[compiler-rt] r348335 - [XRay] Move-only Allocator, FunctionCallTrie, and Array

Hans Wennborg via llvm-commits llvm-commits at lists.llvm.org
Wed Dec 5 02:23:00 PST 2018


I see you landed some follow-ups for the build breakage, but this is
still breaking Chromium's toolchain build (e.g.
https://logs.chromium.org/v/?s=chromium%2Fbb%2Fchromium.clang%2FToTLinux%2F4554%2F%2B%2Frecipes%2Fsteps%2Fgclient_runhooks%2F0%2Fstdout)

It seems the new code doesn't compile with GCC 4.8 (I used
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/gcc485precise.tgz
but our builders use stock 4.8.4) when building compiler-rt
stand-alone.

I've reverted in r348346 in the meantime.

To reproduce:

$ CC=/work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/gcc
CXX=/work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/g++
cmake -GNinja -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=ON
-DLLVM_CONFIG_PATH=/work/llvm/build.release/bin/llvm-config
../projects/compiler-rt/
$ $ ninja lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
[1/1] Building CXX object
lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
FAILED: lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
/work/chromium/src/third_party/llvm-build-tools/gcc485precise/bin/g++
-DXRAY_HAS_EXCEPTIONS=1 -I/work/llvm/projects/compiler-rt/lib/xray/..
-I/work/llvm/projects/compiler-rt/lib/xray/../../include -Wall
-std=c++11 -Wno-unused-parameter -O3 -DNDEBUG    -m64 -fPIC
-fno-builtin -fno-exceptions -fomit-frame-pointer -funwind-tables
-fno-stack-protector -fvisibility=hidden -fno-lto -O3 -g
-Wno-variadic-macros -Wno-non-virtual-dtor -fno-rtti -MD -MT
lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
-MF lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o.d
-o lib/xray/CMakeFiles/RTXrayPROFILING.x86_64.dir/xray_profile_collector.cc.o
-c /work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc
In file included from
/work/llvm/projects/compiler-rt/lib/xray/xray_function_call_trie.h:20:0,
                 from
/work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.h:21,
                 from
/work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:15:
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
Args = {const __xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
const::NodeAndTarget&}; T =
__xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
const::NodeAndTarget]’:
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
  required from ‘T* __xray::Array<T>::Append(const T&) [with T =
__xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
const::NodeAndTarget]’
/work/llvm/projects/compiler-rt/lib/xray/xray_function_call_trie.h:517:54:
  required from here
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
error: could not convert ‘{std::forward<const
__xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
const::NodeAndTarget&>((* & args#0))}’ from ‘<brace-enclosed
initializer list>’ to
‘__xray::FunctionCallTrie::mergeInto(__xray::FunctionCallTrie&)
const::NodeAndTarget’
     new (AlignedOffset) T{std::forward<Args>(args)...};
     ^
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
Args = {const __xray::profileCollectorService::{anonymous}::ThreadTrie&};
T = __xray::profileCollectorService::{anonymous}::ThreadTrie]’:
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
  required from ‘T* __xray::Array<T>::Append(const T&) [with T =
__xray::profileCollectorService::{anonymous}::ThreadTrie]’
/work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:98:34:
  required from here
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
error: could not convert ‘{std::forward<const
__xray::profileCollectorService::{anonymous}::ThreadTrie&>((* &
args#0))}’ from
‘<brace-enclosed initializer list>’ to
‘__xray::profileCollectorService::{anonymous}::ThreadTrie’
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h: In
instantiation of ‘T* __xray::Array<T>::AppendEmplace(Args&& ...) [with
Args = {const __xray::profileCollectorService::{anonymous}::ProfileBuffer&};
T = __xray::profileCollectorService::{anonymous}::ProfileBuffer]’:
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:383:71:
  required from ‘T* __xray::Array<T>::Append(const T&) [with T =
__xray::profileCollectorService::{anonymous}::ProfileBuffer]
’
/work/llvm/projects/compiler-rt/lib/xray/xray_profile_collector.cc:244:44:
  required from here
/work/llvm/projects/compiler-rt/lib/xray/xray_segmented_array.h:378:5:
error: could not convert ‘{std::forward<const
__xray::profileCollectorService::{anonymous}::ProfileBuffer&>((* &
args#0))}’ from ‘<brace-enclosed initializer list>’ to
‘__xray::profileCollectorService::{anonymous}::ProfileBuffer’



On Wed, Dec 5, 2018 at 7:47 AM Dean Michael Berris via llvm-commits
<llvm-commits at lists.llvm.org> wrote:
>
> Author: dberris
> Date: Tue Dec  4 22:44:34 2018
> New Revision: 348335
>
> URL: http://llvm.org/viewvc/llvm-project?rev=348335&view=rev
> Log:
> [XRay] Move-only Allocator, FunctionCallTrie, and Array
>
> Summary:
> This change makes the allocator and function call trie implementations
> move-aware and remove the FunctionCallTrie's reliance on a
> heap-allocated set of allocators.
>
> The change makes it possible to always have storage associated with
> Allocator instances, not necessarily having heap-allocated memory
> obtainable from these allocator instances. We also use thread-local
> uninitialised storage.
>
> We've also re-worked the segmented array implementation to have more
> precondition and post-condition checks when built in debug mode. This
> enables us to better implement some of the operations with surrounding
> documentation as well. The `trim` algorithm now has more documentation
> on the implementation, reducing the requirement to handle special
> conditions, and being more rigorous on the computations involved.
>
> In this change we also introduce an initialisation guard, through which
> we prevent an initialisation operation from racing with a cleanup
> operation.
>
> We also ensure that the ThreadTries array is not destroyed while copies
> into the elements are still being performed by other threads submitting
> profiles.
>
> Note that this change still has an issue with accessing thread-local
> storage from signal handlers that are instrumented with XRay. We also
> learn that with the testing of this patch, that there will be cases
> where calls to mmap(...) (through internal_mmap(...)) might be called in
> signal handlers, but are not async-signal-safe. Subsequent patches will
> address this, by re-using the `BufferQueue` type used in the FDR mode
> implementation for pre-allocated memory segments per active, tracing
> thread.
>
> We still want to land this change despite the known issues, with fixes
> forthcoming.
>
> Reviewers: mboerger, jfb
>
> Subscribers: jfb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D54989
>
> Modified:
>     compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc
>     compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc
>     compiler-rt/trunk/lib/xray/xray_allocator.h
>     compiler-rt/trunk/lib/xray/xray_function_call_trie.h
>     compiler-rt/trunk/lib/xray/xray_profile_collector.cc
>     compiler-rt/trunk/lib/xray/xray_profiling.cc
>     compiler-rt/trunk/lib/xray/xray_segmented_array.h
>
> Modified: compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc (original)
> +++ compiler-rt/trunk/lib/xray/tests/unit/function_call_trie_test.cc Tue Dec  4 22:44:34 2018
> @@ -309,6 +309,36 @@ TEST(FunctionCallTrieTest, MergeInto) {
>    EXPECT_EQ(F2.Callees.size(), 0u);
>  }
>
> +TEST(FunctionCallTrieTest, PlacementNewOnAlignedStorage) {
> +  profilingFlags()->setDefaults();
> +  typename std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
> +                                alignof(FunctionCallTrie::Allocators)>::type
> +      AllocatorsStorage;
> +  new (&AllocatorsStorage)
> +      FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> +  auto *A =
> +      reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> +
> +  typename std::aligned_storage<sizeof(FunctionCallTrie),
> +                                alignof(FunctionCallTrie)>::type FCTStorage;
> +  new (&FCTStorage) FunctionCallTrie(*A);
> +  auto *T = reinterpret_cast<FunctionCallTrie *>(&FCTStorage);
> +
> +  // Put some data into it.
> +  T->enterFunction(1, 0, 0);
> +  T->exitFunction(1, 1, 0);
> +
> +  // Re-initialize the objects in storage.
> +  T->~FunctionCallTrie();
> +  A->~Allocators();
> +  new (A) FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> +  new (T) FunctionCallTrie(*A);
> +
> +  // Then put some data into it again.
> +  T->enterFunction(1, 0, 0);
> +  T->exitFunction(1, 1, 0);
> +}
> +
>  } // namespace
>
>  } // namespace __xray
>
> Modified: compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc (original)
> +++ compiler-rt/trunk/lib/xray/tests/unit/segmented_array_test.cc Tue Dec  4 22:44:34 2018
> @@ -221,5 +221,91 @@ TEST(SegmentedArrayTest, SimulateStackBe
>    }
>  }
>
> +TEST(SegmentedArrayTest, PlacementNewOnAlignedStorage) {
> +  using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType;
> +  typename std::aligned_storage<sizeof(AllocatorType),
> +                                alignof(AllocatorType)>::type AllocatorStorage;
> +  new (&AllocatorStorage) AllocatorType(1 << 10);
> +  auto *A = reinterpret_cast<AllocatorType *>(&AllocatorStorage);
> +  typename std::aligned_storage<sizeof(Array<ShadowStackEntry>),
> +                                alignof(Array<ShadowStackEntry>)>::type
> +      ArrayStorage;
> +  new (&ArrayStorage) Array<ShadowStackEntry>(*A);
> +  auto *Data = reinterpret_cast<Array<ShadowStackEntry> *>(&ArrayStorage);
> +
> +  static uint64_t Dummy = 0;
> +  constexpr uint64_t Max = 9;
> +
> +  for (uint64_t i = 0; i < Max; ++i) {
> +    auto P = Data->Append({i, &Dummy});
> +    ASSERT_NE(P, nullptr);
> +    ASSERT_EQ(P->NodePtr, &Dummy);
> +    auto &Back = Data->back();
> +    ASSERT_EQ(Back.NodePtr, &Dummy);
> +    ASSERT_EQ(Back.EntryTSC, i);
> +  }
> +
> +  // Simulate a stack by checking the data from the end as we're trimming.
> +  auto Counter = Max;
> +  ASSERT_EQ(Data->size(), size_t(Max));
> +  while (!Data->empty()) {
> +    const auto &Top = Data->back();
> +    uint64_t *TopNode = Top.NodePtr;
> +    EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
> +    Data->trim(1);
> +    --Counter;
> +    ASSERT_EQ(Data->size(), size_t(Counter));
> +  }
> +
> +  // Once the stack is exhausted, we re-use the storage.
> +  for (uint64_t i = 0; i < Max; ++i) {
> +    auto P = Data->Append({i, &Dummy});
> +    ASSERT_NE(P, nullptr);
> +    ASSERT_EQ(P->NodePtr, &Dummy);
> +    auto &Back = Data->back();
> +    ASSERT_EQ(Back.NodePtr, &Dummy);
> +    ASSERT_EQ(Back.EntryTSC, i);
> +  }
> +
> +  // We re-initialize the storage, by calling the destructor and
> +  // placement-new'ing again.
> +  Data->~Array();
> +  A->~AllocatorType();
> +  new (A) AllocatorType(1 << 10);
> +  new (Data) Array<ShadowStackEntry>(*A);
> +
> +  // Then re-do the test.
> +  for (uint64_t i = 0; i < Max; ++i) {
> +    auto P = Data->Append({i, &Dummy});
> +    ASSERT_NE(P, nullptr);
> +    ASSERT_EQ(P->NodePtr, &Dummy);
> +    auto &Back = Data->back();
> +    ASSERT_EQ(Back.NodePtr, &Dummy);
> +    ASSERT_EQ(Back.EntryTSC, i);
> +  }
> +
> +  // Simulate a stack by checking the data from the end as we're trimming.
> +  Counter = Max;
> +  ASSERT_EQ(Data->size(), size_t(Max));
> +  while (!Data->empty()) {
> +    const auto &Top = Data->back();
> +    uint64_t *TopNode = Top.NodePtr;
> +    EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
> +    Data->trim(1);
> +    --Counter;
> +    ASSERT_EQ(Data->size(), size_t(Counter));
> +  }
> +
> +  // Once the stack is exhausted, we re-use the storage.
> +  for (uint64_t i = 0; i < Max; ++i) {
> +    auto P = Data->Append({i, &Dummy});
> +    ASSERT_NE(P, nullptr);
> +    ASSERT_EQ(P->NodePtr, &Dummy);
> +    auto &Back = Data->back();
> +    ASSERT_EQ(Back.NodePtr, &Dummy);
> +    ASSERT_EQ(Back.EntryTSC, i);
> +  }
> +}
> +
>  } // namespace
>  } // namespace __xray
>
> Modified: compiler-rt/trunk/lib/xray/xray_allocator.h
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_allocator.h?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/xray_allocator.h (original)
> +++ compiler-rt/trunk/lib/xray/xray_allocator.h Tue Dec  4 22:44:34 2018
> @@ -63,7 +63,7 @@ template <class T> T *allocate() XRAY_NE
>  #else
>    uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
>                           MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
> -  int ErrNo;
> +  int ErrNo = 0;
>    if (UNLIKELY(internal_iserror(B, &ErrNo))) {
>      if (Verbosity())
>        Report(
> @@ -113,7 +113,7 @@ T *allocateBuffer(size_t S) XRAY_NEVER_I
>  #else
>    uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
>                           MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
> -  int ErrNo;
> +  int ErrNo = 0;
>    if (UNLIKELY(internal_iserror(B, &ErrNo))) {
>      if (Verbosity())
>        Report(
> @@ -171,7 +171,7 @@ template <size_t N> struct Allocator {
>    };
>
>  private:
> -  const size_t MaxMemory{0};
> +  size_t MaxMemory{0};
>    unsigned char *BackingStore = nullptr;
>    unsigned char *AlignedNextBlock = nullptr;
>    size_t AllocatedBlocks = 0;
> @@ -223,7 +223,43 @@ private:
>
>  public:
>    explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
> -      : MaxMemory(RoundUpTo(M, kCacheLineSize)) {}
> +      : MaxMemory(RoundUpTo(M, kCacheLineSize)),
> +        BackingStore(nullptr),
> +        AlignedNextBlock(nullptr),
> +        AllocatedBlocks(0),
> +        Mutex() {}
> +
> +  Allocator(const Allocator &) = delete;
> +  Allocator &operator=(const Allocator &) = delete;
> +
> +  Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
> +    SpinMutexLock L0(&Mutex);
> +    SpinMutexLock L1(&O.Mutex);
> +    MaxMemory = O.MaxMemory;
> +    O.MaxMemory = 0;
> +    BackingStore = O.BackingStore;
> +    O.BackingStore = nullptr;
> +    AlignedNextBlock = O.AlignedNextBlock;
> +    O.AlignedNextBlock = nullptr;
> +    AllocatedBlocks = O.AllocatedBlocks;
> +    O.AllocatedBlocks = 0;
> +  }
> +
> +  Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
> +    SpinMutexLock L0(&Mutex);
> +    SpinMutexLock L1(&O.Mutex);
> +    MaxMemory = O.MaxMemory;
> +    O.MaxMemory = 0;
> +    if (BackingStore != nullptr)
> +      deallocate(BackingStore, MaxMemory);
> +    BackingStore = O.BackingStore;
> +    O.BackingStore = nullptr;
> +    AlignedNextBlock = O.AlignedNextBlock;
> +    O.AlignedNextBlock = nullptr;
> +    AllocatedBlocks = O.AllocatedBlocks;
> +    O.AllocatedBlocks = 0;
> +    return *this;
> +  }
>
>    Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }
>
>
> Modified: compiler-rt/trunk/lib/xray/xray_function_call_trie.h
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_function_call_trie.h?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/xray_function_call_trie.h (original)
> +++ compiler-rt/trunk/lib/xray/xray_function_call_trie.h Tue Dec  4 22:44:34 2018
> @@ -98,9 +98,6 @@ public:
>    struct NodeIdPair {
>      Node *NodePtr;
>      int32_t FId;
> -
> -    // Constructor for inplace-construction.
> -    NodeIdPair(Node *N, int32_t F) : NodePtr(N), FId(F) {}
>    };
>
>    using NodeIdPairArray = Array<NodeIdPair>;
> @@ -118,15 +115,6 @@ public:
>      uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
>      int32_t FId;
>
> -    // We add a constructor here to allow us to inplace-construct through
> -    // Array<...>'s AppendEmplace.
> -    Node(Node *P, NodeIdPairAllocatorType &A, uint64_t CC, uint64_t CLT,
> -         int32_t F) XRAY_NEVER_INSTRUMENT : Parent(P),
> -                                            Callees(A),
> -                                            CallCount(CC),
> -                                            CumulativeLocalTime(CLT),
> -                                            FId(F) {}
> -
>      // TODO: Include the compact histogram.
>    };
>
> @@ -135,13 +123,6 @@ private:
>      uint64_t EntryTSC;
>      Node *NodePtr;
>      uint16_t EntryCPU;
> -
> -    // We add a constructor here to allow us to inplace-construct through
> -    // Array<...>'s AppendEmplace.
> -    ShadowStackEntry(uint64_t T, Node *N, uint16_t C) XRAY_NEVER_INSTRUMENT
> -        : EntryTSC{T},
> -          NodePtr{N},
> -          EntryCPU{C} {}
>    };
>
>    using NodeArray = Array<Node>;
> @@ -156,20 +137,71 @@ public:
>      using RootAllocatorType = RootArray::AllocatorType;
>      using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
>
> +    // Use hosted aligned storage members to allow for trivial move and init.
> +    // This also allows us to sidestep the potential-failing allocation issue.
> +    typename std::aligned_storage<sizeof(NodeAllocatorType),
> +                                  alignof(NodeAllocatorType)>::type
> +        NodeAllocatorStorage;
> +    typename std::aligned_storage<sizeof(RootAllocatorType),
> +                                  alignof(RootAllocatorType)>::type
> +        RootAllocatorStorage;
> +    typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
> +                                  alignof(ShadowStackAllocatorType)>::type
> +        ShadowStackAllocatorStorage;
> +    typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
> +                                  alignof(NodeIdPairAllocatorType)>::type
> +        NodeIdPairAllocatorStorage;
> +
>      NodeAllocatorType *NodeAllocator = nullptr;
>      RootAllocatorType *RootAllocator = nullptr;
>      ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
>      NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
>
> -    Allocators() {}
> +    Allocators() = default;
>      Allocators(const Allocators &) = delete;
>      Allocators &operator=(const Allocators &) = delete;
>
> -    Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT
> -        : NodeAllocator(O.NodeAllocator),
> -          RootAllocator(O.RootAllocator),
> -          ShadowStackAllocator(O.ShadowStackAllocator),
> -          NodeIdPairAllocator(O.NodeIdPairAllocator) {
> +    explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
> +      new (&NodeAllocatorStorage) NodeAllocatorType(Max);
> +      NodeAllocator =
> +          reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> +
> +      new (&RootAllocatorStorage) RootAllocatorType(Max);
> +      RootAllocator =
> +          reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> +
> +      new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
> +      ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> +          &ShadowStackAllocatorStorage);
> +
> +      new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
> +      NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> +          &NodeIdPairAllocatorStorage);
> +    }
> +
> +    Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
> +      // Here we rely on the safety of memcpy'ing contents of the storage
> +      // members, and then pointing the source pointers to nullptr.
> +      internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
> +                      sizeof(NodeAllocatorType));
> +      internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
> +                      sizeof(RootAllocatorType));
> +      internal_memcpy(&ShadowStackAllocatorStorage,
> +                      &O.ShadowStackAllocatorStorage,
> +                      sizeof(ShadowStackAllocatorType));
> +      internal_memcpy(&NodeIdPairAllocatorStorage,
> +                      &O.NodeIdPairAllocatorStorage,
> +                      sizeof(NodeIdPairAllocatorType));
> +
> +      NodeAllocator =
> +          reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> +      RootAllocator =
> +          reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> +      ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> +          &ShadowStackAllocatorStorage);
> +      NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> +          &NodeIdPairAllocatorStorage);
> +
>        O.NodeAllocator = nullptr;
>        O.RootAllocator = nullptr;
>        O.ShadowStackAllocator = nullptr;
> @@ -177,79 +209,77 @@ public:
>      }
>
>      Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
> -      {
> -        auto Tmp = O.NodeAllocator;
> -        O.NodeAllocator = this->NodeAllocator;
> -        this->NodeAllocator = Tmp;
> -      }
> -      {
> -        auto Tmp = O.RootAllocator;
> -        O.RootAllocator = this->RootAllocator;
> -        this->RootAllocator = Tmp;
> -      }
> -      {
> -        auto Tmp = O.ShadowStackAllocator;
> -        O.ShadowStackAllocator = this->ShadowStackAllocator;
> -        this->ShadowStackAllocator = Tmp;
> -      }
> -      {
> -        auto Tmp = O.NodeIdPairAllocator;
> -        O.NodeIdPairAllocator = this->NodeIdPairAllocator;
> -        this->NodeIdPairAllocator = Tmp;
> -      }
> -      return *this;
> -    }
> -
> -    ~Allocators() XRAY_NEVER_INSTRUMENT {
> -      // Note that we cannot use delete on these pointers, as they need to be
> -      // returned to the sanitizer_common library's internal memory tracking
> -      // system.
> -      if (NodeAllocator != nullptr) {
> +      // When moving into an existing instance, we ensure that we clean up the
> +      // current allocators.
> +      if (NodeAllocator)
>          NodeAllocator->~NodeAllocatorType();
> -        deallocate(NodeAllocator);
> +      if (O.NodeAllocator) {
> +        new (&NodeAllocatorStorage)
> +            NodeAllocatorType(std::move(*O.NodeAllocator));
> +        NodeAllocator =
> +            reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
> +        O.NodeAllocator = nullptr;
> +      } else {
>          NodeAllocator = nullptr;
>        }
> -      if (RootAllocator != nullptr) {
> +
> +      if (RootAllocator)
>          RootAllocator->~RootAllocatorType();
> -        deallocate(RootAllocator);
> +      if (O.RootAllocator) {
> +        new (&RootAllocatorStorage)
> +            RootAllocatorType(std::move(*O.RootAllocator));
> +        RootAllocator =
> +            reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
> +        O.RootAllocator = nullptr;
> +      } else {
>          RootAllocator = nullptr;
>        }
> -      if (ShadowStackAllocator != nullptr) {
> +
> +      if (ShadowStackAllocator)
>          ShadowStackAllocator->~ShadowStackAllocatorType();
> -        deallocate(ShadowStackAllocator);
> +      if (O.ShadowStackAllocator) {
> +        new (&ShadowStackAllocatorStorage)
> +            ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
> +        ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
> +            &ShadowStackAllocatorStorage);
> +        O.ShadowStackAllocator = nullptr;
> +      } else {
>          ShadowStackAllocator = nullptr;
>        }
> -      if (NodeIdPairAllocator != nullptr) {
> +
> +      if (NodeIdPairAllocator)
>          NodeIdPairAllocator->~NodeIdPairAllocatorType();
> -        deallocate(NodeIdPairAllocator);
> +      if (O.NodeIdPairAllocator) {
> +        new (&NodeIdPairAllocatorStorage)
> +            NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
> +        NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
> +            &NodeIdPairAllocatorStorage);
> +        O.NodeIdPairAllocator = nullptr;
> +      } else {
>          NodeIdPairAllocator = nullptr;
>        }
> +
> +      return *this;
> +    }
> +
> +    ~Allocators() XRAY_NEVER_INSTRUMENT {
> +      if (NodeAllocator != nullptr)
> +        NodeAllocator->~NodeAllocatorType();
> +      if (RootAllocator != nullptr)
> +        RootAllocator->~RootAllocatorType();
> +      if (ShadowStackAllocator != nullptr)
> +        ShadowStackAllocator->~ShadowStackAllocatorType();
> +      if (NodeIdPairAllocator != nullptr)
> +        NodeIdPairAllocator->~NodeIdPairAllocatorType();
>      }
>    };
>
> -  // TODO: Support configuration of options through the arguments.
>    static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
>      return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
>    }
>
>    static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
> -    Allocators A;
> -    auto NodeAllocator = allocate<Allocators::NodeAllocatorType>();
> -    new (NodeAllocator) Allocators::NodeAllocatorType(Max);
> -    A.NodeAllocator = NodeAllocator;
> -
> -    auto RootAllocator = allocate<Allocators::RootAllocatorType>();
> -    new (RootAllocator) Allocators::RootAllocatorType(Max);
> -    A.RootAllocator = RootAllocator;
> -
> -    auto ShadowStackAllocator =
> -        allocate<Allocators::ShadowStackAllocatorType>();
> -    new (ShadowStackAllocator) Allocators::ShadowStackAllocatorType(Max);
> -    A.ShadowStackAllocator = ShadowStackAllocator;
> -
> -    auto NodeIdPairAllocator = allocate<NodeIdPairAllocatorType>();
> -    new (NodeIdPairAllocator) NodeIdPairAllocatorType(Max);
> -    A.NodeIdPairAllocator = NodeIdPairAllocator;
> +    Allocators A(Max);
>      return A;
>    }
>
> @@ -257,14 +287,38 @@ private:
>    NodeArray Nodes;
>    RootArray Roots;
>    ShadowStackArray ShadowStack;
> -  NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
> +  NodeIdPairAllocatorType *NodeIdPairAllocator;
> +  uint32_t OverflowedFunctions;
>
>  public:
>    explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
>        : Nodes(*A.NodeAllocator),
>          Roots(*A.RootAllocator),
>          ShadowStack(*A.ShadowStackAllocator),
> -        NodeIdPairAllocator(A.NodeIdPairAllocator) {}
> +        NodeIdPairAllocator(A.NodeIdPairAllocator),
> +        OverflowedFunctions(0) {}
> +
> +  FunctionCallTrie() = delete;
> +  FunctionCallTrie(const FunctionCallTrie &) = delete;
> +  FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
> +
> +  FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
> +      : Nodes(std::move(O.Nodes)),
> +        Roots(std::move(O.Roots)),
> +        ShadowStack(std::move(O.ShadowStack)),
> +        NodeIdPairAllocator(O.NodeIdPairAllocator),
> +        OverflowedFunctions(O.OverflowedFunctions) {}
> +
> +  FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
> +    Nodes = std::move(O.Nodes);
> +    Roots = std::move(O.Roots);
> +    ShadowStack = std::move(O.ShadowStack);
> +    NodeIdPairAllocator = O.NodeIdPairAllocator;
> +    OverflowedFunctions = O.OverflowedFunctions;
> +    return *this;
> +  }
> +
> +  ~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
>
>    void enterFunction(const int32_t FId, uint64_t TSC,
>                       uint16_t CPU) XRAY_NEVER_INSTRUMENT {
> @@ -272,12 +326,17 @@ public:
>      // This function primarily deals with ensuring that the ShadowStack is
>      // consistent and ready for when an exit event is encountered.
>      if (UNLIKELY(ShadowStack.empty())) {
> -      auto NewRoot =
> -          Nodes.AppendEmplace(nullptr, *NodeIdPairAllocator, 0u, 0u, FId);
> +      auto NewRoot = Nodes.AppendEmplace(
> +          nullptr, NodeIdPairArray{*NodeIdPairAllocator}, 0u, 0u, FId);
>        if (UNLIKELY(NewRoot == nullptr))
>          return;
> -      Roots.Append(NewRoot);
> -      ShadowStack.AppendEmplace(TSC, NewRoot, CPU);
> +      if (Roots.Append(NewRoot) == nullptr)
> +        return;
> +      if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
> +        Roots.trim(1);
> +        ++OverflowedFunctions;
> +        return;
> +      }
>        return;
>      }
>
> @@ -291,29 +350,39 @@ public:
>          [FId](const NodeIdPair &NR) { return NR.FId == FId; });
>      if (Callee != nullptr) {
>        CHECK_NE(Callee->NodePtr, nullptr);
> -      ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU);
> +      if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
> +        ++OverflowedFunctions;
>        return;
>      }
>
>      // This means we've never seen this stack before, create a new node here.
> -    auto NewNode =
> -        Nodes.AppendEmplace(TopNode, *NodeIdPairAllocator, 0u, 0u, FId);
> +    auto NewNode = Nodes.AppendEmplace(
> +        TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
>      if (UNLIKELY(NewNode == nullptr))
>        return;
>      DCHECK_NE(NewNode, nullptr);
>      TopNode->Callees.AppendEmplace(NewNode, FId);
> -    ShadowStack.AppendEmplace(TSC, NewNode, CPU);
> +    if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
> +      ++OverflowedFunctions;
>      DCHECK_NE(ShadowStack.back().NodePtr, nullptr);
>      return;
>    }
>
>    void exitFunction(int32_t FId, uint64_t TSC,
>                      uint16_t CPU) XRAY_NEVER_INSTRUMENT {
> +    // If we're exiting functions that have "overflowed" or don't fit into the
> +    // stack due to allocator constraints, we then decrement that count first.
> +    if (OverflowedFunctions) {
> +      --OverflowedFunctions;
> +      return;
> +    }
> +
>      // When we exit a function, we look up the ShadowStack to see whether we've
>      // entered this function before. We do as little processing here as we can,
>      // since most of the hard work would have already been done at function
>      // entry.
>      uint64_t CumulativeTreeTime = 0;
> +
>      while (!ShadowStack.empty()) {
>        const auto &Top = ShadowStack.back();
>        auto TopNode = Top.NodePtr;
> @@ -380,7 +449,7 @@ public:
>      for (const auto Root : getRoots()) {
>        // Add a node in O for this root.
>        auto NewRoot = O.Nodes.AppendEmplace(
> -          nullptr, *O.NodeIdPairAllocator, Root->CallCount,
> +          nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
>            Root->CumulativeLocalTime, Root->FId);
>
>        // Because we cannot allocate more memory we should bail out right away.
> @@ -399,8 +468,9 @@ public:
>          DFSStack.trim(1);
>          for (const auto Callee : NP.Node->Callees) {
>            auto NewNode = O.Nodes.AppendEmplace(
> -              NP.NewNode, *O.NodeIdPairAllocator, Callee.NodePtr->CallCount,
> -              Callee.NodePtr->CumulativeLocalTime, Callee.FId);
> +              NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
> +              Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
> +              Callee.FId);
>            if (UNLIKELY(NewNode == nullptr))
>              return;
>            NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId);
> @@ -433,8 +503,9 @@ public:
>        auto R = O.Roots.find_element(
>            [&](const Node *Node) { return Node->FId == Root->FId; });
>        if (R == nullptr) {
> -        TargetRoot = O.Nodes.AppendEmplace(nullptr, *O.NodeIdPairAllocator, 0u,
> -                                           0u, Root->FId);
> +        TargetRoot = O.Nodes.AppendEmplace(
> +            nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
> +            Root->FId);
>          if (UNLIKELY(TargetRoot == nullptr))
>            return;
>
> @@ -459,7 +530,8 @@ public:
>                });
>            if (TargetCallee == nullptr) {
>              auto NewTargetNode = O.Nodes.AppendEmplace(
> -                NT.TargetNode, *O.NodeIdPairAllocator, 0u, 0u, Callee.FId);
> +                NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
> +                Callee.FId);
>
>              if (UNLIKELY(NewTargetNode == nullptr))
>                return;
>
> Modified: compiler-rt/trunk/lib/xray/xray_profile_collector.cc
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_profile_collector.cc?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/xray_profile_collector.cc (original)
> +++ compiler-rt/trunk/lib/xray/xray_profile_collector.cc Tue Dec  4 22:44:34 2018
> @@ -86,7 +86,8 @@ static FunctionCallTrie::Allocators *Glo
>
>  void post(const FunctionCallTrie &T, tid_t TId) XRAY_NEVER_INSTRUMENT {
>    static pthread_once_t Once = PTHREAD_ONCE_INIT;
> -  pthread_once(&Once, +[] { reset(); });
> +  pthread_once(
> +      &Once, +[]() XRAY_NEVER_INSTRUMENT { reset(); });
>
>    ThreadTrie *Item = nullptr;
>    {
> @@ -95,13 +96,14 @@ void post(const FunctionCallTrie &T, tid
>        return;
>
>      Item = ThreadTries->Append({});
> +    if (Item == nullptr)
> +      return;
> +
>      Item->TId = TId;
>      auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
>      new (Trie) FunctionCallTrie(*GlobalAllocators);
> +    T.deepCopyInto(*Trie);
>    }
> -
> -  auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
> -  T.deepCopyInto(*Trie);
>  }
>
>  // A PathArray represents the function id's representing a stack trace. In this
> @@ -115,13 +117,7 @@ struct ProfileRecord {
>    // The Path in this record is the function id's from the leaf to the root of
>    // the function call stack as represented from a FunctionCallTrie.
>    PathArray Path;
> -  const FunctionCallTrie::Node *Node = nullptr;
> -
> -  // Constructor for in-place construction.
> -  ProfileRecord(PathAllocator &A,
> -                const FunctionCallTrie::Node *N) XRAY_NEVER_INSTRUMENT
> -      : Path(A),
> -        Node(N) {}
> +  const FunctionCallTrie::Node *Node;
>  };
>
>  namespace {
> @@ -142,7 +138,7 @@ populateRecords(ProfileRecordArray &PRs,
>      while (!DFSStack.empty()) {
>        auto Node = DFSStack.back();
>        DFSStack.trim(1);
> -      auto Record = PRs.AppendEmplace(PA, Node);
> +      auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
>        if (Record == nullptr)
>          return;
>        DCHECK_NE(Record, nullptr);
> @@ -203,7 +199,7 @@ void serialize() XRAY_NEVER_INSTRUMENT {
>
>    // Clear out the global ProfileBuffers, if it's not empty.
>    for (auto &B : *ProfileBuffers)
> -    deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
> +    deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
>    ProfileBuffers->trim(ProfileBuffers->size());
>
>    if (ThreadTries->empty())
> @@ -278,8 +274,8 @@ void reset() XRAY_NEVER_INSTRUMENT {
>
>    GlobalAllocators =
>        reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorStorage);
> -  new (GlobalAllocators) FunctionCallTrie::Allocators();
> -  *GlobalAllocators = FunctionCallTrie::InitAllocators();
> +  new (GlobalAllocators)
> +      FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
>
>    if (ThreadTriesAllocator != nullptr)
>      ThreadTriesAllocator->~ThreadTriesArrayAllocator();
> @@ -312,8 +308,10 @@ XRayBuffer nextBuffer(XRayBuffer B) XRAY
>    static pthread_once_t Once = PTHREAD_ONCE_INIT;
>    static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
>        FileHeaderStorage;
> -  pthread_once(&Once,
> -               +[] { new (&FileHeaderStorage) XRayProfilingFileHeader{}; });
> +  pthread_once(
> +      &Once, +[]() XRAY_NEVER_INSTRUMENT {
> +        new (&FileHeaderStorage) XRayProfilingFileHeader{};
> +      });
>
>    if (UNLIKELY(B.Data == nullptr)) {
>      // The first buffer should always contain the file header information.
>
> Modified: compiler-rt/trunk/lib/xray/xray_profiling.cc
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_profiling.cc?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/xray_profiling.cc (original)
> +++ compiler-rt/trunk/lib/xray/xray_profiling.cc Tue Dec  4 22:44:34 2018
> @@ -31,67 +31,112 @@ namespace __xray {
>
>  namespace {
>
> -atomic_sint32_t ProfilerLogFlushStatus = {
> +static atomic_sint32_t ProfilerLogFlushStatus = {
>      XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
>
> -atomic_sint32_t ProfilerLogStatus = {XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
> +static atomic_sint32_t ProfilerLogStatus = {
> +    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
>
> -SpinMutex ProfilerOptionsMutex;
> +static SpinMutex ProfilerOptionsMutex;
>
> -struct alignas(64) ProfilingData {
> -  FunctionCallTrie::Allocators *Allocators;
> -  FunctionCallTrie *FCT;
> +struct ProfilingData {
> +  atomic_uintptr_t Allocators;
> +  atomic_uintptr_t FCT;
>  };
>
>  static pthread_key_t ProfilingKey;
>
> -thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators)>::type
> +thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
> +                                  alignof(FunctionCallTrie::Allocators)>::type
>      AllocatorsStorage;
> -thread_local std::aligned_storage<sizeof(FunctionCallTrie)>::type
> +thread_local std::aligned_storage<sizeof(FunctionCallTrie),
> +                                  alignof(FunctionCallTrie)>::type
>      FunctionCallTrieStorage;
> -thread_local std::aligned_storage<sizeof(ProfilingData)>::type ThreadStorage{};
> +thread_local ProfilingData TLD{{0}, {0}};
> +thread_local atomic_uint8_t ReentranceGuard{0};
>
> -static ProfilingData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
> -  thread_local auto ThreadOnce = [] {
> -    new (&ThreadStorage) ProfilingData{};
> -    auto *Allocators =
> -        reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> -    new (Allocators) FunctionCallTrie::Allocators();
> -    *Allocators = FunctionCallTrie::InitAllocators();
> -    auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
> -    new (FCT) FunctionCallTrie(*Allocators);
> -    auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> -    TLD.Allocators = Allocators;
> -    TLD.FCT = FCT;
> -    pthread_setspecific(ProfilingKey, &ThreadStorage);
> +// We use a separate guard for ensuring that for this thread, if we're already
> +// cleaning up, that any signal handlers don't attempt to cleanup nor
> +// initialise.
> +thread_local atomic_uint8_t TLDInitGuard{0};
> +
> +// We also use a separate latch to signal that the thread is exiting, and
> +// non-essential work should be ignored (things like recording events, etc.).
> +thread_local atomic_uint8_t ThreadExitingLatch{0};
> +
> +static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
> +  thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
> +    pthread_setspecific(ProfilingKey, &TLD);
>      return false;
>    }();
>    (void)ThreadOnce;
>
> -  auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> -
> -  if (UNLIKELY(TLD.Allocators == nullptr || TLD.FCT == nullptr)) {
> -    auto *Allocators =
> -        reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
> -    new (Allocators) FunctionCallTrie::Allocators();
> -    *Allocators = FunctionCallTrie::InitAllocators();
> -    auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
> -    new (FCT) FunctionCallTrie(*Allocators);
> -    TLD.Allocators = Allocators;
> -    TLD.FCT = FCT;
> +  RecursionGuard TLDInit(TLDInitGuard);
> +  if (!TLDInit)
> +    return nullptr;
> +
> +  if (atomic_load_relaxed(&ThreadExitingLatch))
> +    return nullptr;
> +
> +  uintptr_t Allocators = 0;
> +  if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
> +                                     memory_order_acq_rel)) {
> +    new (&AllocatorsStorage)
> +        FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
> +    Allocators = reinterpret_cast<uintptr_t>(
> +        reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
> +    atomic_store(&TLD.Allocators, Allocators, memory_order_release);
> +  }
> +
> +  uintptr_t FCT = 0;
> +  if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
> +    new (&FunctionCallTrieStorage) FunctionCallTrie(
> +        *reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators));
> +    FCT = reinterpret_cast<uintptr_t>(
> +        reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
> +    atomic_store(&TLD.FCT, FCT, memory_order_release);
>    }
>
> -  return *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> +  if (FCT == 1)
> +    return nullptr;
> +
> +  return &TLD;
>  }
>
>  static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
> -  auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
> -  if (TLD.Allocators != nullptr && TLD.FCT != nullptr) {
> -    TLD.FCT->~FunctionCallTrie();
> -    TLD.Allocators->~Allocators();
> -    TLD.FCT = nullptr;
> -    TLD.Allocators = nullptr;
> -  }
> +  RecursionGuard TLDInit(TLDInitGuard);
> +  if (!TLDInit)
> +    return;
> +
> +  auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
> +  if (FCT == reinterpret_cast<uintptr_t>(reinterpret_cast<FunctionCallTrie *>(
> +                 &FunctionCallTrieStorage)))
> +    reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();
> +
> +  auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
> +  if (Allocators ==
> +      reinterpret_cast<uintptr_t>(
> +          reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
> +    reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
> +}
> +
> +static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
> +  RecursionGuard TLDInit(TLDInitGuard);
> +  if (!TLDInit)
> +    return;
> +
> +  uintptr_t P = atomic_load(&T.FCT, memory_order_acquire);
> +  if (P != reinterpret_cast<uintptr_t>(
> +               reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
> +    return;
> +
> +  auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
> +  DCHECK_NE(FCT, nullptr);
> +
> +  if (!FCT->getRoots().empty())
> +    profileCollectorService::post(*FCT, GetTid());
> +
> +  cleanupTLD();
>  }
>
>  } // namespace
> @@ -104,9 +149,6 @@ const char *profilingCompilerDefinedFlag
>  #endif
>  }
>
> -atomic_sint32_t ProfileFlushStatus = {
> -    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
> -
>  XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
>    if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
>        XRayLogInitStatus::XRAY_LOG_FINALIZED) {
> @@ -115,14 +157,27 @@ XRayLogFlushStatus profilingFlush() XRAY
>      return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
>    }
>
> -  s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
> -  if (!atomic_compare_exchange_strong(&ProfilerLogFlushStatus, &Result,
> -                                      XRayLogFlushStatus::XRAY_LOG_FLUSHING,
> -                                      memory_order_acq_rel)) {
> +  RecursionGuard SignalGuard(ReentranceGuard);
> +  if (!SignalGuard) {
>      if (Verbosity())
> -      Report("Not flushing profiles, implementation still finalizing.\n");
> +      Report("Cannot finalize properly inside a signal handler!\n");
> +    atomic_store(&ProfilerLogFlushStatus,
> +                 XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
> +                 memory_order_release);
> +    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
>    }
>
> +  s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
> +                                 XRayLogFlushStatus::XRAY_LOG_FLUSHING,
> +                                 memory_order_acq_rel);
> +  if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
> +    if (Verbosity())
> +      Report("Not flushing profiles, implementation still flushing.\n");
> +    return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
> +  }
> +
> +  postCurrentThreadFCT(TLD);
> +
>    // At this point, we'll create the file that will contain the profile, but
>    // only if the options say so.
>    if (!profilingFlags()->no_flush) {
> @@ -150,33 +205,19 @@ XRayLogFlushStatus profilingFlush() XRAY
>      }
>    }
>
> -  profileCollectorService::reset();
> -
> -  // Flush the current thread's local data structures as well.
> +  // Clean up the current thread's TLD information as well.
>    cleanupTLD();
>
> +  profileCollectorService::reset();
> +
> +  atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
> +               memory_order_release);
>    atomic_store(&ProfilerLogStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
>                 memory_order_release);
>
>    return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
>  }
>
> -namespace {
> -
> -thread_local atomic_uint8_t ReentranceGuard{0};
> -
> -static void postCurrentThreadFCT(ProfilingData &TLD) XRAY_NEVER_INSTRUMENT {
> -  if (TLD.Allocators == nullptr || TLD.FCT == nullptr)
> -    return;
> -
> -  if (!TLD.FCT->getRoots().empty())
> -    profileCollectorService::post(*TLD.FCT, GetTid());
> -
> -  cleanupTLD();
> -}
> -
> -} // namespace
> -
>  void profilingHandleArg0(int32_t FuncId,
>                           XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
>    unsigned char CPU;
> @@ -186,22 +227,29 @@ void profilingHandleArg0(int32_t FuncId,
>      return;
>
>    auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
> +  if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
> +               Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
> +    return;
> +
>    if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
>                 Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
> -    auto &TLD = getThreadLocalData();
>      postCurrentThreadFCT(TLD);
>      return;
>    }
>
> -  auto &TLD = getThreadLocalData();
> +  auto T = getThreadLocalData();
> +  if (T == nullptr)
> +    return;
> +
> +  auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
>    switch (Entry) {
>    case XRayEntryType::ENTRY:
>    case XRayEntryType::LOG_ARGS_ENTRY:
> -    TLD.FCT->enterFunction(FuncId, TSC, CPU);
> +    FCT->enterFunction(FuncId, TSC, CPU);
>      break;
>    case XRayEntryType::EXIT:
>    case XRayEntryType::TAIL:
> -    TLD.FCT->exitFunction(FuncId, TSC, CPU);
> +    FCT->exitFunction(FuncId, TSC, CPU);
>      break;
>    default:
>      // FIXME: Handle bugs.
> @@ -227,15 +275,14 @@ XRayLogInitStatus profilingFinalize() XR
>    // Wait a grace period to allow threads to see that we're finalizing.
>    SleepForMillis(profilingFlags()->grace_period_ms);
>
> -  // We also want to make sure that the current thread's data is cleaned up, if
> -  // we have any. We need to ensure that the call to postCurrentThreadFCT() is
> -  // guarded by our recursion guard.
> -  auto &TLD = getThreadLocalData();
> -  {
> -    RecursionGuard G(ReentranceGuard);
> -    if (G)
> -      postCurrentThreadFCT(TLD);
> -  }
> +  // If we for some reason are entering this function from an instrumented
> +  // handler, we bail out.
> +  RecursionGuard G(ReentranceGuard);
> +  if (!G)
> +    return static_cast<XRayLogInitStatus>(CurrentStatus);
> +
> +  // Post the current thread's data if we have any.
> +  postCurrentThreadFCT(TLD);
>
>    // Then we force serialize the log data.
>    profileCollectorService::serialize();
> @@ -248,6 +295,10 @@ XRayLogInitStatus profilingFinalize() XR
>  XRayLogInitStatus
>  profilingLoggingInit(UNUSED size_t BufferSize, UNUSED size_t BufferMax,
>                       void *Options, size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
> +  RecursionGuard G(ReentranceGuard);
> +  if (!G)
> +    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
> +
>    s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
>    if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
>                                        XRayLogInitStatus::XRAY_LOG_INITIALIZING,
> @@ -282,39 +333,51 @@ profilingLoggingInit(UNUSED size_t Buffe
>
>    // We need to set up the exit handlers.
>    static pthread_once_t Once = PTHREAD_ONCE_INIT;
> -  pthread_once(&Once, +[] {
> -    pthread_key_create(&ProfilingKey, +[](void *P) {
> -      // This is the thread-exit handler.
> -      auto &TLD = *reinterpret_cast<ProfilingData *>(P);
> -      if (TLD.Allocators == nullptr && TLD.FCT == nullptr)
> -        return;
> -
> -      {
> -        // If we're somehow executing this while inside a non-reentrant-friendly
> -        // context, we skip attempting to post the current thread's data.
> -        RecursionGuard G(ReentranceGuard);
> -        if (G)
> -          postCurrentThreadFCT(TLD);
> -      }
> -    });
> -
> -    // We also need to set up an exit handler, so that we can get the profile
> -    // information at exit time. We use the C API to do this, to not rely on C++
> -    // ABI functions for registering exit handlers.
> -    Atexit(+[] {
> -      // Finalize and flush.
> -      if (profilingFinalize() != XRAY_LOG_FINALIZED) {
> -        cleanupTLD();
> -        return;
> -      }
> -      if (profilingFlush() != XRAY_LOG_FLUSHED) {
> -        cleanupTLD();
> -        return;
> -      }
> -      if (Verbosity())
> -        Report("XRay Profile flushed at exit.");
> -    });
> -  });
> +  pthread_once(
> +      &Once, +[] {
> +        pthread_key_create(
> +            &ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
> +              if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
> +                return;
> +
> +              if (P == nullptr)
> +                return;
> +
> +              auto T = reinterpret_cast<ProfilingData *>(P);
> +              if (atomic_load_relaxed(&T->Allocators) == 0)
> +                return;
> +
> +              {
> +                // If we're somehow executing this while inside a
> +                // non-reentrant-friendly context, we skip attempting to post
> +                // the current thread's data.
> +                RecursionGuard G(ReentranceGuard);
> +                if (!G)
> +                  return;
> +
> +                postCurrentThreadFCT(*T);
> +              }
> +            });
> +
> +        // We also need to set up an exit handler, so that we can get the
> +        // profile information at exit time. We use the C API to do this, to not
> +        // rely on C++ ABI functions for registering exit handlers.
> +        Atexit(+[]() XRAY_NEVER_INSTRUMENT {
> +          if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
> +            return;
> +
> +          auto Cleanup =
> +              at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });
> +
> +          // Finalize and flush.
> +          if (profilingFinalize() != XRAY_LOG_FINALIZED ||
> +              profilingFlush() != XRAY_LOG_FLUSHED)
> +            return;
> +
> +          if (Verbosity())
> +            Report("XRay Profile flushed at exit.");
> +        });
> +      });
>
>    __xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
>    __xray_set_handler(profilingHandleArg0);
>
> Modified: compiler-rt/trunk/lib/xray/xray_segmented_array.h
> URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/xray/xray_segmented_array.h?rev=348335&r1=348334&r2=348335&view=diff
> ==============================================================================
> --- compiler-rt/trunk/lib/xray/xray_segmented_array.h (original)
> +++ compiler-rt/trunk/lib/xray/xray_segmented_array.h Tue Dec  4 22:44:34 2018
> @@ -32,14 +32,9 @@ namespace __xray {
>  /// is destroyed. When an Array is destroyed, it will destroy elements in the
>  /// backing store but will not free the memory.
>  template <class T> class Array {
> -  struct SegmentBase {
> -    SegmentBase *Prev;
> -    SegmentBase *Next;
> -  };
> -
> -  // We want each segment of the array to be cache-line aligned, and elements of
> -  // the array be offset from the beginning of the segment.
> -  struct Segment : SegmentBase {
> +  struct Segment {
> +    Segment *Prev;
> +    Segment *Next;
>      char Data[1];
>    };
>
> @@ -62,91 +57,35 @@ public:
>    //     kCacheLineSize-multiple segments, minus the size of two pointers.
>    //
>    //   - Request cacheline-multiple sized elements from the allocator.
> -  static constexpr size_t AlignedElementStorageSize =
> +  static constexpr uint64_t AlignedElementStorageSize =
>        sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
>
> -  static constexpr size_t SegmentSize =
> -      nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);
> +  static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;
> +
> +  static constexpr uint64_t SegmentSize = nearest_boundary(
> +      SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);
>
>    using AllocatorType = Allocator<SegmentSize>;
>
> -  static constexpr size_t ElementsPerSegment =
> -      (SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));
> +  static constexpr uint64_t ElementsPerSegment =
> +      (SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));
>
>    static_assert(ElementsPerSegment > 0,
>                  "Must have at least 1 element per segment.");
>
> -  static SegmentBase SentinelSegment;
> +  static Segment SentinelSegment;
>
> -  using size_type = size_t;
> +  using size_type = uint64_t;
>
>  private:
> -  AllocatorType *Alloc;
> -  SegmentBase *Head = &SentinelSegment;
> -  SegmentBase *Tail = &SentinelSegment;
> -  size_t Size = 0;
> -
> -  // Here we keep track of segments in the freelist, to allow us to re-use
> -  // segments when elements are trimmed off the end.
> -  SegmentBase *Freelist = &SentinelSegment;
> -
> -  Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
> -    // We need to handle the case in which enough elements have been trimmed to
> -    // allow us to re-use segments we've allocated before. For this we look into
> -    // the Freelist, to see whether we need to actually allocate new blocks or
> -    // just re-use blocks we've already seen before.
> -    if (Freelist != &SentinelSegment) {
> -      auto *FreeSegment = Freelist;
> -      Freelist = FreeSegment->Next;
> -      FreeSegment->Next = &SentinelSegment;
> -      Freelist->Prev = &SentinelSegment;
> -      return static_cast<Segment *>(FreeSegment);
> -    }
> -
> -    auto SegmentBlock = Alloc->Allocate();
> -    if (SegmentBlock.Data == nullptr)
> -      return nullptr;
> -
> -    // Placement-new the Segment element at the beginning of the SegmentBlock.
> -    auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
> -    new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
> -    return S;
> -  }
> -
> -  Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
> -    DCHECK_EQ(Head, &SentinelSegment);
> -    DCHECK_EQ(Tail, &SentinelSegment);
> -    auto Segment = NewSegment();
> -    if (Segment == nullptr)
> -      return nullptr;
> -    DCHECK_EQ(Segment->Next, &SentinelSegment);
> -    DCHECK_EQ(Segment->Prev, &SentinelSegment);
> -    Head = Tail = static_cast<SegmentBase *>(Segment);
> -    return Segment;
> -  }
> -
> -  Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
> -    auto S = NewSegment();
> -    if (S == nullptr)
> -      return nullptr;
> -    DCHECK_NE(Tail, &SentinelSegment);
> -    DCHECK_EQ(Tail->Next, &SentinelSegment);
> -    DCHECK_EQ(S->Prev, &SentinelSegment);
> -    DCHECK_EQ(S->Next, &SentinelSegment);
> -    Tail->Next = S;
> -    S->Prev = Tail;
> -    Tail = S;
> -    return static_cast<Segment *>(Tail);
> -  }
> -
>    // This Iterator models a BidirectionalIterator.
>    template <class U> class Iterator {
> -    SegmentBase *S = &SentinelSegment;
> -    size_t Offset = 0;
> -    size_t Size = 0;
> +    Segment *S = &SentinelSegment;
> +    uint64_t Offset = 0;
> +    uint64_t Size = 0;
>
>    public:
> -    Iterator(SegmentBase *IS, size_t Off, size_t S) XRAY_NEVER_INSTRUMENT
> +    Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
>          : S(IS),
>            Offset(Off),
>            Size(S) {}
> @@ -215,7 +154,7 @@ private:
>
>        // We need to compute the character-aligned pointer, offset from the
>        // segment's Data location to get the element in the position of Offset.
> -      auto Base = static_cast<Segment *>(S)->Data;
> +      auto Base = &S->Data;
>        auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
>        return *reinterpret_cast<U *>(AlignedOffset);
>      }
> @@ -223,17 +162,183 @@ private:
>      U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
>    };
>
> +  AllocatorType *Alloc;
> +  Segment *Head;
> +  Segment *Tail;
> +
> +  // Here we keep track of segments in the freelist, to allow us to re-use
> +  // segments when elements are trimmed off the end.
> +  Segment *Freelist;
> +  uint64_t Size;
> +
> +  // ===============================
> +  // In the following implementation, we work through the algorithms and the
> +  // list operations using the following notation:
> +  //
> +  //   - pred(s) is the predecessor (previous node accessor) and succ(s) is
> +  //     the successor (next node accessor).
> +  //
> +  //   - S is a sentinel segment, which has the following property:
> +  //
> +  //         pred(S) == succ(S) == S
> +  //
> +  //   - @ is a loop operator, which can imply pred(s) == s if it appears on
> +  //     the left of s, or succ(s) == S if it appears on the right of s.
> +  //
> +  //   - sL <-> sR : means a bidirectional relation between sL and sR, which
> +  //     means:
> +  //
> +  //         succ(sL) == sR && pred(SR) == sL
> +  //
> +  //   - sL -> sR : implies a unidirectional relation between sL and SR,
> +  //     with the following properties:
> +  //
> +  //         succ(sL) == sR
> +  //
> +  //     sL <- sR : implies a unidirectional relation between sR and sL,
> +  //     with the following properties:
> +  //
> +  //         pred(sR) == sL
> +  //
> +  // ===============================
> +
> +  Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
> +    // We need to handle the case in which enough elements have been trimmed to
> +    // allow us to re-use segments we've allocated before. For this we look into
> +    // the Freelist, to see whether we need to actually allocate new blocks or
> +    // just re-use blocks we've already seen before.
> +    if (Freelist != &SentinelSegment) {
> +      // The current state of lists resemble something like this at this point:
> +      //
> +      //   Freelist: @S@<-f0->...<->fN->@S@
> +      //                  ^ Freelist
> +      //
> +      // We want to perform a splice of `f0` from Freelist to a temporary list,
> +      // which looks like:
> +      //
> +      //   Templist: @S@<-f0->@S@
> +      //                  ^ FreeSegment
> +      //
> +      // Our algorithm preconditions are:
> +      DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> +
> +      // Then the algorithm we implement is:
> +      //
> +      //   SFS = Freelist
> +      //   Freelist = succ(Freelist)
> +      //   if (Freelist != S)
> +      //     pred(Freelist) = S
> +      //   succ(SFS) = S
> +      //   pred(SFS) = S
> +      //
> +      auto *FreeSegment = Freelist;
> +      Freelist = Freelist->Next;
> +
> +      // Note that we need to handle the case where Freelist is now pointing to
> +      // S, which we don't want to be overwriting.
> +      // TODO: Determine whether the cost of the branch is higher than the cost
> +      // of the blind assignment.
> +      if (Freelist != &SentinelSegment)
> +        Freelist->Prev = &SentinelSegment;
> +
> +      FreeSegment->Next = &SentinelSegment;
> +      FreeSegment->Prev = &SentinelSegment;
> +
> +      // Our postconditions are:
> +      DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> +      DCHECK_NE(FreeSegment, &SentinelSegment);
> +      return FreeSegment;
> +    }
> +
> +    auto SegmentBlock = Alloc->Allocate();
> +    if (SegmentBlock.Data == nullptr)
> +      return nullptr;
> +
> +    // Placement-new the Segment element at the beginning of the SegmentBlock.
> +    new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
> +    auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
> +    return SB;
> +  }
> +
> +  Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
> +    DCHECK_EQ(Head, &SentinelSegment);
> +    DCHECK_EQ(Tail, &SentinelSegment);
> +    auto S = NewSegment();
> +    if (S == nullptr)
> +      return nullptr;
> +    DCHECK_EQ(S->Next, &SentinelSegment);
> +    DCHECK_EQ(S->Prev, &SentinelSegment);
> +    DCHECK_NE(S, &SentinelSegment);
> +    Head = S;
> +    Tail = S;
> +    DCHECK_EQ(Head, Tail);
> +    DCHECK_EQ(Tail->Next, &SentinelSegment);
> +    DCHECK_EQ(Tail->Prev, &SentinelSegment);
> +    return S;
> +  }
> +
> +  Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
> +    auto S = NewSegment();
> +    if (S == nullptr)
> +      return nullptr;
> +    DCHECK_NE(Tail, &SentinelSegment);
> +    DCHECK_EQ(Tail->Next, &SentinelSegment);
> +    DCHECK_EQ(S->Prev, &SentinelSegment);
> +    DCHECK_EQ(S->Next, &SentinelSegment);
> +    S->Prev = Tail;
> +    Tail->Next = S;
> +    Tail = S;
> +    DCHECK_EQ(S, S->Prev->Next);
> +    DCHECK_EQ(Tail->Next, &SentinelSegment);
> +    return S;
> +  }
> +
>  public:
> -  explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT : Alloc(&A) {}
> +  explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
> +      : Alloc(&A),
> +        Head(&SentinelSegment),
> +        Tail(&SentinelSegment),
> +        Freelist(&SentinelSegment),
> +        Size(0) {}
> +
> +  Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
> +                                  Head(&SentinelSegment),
> +                                  Tail(&SentinelSegment),
> +                                  Freelist(&SentinelSegment),
> +                                  Size(0) {}
>
>    Array(const Array &) = delete;
> -  Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
> -                              Head(O.Head),
> -                              Tail(O.Tail),
> -                              Size(O.Size) {
> +  Array &operator=(const Array &) = delete;
> +
> +  Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
> +                                           Head(O.Head),
> +                                           Tail(O.Tail),
> +                                           Freelist(O.Freelist),
> +                                           Size(O.Size) {
> +    O.Alloc = nullptr;
>      O.Head = &SentinelSegment;
>      O.Tail = &SentinelSegment;
>      O.Size = 0;
> +    O.Freelist = &SentinelSegment;
> +  }
> +
> +  Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
> +    Alloc = O.Alloc;
> +    O.Alloc = nullptr;
> +    Head = O.Head;
> +    O.Head = &SentinelSegment;
> +    Tail = O.Tail;
> +    O.Tail = &SentinelSegment;
> +    Freelist = O.Freelist;
> +    O.Freelist = &SentinelSegment;
> +    Size = O.Size;
> +    O.Size = 0;
> +    return *this;
> +  }
> +
> +  ~Array() XRAY_NEVER_INSTRUMENT {
> +    for (auto &E : *this)
> +      (&E)->~T();
>    }
>
>    bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }
> @@ -243,52 +348,41 @@ public:
>      return *Alloc;
>    }
>
> -  size_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
> -
> -  T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
> -    if (UNLIKELY(Head == &SentinelSegment))
> -      if (InitHeadAndTail() == nullptr)
> -        return nullptr;
> -
> -    auto Offset = Size % ElementsPerSegment;
> -    if (UNLIKELY(Size != 0 && Offset == 0))
> -      if (AppendNewSegment() == nullptr)
> -        return nullptr;
> -
> -    auto Base = static_cast<Segment *>(Tail)->Data;
> -    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
> -    auto Position = reinterpret_cast<T *>(AlignedOffset);
> -    *Position = E;
> -    ++Size;
> -    return Position;
> -  }
> +  uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
>
>    template <class... Args>
>    T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
> -    if (UNLIKELY(Head == &SentinelSegment))
> -      if (InitHeadAndTail() == nullptr)
> +    DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
> +           (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
> +    if (UNLIKELY(Head == &SentinelSegment)) {
> +      auto R = InitHeadAndTail();
> +      if (R == nullptr)
>          return nullptr;
> +    }
> +
> +    DCHECK_NE(Head, &SentinelSegment);
> +    DCHECK_NE(Tail, &SentinelSegment);
>
>      auto Offset = Size % ElementsPerSegment;
> -    auto *LatestSegment = Tail;
> -    if (UNLIKELY(Size != 0 && Offset == 0)) {
> -      LatestSegment = AppendNewSegment();
> -      if (LatestSegment == nullptr)
> +    if (UNLIKELY(Size != 0 && Offset == 0))
> +      if (AppendNewSegment() == nullptr)
>          return nullptr;
> -    }
>
>      DCHECK_NE(Tail, &SentinelSegment);
> -    auto Base = static_cast<Segment *>(LatestSegment)->Data;
> +    auto Base = &Tail->Data;
>      auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
> -    auto Position = reinterpret_cast<T *>(AlignedOffset);
> +    DCHECK_LE(AlignedOffset + sizeof(T),
> +              reinterpret_cast<unsigned char *>(Tail) + SegmentSize);
>
>      // In-place construct at Position.
> -    new (Position) T{std::forward<Args>(args)...};
> +    new (AlignedOffset) T{std::forward<Args>(args)...};
>      ++Size;
> -    return reinterpret_cast<T *>(Position);
> +    return reinterpret_cast<T *>(AlignedOffset);
>    }
>
> -  T &operator[](size_t Offset) const XRAY_NEVER_INSTRUMENT {
> +  T *Append(const T &E) XRAY_NEVER_INSTRUMENT { return AppendEmplace(E); }
> +
> +  T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
>      DCHECK_LE(Offset, Size);
>      // We need to traverse the array enough times to find the element at Offset.
>      auto S = Head;
> @@ -297,7 +391,7 @@ public:
>        Offset -= ElementsPerSegment;
>        DCHECK_NE(S, &SentinelSegment);
>      }
> -    auto Base = static_cast<Segment *>(S)->Data;
> +    auto Base = &S->Data;
>      auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
>      auto Position = reinterpret_cast<T *>(AlignedOffset);
>      return *reinterpret_cast<T *>(Position);
> @@ -332,41 +426,172 @@ public:
>
>    /// Remove N Elements from the end. This leaves the blocks behind, and not
>    /// require allocation of new blocks for new elements added after trimming.
> -  void trim(size_t Elements) XRAY_NEVER_INSTRUMENT {
> -    if (Elements == 0)
> -      return;
> -
> +  void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
>      auto OldSize = Size;
> -    Elements = Elements >= Size ? Size : Elements;
> +    Elements = Elements > Size ? Size : Elements;
>      Size -= Elements;
>
> -    DCHECK_NE(Head, &SentinelSegment);
> -    DCHECK_NE(Tail, &SentinelSegment);
> -
> -    for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
> -                                nearest_boundary(Size, ElementsPerSegment)) /
> -                               ElementsPerSegment;
> -         SegmentsToTrim > 0; --SegmentsToTrim) {
> -
> -      // We want to short-circuit if the trace is already empty.
> -      if (Head == &SentinelSegment && Head == Tail)
> -        return;
> -
> -      // Put the tail into the Freelist.
> -      auto *FreeSegment = Tail;
> -      Tail = Tail->Prev;
> -      if (Tail == &SentinelSegment)
> -        Head = Tail;
> -      else
> -        Tail->Next = &SentinelSegment;
> -
> +    // We compute the number of segments we're going to return from the tail by
> +    // counting how many elements have been trimmed. Given the following:
> +    //
> +    // - Each segment has N valid positions, where N > 0
> +    // - The previous size > current size
> +    //
> +    // To compute the number of segments to return, we need to perform the
> +    // following calculations for the number of segments required given 'x'
> +    // elements:
> +    //
> +    //   f(x) = {
> +    //            x == 0          : 0
> +    //          , 0 < x <= N      : 1
> +    //          , N < x <= max    : x / N + (x % N ? 1 : 0)
> +    //          }
> +    //
> +    // We can simplify this down to:
> +    //
> +    //   f(x) = {
> +    //            x == 0          : 0,
> +    //          , 0 < x <= max    : x / N + (x < N || x % N ? 1 : 0)
> +    //          }
> +    //
> +    // And further down to:
> +    //
> +    //   f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
> +    //
> +    // We can then perform the following calculation `s` which counts the number
> +    // of segments we need to remove from the end of the data structure:
> +    //
> +    //   s(p, c) = f(p) - f(c)
> +    //
> +    // If we treat p = previous size, and c = current size, and given the
> +    // properties above, the possible range for s(...) is [0..max(typeof(p))/N]
> +    // given that typeof(p) == typeof(c).
> +    auto F = [](uint64_t X) {
> +      return X ? (X / ElementsPerSegment) +
> +                     (X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
> +               : 0;
> +    };
> +    auto PS = F(OldSize);
> +    auto CS = F(Size);
> +    DCHECK_GE(PS, CS);
> +    auto SegmentsToTrim = PS - CS;
> +    for (auto I = 0uL; I < SegmentsToTrim; ++I) {
> +      // Here we place the current tail segment to the freelist. To do this
> +      // appropriately, we need to perform a splice operation on two
> +      // bidirectional linked-lists. In particular, we have the current state of
> +      // the doubly-linked list of segments:
> +      //
> +      //   @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
> +      //
> +      DCHECK_NE(Head, &SentinelSegment);
> +      DCHECK_NE(Tail, &SentinelSegment);
>        DCHECK_EQ(Tail->Next, &SentinelSegment);
> -      FreeSegment->Next = Freelist;
> -      FreeSegment->Prev = &SentinelSegment;
> -      if (Freelist != &SentinelSegment)
> -        Freelist->Prev = FreeSegment;
> -      Freelist = FreeSegment;
> +
> +      if (Freelist == &SentinelSegment) {
> +        // Our two lists at this point are in this configuration:
> +        //
> +        //   Freelist: (potentially) @S@
> +        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
> +        //                  ^ Head                ^ Tail
> +        //
> +        // The end state for us will be this configuration:
> +        //
> +        //   Freelist: @S@<-sT->@S@
> +        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
> +        //                  ^ Head          ^ Tail
> +        //
> +        // The first step for us is to hold a reference to the tail of Mainlist,
> +        // which in our notation is represented by sT. We call this our "free
> +        // segment" which is the segment we are placing on the Freelist.
> +        //
> +        //   sF = sT
> +        //
> +        // Then, we also hold a reference to the "pre-tail" element, which we
> +        // call sPT:
> +        //
> +        //   sPT = pred(sT)
> +        //
> +        // We want to splice sT into the beginning of the Freelist, which in
> +        // an empty Freelist means placing a segment whose predecessor and
> +        // successor is the sentinel segment.
> +        //
> +        // The splice operation then can be performed in the following
> +        // algorithm:
> +        //
> +        //   succ(sPT) = S
> +        //   pred(sT) = S
> +        //   succ(sT) = Freelist
> +        //   Freelist = sT
> +        //   Tail = sPT
> +        //
> +        auto SPT = Tail->Prev;
> +        SPT->Next = &SentinelSegment;
> +        Tail->Prev = &SentinelSegment;
> +        Tail->Next = Freelist;
> +        Freelist = Tail;
> +        Tail = SPT;
> +
> +        // Our post-conditions here are:
> +        DCHECK_EQ(Tail->Next, &SentinelSegment);
> +        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> +      } else {
> +        // In the other case, where the Freelist is not empty, we perform the
> +        // following transformation instead:
> +        //
> +        // This transforms the current state:
> +        //
> +        //   Freelist: @S@<-f0->@S@
> +        //                  ^ Freelist
> +        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
> +        //                  ^ Head                ^ Tail
> +        //
> +        // Into the following:
> +        //
> +        //   Freelist: @S@<-sT<->f0->@S@
> +        //                  ^ Freelist
> +        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
> +        //                  ^ Head          ^ Tail
> +        //
> +        // The algorithm is:
> +        //
> +        //   sFH = Freelist
> +        //   sPT = pred(sT)
> +        //   pred(SFH) = sT
> +        //   succ(sT) = Freelist
> +        //   pred(sT) = S
> +        //   succ(sPT) = S
> +        //   Tail = sPT
> +        //   Freelist = sT
> +        //
> +        auto SFH = Freelist;
> +        auto SPT = Tail->Prev;
> +        auto ST = Tail;
> +        SFH->Prev = ST;
> +        ST->Next = Freelist;
> +        ST->Prev = &SentinelSegment;
> +        SPT->Next = &SentinelSegment;
> +        Tail = SPT;
> +        Freelist = ST;
> +
> +        // Our post-conditions here are:
> +        DCHECK_EQ(Tail->Next, &SentinelSegment);
> +        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
> +        DCHECK_EQ(Freelist->Next->Prev, Freelist);
> +      }
>      }
> +
> +    // Now in case we've spliced all the segments in the end, we ensure that the
> +    // main list is "empty", or both the head and tail pointing to the sentinel
> +    // segment.
> +    if (Tail == &SentinelSegment)
> +      Head = Tail;
> +
> +    DCHECK(
> +        (Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
> +        (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
> +    DCHECK(
> +        (Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
> +        (Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
>    }
>
>    // Provide iterators.
> @@ -388,8 +613,8 @@ public:
>  // ensure that storage for the SentinelSegment is defined and has a single
>  // address.
>  template <class T>
> -typename Array<T>::SegmentBase Array<T>::SentinelSegment{
> -    &Array<T>::SentinelSegment, &Array<T>::SentinelSegment};
> +typename Array<T>::Segment Array<T>::SentinelSegment{
> +    &Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};
>
>  } // namespace __xray
>
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits


More information about the llvm-commits mailing list