[llvm] r344667 - [BuildingAJIT] Update chapter 1 to use the ORCv2 APIs.

Lang Hames via llvm-commits llvm-commits at lists.llvm.org
Tue Oct 16 20:34:10 PDT 2018


Author: lhames
Date: Tue Oct 16 20:34:09 2018
New Revision: 344667

URL: http://llvm.org/viewvc/llvm-project?rev=344667&view=rev
Log:
[BuildingAJIT] Update chapter 1 to use the ORCv2 APIs.

Modified:
    llvm/trunk/docs/tutorial/BuildingAJIT1.rst
    llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/KaleidoscopeJIT.h
    llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/toy.cpp

Modified: llvm/trunk/docs/tutorial/BuildingAJIT1.rst
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/BuildingAJIT1.rst?rev=344667&r1=344666&r2=344667&view=diff
==============================================================================
--- llvm/trunk/docs/tutorial/BuildingAJIT1.rst (original)
+++ llvm/trunk/docs/tutorial/BuildingAJIT1.rst Tue Oct 16 20:34:09 2018
@@ -8,18 +8,19 @@ Building a JIT: Starting out with Kaleid
 Chapter 1 Introduction
 ======================
 
-**Warning: This text is currently out of date due to ORC API updates.**
+**Warning: This tutorial is currently being updated to account for ORC API
+changes. Only Chapter 1 is up-to-date.**
 
-**The example code has been updated and can be used. The text will be updated
-once the API churn dies down.**
+**Example code from Chapters 2 to 4 will compile and run, but has not been
+updated**
 
 Welcome to Chapter 1 of the "Building an ORC-based JIT in LLVM" tutorial. This
 tutorial runs through the implementation of a JIT compiler using LLVM's
 On-Request-Compilation (ORC) APIs. It begins with a simplified version of the
 KaleidoscopeJIT class used in the
 `Implementing a language with LLVM <LangImpl01.html>`_ tutorials and then
-introduces new features like optimization, lazy compilation and remote
-execution.
+introduces new features like concurrent compilation, optimization, lazy
+compilation and remote execution.
 
 The goal of this tutorial is to introduce you to LLVM's ORC JIT APIs, show how
 these APIs interact with other parts of LLVM, and to teach you how to recombine
@@ -45,11 +46,9 @@ The structure of the tutorial is:
 - `Chapter #5 <BuildingAJIT5.html>`_: Add process isolation by JITing code into
   a remote process with reduced privileges using the JIT Remote APIs.
 
-To provide input for our JIT we will use the Kaleidoscope REPL from
-`Chapter 7 <LangImpl07.html>`_ of the "Implementing a language in LLVM tutorial",
-with one minor modification: We will remove the FunctionPassManager from the
-code for that chapter and replace it with optimization support in our JIT class
-in Chapter #2.
+To provide input for our JIT we will use a lightly modified version of the
+Kaleidoscope REPL from `Chapter 7 <LangImpl07.html>`_ of the "Implementing a
+language in LLVM tutorial".
 
 Finally, a word on API generations: ORC is the 3rd generation of LLVM JIT API.
 It was preceded by MCJIT, and before that by the (now deleted) legacy JIT.
@@ -63,14 +62,13 @@ JIT API Basics
 
 The purpose of a JIT compiler is to compile code "on-the-fly" as it is needed,
 rather than compiling whole programs to disk ahead of time as a traditional
-compiler does. To support that aim our initial, bare-bones JIT API will be:
+compiler does. To support that aim our initial, bare-bones JIT API will have
+just two functions:
 
 1. Handle addModule(Module &M) -- Make the given IR module available for
    execution.
-2. JITSymbol findSymbol(const std::string &Name) -- Search for pointers to
+2. Expected<JITSymbol> lookup() -- Search for pointers to
    symbols (functions or variables) that have been added to the JIT.
-3. void removeModule(Handle H) -- Remove a module from the JIT, releasing any
-   memory that had been used for the compiled code.
 
 A basic use-case for this API, executing the 'main' function from a module,
 will look like:
@@ -79,16 +77,15 @@ will look like:
 
   std::unique_ptr<Module> M = buildModule();
   JIT J;
-  Handle H = J.addModule(*M);
-  int (*Main)(int, char*[]) = (int(*)(int, char*[]))J.getSymbolAddress("main");
+  J.addModule(*M);
+  auto *Main = (int(*)(int, char*[]))J.lookup("main");.getAddress();
   int Result = Main();
-  J.removeModule(H);
 
 The APIs that we build in these tutorials will all be variations on this simple
-theme. Behind the API we will refine the implementation of the JIT to add
-support for optimization and lazy compilation. Eventually we will extend the
-API itself to allow higher-level program representations (e.g. ASTs) to be
-added to the JIT.
+theme. Behind this API we will refine the implementation of the JIT to add
+support for concurrent compilation, optimization and lazy compilation.
+Eventually we will extend the API itself to allow higher-level program
+representations (e.g. ASTs) to be added to the JIT.
 
 KaleidoscopeJIT
 ===============
@@ -100,12 +97,10 @@ the REPL code from `Chapter 7 <LangImpl0
 input for our JIT: Each time the user enters an expression the REPL will add a
 new IR module containing the code for that expression to the JIT. If the
 expression is a top-level expression like '1+1' or 'sin(x)', the REPL will also
-use the findSymbol method of our JIT class find and execute the code for the
-expression, and then use the removeModule method to remove the code again
-(since there's no way to re-invoke an anonymous expression). In later chapters
-of this tutorial we'll modify the REPL to enable new interactions with our JIT
-class, but for now we will take this setup for granted and focus our attention on
-the implementation of our JIT itself.
+use the lookup method of our JIT class find and execute the code for the
+expression. In later chapters of this tutorial we will modify the REPL to enable
+new interactions with our JIT class, but for now we will take this setup for
+granted and focus our attention on the implementation of our JIT itself.
 
 Our KaleidoscopeJIT class is defined in the KaleidoscopeJIT.h header. After the
 usual include guards and #includes [2]_, we get to the definition of our class:
@@ -115,216 +110,154 @@ usual include guards and #includes [2]_,
   #ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
   #define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
 
-  #include "llvm/ADT/STLExtras.h"
-  #include "llvm/ExecutionEngine/ExecutionEngine.h"
+  #include "llvm/ADT/StringRef.h"
   #include "llvm/ExecutionEngine/JITSymbol.h"
-  #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
-  #include "llvm/ExecutionEngine/SectionMemoryManager.h"
   #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
+  #include "llvm/ExecutionEngine/Orc/Core.h"
+  #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
   #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-  #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
+  #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
   #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
+  #include "llvm/ExecutionEngine/SectionMemoryManager.h"
   #include "llvm/IR/DataLayout.h"
-  #include "llvm/IR/Mangler.h"
-  #include "llvm/Support/DynamicLibrary.h"
-  #include "llvm/Support/raw_ostream.h"
-  #include "llvm/Target/TargetMachine.h"
-  #include <algorithm>
+  #include "llvm/IR/LLVMContext.h"
   #include <memory>
-  #include <string>
-  #include <vector>
 
   namespace llvm {
   namespace orc {
 
   class KaleidoscopeJIT {
   private:
-    std::unique_ptr<TargetMachine> TM;
-    const DataLayout DL;
-    RTDyldObjectLinkingLayer ObjectLayer;
-    IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
-
-  public:
-    using ModuleHandle = decltype(CompileLayer)::ModuleHandleT;
 
-Our class begins with four members: A TargetMachine, TM, which will be used to
-build our LLVM compiler instance; A DataLayout, DL, which will be used for
-symbol mangling (more on that later), and two ORC *layers*: an
-RTDyldObjectLinkingLayer and a CompileLayer. We'll be talking more about layers
-in the next chapter, but for now you can think of them as analogous to LLVM
-Passes: they wrap up useful JIT utilities behind an easy to compose interface.
-The first layer, ObjectLayer, is the foundation of our JIT: it takes in-memory
-object files produced by a compiler and links them on the fly to make them
-executable. This JIT-on-top-of-a-linker design was introduced in MCJIT, however
-the linker was hidden inside the MCJIT class. In ORC we expose the linker so
-that clients can access and configure it directly if they need to. In this
-tutorial our ObjectLayer will just be used to support the next layer in our
-stack: the CompileLayer, which will be responsible for taking LLVM IR, compiling
-it, and passing the resulting in-memory object files down to the object linking
-layer below.
-
-That's it for member variables, after that we have a single typedef:
-ModuleHandle. This is the handle type that will be returned from our JIT's
-addModule method, and can be passed to the removeModule method to remove a
-module. The IRCompileLayer class already provides a convenient handle type
-(IRCompileLayer::ModuleHandleT), so we just alias our ModuleHandle to this.
+    ExecutionSession ES;
+    RTDyldObjectLinkingLayer ObjectLayer{ES, getMemoryMgr};
+    IRCompileLayer CompileLayer{ES, ObjectLayer,
+                                ConcurrentIRCompiler(getJTMB())};
+    DataLayout DL{cantFail(getJTMB().getDefaultDataLayoutForTarget())};
+    MangleAndInterner Mangle{ES, DL};
+    ThreadSafeContext Ctx{llvm::make_unique<LLVMContext>()};
+
+    static JITTargetMachineBuilder getJTMB() {
+      return cantFail(JITTargetMachineBuilder::detectHost());
+    }
+
+    static std::unique_ptr<SectionMemoryManager> getMemoryMgr(VModuleKey) {
+      return llvm::make_unique<SectionMemoryManager>();
+    }
+
+We begin with the ExecutionSession member, ``ES``, which provides context for
+our running JIT'd code. It holds the string pool for symbol names, the global
+mutex that guards the critical sections of JIT operations, error logging
+facilities, and other utilities. For basic use cases such as this, a default
+constructed ExecutionSession is all we will need. We will investigate more
+advanced uses of ExecutionSession in later chapters. Following our
+ExecutionSession we have two ORC *layers*: an RTDyldObjectLinkingLayer and an
+IRCompileLayer. We will be talking more about layers in the next chapter, but
+for now you can think of them as analogous to LLVM Passes: they wrap up useful
+JIT utilities behind an easy to compose interface. The first layer, ObjectLayer,
+is the foundation of our JIT: it takes in-memory object files produced by a
+compiler and links them on the fly to make them executable. This
+JIT-on-top-of-a-linker design was introduced in MCJIT, however the linker was
+hidden inside the MCJIT class. In ORC we expose the linker so that clients can
+access and configure it directly if they need to. In this tutorial our
+ObjectLayer will just be used to support the next layer in our stack: the
+CompileLayer, which will be responsible for taking LLVM IR, compiling it, and
+passing the resulting in-memory object files down to the object linking layer
+below. Our ObjectLayer is constructed with a reference to the ExecutionSession
+and the getMemoryMgr utility function, which it uses to generate a new memory
+manager for each object file as it is added. Next up is our CompileLayer, which
+is initialized with a reference to the ExecutionSession, a reference to the
+ObjectLayer (where it will send the objects produced by the compiler), and an IR
+compiler instance. In this case we are using the ConcurrentIRCompiler class
+which is constructed with a JITTargetMachineBuilder and can be called to compile
+IR concurrently from several threads (though in this chapter we will only use
+one).
+
+Following the ExecutionSession and layers we have three supporting member
+variables. The DataLayout, ``DL``; and MangleAndInterner, ``Mangle`` members are
+used to support portable lookups based on IR symbol names (more on that when we
+get to our ``lookup`` function below), and the ThreadSafeContext member,
+``Ctx``, manages an LLVMContext that can be used while building IR Modules for
+the JIT.
+
+After that, we have two static utility functions. The ``getJTMB()`` function
+returns a JITTargetMachineBuilder, which is a factory for building LLVM
+TargetMachine instances that are used by the compiler. In this first tutorial we
+will only need one (implicitly created) TargetMachine, but in future tutorials
+that enable concurrent compilation we will need one per thread. This is why we
+use a target machine builder, rather than a single TargetMachine. (note: Older
+LLVM JIT APIs that did not support concurrent compilation were constructed with
+a single TargetMachines). The ``getMemoryMgr()`` function constructs instances
+of RuntimeDyld::MemoryManager, and is used by the linking layer to generate a
+new memory manager for each object file.
 
 .. code-block:: c++
 
-  KaleidoscopeJIT()
-      : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
-        ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
-        CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
-    llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
-  }
-
-  TargetMachine &getTargetMachine() { return *TM; }
+  public:
 
-Next up we have our class constructor. We begin by initializing TM using the
-EngineBuilder::selectTarget helper method which constructs a TargetMachine for
-the current process. Then we use our newly created TargetMachine to initialize
-DL, our DataLayout. After that we need to initialize our ObjectLayer. The
-ObjectLayer requires a function object that will build a JIT memory manager for
-each module that is added (a JIT memory manager manages memory allocations,
-memory permissions, and registration of exception handlers for JIT'd code). For
-this we use a lambda that returns a SectionMemoryManager, an off-the-shelf
-utility that provides all the basic memory management functionality required for
-this chapter. Next we initialize our CompileLayer. The CompileLayer needs two
-things: (1) A reference to our object layer, and (2) a compiler instance to use
-to perform the actual compilation from IR to object files. We use the
-off-the-shelf SimpleCompiler instance for now. Finally, in the body of the
-constructor, we call the DynamicLibrary::LoadLibraryPermanently method with a
-nullptr argument. Normally the LoadLibraryPermanently method is called with the
-path of a dynamic library to load, but when passed a null pointer it will 'load'
-the host process itself, making its exported symbols available for execution.
+    KaleidoscopeJIT() {
+      ES.getMainJITDylib().setGenerator(
+        cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess(DL)));
+    }
+
+    const DataLayout &getDataLayout() const { return DL; }
+
+    LLVMContext &getContext() { return *Ctx.getContext(); }
+
+Next up we have our class constructor. Our members have already been
+initialized, so the one thing that remains to do is to tweak the configuration
+of the *JITDylib* that we will store our code in. We want to modify this dylib
+to contain not only the symbols that we add to it, but also the symbols from
+our REPL process as well. We do this by attaching a
+``DynamicLibrarySearchGenerator`` instance using the
+``DynamicLibrarySearchGenerator::GetForCurrentProcess`` method.
+
+Following the constructor we have the ``getDataLayout()`` and ``getContext()``
+methods. These are used to make data structures created and managed by the JIT
+(especially the LLVMContext) available to the REPL code that will build our
+IR modules.
 
 .. code-block:: c++
 
-  ModuleHandle addModule(std::unique_ptr<Module> M) {
-    // Build our symbol resolver:
-    // Lambda 1: Look back into the JIT itself to find symbols that are part of
-    //           the same "logical dylib".
-    // Lambda 2: Search for external symbols in the host process.
-    auto Resolver = createLambdaResolver(
-        [&](const std::string &Name) {
-          if (auto Sym = CompileLayer.findSymbol(Name, false))
-            return Sym;
-          return JITSymbol(nullptr);
-        },
-        [](const std::string &Name) {
-          if (auto SymAddr =
-                RTDyldMemoryManager::getSymbolAddressInProcess(Name))
-            return JITSymbol(SymAddr, JITSymbolFlags::Exported);
-          return JITSymbol(nullptr);
-        });
-
-    // Add the set to the JIT with the resolver we created above and a newly
-    // created SectionMemoryManager.
-    return cantFail(CompileLayer.addModule(std::move(M),
-                                           std::move(Resolver)));
+  void addModule(std::unique_ptr<Module> M) {
+    cantFail(CompileLayer.add(ES.getMainJITDylib(),
+                              ThreadSafeModule(std::move(M), Ctx)));
+  }
+
+  Expected<JITEvaluatedSymbol> lookup(StringRef Name) {
+    return ES.lookup({&ES.getMainJITDylib()}, Mangle(Name.str()));
   }
 
 Now we come to the first of our JIT API methods: addModule. This method is
 responsible for adding IR to the JIT and making it available for execution. In
 this initial implementation of our JIT we will make our modules "available for
-execution" by adding them straight to the CompileLayer, which will immediately
-compile them. In later chapters we will teach our JIT to defer compilation
-of individual functions until they're actually called.
-
-To add our module to the CompileLayer we need to supply both the module and a
-symbol resolver. The symbol resolver is responsible for supplying the JIT with
-an address for each *external symbol* in the module we are adding. External
-symbols are any symbol not defined within the module itself, including calls to
-functions outside the JIT and calls to functions defined in other modules that
-have already been added to the JIT. (It may seem as though modules added to the
-JIT should know about one another by default, but since we would still have to
-supply a symbol resolver for references to code outside the JIT it turns out to
-be easier to re-use this one mechanism for all symbol resolution.) This has the
-added benefit that the user has full control over the symbol resolution
-process. Should we search for definitions within the JIT first, then fall back
-on external definitions? Or should we prefer external definitions where
-available and only JIT code if we don't already have an available
-implementation? By using a single symbol resolution scheme we are free to choose
-whatever makes the most sense for any given use case.
-
-Building a symbol resolver is made especially easy by the *createLambdaResolver*
-function. This function takes two lambdas [3]_ and returns a JITSymbolResolver
-instance. The first lambda is used as the implementation of the resolver's
-findSymbolInLogicalDylib method, which searches for symbol definitions that
-should be thought of as being part of the same "logical" dynamic library as this
-Module. If you are familiar with static linking: this means that
-findSymbolInLogicalDylib should expose symbols with common linkage and hidden
-visibility. If all this sounds foreign you can ignore the details and just
-remember that this is the first method that the linker will use to try to find a
-symbol definition. If the findSymbolInLogicalDylib method returns a null result
-then the linker will call the second symbol resolver method, called findSymbol,
-which searches for symbols that should be thought of as external to (but
-visibile from) the module and its logical dylib. In this tutorial we will adopt
-the following simple scheme: All modules added to the JIT will behave as if they
-were linked into a single, ever-growing logical dylib. To implement this our
-first lambda (the one defining findSymbolInLogicalDylib) will just search for
-JIT'd code by calling the CompileLayer's findSymbol method. If we don't find a
-symbol in the JIT itself we'll fall back to our second lambda, which implements
-findSymbol. This will use the RTDyldMemoryManager::getSymbolAddressInProcess
-method to search for the symbol within the program itself. If we can't find a
-symbol definition via either of these paths, the JIT will refuse to accept our
-module, returning a "symbol not found" error.
-
-Now that we've built our symbol resolver, we're ready to add our module to the
-JIT. We do this by calling the CompileLayer's addModule method. The addModule
-method returns an ``Expected<CompileLayer::ModuleHandle>``, since in more
-advanced JIT configurations it could fail. In our basic configuration we know
-that it will always succeed so we use the cantFail utility to assert that no
-error occurred, and extract the handle value. Since we have already typedef'd
-our ModuleHandle type to be the same as the CompileLayer's handle type, we can
-return the unwrapped handle directly.
-
-.. code-block:: c++
-
-  JITSymbol findSymbol(const std::string Name) {
-    std::string MangledName;
-    raw_string_ostream MangledNameStream(MangledName);
-    Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
-    return CompileLayer.findSymbol(MangledNameStream.str(), true);
-  }
-
-  JITTargetAddress getSymbolAddress(const std::string Name) {
-    return cantFail(findSymbol(Name).getAddress());
-  }
-
-  void removeModule(ModuleHandle H) {
-    cantFail(CompileLayer.removeModule(H));
-  }
-
-Now that we can add code to our JIT, we need a way to find the symbols we've
-added to it. To do that we call the findSymbol method on our CompileLayer, but
-with a twist: We have to *mangle* the name of the symbol we're searching for
-first. The ORC JIT components use mangled symbols internally the same way a
-static compiler and linker would, rather than using plain IR symbol names. This
-allows JIT'd code to interoperate easily with precompiled code in the
-application or shared libraries. The kind of mangling will depend on the
-DataLayout, which in turn depends on the target platform. To allow us to remain
-portable and search based on the un-mangled name, we just re-produce this
-mangling ourselves.
-
-Next we have a convenience function, getSymbolAddress, which returns the address
-of a given symbol. Like CompileLayer's addModule function, JITSymbol's getAddress
-function is allowed to fail [4]_, however we know that it will not in our simple
-example, so we wrap it in a call to cantFail.
-
-We now come to the last method in our JIT API: removeModule. This method is
-responsible for destructing the MemoryManager and SymbolResolver that were
-added with a given module, freeing any resources they were using in the
-process. In our Kaleidoscope demo we rely on this method to remove the module
-representing the most recent top-level expression, preventing it from being
-treated as a duplicate definition when the next top-level expression is
-entered. It is generally good to free any module that you know you won't need
-to call further, just to free up the resources dedicated to it. However, you
-don't strictly need to do this: All resources will be cleaned up when your
-JIT class is destructed, if they haven't been freed before then. Like
-``CompileLayer::addModule`` and ``JITSymbol::getAddress``, removeModule may
-fail in general but will never fail in our example, so we wrap it in a call to
-cantFail.
+execution" by adding them to the CompileLayer, which will it turn store the
+Module in the main JITDylib. This process will create new symbol table entries
+in the JITDylib for each definition in the module, and will defer compilation of
+the module until any of its definitions is looked up. Note that this is not lazy
+compilation: just referencing a definition, even if it is never used, will be
+enough to trigger compilation. In later chapters we will teach our JIT to defer
+compilation of functions until they're actually called.  To add our Module we
+must first wrap it in a ThreadSafeModule instance, which manages the lifetime of
+the Module's LLVMContext (our Ctx member) in a thread-friendly way. In our
+example, all modules will share the Ctx member, which will exist for the
+duration of the JIT. Once we switch to concurrent compilation in later chapters
+we will use a new context per module.
+
+Our last method is ``lookup``, which allows us to look up addresses for
+function and variable definitions added to the JIT based on their symbol names.
+As noted above, lookup will implicitly trigger compilation for any symbol
+that has not already been compiled. Our lookup method calls through to
+`ExecutionSession::lookup`, passing in a list of dylibs to search (in our case
+just the main dylib), and the symbol name to search for, with a twist: We have
+to *mangle* the name of the symbol we're searching for first. The ORC JIT
+components use mangled symbols internally the same way a static compiler and
+linker would, rather than using plain IR symbol names. This allows JIT'd code
+to interoperate easily with precompiled code in the application or shared
+libraries. The kind of mangling will depend on the DataLayout, which in turn
+depends on the target platform. To allow us to remain portable and search based
+on the un-mangled name, we just re-produce this mangling ourselves using our
+``Mangle`` member function object.
 
 This brings us to the end of Chapter 1 of Building a JIT. You now have a basic
 but fully functioning JIT stack that you can use to take LLVM IR and make it
@@ -362,42 +295,26 @@ Here is the code:
 .. [2] +-----------------------------+-----------------------------------------------+
        |         File                |               Reason for inclusion            |
        +=============================+===============================================+
-       |      STLExtras.h            | LLVM utilities that are useful when working   |
-       |                             | with the STL.                                 |
-       +-----------------------------+-----------------------------------------------+
-       |   ExecutionEngine.h         | Access to the EngineBuilder::selectTarget     |
-       |                             | method.                                       |
+       |        JITSymbol.h          | Defines the lookup result type                |
+       |                             | JITEvaluatedSymbol                            |
        +-----------------------------+-----------------------------------------------+
-       |                             | Access to the                                 |
-       | RTDyldMemoryManager.h       | RTDyldMemoryManager::getSymbolAddressInProcess|
-       |                             | method.                                       |
+       |       CompileUtils.h        | Provides the SimpleCompiler class.            |
        +-----------------------------+-----------------------------------------------+
-       |    CompileUtils.h           | Provides the SimpleCompiler class.            |
+       |           Core.h            | Core utilities such as ExecutionSession and   |
+       |                             | JITDylib.                                     |
        +-----------------------------+-----------------------------------------------+
-       |   IRCompileLayer.h          | Provides the IRCompileLayer class.            |
+       |      ExecutionUtils.h       | Provides the DynamicLibrarySearchGenerator    |
+       |                             | class.                                        |
        +-----------------------------+-----------------------------------------------+
-       |                             | Access the createLambdaResolver function,     |
-       |   LambdaResolver.h          | which provides easy construction of symbol    |
-       |                             | resolvers.                                    |
+       |      IRCompileLayer.h       | Provides the IRCompileLayer class.            |
        +-----------------------------+-----------------------------------------------+
-       |  RTDyldObjectLinkingLayer.h | Provides the RTDyldObjectLinkingLayer class.  |
+       |  JITTargetMachineBuilder.h  | Provides the JITTargetMachineBuilder class.   |
        +-----------------------------+-----------------------------------------------+
-       |       Mangler.h             | Provides the Mangler class for platform       |
-       |                             | specific name-mangling.                       |
+       | RTDyldObjectLinkingLayer.h  | Provides the RTDyldObjectLinkingLayer class.  |
        +-----------------------------+-----------------------------------------------+
-       |   DynamicLibrary.h          | Provides the DynamicLibrary class, which      |
-       |                             | makes symbols in the host process searchable. |
+       |   SectionMemoryManager.h    | Provides the SectionMemoryManager class.      |
        +-----------------------------+-----------------------------------------------+
-       |                             | A fast output stream class. We use the        |
-       |     raw_ostream.h           | raw_string_ostream subclass for symbol        |
-       |                             | mangling                                      |
+       |        DataLayout.h         | Provides the DataLayout class.                |
        +-----------------------------+-----------------------------------------------+
-       |   TargetMachine.h           | LLVM target machine description class.        |
+       |        LLVMContext.h        | Provides the LLVMContext class.               |
        +-----------------------------+-----------------------------------------------+
-
-.. [3] Actually they don't have to be lambdas, any object with a call operator
-       will do, including plain old functions or std::functions.
-
-.. [4] ``JITSymbol::getAddress`` will force the JIT to compile the definition of
-       the symbol if it hasn't already been compiled, and since the compilation
-       process could fail getAddress must be able to return this failure.

Modified: llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/KaleidoscopeJIT.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/KaleidoscopeJIT.h?rev=344667&r1=344666&r2=344667&view=diff
==============================================================================
--- llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/KaleidoscopeJIT.h (original)
+++ llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/KaleidoscopeJIT.h Tue Oct 16 20:34:09 2018
@@ -14,84 +14,59 @@
 #ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
 #define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
 
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ADT/StringRef.h"
 #include "llvm/ExecutionEngine/JITSymbol.h"
-#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
-#include "llvm/ExecutionEngine/SectionMemoryManager.h"
 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
+#include "llvm/ExecutionEngine/Orc/Core.h"
+#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
+#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
 #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
 #include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include <algorithm>
+#include "llvm/IR/LLVMContext.h"
 #include <memory>
-#include <string>
-#include <vector>
 
 namespace llvm {
 namespace orc {
 
 class KaleidoscopeJIT {
 private:
+
   ExecutionSession ES;
-  std::shared_ptr<SymbolResolver> Resolver;
-  std::unique_ptr<TargetMachine> TM;
-  const DataLayout DL;
-  LegacyRTDyldObjectLinkingLayer ObjectLayer;
-  LegacyIRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
+  RTDyldObjectLinkingLayer ObjectLayer{ES, getMemoryMgr};
+  IRCompileLayer CompileLayer{ES, ObjectLayer,
+                              ConcurrentIRCompiler(getJTMB())};
+  DataLayout DL{cantFail(getJTMB().getDefaultDataLayoutForTarget())};
+  MangleAndInterner Mangle{ES, DL};
+  ThreadSafeContext Ctx{llvm::make_unique<LLVMContext>()};
 
-public:
-  KaleidoscopeJIT()
-      : Resolver(createLegacyLookupResolver(
-            ES,
-            [this](const std::string &Name) -> JITSymbol {
-              if (auto Sym = CompileLayer.findSymbol(Name, false))
-                return Sym;
-              else if (auto Err = Sym.takeError())
-                return std::move(Err);
-              if (auto SymAddr =
-                      RTDyldMemoryManager::getSymbolAddressInProcess(Name))
-                return JITSymbol(SymAddr, JITSymbolFlags::Exported);
-              return nullptr;
-            },
-            [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
-        TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
-        ObjectLayer(ES,
-                    [this](VModuleKey) {
-                      return LegacyRTDyldObjectLinkingLayer::Resources{
-                          std::make_shared<SectionMemoryManager>(), Resolver};
-                    }),
-        CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
-    llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
+  static JITTargetMachineBuilder getJTMB() {
+    return cantFail(JITTargetMachineBuilder::detectHost());
   }
 
-  TargetMachine &getTargetMachine() { return *TM; }
-
-  VModuleKey addModule(std::unique_ptr<Module> M) {
-    // Add the module to the JIT with a new VModuleKey.
-    auto K = ES.allocateVModule();
-    cantFail(CompileLayer.addModule(K, std::move(M)));
-    return K;
+  static std::unique_ptr<SectionMemoryManager> getMemoryMgr() {
+    return llvm::make_unique<SectionMemoryManager>();
   }
 
-  JITSymbol findSymbol(const std::string Name) {
-    std::string MangledName;
-    raw_string_ostream MangledNameStream(MangledName);
-    Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
-    return CompileLayer.findSymbol(MangledNameStream.str(), true);
+public:
+
+  KaleidoscopeJIT() {
+    ES.getMainJITDylib().setGenerator(
+      cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess(DL)));
   }
 
-  JITTargetAddress getSymbolAddress(const std::string Name) {
-    return cantFail(findSymbol(Name).getAddress());
+  const DataLayout &getDataLayout() const { return DL; }
+
+  LLVMContext &getContext() { return *Ctx.getContext(); }
+
+  void addModule(std::unique_ptr<Module> M) {
+    cantFail(CompileLayer.add(ES.getMainJITDylib(),
+                              ThreadSafeModule(std::move(M), Ctx)));
   }
 
-  void removeModule(VModuleKey K) {
-    cantFail(CompileLayer.removeModule(K));
+  Expected<JITEvaluatedSymbol> lookup(StringRef Name) {
+    return ES.lookup({&ES.getMainJITDylib()}, Mangle(Name.str()));
   }
 };
 

Modified: llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/toy.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/toy.cpp?rev=344667&r1=344666&r2=344667&view=diff
==============================================================================
--- llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/toy.cpp (original)
+++ llvm/trunk/examples/Kaleidoscope/BuildingAJIT/Chapter1/toy.cpp Tue Oct 16 20:34:09 2018
@@ -676,10 +676,11 @@ static std::unique_ptr<FunctionAST> Pars
 }
 
 /// toplevelexpr ::= expression
-static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr(unsigned ExprCount) {
   if (auto E = ParseExpression()) {
     // Make an anonymous proto.
-    auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
+    auto Proto = llvm::make_unique<PrototypeAST>(("__anon_expr" +
+                                                  Twine(ExprCount)).str(),
                                                  std::vector<std::string>());
     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
   }
@@ -696,11 +697,11 @@ static std::unique_ptr<PrototypeAST> Par
 // Code Generation
 //===----------------------------------------------------------------------===//
 
-static LLVMContext TheContext;
-static IRBuilder<> Builder(TheContext);
+static std::unique_ptr<KaleidoscopeJIT> TheJIT;
+static LLVMContext *TheContext;
+static std::unique_ptr<IRBuilder<>> Builder;
 static std::unique_ptr<Module> TheModule;
 static std::map<std::string, AllocaInst *> NamedValues;
-static std::unique_ptr<KaleidoscopeJIT> TheJIT;
 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
 
 Value *LogErrorV(const char *Str) {
@@ -729,11 +730,11 @@ static AllocaInst *CreateEntryBlockAlloc
                                           const std::string &VarName) {
   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
                    TheFunction->getEntryBlock().begin());
-  return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
+  return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
 }
 
 Value *NumberExprAST::codegen() {
-  return ConstantFP::get(TheContext, APFloat(Val));
+  return ConstantFP::get(*TheContext, APFloat(Val));
 }
 
 Value *VariableExprAST::codegen() {
@@ -743,7 +744,7 @@ Value *VariableExprAST::codegen() {
     return LogErrorV("Unknown variable name");
 
   // Load the value.
-  return Builder.CreateLoad(V, Name.c_str());
+  return Builder->CreateLoad(V, Name.c_str());
 }
 
 Value *UnaryExprAST::codegen() {
@@ -755,7 +756,7 @@ Value *UnaryExprAST::codegen() {
   if (!F)
     return LogErrorV("Unknown unary operator");
 
-  return Builder.CreateCall(F, OperandV, "unop");
+  return Builder->CreateCall(F, OperandV, "unop");
 }
 
 Value *BinaryExprAST::codegen() {
@@ -778,7 +779,7 @@ Value *BinaryExprAST::codegen() {
     if (!Variable)
       return LogErrorV("Unknown variable name");
 
-    Builder.CreateStore(Val, Variable);
+    Builder->CreateStore(Val, Variable);
     return Val;
   }
 
@@ -789,15 +790,15 @@ Value *BinaryExprAST::codegen() {
 
   switch (Op) {
   case '+':
-    return Builder.CreateFAdd(L, R, "addtmp");
+    return Builder->CreateFAdd(L, R, "addtmp");
   case '-':
-    return Builder.CreateFSub(L, R, "subtmp");
+    return Builder->CreateFSub(L, R, "subtmp");
   case '*':
-    return Builder.CreateFMul(L, R, "multmp");
+    return Builder->CreateFMul(L, R, "multmp");
   case '<':
-    L = Builder.CreateFCmpULT(L, R, "cmptmp");
+    L = Builder->CreateFCmpULT(L, R, "cmptmp");
     // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
+    return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
   default:
     break;
   }
@@ -808,7 +809,7 @@ Value *BinaryExprAST::codegen() {
   assert(F && "binary operator not found!");
 
   Value *Ops[] = {L, R};
-  return Builder.CreateCall(F, Ops, "binop");
+  return Builder->CreateCall(F, Ops, "binop");
 }
 
 Value *CallExprAST::codegen() {
@@ -828,7 +829,7 @@ Value *CallExprAST::codegen() {
       return nullptr;
   }
 
-  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+  return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
 }
 
 Value *IfExprAST::codegen() {
@@ -837,46 +838,46 @@ Value *IfExprAST::codegen() {
     return nullptr;
 
   // Convert condition to a bool by comparing equal to 0.0.
-  CondV = Builder.CreateFCmpONE(
-      CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
+  CondV = Builder->CreateFCmpONE(
+      CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
 
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  Function *TheFunction = Builder->GetInsertBlock()->getParent();
 
   // Create blocks for the then and else cases.  Insert the 'then' block at the
   // end of the function.
-  BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
-  BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
-  BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
+  BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
+  BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
+  BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
 
-  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+  Builder->CreateCondBr(CondV, ThenBB, ElseBB);
 
   // Emit then value.
-  Builder.SetInsertPoint(ThenBB);
+  Builder->SetInsertPoint(ThenBB);
 
   Value *ThenV = Then->codegen();
   if (!ThenV)
     return nullptr;
 
-  Builder.CreateBr(MergeBB);
+  Builder->CreateBr(MergeBB);
   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
-  ThenBB = Builder.GetInsertBlock();
+  ThenBB = Builder->GetInsertBlock();
 
   // Emit else block.
   TheFunction->getBasicBlockList().push_back(ElseBB);
-  Builder.SetInsertPoint(ElseBB);
+  Builder->SetInsertPoint(ElseBB);
 
   Value *ElseV = Else->codegen();
   if (!ElseV)
     return nullptr;
 
-  Builder.CreateBr(MergeBB);
+  Builder->CreateBr(MergeBB);
   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
-  ElseBB = Builder.GetInsertBlock();
+  ElseBB = Builder->GetInsertBlock();
 
   // Emit merge block.
   TheFunction->getBasicBlockList().push_back(MergeBB);
-  Builder.SetInsertPoint(MergeBB);
-  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
+  Builder->SetInsertPoint(MergeBB);
+  PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
 
   PN->addIncoming(ThenV, ThenBB);
   PN->addIncoming(ElseV, ElseBB);
@@ -903,7 +904,7 @@ Value *IfExprAST::codegen() {
 //   br endcond, loop, endloop
 // outloop:
 Value *ForExprAST::codegen() {
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  Function *TheFunction = Builder->GetInsertBlock()->getParent();
 
   // Create an alloca for the variable in the entry block.
   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
@@ -914,17 +915,17 @@ Value *ForExprAST::codegen() {
     return nullptr;
 
   // Store the value into the alloca.
-  Builder.CreateStore(StartVal, Alloca);
+  Builder->CreateStore(StartVal, Alloca);
 
   // Make the new basic block for the loop header, inserting after current
   // block.
-  BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
+  BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
 
   // Insert an explicit fall through from the current block to the LoopBB.
-  Builder.CreateBr(LoopBB);
+  Builder->CreateBr(LoopBB);
 
   // Start insertion in LoopBB.
-  Builder.SetInsertPoint(LoopBB);
+  Builder->SetInsertPoint(LoopBB);
 
   // Within the loop, the variable is defined equal to the PHI node.  If it
   // shadows an existing variable, we have to restore it, so save it now.
@@ -945,7 +946,7 @@ Value *ForExprAST::codegen() {
       return nullptr;
   } else {
     // If not specified, use 1.0.
-    StepVal = ConstantFP::get(TheContext, APFloat(1.0));
+    StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
   }
 
   // Compute the end condition.
@@ -955,23 +956,23 @@ Value *ForExprAST::codegen() {
 
   // Reload, increment, and restore the alloca.  This handles the case where
   // the body of the loop mutates the variable.
-  Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
-  Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
-  Builder.CreateStore(NextVar, Alloca);
+  Value *CurVar = Builder->CreateLoad(Alloca, VarName.c_str());
+  Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
+  Builder->CreateStore(NextVar, Alloca);
 
   // Convert condition to a bool by comparing equal to 0.0.
-  EndCond = Builder.CreateFCmpONE(
-      EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
+  EndCond = Builder->CreateFCmpONE(
+      EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
 
   // Create the "after loop" block and insert it.
   BasicBlock *AfterBB =
-      BasicBlock::Create(TheContext, "afterloop", TheFunction);
+      BasicBlock::Create(*TheContext, "afterloop", TheFunction);
 
   // Insert the conditional branch into the end of LoopEndBB.
-  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+  Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
 
   // Any new code will be inserted in AfterBB.
-  Builder.SetInsertPoint(AfterBB);
+  Builder->SetInsertPoint(AfterBB);
 
   // Restore the unshadowed variable.
   if (OldVal)
@@ -980,13 +981,13 @@ Value *ForExprAST::codegen() {
     NamedValues.erase(VarName);
 
   // for expr always returns 0.0.
-  return Constant::getNullValue(Type::getDoubleTy(TheContext));
+  return Constant::getNullValue(Type::getDoubleTy(*TheContext));
 }
 
 Value *VarExprAST::codegen() {
   std::vector<AllocaInst *> OldBindings;
 
-  Function *TheFunction = Builder.GetInsertBlock()->getParent();
+  Function *TheFunction = Builder->GetInsertBlock()->getParent();
 
   // Register all variables and emit their initializer.
   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
@@ -1004,11 +1005,11 @@ Value *VarExprAST::codegen() {
       if (!InitVal)
         return nullptr;
     } else { // If not specified, use 0.0.
-      InitVal = ConstantFP::get(TheContext, APFloat(0.0));
+      InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
     }
 
     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-    Builder.CreateStore(InitVal, Alloca);
+    Builder->CreateStore(InitVal, Alloca);
 
     // Remember the old variable binding so that we can restore the binding when
     // we unrecurse.
@@ -1033,9 +1034,9 @@ Value *VarExprAST::codegen() {
 
 Function *PrototypeAST::codegen() {
   // Make the function type:  double(double,double) etc.
-  std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
+  std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
   FunctionType *FT =
-      FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
+      FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
 
   Function *F =
       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
@@ -1062,8 +1063,8 @@ Function *FunctionAST::codegen() {
     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
 
   // Create a new basic block to start insertion into.
-  BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
-  Builder.SetInsertPoint(BB);
+  BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
+  Builder->SetInsertPoint(BB);
 
   // Record the function arguments in the NamedValues map.
   NamedValues.clear();
@@ -1072,7 +1073,7 @@ Function *FunctionAST::codegen() {
     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
 
     // Store the initial value into the alloca.
-    Builder.CreateStore(&Arg, Alloca);
+    Builder->CreateStore(&Arg, Alloca);
 
     // Add arguments to variable symbol table.
     NamedValues[Arg.getName()] = Alloca;
@@ -1080,7 +1081,7 @@ Function *FunctionAST::codegen() {
 
   if (Value *RetVal = Body->codegen()) {
     // Finish off the function.
-    Builder.CreateRet(RetVal);
+    Builder->CreateRet(RetVal);
 
     // Validate the generated code, checking for consistency.
     verifyFunction(*TheFunction);
@@ -1102,8 +1103,11 @@ Function *FunctionAST::codegen() {
 
 static void InitializeModule() {
   // Open a new module.
-  TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
-  TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
+  TheModule = llvm::make_unique<Module>("my cool jit", *TheContext);
+  TheModule->setDataLayout(TheJIT->getDataLayout());
+
+  // Create a new builder for the module.
+  Builder = llvm::make_unique<IRBuilder<>>(*TheContext);
 }
 
 static void HandleDefinition() {
@@ -1136,23 +1140,34 @@ static void HandleExtern() {
 }
 
 static void HandleTopLevelExpression() {
+  static unsigned ExprCount = 0;
+
+  // Update ExprCount. This number will be added to anonymous expressions to
+  // prevent them from clashing.
+  ++ExprCount;
+
   // Evaluate a top-level expression into an anonymous function.
-  if (auto FnAST = ParseTopLevelExpr()) {
+  if (auto FnAST = ParseTopLevelExpr(ExprCount)) {
     if (FnAST->codegen()) {
       // JIT the module containing the anonymous expression, keeping a handle so
       // we can free it later.
-      auto H = TheJIT->addModule(std::move(TheModule));
+      TheJIT->addModule(std::move(TheModule));
       InitializeModule();
 
-      // Get the anonymous expression's address and cast it to the right type,
-      // double(*)(), so we can call it as a native function.
-      double (*FP)() =
-        (double (*)())(intptr_t)TheJIT->getSymbolAddress("__anon_expr");
-      assert(FP && "Failed to codegen function");
-      fprintf(stderr, "Evaluated to %f\n", FP());
+      // Get the anonymous expression's JITSymbol.
+      auto Sym =  TheJIT->lookup(("__anon_expr" + Twine(ExprCount)).str());
 
-      // Delete the anonymous expression module from the JIT.
-      TheJIT->removeModule(H);
+      if (Sym) {
+        // If the lookup succeeded, cast the symbol's address to a function
+        // pointer then call it.
+        auto *FP = (double (*)())(intptr_t)Sym->getAddress();
+        assert(FP && "Failed to codegen function");
+        fprintf(stderr, "Evaluated to %f\n", FP());
+      } else {
+        // Otherwise log the reason the symbol lookup failed.
+        logAllUnhandledErrors(Sym.takeError(), errs(),
+                              "Could not evaluate: ");
+      }
     }
   } else {
     // Skip token for error recovery.
@@ -1221,6 +1236,7 @@ int main() {
   getNextToken();
 
   TheJIT = llvm::make_unique<KaleidoscopeJIT>();
+  TheContext = &TheJIT->getContext();
 
   InitializeModule();
 




More information about the llvm-commits mailing list