry>),
> > > + alignof(Array<ShadowStackEntry>)>::type
> > > + ArrayStorage;
> > > + new (&ArrayStorage) Array<ShadowStackEntry>(*A);
> > > + auto *Data = reinterpret_cast<Array<ShadowStackEntry> *>(&ArrayStorage);
> > > +
> > > + static uint64_t Dummy = 0;
> > > + constexpr uint64_t Max = 9;
> > > +
> > > + for (uint64_t i = 0; i < Max; ++i) {
> > > + auto P = Data->Append({i, &Dummy});
> > > + ASSERT_NE(P, nullptr);
> > > + ASSERT_EQ(P->NodePtr, &Dummy);
> > > + auto &Back = Data->back();
> > > + ASSERT_EQ(Back.NodePtr, &Dummy);
> > > + ASSERT_EQ(Back.EntryTSC, i);
> > > + }
> > > +
> > > + // Simulate a stack by checking the data from the end as we're trimming.
> > > + auto Counter = Max;
> > > + ASSERT_EQ(Data->size(), size_t(Max));
> > > + while (!Data->empty()) {
> > > + const auto &Top = Data->back();
> > > + uint64_t *TopNode = Top.NodePtr;
> > > + EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
> > > + Data->trim(1);
> > > + --Counter;
> > > + ASSERT_EQ(Data->size(), size_t(Counter));
> > > + }
> > > +
> > > + // Once the stack is exhausted, we re-use the storage.
> > > + for (uint64_t i = 0; i < Max; ++i) {
> > > + auto P = Data->Append({i, &Dummy});
> > > + ASSERT_NE(P, nullptr);
> > > + ASSERT_EQ(P->NodePtr, &Dummy);
> > > + auto &Back = Data->back();
> > > + ASSERT_EQ(Back.NodePtr, &Dummy);
> > > + ASSERT_EQ(Back.EntryTSC, i);
> > > + }
> > > +
> > > + // We re-initialize the storage, by calling the destructor and
> > > + // placement-new'ing again.
> > > + Data->~Array();
> > > + A->~AllocatorType();
> > > + new (A) AllocatorType(1 << 10);
> > > + new (Data) Array<ShadowStackEntry>(*A);
> > > +
> > > + // Then re-do the test.
> > > + for (uint64_t i = 0; i < Max; ++i) {
> > > + auto P = Data->Append({i, &Dummy});
> > > + ASSERT_NE(P, nullptr);
> > > + ASSERT_EQ(P->NodePtr, &Dummy);
> > > + auto &Back = Data->back();
> > > + ASSERT_EQ(Back.NodePtr, &Dummy);
> > > + ASSERT_EQ(Back.EntryTSC, i);
> > > + }
> > > +
> > > + // Simulate a stack by checking the data from the end as we're trimming.
> > > + Counter = Max;
> > > + ASSERT_EQ(Data->size(), size_t(Max));
> > > + while (!Data->empty()) {
> > > + const auto &Top = Data->back();
> > > + uint64_t *TopNode = Top.NodePtr;
> > > + EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
> > > + Data->trim(1);
> > > + --Counter;
> > > + ASSERT_EQ(Data->size(), size_t(Counter));
> > > + }
> > > +
> > > + // Once the stack is exhausted, we re-use the storage.
> > > + for (uint64_t i = 0; i < Max; ++i) {
> > > + auto P = Data->Append({i, &Dummy});
> > > + ASSERT_NE(P, nullptr);
> > > + ASSERT_EQ(P->NodePtr, &Dummy);
> > > + auto &Back = Data->back();
> > > + ASSERT_EQ(Back.NodePtr, &Dummy);
> > > + ASSERT_EQ(Back.EntryTSC, i);
> > > + }
> > > +}
> > > +
> > > } // namespace
> > > } // namespace __xray
> > >
> > > Modified: compiler-rt/trunk/lib/xray/xray_allocator.h
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_allocator.h?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/xray_allocator.h (original)
> > > +++ compiler-rt/trunk/lib/xray/xray_allocator.h Tue Dec 4 22:44:34 2018
> > > @@ -63,7 +63,7 @@ template <class T> T *allocate() XRAY_NE
> > > #else
> > > uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
> > > MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
> > > - int ErrNo;
> > > + int ErrNo = 0;
> > > if (UNLIKELY(internal_iserror(B, &ErrNo))) {
> > > if (Verbosity())
> > > Report(
> > > @@ -113,7 +113,7 @@ T *allocateBuffer(size_t S) XRAY_NEVER_I
> > > #else
> > > uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
> > > MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
> > > - int ErrNo;
> > > + int ErrNo = 0;
> > > if (UNLIKELY(internal_iserror(B, &ErrNo))) {
> > > if (Verbosity())
> > > Report(
> > > @@ -171,7 +171,7 @@ template <size_t N> struct Allocator {
> > > };
> > >
> > > private:
> > > - const size_t MaxMemory{0};
> > > + size_t MaxMemory{0};
> > > unsigned char *BackingStore = nullptr;
> > > unsigned char *AlignedNextBlock = nullptr;
> > > size_t AllocatedBlocks = 0;
> > > @@ -223,7 +223,43 @@ private:
> > >
> > > public:
> > > explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
> > > - : MaxMemory(RoundUpTo(M, kCacheLineSize)) {}
> > > + : MaxMemory(RoundUpTo(M, kCacheLineSize)),
> > > + BackingStore(nullptr),
> > > + AlignedNextBlock(nullptr),
> > > + AllocatedBlocks(0),
> > > + Mutex() {}
> > > +
> > > + Allocator(const Allocator &) = delete;
> > > + Allocator &operator=(const Allocator &) = delete;
> > > +
> > > + Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
> > > + SpinMutexLock L0(&Mutex);
> > > + SpinMutexLock L1(&O.Mutex);
> > > + MaxMemory = O.MaxMemory;
> > > + O.MaxMemory = 0;
> > > + BackingStore = O.BackingStore;
> > > + O.BackingStore = nullptr;
> > > + AlignedNextBlock = O.AlignedNextBlock;
> > > + O.AlignedNextBlock = nullptr;
> > > + AllocatedBlocks = O.AllocatedBlocks;
> > > + O.AllocatedBlocks = 0;
> > > + }
> > > +
> > > + Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
> > > + SpinMutexLock L0(&Mutex);
> > > + SpinMutexLock L1(&O.Mutex);
> > > + MaxMemory = O.MaxMemory;
> > > + O.MaxMemory = 0;
> > > + if (BackingStore != nullptr)
> > > + deallocate(BackingStore, MaxMemory);
> > > + BackingStore = O.BackingStore;
> > > + O.BackingStore = nullptr;
> > > + AlignedNextBlock = O.AlignedNextBlock;
> > > + O.AlignedNextBlock = nullptr;
> > > + AllocatedBlocks = O.AllocatedBlocks;
> > > + O.AllocatedBlocks = 0;
> > > + return *this;
> > > + }
> > >
> > > Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }
> > >
> > >
> > > Modified: compiler-rt/trunk/lib/xray/xray_function_call_trie.h
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_function_call_trie.h?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/xray_function_call_trie.h (original)
> > > +++ compiler-rt/trunk/lib/xray/xray_function_call_trie.h Tue Dec 4 22:44:34 2018
> > > @@ -98,9 +98,6 @@ public:
> > > struct NodeIdPair {
> > > Node *NodePtr;
> > > int32_t FId;
> > > -
> > > - // Constructor for inplace-construction.
> > > - NodeIdPair(Node *N, int32_t F) : NodePtr(N), FId(F) {}
> > > };
> > >
> > > using NodeIdPairArray = Array<NodeIdPair>;
> > > @@ -118,15 +115,6 @@ public:
> > > uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
> > > int32_t FId;
> > >
> > > - // We add a constructor here to allow us to inplace-construct through
> > > - // Array<...>'s AppendEmplace.
> > > - Node(Node *P, NodeIdPairAllocatorType &A, uint64_t CC, uint64_t CLT,
> > > - int32_t F) XRAY_NEVER_INSTRUMENT : Parent(P),
> > > - Callees(A),
> > > - CallCount(CC),
> > > - CumulativeLocalTime(CLT),
> > > - FId(F) {}
> > > -
> > > // TODO: Include the compact histogram.
> > > };
> > >
> > > @@ -135,13 +123,6 @@ private:
> > > uint64_t EntryTSC;
> > > Node *NodePtr;
> > > uint16_t EntryCPU;
> > > -
> > > - // We add a constructor here to allow us to inplace-construct through
> > > - // Array<...>'s AppendEmplace.
> > > - ShadowStackEntry(uint64_t T, Node *N, uint16_t C) XRAY_NEVER_INSTRUMENT
> > > - : EntryTSC{T},
> > > - NodePtr{N},
> > > - EntryCPU{C} {}
> > > };
> > >
> > > using NodeArray = Array<Node>;
> > > @@ -156,20 +137,71 @@ public:
> > > using RootAllocatorType = RootArray::AllocatorType;
> > > using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
> > >
> > > + // Use hosted aligned storage members to allow for trivial move and init.
> > > + // This also allows us to sidestep the potential-failing allocation issue.
> > > + typename std::aligned_storage<sizeof(NodeAllocatorType),
> > > + alignof(NodeAllocatorType)>::type
> > > + NodeAllocatorStorage;
> > > + typename std::aligned_storage<sizeof(RootAllocatorType),
> > > + alignof(RootAllocatorType)>::type
> > > + RootAllocatorStorage;
> > > + typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
> > > + alignof(ShadowStackAllocatorType)>::type
> > > + ShadowStackAllocatorStorage;
> > > + typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
> > > + alignof(NodeIdPairAllocatorType)>::type
> > > + NodeIdPairAllocatorStorage;
> > > +
> > > NodeAllocatorType *NodeAllocator = nullptr;
> > > RootAllocatorType *RootAllocator = nullptr;
> > > ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
> > > NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
> > >
> > > - Allocators() {}
> > > + Allocators() = default;
> > > Allocators(const Allocators &) = delete;
> > > Allocators &operator=(const Allocators &) = delete;
> > >
> > > - Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT
> > > - : NodeAllocator(O.NodeAllocator),
> > > - RootAllocator(O.RootAllocator),
> > > - ShadowStackAllocator(O.ShadowStackAllocator),
> > > - NodeIdPairAllocator(O.NodeIdPairAllocator) {
> > > + explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
> > > + new (&NodeAllocatorStorage) NodeAllocatorType(Max);
> > > + NodeAllocator =
> > > + reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> > > +
> > > + new (&RootAllocatorStorage) RootAllocatorType(Max);
> > > + RootAllocator =
> > > + reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> > > +
> > > + new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
> > > + ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> > > + &ShadowStackAllocatorStorage);
> > > +
> > > + new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
> > > + NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> > > + &NodeIdPairAllocatorStorage);
> > > + }
> > > +
> > > + Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
> > > + // Here we rely on the safety of memcpy'ing contents of the storage
> > > + // members, and then pointing the source pointers to nullptr.
> > > + internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
> > > + sizeof(NodeAllocatorType));
> > > + internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
> > > + sizeof(RootAllocatorType));
> > > + internal_memcpy(&ShadowStackAllocatorStorage,
> > > + &O.ShadowStackAllocatorStorage,
> > > + sizeof(ShadowStackAllocatorType));
> > > + internal_memcpy(&NodeIdPairAllocatorStorage,
> > > + &O.NodeIdPairAllocatorStorage,
> > > + sizeof(NodeIdPairAllocatorType));
> > > +
> > > + NodeAllocator =
> > > + reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> > > + RootAllocator =
> > > + reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> > > + ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> > > + &ShadowStackAllocatorStorage);
> > > + NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> > > + &NodeIdPairAllocatorStorage);
> > > +
> > > O.NodeAllocator = nullptr;
> > > O.RootAllocator = nullptr;
> > > O.ShadowStackAllocator = nullptr;
> > > @@ -177,79 +209,77 @@ public:
> > > }
> > >
> > > Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
> > > - {
> > > - auto Tmp = O.NodeAllocator;
> > > - O.NodeAllocator = this->NodeAllocator;
> > > - this->NodeAllocator = Tmp;
> > > - }
> > > - {
> > > - auto Tmp = O.RootAllocator;
> > > - O.RootAllocator = this->RootAllocator;
> > > - this->RootAllocator = Tmp;
> > > - }
> > > - {
> > > - auto Tmp = O.ShadowStackAllocator;
> > > - O.ShadowStackAllocator = this->ShadowStackAllocator;
> > > - this->ShadowStackAllocator = Tmp;
> > > - }
> > > - {
> > > - auto Tmp = O.NodeIdPairAllocator;
> > > - O.NodeIdPairAllocator = this->NodeIdPairAllocator;
> > > - this->NodeIdPairAllocator = Tmp;
> > > - }
> > > - return *this;
> > > - }
> > > -
> > > - ~Allocators() XRAY_NEVER_INSTRUMENT {
> > > - // Note that we cannot use delete on these pointers, as they need to be
> > > - // returned to the sanitizer_common library's internal memory tracking
> > > - // system.
> > > - if (NodeAllocator != nullptr) {
> > > + // When moving into an existing instance, we ensure that we clean up the
> > > + // current allocators.
> > > + if (NodeAllocator)
> > > NodeAllocator->~NodeAllocatorType();
> > > - deallocate(NodeAllocator);
> > > + if (O.NodeAllocator) {
> > > + new (&NodeAllocatorStorage)
> > > + NodeAllocatorType(std::move(*O.NodeAllocator));
> > > + NodeAllocator =
> > > + reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> > > + O.NodeAllocator = nullptr;
> > > + } else {
> > > NodeAllocator = nullptr;
> > > }
> > > - if (RootAllocator != nullptr) {
> > > +
> > > + if (RootAllocator)
> > > RootAllocator->~RootAllocatorType();
> > > - deallocate(RootAllocator);
> > > + if (O.RootAllocator) {
> > > + new (&RootAllocatorStorage)
> > > + RootAllocatorType(std::move(*O.RootAllocator));
> > > + RootAllocator =
> > > + reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> > > + O.RootAllocator = nullptr;
> > > + } else {
> > > RootAllocator = nullptr;
> > > }
> > > - if (ShadowStackAllocator != nullptr) {
> > > +
> > > + if (ShadowStackAllocator)
> > > ShadowStackAllocator->~ShadowStackAllocatorType();
> > > - deallocate(ShadowStackAllocator);
> > > + if (O.ShadowStackAllocator) {
> > > + new (&ShadowStackAllocatorStorage)
> > > + ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
> > > + ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> > > + &ShadowStackAllocatorStorage);
> > > + O.ShadowStackAllocator = nullptr;
> > > + } else {
> > > ShadowStackAllocator = nullptr;
> > > }
> > > - if (NodeIdPairAllocator != nullptr) {
> > > +
> > > + if (NodeIdPairAllocator)
> > > NodeIdPairAllocator->~NodeIdPairAllocatorType();
> > > - deallocate(NodeIdPairAllocator);
> > > + if (O.NodeIdPairAllocator) {
> > > + new (&NodeIdPairAllocatorStorage)
> > > + NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
> > > + NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> > > + &NodeIdPairAllocatorStorage);
> > > + O.NodeIdPairAllocator = nullptr;
> > > + } else {
> > > NodeIdPairAllocator = nullptr;
> > > }
> > > +
> > > + return *this;
> > > + }
> > > +
> > > + ~Allocators() XRAY_NEVER_INSTRUMENT {
> > > + if (NodeAllocator != nullptr)
> > > + NodeAllocator->~NodeAllocatorType();
> > > + if (RootAllocator != nullptr)
> > > + RootAllocator->~RootAllocatorType();
> > > + if (ShadowStackAllocator != nullptr)
> > > + ShadowStackAllocator->~ShadowStackAllocatorType();
> > > + if (NodeIdPairAllocator != nullptr)
> > > + NodeIdPairAllocator->~NodeIdPairAllocatorType();
> > > }
> > > };
> > >
> > > - // TODO: Support configuration of options through the arguments.
> > > static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
> > > return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
> > > }
> > >
> > > static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
> > > - Allocators A;
> > > - auto NodeAllocator = allocate<Allocators::NodeAllocatorType>();
> > > - new (NodeAllocator) Allocators::NodeAllocatorType(Max);
> > > - A.NodeAllocator = NodeAllocator;
> > > -
> > > - auto RootAllocator = allocate<Allocators::RootAllocatorType>();
> > > - new (RootAllocator) Allocators::RootAllocatorType(Max);
> > > - A.RootAllocator = RootAllocator;
> > > -
> > > - auto ShadowStackAllocator =
> > > - allocate<Allocators::ShadowStackAllocatorType>();
> > > - new (ShadowStackAllocator) Allocators::ShadowStackAllocatorType(Max);
> > > - A.ShadowStackAllocator = ShadowStackAllocator;
> > > -
> > > - auto NodeIdPairAllocator = allocate<NodeIdPairAllocatorType>();
> > > - new (NodeIdPairAllocator) NodeIdPairAllocatorType(Max);
> > > - A.NodeIdPairAllocator = NodeIdPairAllocator;
> > > + Allocators A(Max);
> > > return A;
> > > }
> > >
> > > @@ -257,14 +287,38 @@ private:
> > > NodeArray Nodes;
> > > RootArray Roots;
> > > ShadowStackArray ShadowStack;
> > > - NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
> > > + NodeIdPairAllocatorType *NodeIdPairAllocator;
> > > + uint32_t OverflowedFunctions;
> > >
> > > public:
> > > explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
> > > : Nodes(*A.NodeAllocator),
> > > Roots(*A.RootAllocator),
> > > ShadowStack(*A.ShadowStackAllocator),
> > > - NodeIdPairAllocator(A.NodeIdPairAllocator) {}
> > > + NodeIdPairAllocator(A.NodeIdPairAllocator),
> > > + OverflowedFunctions(0) {}
> > > +
> > > + FunctionCallTrie() = delete;
> > > + FunctionCallTrie(const FunctionCallTrie &) = delete;
> > > + FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
> > > +
> > > + FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
> > > + : Nodes(std::move(O.Nodes)),
> > > + Roots(std::move(O.Roots)),
> > > + ShadowStack(std::move(O.ShadowStack)),
> > > + NodeIdPairAllocator(O.NodeIdPairAllocator),
> > > + OverflowedFunctions(O.OverflowedFunctions) {}
> > > +
> > > + FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
> > > + Nodes = std::move(O.Nodes);
> > > + Roots = std::move(O.Roots);
> > > + ShadowStack = std::move(O.ShadowStack);
> > > + NodeIdPairAllocator = O.NodeIdPairAllocator;
> > > + OverflowedFunctions = O.OverflowedFunctions;
> > > + return *this;
> > > + }
> > > +
> > > + ~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
> > >
> > > void enterFunction(const int32_t FId, uint64_t TSC,
> > > uint16_t CPU) XRAY_NEVER_INSTRUMENT {
> > > @@ -272,12 +326,17 @@ public:
> > > // This function primarily deals with ensuring that the ShadowStack is
> > > // consistent and ready for when an exit event is encountered.
> > > if (UNLIKELY(ShadowStack.empty())) {
> > > - auto NewRoot =
> > > - Nodes.AppendEmplace(nullptr, *NodeIdPairAllocator, 0u, 0u, FId);
> > > + auto NewRoot = Nodes.AppendEmplace(
> > > + nullptr, NodeIdPairArray{*NodeIdPairAllocator}, 0u, 0u, FId);
> > > if (UNLIKELY(NewRoot == nullptr))
> > > return;
> > > - Roots.Append(NewRoot);
> > > - ShadowStack.AppendEmplace(TSC, NewRoot, CPU);
> > > + if (Roots.Append(NewRoot) == nullptr)
> > > + return;
> > > + if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
> > > + Roots.trim(1);
> > > + ++OverflowedFunctions;
> > > + return;
> > > + }
> > > return;
> > > }
> > >
> > > @@ -291,29 +350,39 @@ public:
> > > [FId](const NodeIdPair &NR) { return NR.FId == FId; });
> > > if (Callee != nullptr) {
> > > CHECK_NE(Callee->NodePtr, nullptr);
> > > - ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU);
> > > + if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
> > > + ++OverflowedFunctions;
> > > return;
> > > }
> > >
> > > // This means we've never seen this stack before, create a new node here.
> > > - auto NewNode =
> > > - Nodes.AppendEmplace(TopNode, *NodeIdPairAllocator, 0u, 0u, FId);
> > > + auto NewNode = Nodes.AppendEmplace(
> > > + TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
> > > if (UNLIKELY(NewNode == nullptr))
> > > return;
> > > DCHECK_NE(NewNode, nullptr);
> > > TopNode->Callees.AppendEmplace(NewNode, FId);
> > > - ShadowStack.AppendEmplace(TSC, NewNode, CPU);
> > > + if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
> > > + ++OverflowedFunctions;
> > > DCHECK_NE(ShadowStack.back().NodePtr, nullptr);
> > > return;
> > > }
> > >
> > > void exitFunction(int32_t FId, uint64_t TSC,
> > > uint16_t CPU) XRAY_NEVER_INSTRUMENT {
> > > + // If we're exiting functions that have "overflowed" or don't fit into the
> > > + // stack due to allocator constraints, we then decrement that count first.
> > > + if (OverflowedFunctions) {
> > > + --OverflowedFunctions;
> > > + return;
> > > + }
> > > +
> > > // When we exit a function, we look up the ShadowStack to see whether we've
> > > // entered this function before. We do as little processing here as we can,
> > > // since most of the hard work would have already been done at function
> > > // entry.
> > > uint64_t CumulativeTreeTime = 0;
> > > +
> > > while (!ShadowStack.empty()) {
> > > const auto &Top = ShadowStack.back();
> > > auto TopNode = Top.NodePtr;
> > > @@ -380,7 +449,7 @@ public:
> > > for (const auto Root : getRoots()) {
> > > // Add a node in O for this root.
> > > auto NewRoot = O.Nodes.AppendEmplace(
> > > - nullptr, *O.NodeIdPairAllocator, Root->CallCount,
> > > + nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
> > > Root->CumulativeLocalTime, Root->FId);
> > >
> > > // Because we cannot allocate more memory we should bail out right away.
> > > @@ -399,8 +468,9 @@ public:
> > > DFSStack.trim(1);
> > > for (const auto Callee : NP.Node->Callees) {
> > > auto NewNode = O.Nodes.AppendEmplace(
> > > - NP.NewNode, *O.NodeIdPairAllocator, Callee.NodePtr->CallCount,
> > > - Callee.NodePtr->CumulativeLocalTime, Callee.FId);
> > > + NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
> > > + Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
> > > + Callee.FId);
> > > if (UNLIKELY(NewNode == nullptr))
> > > return;
> > > NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId);
> > > @@ -433,8 +503,9 @@ public:
> > > auto R = O.Roots.find_element(
> > > [&](const Node *Node) { return Node->FId == Root->FId; });
> > > if (R == nullptr) {
> > > - TargetRoot = O.Nodes.AppendEmplace(nullptr, *O.NodeIdPairAllocator, 0u,
> > > - 0u, Root->FId);
> > > + TargetRoot = O.Nodes.AppendEmplace(
> > > + nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
> > > + Root->FId);
> > > if (UNLIKELY(TargetRoot == nullptr))
> > > return;
> > >
> > > @@ -459,7 +530,8 @@ public:
> > > });
> > > if (TargetCallee == nullptr) {
> > > auto NewTargetNode = O.Nodes.AppendEmplace(
> > > - NT.TargetNode, *O.NodeIdPairAllocator, 0u, 0u, Callee.FId);
> > > + NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
> > > + Callee.FId);
> > >
> > > if (UNLIKELY(NewTargetNode == nullptr))
> > > return;
> > >
> > > Modified: compiler-rt/trunk/lib/xray/xray_profile_collector.cc
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_profile_collector.cc?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/xray_profile_collector.cc (original)
> > > +++ compiler-rt/trunk/lib/xray/xray_profile_collector.cc Tue Dec 4 22:44:34 2018
> > > @@ -86,7 +86,8 @@ static FunctionCallTrie::Allocators *Glo
> > >
> > > void post(const FunctionCallTrie &T, tid_t TId) XRAY_NEVER_INSTRUMENT {
> > > static pthread_once_t Once = PTHREAD_ONCE_INIT;
> > > - pthread_once(&Once, +[] { reset(); });
> > > + pthread_once(
> > > + &Once, +[]() XRAY_NEVER_INSTRUMENT { reset(); });
> > >
> > > ThreadTrie *Item = nullptr;
> > > {
> > > @@ -95,13 +96,14 @@ void post(const FunctionCallTrie &T, tid
> > > return;
> > >
> > > Item = ThreadTries->Append({});
> > > + if (Item == nullptr)
> > > + return;
> > > +
> > > Item->TId = TId;
> > > auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
> > > new (Trie) FunctionCallTrie(*GlobalAllocators);
> > > + T.deepCopyInto(*Trie);
> > > }
> > > -
> > > - auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
> > > - T.deepCopyInto(*Trie);
> > > }
> > >
> > > // A PathArray represents the function id's representing a stack trace. In this
> > > @@ -115,13 +117,7 @@ struct ProfileRecord {
> > > // The Path in this record is the function id's from the leaf to the root of
> > > // the function call stack as represented from a FunctionCallTrie.
> > > PathArray Path;
> > > - const FunctionCallTrie::Node *Node = nullptr;
> > > -
> > > - // Constructor for in-place construction.
> > > - ProfileRecord(PathAllocator &A,
> > > - const FunctionCallTrie::Node *N) XRAY_NEVER_INSTRUMENT
> > > - : Path(A),
> > > - Node(N) {}
> > > + const FunctionCallTrie::Node *Node;
> > > };
> > >
> > > namespace {
> > > @@ -142,7 +138,7 @@ populateRecords(ProfileRecordArray &PRs,
> > > while (!DFSStack.empty()) {
> > > auto Node = DFSStack.back();
> > > DFSStack.trim(1);
> > > - auto Record = PRs.AppendEmplace(PA, Node);
> > > + auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
> > > if (Record == nullptr)
> > > return;
> > > DCHECK_NE(Record, nullptr);
> > > @@ -203,7 +199,7 @@ void serialize() XRAY_NEVER_INSTRUMENT {
> > >
> > > // Clear out the global ProfileBuffers, if it's not empty.
> > > for (auto &B : *ProfileBuffers)
> > > - deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
> > > + deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
> > > ProfileBuffers->trim(ProfileBuffers->size());
> > >
> > > if (ThreadTries->empty())
> > > @@ -278,8 +274,8 @@ void reset() XRAY_NEVER_INSTRUMENT {
> > >
> > > GlobalAllocators =
> > > reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorStorage);
> > > - new (GlobalAllocators) FunctionCallTrie::Allocators();
> > > - *GlobalAllocators = FunctionCallTrie::InitAllocators();
> > > + new (GlobalAllocators)
> > > + FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> > >
> > > if (ThreadTriesAllocator != nullptr)
> > > ThreadTriesAllocator->~ThreadTriesArrayAllocator();
> > > @@ -312,8 +308,10 @@ XRayBuffer nextBuffer(XRayBuffer B) XRAY
> > > static pthread_once_t Once = PTHREAD_ONCE_INIT;
> > > static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
> > > FileHeaderStorage;
> > > - pthread_once(&Once,
> > > - +[] { new (&FileHeaderStorage) XRayProfilingFileHeader{}; });
> > > + pthread_once(
> > > + &Once, +[]() XRAY_NEVER_INSTRUMENT {
> > > + new (&FileHeaderStorage) XRayProfilingFileHeader{};
> > > + });
> > >
> > > if (UNLIKELY(B.Data == nullptr)) {
> > > // The first buffer should always contain the file header information.
> > >
> > > Modified: compiler-rt/trunk/lib/xray/xray_profiling.cc
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_profiling.cc?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/xray_profiling.cc (original)
> > > +++ compiler-rt/trunk/lib/xray/xray_profiling.cc Tue Dec 4 22:44:34 2018
> > > @@ -31,67 +31,112 @@ namespace __xray {
> > >
> > > namespace {
> > >
> > > -atomic_sint32_t ProfilerLogFlushStatus = {
> > > +static atomic_sint32_t ProfilerLogFlushStatus = {
> > > XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
> > >
> > > -atomic_sint32_t ProfilerLogStatus = {XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
> > > +static atomic_sint32_t ProfilerLogStatus = {
> > > + XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
> > >
> > > -SpinMutex ProfilerOptionsMutex;
> > > +static SpinMutex ProfilerOptionsMutex;
> > >
> > > -struct alignas(64) ProfilingData {
> > > - FunctionCallTrie::Allocators *Allocators;
> > > - FunctionCallTrie *FCT;
> > > +struct ProfilingData {
> > > + atomic_uintptr_t Allocators;
> > > + atomic_uintptr_t FCT;
> > > };
> > >
> > > static pthread_key_t ProfilingKey;
> > >
> > > -thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators)>::type
> > > +thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
> > > + alignof(FunctionCallTrie::Allocators)>::type
> > > AllocatorsStorage;
> > > -thread_local std::aligned_storage<sizeof(FunctionCallTrie)>::type
> > > +thread_local std::aligned_storage<sizeof(FunctionCallTrie),
> > > + alignof(FunctionCallTrie)>::type
> > > FunctionCallTrieStorage;
> > > -thread_local std::aligned_storage<sizeof(ProfilingData)>::type ThreadStorage{};
> > > +thread_local ProfilingData TLD{{0}, {0}};
> > > +thread_local atomic_uint8_t ReentranceGuard{0};
> > >
> > > -static ProfilingData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
> > > - thread_local auto ThreadOnce = [] {
> > > - new (&ThreadStorage) ProfilingData{};
> > > - auto *Allocators =
> > > - reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> > > - new (Allocators) FunctionCallTrie::Allocators();
> > > - *Allocators = FunctionCallTrie::InitAllocators();
> > > - auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
> > > - new (FCT) FunctionCallTrie(*Allocators);
> > > - auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> > > - TLD.Allocators = Allocators;
> > > - TLD.FCT = FCT;
> > > - pthread_setspecific(ProfilingKey, &ThreadStorage);
> > > +// We use a separate guard for ensuring that for this thread, if we're already
> > > +// cleaning up, that any signal handlers don't attempt to cleanup nor
> > > +// initialise.
> > > +thread_local atomic_uint8_t TLDInitGuard{0};
> > > +
> > > +// We also use a separate latch to signal that the thread is exiting, and
> > > +// non-essential work should be ignored (things like recording events, etc.).
> > > +thread_local atomic_uint8_t ThreadExitingLatch{0};
> > > +
> > > +static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
> > > + thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
> > > + pthread_setspecific(ProfilingKey, &TLD);
> > > return false;
> > > }();
> > > (void)ThreadOnce;
> > >
> > > - auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> > > -
> > > - if (UNLIKELY(TLD.Allocators == nullptr || TLD.FCT == nullptr)) {
> > > - auto *Allocators =
> > > - reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> > > - new (Allocators) FunctionCallTrie::Allocators();
> > > - *Allocators = FunctionCallTrie::InitAllocators();
> > > - auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
> > > - new (FCT) FunctionCallTrie(*Allocators);
> > > - TLD.Allocators = Allocators;
> > > - TLD.FCT = FCT;
> > > + RecursionGuard TLDInit(TLDInitGuard);
> > > + if (!TLDInit)
> > > + return nullptr;
> > > +
> > > + if (atomic_load_relaxed(&ThreadExitingLatch))
> > > + return nullptr;
> > > +
> > > + uintptr_t Allocators = 0;
> > > + if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
> > > + memory_order_acq_rel)) {
> > > + new (&AllocatorsStorage)
> > > + FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> > > + Allocators = reinterpret_cast<uintptr_t>(
> > > + reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
> > > + atomic_store(&TLD.Allocators, Allocators, memory_order_release);
> > > + }
> > > +
> > > + uintptr_t FCT = 0;
> > > + if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
> > > + new (&FunctionCallTrieStorage) FunctionCallTrie(
> > > + *reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators));
> > > + FCT = reinterpret_cast<uintptr_t>(
> > > + reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
> > > + atomic_store(&TLD.FCT, FCT, memory_order_release);
> > > }
> > >
> > > - return *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> > > + if (FCT == 1)
> > > + return nullptr;
> > > +
> > > + return &TLD;
> > > }
> > >
> > > static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
> > > - auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> > > - if (TLD.Allocators != nullptr && TLD.FCT != nullptr) {
> > > - TLD.FCT->~FunctionCallTrie();
> > > - TLD.Allocators->~Allocators();
> > > - TLD.FCT = nullptr;
> > > - TLD.Allocators = nullptr;
> > > - }
> > > + RecursionGuard TLDInit(TLDInitGuard);
> > > + if (!TLDInit)
> > > + return;
> > > +
> > > + auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
> > > + if (FCT == reinterpret_cast<uintptr_t>(reinterpret_cast<FunctionCallTrie *>(
> > > + &FunctionCallTrieStorage)))
> > > + reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();
> > > +
> > > + auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
> > > + if (Allocators ==
> > > + reinterpret_cast<uintptr_t>(
> > > + reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
> > > + reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
> > > +}
> > > +
> > > +static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
> > > + RecursionGuard TLDInit(TLDInitGuard);
> > > + if (!TLDInit)
> > > + return;
> > > +
> > > + uintptr_t P = atomic_load(&T.FCT, memory_order_acquire);
> > > + if (P != reinterpret_cast<uintptr_t>(
> > > + reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
> > > + return;
> > > +
> > > + auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
> > > + DCHECK_NE(FCT, nullptr);
> > > +
> > > + if (!FCT->getRoots().empty())
> > > + profileCollectorService::post(*FCT, GetTid());
> > > +
> > > + cleanupTLD();
> > > }
> > >
> > > } // namespace
> > > @@ -104,9 +149,6 @@ const char *profilingCompilerDefinedFlag
> > > #endif
> > > }
> > >
> > > -atomic_sint32_t ProfileFlushStatus = {
> > > - XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
> > > -
> > > XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
> > > if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
> > > XRayLogInitStatus::XRAY_LOG_FINALIZED) {
> > > @@ -115,14 +157,27 @@ XRayLogFlushStatus profilingFlush() XRAY
> > > return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
> > > }
> > >
> > > - s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
> > > - if (!atomic_compare_exchange_strong(&ProfilerLogFlushStatus, &Result,
> > > - XRayLogFlushStatus::XRAY_LOG_FLUSHING,
> > > - memory_order_acq_rel)) {
> > > + RecursionGuard SignalGuard(ReentranceGuard);
> > > + if (!SignalGuard) {
> > > if (Verbosity())
> > > - Report("Not flushing profiles, implementation still finalizing.\n");
> > > + Report("Cannot finalize properly inside a signal handler!\n");
> > > + atomic_store(&ProfilerLogFlushStatus,
> > > + XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
> > > + memory_order_release);
> > > + return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
> > > }
> > >
> > > + s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
> > > + XRayLogFlushStatus::XRAY_LOG_FLUSHING,
> > > + memory_order_acq_rel);
> > > + if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
> > > + if (Verbosity())
> > > + Report("Not flushing profiles, implementation still flushing.\n");
> > > + return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
> > > + }
> > > +
> > > + postCurrentThreadFCT(TLD);
> > > +
> > > // At this point, we'll create the file that will contain the profile, but
> > > // only if the options say so.
> > > if (!profilingFlags()->no_flush) {
> > > @@ -150,33 +205,19 @@ XRayLogFlushStatus profilingFlush() XRAY
> > > }
> > > }
> > >
> > > - profileCollectorService::reset();
> > > -
> > > - // Flush the current thread's local data structures as well.
> > > + // Clean up the current thread's TLD information as well.
> > > cleanupTLD();
> > >
> > > + profileCollectorService::reset();
> > > +
> > > + atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
> > > + memory_order_release);
> > > atomic_store(&ProfilerLogStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
> > > memory_order_release);
> > >
> > > return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
> > > }
> > >
> > > -namespace {
> > > -
> > > -thread_local atomic_uint8_t ReentranceGuard{0};
> > > -
> > > -static void postCurrentThreadFCT(ProfilingData &TLD) XRAY_NEVER_INSTRUMENT {
> > > - if (TLD.Allocators == nullptr || TLD.FCT == nullptr)
> > > - return;
> > > -
> > > - if (!TLD.FCT->getRoots().empty())
> > > - profileCollectorService::post(*TLD.FCT, GetTid());
> > > -
> > > - cleanupTLD();
> > > -}
> > > -
> > > -} // namespace
> > > -
> > > void profilingHandleArg0(int32_t FuncId,
> > > XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
> > > unsigned char CPU;
> > > @@ -186,22 +227,29 @@ void profilingHandleArg0(int32_t FuncId,
> > > return;
> > >
> > > auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
> > > + if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
> > > + Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
> > > + return;
> > > +
> > > if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
> > > Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
> > > - auto &TLD = getThreadLocalData();
> > > postCurrentThreadFCT(TLD);
> > > return;
> > > }
> > >
> > > - auto &TLD = getThreadLocalData();
> > > + auto T = getThreadLocalData();
> > > + if (T == nullptr)
> > > + return;
> > > +
> > > + auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
> > > switch (Entry) {
> > > case XRayEntryType::ENTRY:
> > > case XRayEntryType::LOG_ARGS_ENTRY:
> > > - TLD.FCT->enterFunction(FuncId, TSC, CPU);
> > > + FCT->enterFunction(FuncId, TSC, CPU);
> > > break;
> > > case XRayEntryType::EXIT:
> > > case XRayEntryType::TAIL:
> > > - TLD.FCT->exitFunction(FuncId, TSC, CPU);
> > > + FCT->exitFunction(FuncId, TSC, CPU);
> > > break;
> > > default:
> > > // FIXME: Handle bugs.
> > > @@ -227,15 +275,14 @@ XRayLogInitStatus profilingFinalize() XR
> > > // Wait a grace period to allow threads to see that we're finalizing.
> > > SleepForMillis(profilingFlags()->grace_period_ms);
> > >
> > > - // We also want to make sure that the current thread's data is cleaned up, if
> > > - // we have any. We need to ensure that the call to postCurrentThreadFCT() is
> > > - // guarded by our recursion guard.
> > > - auto &TLD = getThreadLocalData();
> > > - {
> > > - RecursionGuard G(ReentranceGuard);
> > > - if (G)
> > > - postCurrentThreadFCT(TLD);
> > > - }
> > > + // If we for some reason are entering this function from an instrumented
> > > + // handler, we bail out.
> > > + RecursionGuard G(ReentranceGuard);
> > > + if (!G)
> > > + return static_cast<XRayLogInitStatus>(CurrentStatus);
> > > +
> > > + // Post the current thread's data if we have any.
> > > + postCurrentThreadFCT(TLD);
> > >
> > > // Then we force serialize the log data.
> > > profileCollectorService::serialize();
> > > @@ -248,6 +295,10 @@ XRayLogInitStatus profilingFinalize() XR
> > > XRayLogInitStatus
> > > profilingLoggingInit(UNUSED size_t BufferSize, UNUSED size_t BufferMax,
> > > void *Options, size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
> > > + RecursionGuard G(ReentranceGuard);
> > > + if (!G)
> > > + return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
> > > +
> > > s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
> > > if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
> > > XRayLogInitStatus::XRAY_LOG_INITIALIZING,
> > > @@ -282,39 +333,51 @@ profilingLoggingInit(UNUSED size_t Buffe
> > >
> > > // We need to set up the exit handlers.
> > > static pthread_once_t Once = PTHREAD_ONCE_INIT;
> > > - pthread_once(&Once, +[] {
> > > - pthread_key_create(&ProfilingKey, +[](void *P) {
> > > - // This is the thread-exit handler.
> > > - auto &TLD = *reinterpret_cast<ProfilingData *>(P);
> > > - if (TLD.Allocators == nullptr && TLD.FCT == nullptr)
> > > - return;
> > > -
> > > - {
> > > - // If we're somehow executing this while inside a non-reentrant-friendly
> > > - // context, we skip attempting to post the current thread's data.
> > > - RecursionGuard G(ReentranceGuard);
> > > - if (G)
> > > - postCurrentThreadFCT(TLD);
> > > - }
> > > - });
> > > -
> > > - // We also need to set up an exit handler, so that we can get the profile
> > > - // information at exit time. We use the C API to do this, to not rely on C++
> > > - // ABI functions for registering exit handlers.
> > > - Atexit(+[] {
> > > - // Finalize and flush.
> > > - if (profilingFinalize() != XRAY_LOG_FINALIZED) {
> > > - cleanupTLD();
> > > - return;
> > > - }
> > > - if (profilingFlush() != XRAY_LOG_FLUSHED) {
> > > - cleanupTLD();
> > > - return;
> > > - }
> > > - if (Verbosity())
> > > - Report("XRay Profile flushed at exit.");
> > > - });
> > > - });
> > > + pthread_once(
> > > + &Once, +[] {
> > > + pthread_key_create(
> > > + &ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
> > > + if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
> > > + return;
> > > +
> > > + if (P == nullptr)
> > > + return;
> > > +
> > > + auto T = reinterpret_cast<ProfilingData *>(P);
> > > + if (atomic_load_relaxed(&T->Allocators) == 0)
> > > + return;
> > > +
> > > + {
> > > + // If we're somehow executing this while inside a
> > > + // non-reentrant-friendly context, we skip attempting to post
> > > + // the current thread's data.
> > > + RecursionGuard G(ReentranceGuard);
> > > + if (!G)
> > > + return;
> > > +
> > > + postCurrentThreadFCT(*T);
> > > + }
> > > + });
> > > +
> > > + // We also need to set up an exit handler, so that we can get the
> > > + // profile information at exit time. We use the C API to do this, to not
> > > + // rely on C++ ABI functions for registering exit handlers.
> > > + Atexit(+[]() XRAY_NEVER_INSTRUMENT {
> > > + if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
> > > + return;
> > > +
> > > + auto Cleanup =
> > > + at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });
> > > +
> > > + // Finalize and flush.
> > > + if (profilingFinalize() != XRAY_LOG_FINALIZED ||
> > > + profilingFlush() != XRAY_LOG_FLUSHED)
> > > + return;
> > > +
> > > + if (Verbosity())
> > > + Report("XRay Profile flushed at exit.");
> > > + });
> > > + });
> > >
> > > __xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
> > > __xray_set_handler(profilingHandleArg0);
> > >
> > > Modified: compiler-rt/trunk/lib/xray/xray_segmented_array.h
> > > URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_segmented_array.h?rev=348335&r1=348334&r2=348335&view=diff
> > > ==============================================================================
> > > --- compiler-rt/trunk/lib/xray/xray_segmented_array.h (original)
> > > +++ compiler-rt/trunk/lib/xray/xray_segmented_array.h Tue Dec 4 22:44:34 2018
> > > @@ -32,14 +32,9 @@ namespace __xray {
> > > /// is destroyed. When an Array is destroyed, it will destroy elements in the
> > > /// backing store but will not free the memory.
> > > template <class T> class Array {
> > > - struct SegmentBase {
> > > - SegmentBase *Prev;
> > > - SegmentBase *Next;
> > > - };
> > > -
> > > - // We want each segment of the array to be cache-line aligned, and elements of
> > > - // the array be offset from the beginning of the segment.
> > > - struct Segment : SegmentBase {
> > > + struct Segment {
> > > + Segment *Prev;
> > > + Segment *Next;
> > > char Data[1];
> > > };
> > >
> > > @@ -62,91 +57,35 @@ public:
> > > // kCacheLineSize-multiple segments, minus the size of two pointers.
> > > //
> > > // - Request cacheline-multiple sized elements from the allocator.
> > > - static constexpr size_t AlignedElementStorageSize =
> > > + static constexpr uint64_t AlignedElementStorageSize =
> > > sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
> > >
> > > - static constexpr size_t SegmentSize =
> > > - nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);
> > > + static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;
> > > +
> > > + static constexpr uint64_t SegmentSize = nearest_boundary(
> > > + SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);
> > >
> > > using AllocatorType = Allocator<SegmentSize>;
> > >
> > > - static constexpr size_t ElementsPerSegment =
> > > - (SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));
> > > + static constexpr uint64_t ElementsPerSegment =
> > > + (SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));
> > >
> > > static_assert(ElementsPerSegment > 0,
> > > "Must have at least 1 element per segment.");
> > >
> > > - static SegmentBase SentinelSegment;
> > > + static Segment SentinelSegment;
> > >
> > > - using size_type = size_t;
> > > + using size_type = uint64_t;
> > >
> > > private:
> > > - AllocatorType *Alloc;
> > > - SegmentBase *Head = &SentinelSegment;
> > > - SegmentBase *Tail = &SentinelSegment;
> > > - size_t Size = 0;
> > > -
> > > - // Here we keep track of segments in the freelist, to allow us to re-use
> > > - // segments when elements are trimmed off the end.
> > > - SegmentBase *Freelist = &SentinelSegment;
> > > -
> > > - Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
> > > - // We need to handle the case in which enough elements have been trimmed to
> > > - // allow us to re-use segments we've allocated before. For this we look into
> > > - // the Freelist, to see whether we need to actually allocate new blocks or
> > > - // just re-use blocks we've already seen before.
> > > - if (Freelist != &SentinelSegment) {
> > > - auto *FreeSegment = Freelist;
> > > - Freelist = FreeSegment->Next;
> > > - FreeSegment->Next = &SentinelSegment;
> > > - Freelist->Prev = &SentinelSegment;
> > > - return static_cast<Segment *>(FreeSegment);
> > > - }
> > > -
> > > - auto SegmentBlock = Alloc->Allocate();
> > > - if (SegmentBlock.Data == nullptr)
> > > - return nullptr;
> > > -
> > > - // Placement-new the Segment element at the beginning of the SegmentBlock.
> > > - auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
> > > - new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
> > > - return S;
> > > - }
> > > -
> > > - Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
> > > - DCHECK_EQ(Head, &SentinelSegment);
> > > - DCHECK_EQ(Tail, &SentinelSegment);
> > > - auto Segment = NewSegment();
> > > - if (Segment == nullptr)
> > > - return nullptr;
> > > - DCHECK_EQ(Segment->Next, &SentinelSegment);
> > > - DCHECK_EQ(Segment->Prev, &SentinelSegment);
> > > - Head = Tail = static_cast<SegmentBase *>(Segment);
> > > - return Segment;
> > > - }
> > > -
> > > - Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
> > > - auto S = NewSegment();
> > > - if (S == nullptr)
> > > - return nullptr;
> > > - DCHECK_NE(Tail, &SentinelSegment);
> > > - DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > - DCHECK_EQ(S->Prev, &SentinelSegment);
> > > - DCHECK_EQ(S->Next, &SentinelSegment);
> > > - Tail->Next = S;
> > > - S->Prev = Tail;
> > > - Tail = S;
> > > - return static_cast<Segment *>(Tail);
> > > - }
> > > -
> > > // This Iterator models a BidirectionalIterator.
> > > template <class U> class Iterator {
> > > - SegmentBase *S = &SentinelSegment;
> > > - size_t Offset = 0;
> > > - size_t Size = 0;
> > > + Segment *S = &SentinelSegment;
> > > + uint64_t Offset = 0;
> > > + uint64_t Size = 0;
> > >
> > > public:
> > > - Iterator(SegmentBase *IS, size_t Off, size_t S) XRAY_NEVER_INSTRUMENT
> > > + Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
> > > : S(IS),
> > > Offset(Off),
> > > Size(S) {}
> > > @@ -215,7 +154,7 @@ private:
> > >
> > > // We need to compute the character-aligned pointer, offset from the
> > > // segment's Data location to get the element in the position of Offset.
> > > - auto Base = static_cast<Segment *>(S)->Data;
> > > + auto Base = &S->Data;
> > > auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
> > > return *reinterpret_cast<U *>(AlignedOffset);
> > > }
> > > @@ -223,17 +162,183 @@ private:
> > > U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
> > > };
> > >
> > > + AllocatorType *Alloc;
> > > + Segment *Head;
> > > + Segment *Tail;
> > > +
> > > + // Here we keep track of segments in the freelist, to allow us to re-use
> > > + // segments when elements are trimmed off the end.
> > > + Segment *Freelist;
> > > + uint64_t Size;
> > > +
> > > + // ===============================
> > > + // In the following implementation, we work through the algorithms and the
> > > + // list operations using the following notation:
> > > + //
> > > + // - pred(s) is the predecessor (previous node accessor) and succ(s) is
> > > + // the successor (next node accessor).
> > > + //
> > > + // - S is a sentinel segment, which has the following property:
> > > + //
> > > + // pred(S) == succ(S) == S
> > > + //
> > > + // - @ is a loop operator, which can imply pred(s) == s if it appears on
> > > + // the left of s, or succ(s) == S if it appears on the right of s.
> > > + //
> > > + // - sL <-> sR : means a bidirectional relation between sL and sR, which
> > > + // means:
> > > + //
> > > + // succ(sL) == sR && pred(SR) == sL
> > > + //
> > > + // - sL -> sR : implies a unidirectional relation between sL and SR,
> > > + // with the following properties:
> > > + //
> > > + // succ(sL) == sR
> > > + //
> > > + // sL <- sR : implies a unidirectional relation between sR and sL,
> > > + // with the following properties:
> > > + //
> > > + // pred(sR) == sL
> > > + //
> > > + // ===============================
> > > +
> > > + Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
> > > + // We need to handle the case in which enough elements have been trimmed to
> > > + // allow us to re-use segments we've allocated before. For this we look into
> > > + // the Freelist, to see whether we need to actually allocate new blocks or
> > > + // just re-use blocks we've already seen before.
> > > + if (Freelist != &SentinelSegment) {
> > > + // The current state of lists resemble something like this at this point:
> > > + //
> > > + // Freelist: @S@<-f0->...<->fN->@S@
> > > + // ^ Freelist
> > > + //
> > > + // We want to perform a splice of `f0` from Freelist to a temporary list,
> > > + // which looks like:
> > > + //
> > > + // Templist: @S@<-f0->@S@
> > > + // ^ FreeSegment
> > > + //
> > > + // Our algorithm preconditions are:
> > > + DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> > > +
> > > + // Then the algorithm we implement is:
> > > + //
> > > + // SFS = Freelist
> > > + // Freelist = succ(Freelist)
> > > + // if (Freelist != S)
> > > + // pred(Freelist) = S
> > > + // succ(SFS) = S
> > > + // pred(SFS) = S
> > > + //
> > > + auto *FreeSegment = Freelist;
> > > + Freelist = Freelist->Next;
> > > +
> > > + // Note that we need to handle the case where Freelist is now pointing to
> > > + // S, which we don't want to be overwriting.
> > > + // TODO: Determine whether the cost of the branch is higher than the cost
> > > + // of the blind assignment.
> > > + if (Freelist != &SentinelSegment)
> > > + Freelist->Prev = &SentinelSegment;
> > > +
> > > + FreeSegment->Next = &SentinelSegment;
> > > + FreeSegment->Prev = &SentinelSegment;
> > > +
> > > + // Our postconditions are:
> > > + DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> > > + DCHECK_NE(FreeSegment, &SentinelSegment);
> > > + return FreeSegment;
> > > + }
> > > +
> > > + auto SegmentBlock = Alloc->Allocate();
> > > + if (SegmentBlock.Data == nullptr)
> > > + return nullptr;
> > > +
> > > + // Placement-new the Segment element at the beginning of the SegmentBlock.
> > > + new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
> > > + auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
> > > + return SB;
> > > + }
> > > +
> > > + Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
> > > + DCHECK_EQ(Head, &SentinelSegment);
> > > + DCHECK_EQ(Tail, &SentinelSegment);
> > > + auto S = NewSegment();
> > > + if (S == nullptr)
> > > + return nullptr;
> > > + DCHECK_EQ(S->Next, &SentinelSegment);
> > > + DCHECK_EQ(S->Prev, &SentinelSegment);
> > > + DCHECK_NE(S, &SentinelSegment);
> > > + Head = S;
> > > + Tail = S;
> > > + DCHECK_EQ(Head, Tail);
> > > + DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > + DCHECK_EQ(Tail->Prev, &SentinelSegment);
> > > + return S;
> > > + }
> > > +
> > > + Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
> > > + auto S = NewSegment();
> > > + if (S == nullptr)
> > > + return nullptr;
> > > + DCHECK_NE(Tail, &SentinelSegment);
> > > + DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > + DCHECK_EQ(S->Prev, &SentinelSegment);
> > > + DCHECK_EQ(S->Next, &SentinelSegment);
> > > + S->Prev = Tail;
> > > + Tail->Next = S;
> > > + Tail = S;
> > > + DCHECK_EQ(S, S->Prev->Next);
> > > + DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > + return S;
> > > + }
> > > +
> > > public:
> > > - explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT : Alloc(&A) {}
> > > + explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
> > > + : Alloc(&A),
> > > + Head(&SentinelSegment),
> > > + Tail(&SentinelSegment),
> > > + Freelist(&SentinelSegment),
> > > + Size(0) {}
> > > +
> > > + Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
> > > + Head(&SentinelSegment),
> > > + Tail(&SentinelSegment),
> > > + Freelist(&SentinelSegment),
> > > + Size(0) {}
> > >
> > > Array(const Array &) = delete;
> > > - Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
> > > - Head(O.Head),
> > > - Tail(O.Tail),
> > > - Size(O.Size) {
> > > + Array &operator=(const Array &) = delete;
> > > +
> > > + Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
> > > + Head(O.Head),
> > > + Tail(O.Tail),
> > > + Freelist(O.Freelist),
> > > + Size(O.Size) {
> > > + O.Alloc = nullptr;
> > > O.Head = &SentinelSegment;
> > > O.Tail = &SentinelSegment;
> > > O.Size = 0;
> > > + O.Freelist = &SentinelSegment;
> > > + }
> > > +
> > > + Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
> > > + Alloc = O.Alloc;
> > > + O.Alloc = nullptr;
> > > + Head = O.Head;
> > > + O.Head = &SentinelSegment;
> > > + Tail = O.Tail;
> > > + O.Tail = &SentinelSegment;
> > > + Freelist = O.Freelist;
> > > + O.Freelist = &SentinelSegment;
> > > + Size = O.Size;
> > > + O.Size = 0;
> > > + return *this;
> > > + }
> > > +
> > > + ~Array() XRAY_NEVER_INSTRUMENT {
> > > + for (auto &E : *this)
> > > + (&E)->~T();
> > > }
> > >
> > > bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }
> > > @@ -243,52 +348,41 @@ public:
> > > return *Alloc;
> > > }
> > >
> > > - size_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
> > > -
> > > - T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
> > > - if (UNLIKELY(Head == &SentinelSegment))
> > > - if (InitHeadAndTail() == nullptr)
> > > - return nullptr;
> > > -
> > > - auto Offset = Size % ElementsPerSegment;
> > > - if (UNLIKELY(Size != 0 && Offset == 0))
> > > - if (AppendNewSegment() == nullptr)
> > > - return nullptr;
> > > -
> > > - auto Base = static_cast<Segment *>(Tail)->Data;
> > > - auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
> > > - auto Position = reinterpret_cast<T *>(AlignedOffset);
> > > - *Position = E;
> > > - ++Size;
> > > - return Position;
> > > - }
> > > + uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
> > >
> > > template <class... Args>
> > > T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
> > > - if (UNLIKELY(Head == &SentinelSegment))
> > > - if (InitHeadAndTail() == nullptr)
> > > + DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
> > > + (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
> > > + if (UNLIKELY(Head == &SentinelSegment)) {
> > > + auto R = InitHeadAndTail();
> > > + if (R == nullptr)
> > > return nullptr;
> > > + }
> > > +
> > > + DCHECK_NE(Head, &SentinelSegment);
> > > + DCHECK_NE(Tail, &SentinelSegment);
> > >
> > > auto Offset = Size % ElementsPerSegment;
> > > - auto *LatestSegment = Tail;
> > > - if (UNLIKELY(Size != 0 && Offset == 0)) {
> > > - LatestSegment = AppendNewSegment();
> > > - if (LatestSegment == nullptr)
> > > + if (UNLIKELY(Size != 0 && Offset == 0))
> > > + if (AppendNewSegment() == nullptr)
> > > return nullptr;
> > > - }
> > >
> > > DCHECK_NE(Tail, &SentinelSegment);
> > > - auto Base = static_cast<Segment *>(LatestSegment)->Data;
> > > + auto Base = &Tail->Data;
> > > auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
> > > - auto Position = reinterpret_cast<T *>(AlignedOffset);
> > > + DCHECK_LE(AlignedOffset + sizeof(T),
> > > + reinterpret_cast<unsigned char *>(Tail) + SegmentSize);
> > >
> > > // In-place construct at Position.
> > > - new (Position) T{std::forward<Args>(args)...};
> > > + new (AlignedOffset) T{std::forward<Args>(args)...};
> > > ++Size;
> > > - return reinterpret_cast<T *>(Position);
> > > + return reinterpret_cast<T *>(AlignedOffset);
> > > }
> > >
> > > - T &operator[](size_t Offset) const XRAY_NEVER_INSTRUMENT {
> > > + T *Append(const T &E) XRAY_NEVER_INSTRUMENT { return AppendEmplace(E); }
> > > +
> > > + T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
> > > DCHECK_LE(Offset, Size);
> > > // We need to traverse the array enough times to find the element at Offset.
> > > auto S = Head;
> > > @@ -297,7 +391,7 @@ public:
> > > Offset -= ElementsPerSegment;
> > > DCHECK_NE(S, &SentinelSegment);
> > > }
> > > - auto Base = static_cast<Segment *>(S)->Data;
> > > + auto Base = &S->Data;
> > > auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
> > > auto Position = reinterpret_cast<T *>(AlignedOffset);
> > > return *reinterpret_cast<T *>(Position);
> > > @@ -332,41 +426,172 @@ public:
> > >
> > > /// Remove N Elements from the end. This leaves the blocks behind, and not
> > > /// require allocation of new blocks for new elements added after trimming.
> > > - void trim(size_t Elements) XRAY_NEVER_INSTRUMENT {
> > > - if (Elements == 0)
> > > - return;
> > > -
> > > + void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
> > > auto OldSize = Size;
> > > - Elements = Elements >= Size ? Size : Elements;
> > > + Elements = Elements > Size ? Size : Elements;
> > > Size -= Elements;
> > >
> > > - DCHECK_NE(Head, &SentinelSegment);
> > > - DCHECK_NE(Tail, &SentinelSegment);
> > > -
> > > - for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
> > > - nearest_boundary(Size, ElementsPerSegment)) /
> > > - ElementsPerSegment;
> > > - SegmentsToTrim > 0; --SegmentsToTrim) {
> > > -
> > > - // We want to short-circuit if the trace is already empty.
> > > - if (Head == &SentinelSegment && Head == Tail)
> > > - return;
> > > -
> > > - // Put the tail into the Freelist.
> > > - auto *FreeSegment = Tail;
> > > - Tail = Tail->Prev;
> > > - if (Tail == &SentinelSegment)
> > > - Head = Tail;
> > > - else
> > > - Tail->Next = &SentinelSegment;
> > > -
> > > + // We compute the number of segments we're going to return from the tail by
> > > + // counting how many elements have been trimmed. Given the following:
> > > + //
> > > + // - Each segment has N valid positions, where N > 0
> > > + // - The previous size > current size
> > > + //
> > > + // To compute the number of segments to return, we need to perform the
> > > + // following calculations for the number of segments required given 'x'
> > > + // elements:
> > > + //
> > > + // f(x) = {
> > > + // x == 0 : 0
> > > + // , 0 < x <= N : 1
> > > + // , N < x <= max : x / N + (x % N ? 1 : 0)
> > > + // }
> > > + //
> > > + // We can simplify this down to:
> > > + //
> > > + // f(x) = {
> > > + // x == 0 : 0,
> > > + // , 0 < x <= max : x / N + (x < N || x % N ? 1 : 0)
> > > + // }
> > > + //
> > > + // And further down to:
> > > + //
> > > + // f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
> > > + //
> > > + // We can then perform the following calculation `s` which counts the number
> > > + // of segments we need to remove from the end of the data structure:
> > > + //
> > > + // s(p, c) = f(p) - f(c)
> > > + //
> > > + // If we treat p = previous size, and c = current size, and given the
> > > + // properties above, the possible range for s(...) is [0..max(typeof(p))/N]
> > > + // given that typeof(p) == typeof(c).
> > > + auto F = [](uint64_t X) {
> > > + return X ? (X / ElementsPerSegment) +
> > > + (X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
> > > + : 0;
> > > + };
> > > + auto PS = F(OldSize);
> > > + auto CS = F(Size);
> > > + DCHECK_GE(PS, CS);
> > > + auto SegmentsToTrim = PS - CS;
> > > + for (auto I = 0uL; I < SegmentsToTrim; ++I) {
> > > + // Here we place the current tail segment to the freelist. To do this
> > > + // appropriately, we need to perform a splice operation on two
> > > + // bidirectional linked-lists. In particular, we have the current state of
> > > + // the doubly-linked list of segments:
> > > + //
> > > + // @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
> > > + //
> > > + DCHECK_NE(Head, &SentinelSegment);
> > > + DCHECK_NE(Tail, &SentinelSegment);
> > > DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > - FreeSegment->Next = Freelist;
> > > - FreeSegment->Prev = &SentinelSegment;
> > > - if (Freelist != &SentinelSegment)
> > > - Freelist->Prev = FreeSegment;
> > > - Freelist = FreeSegment;
> > > +
> > > + if (Freelist == &SentinelSegment) {
> > > + // Our two lists at this point are in this configuration:
> > > + //
> > > + // Freelist: (potentially) @S@
> > > + // Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
> > > + // ^ Head ^ Tail
> > > + //
> > > + // The end state for us will be this configuration:
> > > + //
> > > + // Freelist: @S@<-sT->@S@
> > > + // Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
> > > + // ^ Head ^ Tail
> > > + //
> > > + // The first step for us is to hold a reference to the tail of Mainlist,
> > > + // which in our notation is represented by sT. We call this our "free
> > > + // segment" which is the segment we are placing on the Freelist.
> > > + //
> > > + // sF = sT
> > > + //
> > > + // Then, we also hold a reference to the "pre-tail" element, which we
> > > + // call sPT:
> > > + //
> > > + // sPT = pred(sT)
> > > + //
> > > + // We want to splice sT into the beginning of the Freelist, which in
> > > + // an empty Freelist means placing a segment whose predecessor and
> > > + // successor is the sentinel segment.
> > > + //
> > > + // The splice operation then can be performed in the following
> > > + // algorithm:
> > > + //
> > > + // succ(sPT) = S
> > > + // pred(sT) = S
> > > + // succ(sT) = Freelist
> > > + // Freelist = sT
> > > + // Tail = sPT
> > > + //
> > > + auto SPT = Tail->Prev;
> > > + SPT->Next = &SentinelSegment;
> > > + Tail->Prev = &SentinelSegment;
> > > + Tail->Next = Freelist;
> > > + Freelist = Tail;
> > > + Tail = SPT;
> > > +
> > > + // Our post-conditions here are:
> > > + DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > + DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> > > + } else {
> > > + // In the other case, where the Freelist is not empty, we perform the
> > > + // following transformation instead:
> > > + //
> > > + // This transforms the current state:
> > > + //
> > > + // Freelist: @S@<-f0->@S@
> > > + // ^ Freelist
> > > + // Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
> > > + // ^ Head ^ Tail
> > > + //
> > > + // Into the following:
> > > + //
> > > + // Freelist: @S@<-sT<->f0->@S@
> > > + // ^ Freelist
> > > + // Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
> > > + // ^ Head ^ Tail
> > > + //
> > > + // The algorithm is:
> > > + //
> > > + // sFH = Freelist
> > > + // sPT = pred(sT)
> > > + // pred(SFH) = sT
> > > + // succ(sT) = Freelist
> > > + // pred(sT) = S
> > > + // succ(sPT) = S
> > > + // Tail = sPT
> > > + // Freelist = sT
> > > + //
> > > + auto SFH = Freelist;
> > > + auto SPT = Tail->Prev;
> > > + auto ST = Tail;
> > > + SFH->Prev = ST;
> > > + ST->Next = Freelist;
> > > + ST->Prev = &SentinelSegment;
> > > + SPT->Next = &SentinelSegment;
> > > + Tail = SPT;
> > > + Freelist = ST;
> > > +
> > > + // Our post-conditions here are:
> > > + DCHECK_EQ(Tail->Next, &SentinelSegment);
> > > + DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> > > + DCHECK_EQ(Freelist->Next->Prev, Freelist);
> > > + }
> > > }
> > > +
> > > + // Now in case we've spliced all the segments in the end, we ensure that the
> > > + // main list is "empty", or both the head and tail pointing to the sentinel
> > > + // segment.
> > > + if (Tail == &SentinelSegment)
> > > + Head = Tail;
> > > +
> > > + DCHECK(
> > > + (Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
> > > + (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
> > > + DCHECK(
> > > + (Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
> > > + (Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
> > > }
> > >
> > > // Provide iterators.
> > > @@ -388,8 +613,8 @@ public:
> > > // ensure that storage for the SentinelSegment is defined and has a single
> > > // address.
> > > template <class T>
> > > -typename Array<T>::SegmentBase Array<T>::SentinelSegment{
> > > - &Array<T>::SentinelSegment, &Array<T>::SentinelSegment};
> > > +typename Array<T>::Segment Array<T>::SentinelSegment{
> > > + &Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};
> > >
> > > } // namespace __xray
> > >
> > >
> > >
> > > _______________________________________________
> > > llvm-commits mailing list
> > > llvm-commits at lists.llvm.org
> > > http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
More information about the llvm-commits
mailing list