[llvm] r338758 - [SCEV] Properly solve quadratic equations

Krzysztof Parzyszek via llvm-commits llvm-commits at lists.llvm.org
Thu Aug 2 12:13:35 PDT 2018


Author: kparzysz
Date: Thu Aug  2 12:13:35 2018
New Revision: 338758

URL: http://llvm.org/viewvc/llvm-project?rev=338758&view=rev
Log:
[SCEV] Properly solve quadratic equations

Differential Revision: https://reviews.llvm.org/D48283

Added:
    llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-i1.ll
    llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-overflow.ll
    llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic.ll
Modified:
    llvm/trunk/include/llvm/ADT/APInt.h
    llvm/trunk/lib/Analysis/ScalarEvolution.cpp
    llvm/trunk/lib/Support/APInt.cpp
    llvm/trunk/unittests/ADT/APIntTest.cpp

Modified: llvm/trunk/include/llvm/ADT/APInt.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/APInt.h?rev=338758&r1=338757&r2=338758&view=diff
==============================================================================
--- llvm/trunk/include/llvm/ADT/APInt.h (original)
+++ llvm/trunk/include/llvm/ADT/APInt.h Thu Aug  2 12:13:35 2018
@@ -31,6 +31,7 @@ class raw_ostream;
 
 template <typename T> class SmallVectorImpl;
 template <typename T> class ArrayRef;
+template <typename T> class Optional;
 
 class APInt;
 
@@ -2166,6 +2167,41 @@ APInt RoundingUDiv(const APInt &A, const
 /// Return A sign-divided by B, rounded by the given rounding mode.
 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
 
+/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
+/// (e.g. 32 for i32).
+/// This function finds the smallest number n, such that
+/// (a) n >= 0 and q(n) = 0, or
+/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
+///     integers, belong to two different intervals [Rk, Rk+R),
+///     where R = 2^BW, and k is an integer.
+/// The idea here is to find when q(n) "overflows" 2^BW, while at the
+/// same time "allowing" subtraction. In unsigned modulo arithmetic a
+/// subtraction (treated as addition of negated numbers) would always
+/// count as an overflow, but here we want to allow values to decrease
+/// and increase as long as they are within the same interval.
+/// Specifically, adding of two negative numbers should not cause an
+/// overflow (as long as the magnitude does not exceed the bith width).
+/// On the other hand, given a positive number, adding a negative
+/// number to it can give a negative result, which would cause the
+/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
+/// treated as a special case of an overflow.
+///
+/// This function returns None if after finding k that minimizes the
+/// positive solution to q(n) = kR, both solutions are contained between
+/// two consecutive integers.
+///
+/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
+/// in arithmetic modulo 2^BW, and treating the values as signed) by the
+/// virtue of *signed* overflow. This function will *not* find such an n,
+/// however it may find a value of n satisfying the inequalities due to
+/// an *unsigned* overflow (if the values are treated as unsigned).
+/// To find a solution for a signed overflow, treat it as a problem of
+/// finding an unsigned overflow with a range with of BW-1.
+///
+/// The returned value may have a different bit width from the input
+/// coefficients.
+Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
+                                           unsigned RangeWidth);
 } // End of APIntOps namespace
 
 // See friend declaration above. This additional declaration is required in

Modified: llvm/trunk/lib/Analysis/ScalarEvolution.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ScalarEvolution.cpp?rev=338758&r1=338757&r2=338758&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/ScalarEvolution.cpp (original)
+++ llvm/trunk/lib/Analysis/ScalarEvolution.cpp Thu Aug  2 12:13:35 2018
@@ -8344,69 +8344,273 @@ static const SCEV *SolveLinEquationWithO
   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
 }
 
-/// Find the roots of the quadratic equation for the given quadratic chrec
-/// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
-/// two SCEVCouldNotCompute objects.
-static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
-SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
+/// For a given quadratic addrec, generate coefficients of the corresponding
+/// quadratic equation, multiplied by a common value to ensure that they are
+/// integers.
+/// The returned value is a tuple { A, B, C, M, BitWidth }, where
+/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
+/// were multiplied by, and BitWidth is the bit width of the original addrec
+/// coefficients.
+/// This function returns None if the addrec coefficients are not compile-
+/// time constants.
+static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
+GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
+  LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
+                    << *AddRec << '\n');
 
   // We currently can only solve this if the coefficients are constants.
-  if (!LC || !MC || !NC)
+  if (!LC || !MC || !NC) {
+    LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
     return None;
+  }
 
-  uint32_t BitWidth = LC->getAPInt().getBitWidth();
-  const APInt &L = LC->getAPInt();
-  const APInt &M = MC->getAPInt();
-  const APInt &N = NC->getAPInt();
-  APInt Two(BitWidth, 2);
-
-  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
-
-  // The A coefficient is N/2
-  APInt A = N.sdiv(Two);
-
-  // The B coefficient is M-N/2
-  APInt B = M;
-  B -= A; // A is the same as N/2.
-
-  // The C coefficient is L.
-  const APInt& C = L;
-
-  // Compute the B^2-4ac term.
-  APInt SqrtTerm = B;
-  SqrtTerm *= B;
-  SqrtTerm -= 4 * (A * C);
+  APInt L = LC->getAPInt();
+  APInt M = MC->getAPInt();
+  APInt N = NC->getAPInt();
+  assert(!N.isNullValue() && "This is not a quadratic addrec");
+
+  unsigned BitWidth = LC->getAPInt().getBitWidth();
+  unsigned NewWidth = BitWidth + 1;
+  LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
+                    << BitWidth << '\n');
+  // The sign-extension (as opposed to a zero-extension) here matches the
+  // extension used in SolveQuadraticEquationWrap (with the same motivation).
+  N = N.sext(NewWidth);
+  M = M.sext(NewWidth);
+  L = L.sext(NewWidth);
+
+  // The increments are M, M+N, M+2N, ..., so the accumulated values are
+  //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
+  //   L+M, L+2M+N, L+3M+3N, ...
+  // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
+  //
+  // The equation Acc = 0 is then
+  //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
+  // In a quadratic form it becomes:
+  //   N n^2 + (2M-N) n + 2L = 0.
+
+  APInt A = N;
+  APInt B = 2 * M - A;
+  APInt C = 2 * L;
+  APInt T = APInt(NewWidth, 2);
+  LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
+                    << "x + " << C << ", coeff bw: " << NewWidth
+                    << ", multiplied by " << T << '\n');
+  return std::make_tuple(A, B, C, T, BitWidth);
+}
+
+/// Helper function to compare optional APInts:
+/// (a) if X and Y both exist, return min(X, Y),
+/// (b) if neither X nor Y exist, return None,
+/// (c) if exactly one of X and Y exists, return that value.
+static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
+  if (X.hasValue() && Y.hasValue()) {
+    unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
+    APInt XW = X->sextOrSelf(W);
+    APInt YW = Y->sextOrSelf(W);
+    return XW.slt(YW) ? *X : *Y;
+  }
+  if (!X.hasValue() && !Y.hasValue())
+    return None;
+  return X.hasValue() ? *X : *Y;
+}
 
-  if (SqrtTerm.isNegative()) {
-    // The loop is provably infinite.
+/// Helper function to truncate an optional APInt to a given BitWidth.
+/// When solving addrec-related equations, it is preferable to return a value
+/// that has the same bit width as the original addrec's coefficients. If the
+/// solution fits in the original bit width, truncate it (except for i1).
+/// Returning a value of a different bit width may inhibit some optimizations.
+///
+/// In general, a solution to a quadratic equation generated from an addrec
+/// may require BW+1 bits, where BW is the bit width of the addrec's
+/// coefficients. The reason is that the coefficients of the quadratic
+/// equation are BW+1 bits wide (to avoid truncation when converting from
+/// the addrec to the equation).
+static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
+  if (!X.hasValue())
     return None;
-  }
+  unsigned W = X->getBitWidth();
+  if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
+    return X->trunc(BitWidth);
+  return X;
+}
+
+/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
+/// iterations. The values L, M, N are assumed to be signed, and they
+/// should all have the same bit widths.
+/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
+/// where BW is the bit width of the addrec's coefficients.
+/// If the calculated value is a BW-bit integer (for BW > 1), it will be
+/// returned as such, otherwise the bit width of the returned value may
+/// be greater than BW.
+///
+/// This function returns None if
+/// (a) the addrec coefficients are not constant, or
+/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
+///     like x^2 = 5, no integer solutions exist, in other cases an integer
+///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
+static Optional<APInt>
+SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
+  APInt A, B, C, M;
+  unsigned BitWidth;
+  auto T = GetQuadraticEquation(AddRec);
+  if (!T.hasValue())
+    return None;
+
+  std::tie(A, B, C, M, BitWidth) = *T;
+  LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
+  Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
+  if (!X.hasValue())
+    return None;
+
+  ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
+  ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
+  if (!V->isZero())
+    return None;
+
+  return TruncIfPossible(X, BitWidth);
+}
 
-  // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
-  // integer value or else APInt::sqrt() will assert.
-  APInt SqrtVal = SqrtTerm.sqrt();
-
-  // Compute the two solutions for the quadratic formula.
-  // The divisions must be performed as signed divisions.
-  APInt NegB = -std::move(B);
-  APInt TwoA = std::move(A);
-  TwoA <<= 1;
-  if (TwoA.isNullValue())
+/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
+/// iterations. The values M, N are assumed to be signed, and they
+/// should all have the same bit widths.
+/// Find the least n such that c(n) does not belong to the given range,
+/// while c(n-1) does.
+///
+/// This function returns None if
+/// (a) the addrec coefficients are not constant, or
+/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
+///     bounds of the range.
+static Optional<APInt>
+SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
+                          const ConstantRange &Range, ScalarEvolution &SE) {
+  assert(AddRec->getOperand(0)->isZero() &&
+         "Starting value of addrec should be 0");
+  LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
+                    << Range << ", addrec " << *AddRec << '\n');
+  // This case is handled in getNumIterationsInRange. Here we can assume that
+  // we start in the range.
+  assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
+         "Addrec's initial value should be in range");
+
+  APInt A, B, C, M;
+  unsigned BitWidth;
+  auto T = GetQuadraticEquation(AddRec);
+  if (!T.hasValue())
     return None;
 
-  LLVMContext &Context = SE.getContext();
+  // Be careful about the return value: there can be two reasons for not
+  // returning an actual number. First, if no solutions to the equations
+  // were found, and second, if the solutions don't leave the given range.
+  // The first case means that the actual solution is "unknown", the second
+  // means that it's known, but not valid. If the solution is unknown, we
+  // cannot make any conclusions.
+  // Return a pair: the optional solution and a flag indicating if the
+  // solution was found.
+  auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
+    // Solve for signed overflow and unsigned overflow, pick the lower
+    // solution.
+    LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
+                      << Bound << " (before multiplying by " << M << ")\n");
+    Bound *= M; // The quadratic equation multiplier.
+
+    Optional<APInt> SO = None;
+    if (BitWidth > 1) {
+      LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
+                           "signed overflow\n");
+      SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
+    }
+    LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
+                         "unsigned overflow\n");
+    Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
+                                                              BitWidth+1);
+
+    auto LeavesRange = [&] (const APInt &X) {
+      ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
+      ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
+      if (Range.contains(V0->getValue()))
+        return false;
+      // X should be at least 1, so X-1 is non-negative.
+      ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
+      ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
+      if (Range.contains(V1->getValue()))
+        return true;
+      return false;
+    };
+
+    // If SolveQuadraticEquationWrap returns None, it means that there can
+    // be a solution, but the function failed to find it. We cannot treat it
+    // as "no solution".
+    if (!SO.hasValue() || !UO.hasValue())
+      return { None, false };
+
+    // Check the smaller value first to see if it leaves the range.
+    // At this point, both SO and UO must have values.
+    Optional<APInt> Min = MinOptional(SO, UO);
+    if (LeavesRange(*Min))
+      return { Min, true };
+    Optional<APInt> Max = Min == SO ? UO : SO;
+    if (LeavesRange(*Max))
+      return { Max, true };
+
+    // Solutions were found, but were eliminated, hence the "true".
+    return { None, true };
+  };
+
+  std::tie(A, B, C, M, BitWidth) = *T;
+  // Lower bound is inclusive, subtract 1 to represent the exiting value.
+  APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
+  APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
+  auto SL = SolveForBoundary(Lower);
+  auto SU = SolveForBoundary(Upper);
+  // If any of the solutions was unknown, no meaninigful conclusions can
+  // be made.
+  if (!SL.second || !SU.second)
+    return None;
 
-  ConstantInt *Solution1 =
-    ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
-  ConstantInt *Solution2 =
-    ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
+  // Claim: The correct solution is not some value between Min and Max.
+  //
+  // Justification: Assuming that Min and Max are different values, one of
+  // them is when the first signed overflow happens, the other is when the
+  // first unsigned overflow happens. Crossing the range boundary is only
+  // possible via an overflow (treating 0 as a special case of it, modeling
+  // an overflow as crossing k*2^W for some k).
+  //
+  // The interesting case here is when Min was eliminated as an invalid
+  // solution, but Max was not. The argument is that if there was another
+  // overflow between Min and Max, it would also have been eliminated if
+  // it was considered.
+  //
+  // For a given boundary, it is possible to have two overflows of the same
+  // type (signed/unsigned) without having the other type in between: this
+  // can happen when the vertex of the parabola is between the iterations
+  // corresponding to the overflows. This is only possible when the two
+  // overflows cross k*2^W for the same k. In such case, if the second one
+  // left the range (and was the first one to do so), the first overflow
+  // would have to enter the range, which would mean that either we had left
+  // the range before or that we started outside of it. Both of these cases
+  // are contradictions.
+  //
+  // Claim: In the case where SolveForBoundary returns None, the correct
+  // solution is not some value between the Max for this boundary and the
+  // Min of the other boundary.
+  //
+  // Justification: Assume that we had such Max_A and Min_B corresponding
+  // to range boundaries A and B and such that Max_A < Min_B. If there was
+  // a solution between Max_A and Min_B, it would have to be caused by an
+  // overflow corresponding to either A or B. It cannot correspond to B,
+  // since Min_B is the first occurrence of such an overflow. If it
+  // corresponded to A, it would have to be either a signed or an unsigned
+  // overflow that is larger than both eliminated overflows for A. But
+  // between the eliminated overflows and this overflow, the values would
+  // cover the entire value space, thus crossing the other boundary, which
+  // is a contradiction.
 
-  return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
-                        cast<SCEVConstant>(SE.getConstant(Solution2)));
+  return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
 }
 
 ScalarEvolution::ExitLimit
@@ -8441,23 +8645,12 @@ ScalarEvolution::howFarToZero(const SCEV
   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   // the quadratic equation to solve it.
   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
-    if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
-      const SCEVConstant *R1 = Roots->first;
-      const SCEVConstant *R2 = Roots->second;
-      // Pick the smallest positive root value.
-      if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
-              CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
-        if (!CB->getZExtValue())
-          std::swap(R1, R2); // R1 is the minimum root now.
-
-        // We can only use this value if the chrec ends up with an exact zero
-        // value at this index.  When solving for "X*X != 5", for example, we
-        // should not accept a root of 2.
-        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
-        if (Val->isZero())
-          // We found a quadratic root!
-          return ExitLimit(R1, R1, false, Predicates);
-      }
+    // We can only use this value if the chrec ends up with an exact zero
+    // value at this index.  When solving for "X*X != 5", for example, we
+    // should not accept a root of 2.
+    if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
+      const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
+      return ExitLimit(R, R, false, Predicates);
     }
     return getCouldNotCompute();
   }
@@ -10565,52 +10758,11 @@ const SCEV *SCEVAddRecExpr::getNumIterat
            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
            "Linear scev computation is off in a bad way!");
     return SE.getConstant(ExitValue);
-  } else if (isQuadratic()) {
-    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
-    // quadratic equation to solve it.  To do this, we must frame our problem in
-    // terms of figuring out when zero is crossed, instead of when
-    // Range.getUpper() is crossed.
-    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
-    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
-    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
-
-    // Next, solve the constructed addrec
-    if (auto Roots =
-            SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
-      const SCEVConstant *R1 = Roots->first;
-      const SCEVConstant *R2 = Roots->second;
-      // Pick the smallest positive root value.
-      if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
-              ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
-        if (!CB->getZExtValue())
-          std::swap(R1, R2); // R1 is the minimum root now.
-
-        // Make sure the root is not off by one.  The returned iteration should
-        // not be in the range, but the previous one should be.  When solving
-        // for "X*X < 5", for example, we should not return a root of 2.
-        ConstantInt *R1Val =
-            EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
-        if (Range.contains(R1Val->getValue())) {
-          // The next iteration must be out of the range...
-          ConstantInt *NextVal =
-              ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
-
-          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
-          if (!Range.contains(R1Val->getValue()))
-            return SE.getConstant(NextVal);
-          return SE.getCouldNotCompute(); // Something strange happened
-        }
-
-        // If R1 was not in the range, then it is a good return value.  Make
-        // sure that R1-1 WAS in the range though, just in case.
-        ConstantInt *NextVal =
-            ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
-        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
-        if (Range.contains(R1Val->getValue()))
-          return R1;
-        return SE.getCouldNotCompute(); // Something strange happened
-      }
-    }
+  }
+
+  if (isQuadratic()) {
+    if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
+      return SE.getConstant(S.getValue());
   }
 
   return SE.getCouldNotCompute();

Modified: llvm/trunk/lib/Support/APInt.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/APInt.cpp?rev=338758&r1=338757&r2=338758&view=diff
==============================================================================
--- llvm/trunk/lib/Support/APInt.cpp (original)
+++ llvm/trunk/lib/Support/APInt.cpp Thu Aug  2 12:13:35 2018
@@ -16,6 +16,7 @@
 #include "llvm/ADT/ArrayRef.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/Optional.h"
 #include "llvm/ADT/SmallString.h"
 #include "llvm/ADT/StringRef.h"
 #include "llvm/Config/llvm-config.h"
@@ -2707,3 +2708,193 @@ APInt llvm::APIntOps::RoundingSDiv(const
   }
   llvm_unreachable("Unknown APInt::Rounding enum");
 }
+
+Optional<APInt>
+llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
+                                           unsigned RangeWidth) {
+  unsigned CoeffWidth = A.getBitWidth();
+  assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
+  assert(RangeWidth <= CoeffWidth &&
+         "Value range width should be less than coefficient width");
+  assert(RangeWidth > 1 && "Value range bit width should be > 1");
+
+  LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
+                    << "x + " << C << ", rw:" << RangeWidth << '\n');
+
+  // Identify 0 as a (non)solution immediately.
+  if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
+    LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
+    return APInt(CoeffWidth, 0);
+  }
+
+  // The result of APInt arithmetic has the same bit width as the operands,
+  // so it can actually lose high bits. A product of two n-bit integers needs
+  // 2n-1 bits to represent the full value.
+  // The operation done below (on quadratic coefficients) that can produce
+  // the largest value is the evaluation of the equation during bisection,
+  // which needs 3 times the bitwidth of the coefficient, so the total number
+  // of required bits is 3n.
+  //
+  // The purpose of this extension is to simulate the set Z of all integers,
+  // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
+  // and negative numbers (not so much in a modulo arithmetic). The method
+  // used to solve the equation is based on the standard formula for real
+  // numbers, and uses the concepts of "positive" and "negative" with their
+  // usual meanings.
+  CoeffWidth *= 3;
+  A = A.sext(CoeffWidth);
+  B = B.sext(CoeffWidth);
+  C = C.sext(CoeffWidth);
+
+  // Make A > 0 for simplicity. Negate cannot overflow at this point because
+  // the bit width has increased.
+  if (A.isNegative()) {
+    A.negate();
+    B.negate();
+    C.negate();
+  }
+
+  // Solving an equation q(x) = 0 with coefficients in modular arithmetic
+  // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
+  // and R = 2^BitWidth.
+  // Since we're trying not only to find exact solutions, but also values
+  // that "wrap around", such a set will always have a solution, i.e. an x
+  // that satisfies at least one of the equations, or such that |q(x)|
+  // exceeds kR, while |q(x-1)| for the same k does not.
+  //
+  // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
+  // positive solution n (in the above sense), and also such that the n
+  // will be the least among all solutions corresponding to k = 0, 1, ...
+  // (more precisely, the least element in the set
+  //   { n(k) | k is such that a solution n(k) exists }).
+  //
+  // Consider the parabola (over real numbers) that corresponds to the
+  // quadratic equation. Since A > 0, the arms of the parabola will point
+  // up. Picking different values of k will shift it up and down by R.
+  //
+  // We want to shift the parabola in such a way as to reduce the problem
+  // of solving q(x) = kR to solving shifted_q(x) = 0.
+  // (The interesting solutions are the ceilings of the real number
+  // solutions.)
+  APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
+  APInt TwoA = 2 * A;
+  APInt SqrB = B * B;
+  bool PickLow;
+
+  auto RoundUp = [] (const APInt &V, const APInt &A) {
+    assert(A.isStrictlyPositive());
+    APInt T = V.abs().urem(A);
+    if (T.isNullValue())
+      return V;
+    return V.isNegative() ? V+T : V+(A-T);
+  };
+
+  // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
+  // iff B is positive.
+  if (B.isNonNegative()) {
+    // If B >= 0, the vertex it at a negative location (or at 0), so in
+    // order to have a non-negative solution we need to pick k that makes
+    // C-kR negative. To satisfy all the requirements for the solution
+    // that we are looking for, it needs to be closest to 0 of all k.
+    C = C.srem(R);
+    if (C.isStrictlyPositive())
+      C -= R;
+    // Pick the greater solution.
+    PickLow = false;
+  } else {
+    // If B < 0, the vertex is at a positive location. For any solution
+    // to exist, the discriminant must be non-negative. This means that
+    // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
+    // lower bound on values of k: kR >= C - B^2/4A.
+    APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
+    // Round LowkR up (towards +inf) to the nearest kR.
+    LowkR = RoundUp(LowkR, R);
+
+    // If there exists k meeting the condition above, and such that
+    // C-kR > 0, there will be two positive real number solutions of
+    // q(x) = kR. Out of all such values of k, pick the one that makes
+    // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
+    // In other words, find maximum k such that LowkR <= kR < C.
+    if (C.sgt(LowkR)) {
+      // If LowkR < C, then such a k is guaranteed to exist because
+      // LowkR itself is a multiple of R.
+      C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
+      // Pick the smaller solution.
+      PickLow = true;
+    } else {
+      // If C-kR < 0 for all potential k's, it means that one solution
+      // will be negative, while the other will be positive. The positive
+      // solution will shift towards 0 if the parabola is moved up.
+      // Pick the kR closest to the lower bound (i.e. make C-kR closest
+      // to 0, or in other words, out of all parabolas that have solutions,
+      // pick the one that is the farthest "up").
+      // Since LowkR is itself a multiple of R, simply take C-LowkR.
+      C -= LowkR;
+      // Pick the greater solution.
+      PickLow = false;
+    }
+  }
+
+  LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
+                    << B << "x + " << C << ", rw:" << RangeWidth << '\n');
+
+  APInt D = SqrB - 4*A*C;
+  assert(D.isNonNegative() && "Negative discriminant");
+  APInt SQ = D.sqrt();
+
+  APInt Q = SQ * SQ;
+  bool InexactSQ = Q != D;
+  // The calculated SQ may actually be greater than the exact (non-integer)
+  // value. If that's the case, decremement SQ to get a value that is lower.
+  if (Q.sgt(D))
+    SQ -= 1;
+
+  APInt X;
+  APInt Rem;
+
+  // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
+  // When using the quadratic formula directly, the calculated low root
+  // may be greater than the exact one, since we would be subtracting SQ.
+  // To make sure that the calculated root is not greater than the exact
+  // one, subtract SQ+1 when calculating the low root (for inexact value
+  // of SQ).
+  if (PickLow)
+    APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
+  else
+    APInt::sdivrem(-B + SQ, TwoA, X, Rem);
+
+  // The updated coefficients should be such that the (exact) solution is
+  // positive. Since APInt division rounds towards 0, the calculated one
+  // can be 0, but cannot be negative.
+  assert(X.isNonNegative() && "Solution should be non-negative");
+
+  if (!InexactSQ && Rem.isNullValue()) {
+    LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
+    return X;
+  }
+
+  assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
+  // The exact value of the square root of D should be between SQ and SQ+1.
+  // This implies that the solution should be between that corresponding to
+  // SQ (i.e. X) and that corresponding to SQ+1.
+  //
+  // The calculated X cannot be greater than the exact (real) solution.
+  // Actually it must be strictly less than the exact solution, while
+  // X+1 will be greater than or equal to it.
+
+  APInt VX = (A*X + B)*X + C;
+  APInt VY = VX + TwoA*X + A + B;
+  bool SignChange = VX.isNegative() != VY.isNegative() ||
+                    VX.isNullValue() != VY.isNullValue();
+  // If the sign did not change between X and X+1, X is not a valid solution.
+  // This could happen when the actual (exact) roots don't have an integer
+  // between them, so they would both be contained between X and X+1.
+  if (!SignChange) {
+    LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
+    return None;
+  }
+
+  X += 1;
+  LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
+  return X;
+}

Added: llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-i1.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-i1.ll?rev=338758&view=auto
==============================================================================
--- llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-i1.ll (added)
+++ llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-i1.ll Thu Aug  2 12:13:35 2018
@@ -0,0 +1,100 @@
+; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s
+
+target triple = "x86_64-unknown-linux-gnu"
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'f0':
+; CHECK-NEXT: Classifying expressions for: @f0
+; CHECK-NEXT:   %v0 = phi i16 [ 2, %b0 ], [ %v2, %b1 ]
+; CHECK-NEXT:   -->  {2,+,1}<nuw><nsw><%b1> U: [2,4) S: [2,4)         Exits: 3                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v1 = phi i16 [ 1, %b0 ], [ %v3, %b1 ]
+; CHECK-NEXT:   -->  {1,+,2,+,1}<%b1> U: full-set S: full-set         Exits: 3                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v2 = add nsw i16 %v0, 1
+; CHECK-NEXT:   -->  {3,+,1}<nuw><nsw><%b1> U: [3,5) S: [3,5)         Exits: 4                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v3 = add nsw i16 %v1, %v0
+; CHECK-NEXT:   -->  {3,+,3,+,1}<%b1> U: full-set S: full-set         Exits: 6                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v4 = and i16 %v3, 1
+; CHECK-NEXT:   -->  (zext i1 {true,+,true,+,true}<%b1> to i16) U: [0,2) S: [0,2)             Exits: 0                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT: Determining loop execution counts for: @f0
+; CHECK-NEXT: Loop %b1: backedge-taken count is 1
+; CHECK-NEXT: Loop %b1: max backedge-taken count is 1
+; CHECK-NEXT: Loop %b1: Predicated backedge-taken count is 1
+; CHECK-NEXT:  Predicates:
+; CHECK-EMPTY:
+; CHECK-NEXT: Loop %b1: Trip multiple is 2
+define void @f0() {
+b0:
+  br label %b1
+
+b1:                                               ; preds = %b1, %b0
+  %v0 = phi i16 [ 2, %b0 ], [ %v2, %b1 ]
+  %v1 = phi i16 [ 1, %b0 ], [ %v3, %b1 ]
+  %v2 = add nsw i16 %v0, 1
+  %v3 = add nsw i16 %v1, %v0
+  %v4 = and i16 %v3, 1
+  %v5 = icmp ne i16 %v4, 0
+  br i1 %v5, label %b1, label %b2
+
+b2:                                               ; preds = %b1
+  ret void
+}
+
+ at g0 = common dso_local global i16 0, align 2
+ at g1 = common dso_local global i32 0, align 4
+ at g2 = common dso_local global i32* null, align 8
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'f1':
+; CHECK-NEXT: Classifying expressions for: @f1
+; CHECK-NEXT:   %v0 = phi i16 [ 0, %b0 ], [ %v3, %b1 ]
+; CHECK-NEXT:   -->  {0,+,3,+,1}<%b1> U: full-set S: full-set         Exits: 7                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v1 = phi i32 [ 3, %b0 ], [ %v6, %b1 ]
+; CHECK-NEXT:   -->  {3,+,1}<nuw><nsw><%b1> U: [3,6) S: [3,6)         Exits: 5                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v2 = trunc i32 %v1 to i16
+; CHECK-NEXT:   -->  {3,+,1}<%b1> U: [3,6) S: [3,6)           Exits: 5                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v3 = add i16 %v0, %v2
+; CHECK-NEXT:   -->  {3,+,4,+,1}<%b1> U: full-set S: full-set         Exits: 12               LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v4 = and i16 %v3, 1
+; CHECK-NEXT:   -->  (zext i1 {true,+,false,+,true}<%b1> to i16) U: [0,2) S: [0,2)            Exits: 0                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v6 = add nuw nsw i32 %v1, 1
+; CHECK-NEXT:   -->  {4,+,1}<nuw><nsw><%b1> U: [4,7) S: [4,7)         Exits: 6                LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v7 = phi i32 [ %v1, %b1 ]
+; CHECK-NEXT:   -->  %v7 U: [3,6) S: [3,6)
+; CHECK-NEXT:   %v8 = phi i16 [ %v3, %b1 ]
+; CHECK-NEXT:   -->  %v8 U: full-set S: full-set
+; CHECK-NEXT: Determining loop execution counts for: @f1
+; CHECK-NEXT: Loop %b3: <multiple exits> Unpredictable backedge-taken count.
+; CHECK-NEXT: Loop %b3: Unpredictable max backedge-taken count.
+; CHECK-NEXT: Loop %b3: Unpredictable predicated backedge-taken count.
+; CHECK-NEXT: Loop %b1: backedge-taken count is 2
+; CHECK-NEXT: Loop %b1: max backedge-taken count is 2
+; CHECK-NEXT: Loop %b1: Predicated backedge-taken count is 2
+; CHECK-NEXT:  Predicates:
+; CHECK-EMPTY:
+; CHECK-NEXT: Loop %b1: Trip multiple is 3
+define void @f1() #0 {
+b0:
+  store i16 0, i16* @g0, align 2
+  store i32* @g1, i32** @g2, align 8
+  br label %b1
+
+b1:                                               ; preds = %b1, %b0
+  %v0 = phi i16 [ 0, %b0 ], [ %v3, %b1 ]
+  %v1 = phi i32 [ 3, %b0 ], [ %v6, %b1 ]
+  %v2 = trunc i32 %v1 to i16
+  %v3 = add i16 %v0, %v2
+  %v4 = and i16 %v3, 1
+  %v5 = icmp eq i16 %v4, 0
+  %v6 = add nuw nsw i32 %v1, 1
+  br i1 %v5, label %b2, label %b1
+
+b2:                                               ; preds = %b1
+  %v7 = phi i32 [ %v1, %b1 ]
+  %v8 = phi i16 [ %v3, %b1 ]
+  store i32 %v7, i32* @g1, align 4
+  store i16 %v8, i16* @g0, align 2
+  br label %b3
+
+b3:                                               ; preds = %b3, %b2
+  br label %b3
+}
+
+attributes #0 = { nounwind uwtable "target-cpu"="x86-64" }

Added: llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-overflow.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-overflow.ll?rev=338758&view=auto
==============================================================================
--- llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-overflow.ll (added)
+++ llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic-overflow.ll Thu Aug  2 12:13:35 2018
@@ -0,0 +1,51 @@
+; RUN: opt -analyze -scalar-evolution -S < %s | FileCheck %s
+
+; The exit value from this loop was originally calculated as 0.
+; The actual exit condition is 256*256 == 0 (in i16).
+
+; CHECK: Printing analysis 'Scalar Evolution Analysis' for function 'f0':
+; CHECK-NEXT: Classifying expressions for: @f0
+; CHECK-NEXT:   %v1 = phi i16 [ 0, %b0 ], [ %v2, %b1 ]
+; CHECK-NEXT:   -->  {0,+,-1}<%b1> U: [-255,1) S: [-255,1)            Exits: -255            LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v2 = add i16 %v1, -1
+; CHECK-NEXT:   -->  {-1,+,-1}<%b1> U: [-256,0) S: [-256,0)           Exits: -256            LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v3 = mul i16 %v2, %v2
+; CHECK-NEXT:   -->  {1,+,3,+,2}<%b1> U: full-set S: full-set         Exits: 0               LoopDispositions: { %b1: Computable }
+; CHECK-NEXT:   %v5 = phi i16 [ %v2, %b1 ]
+; CHECK-NEXT:   -->  %v5 U: [-256,0) S: [-256,0)
+; CHECK-NEXT:   %v6 = phi i16 [ %v3, %b1 ]
+; CHECK-NEXT:   -->  %v6 U: full-set S: full-set
+; CHECK-NEXT:   %v7 = sext i16 %v5 to i32
+; CHECK-NEXT:   -->  (sext i16 %v5 to i32) U: [-256,0) S: [-256,0)
+; CHECK-NEXT: Determining loop execution counts for: @f0
+; CHECK-NEXT: Loop %b1: backedge-taken count is 255
+; CHECK-NEXT: Loop %b1: max backedge-taken count is 255
+; CHECK-NEXT: Loop %b1: Predicated backedge-taken count is 255
+; CHECK-NEXT:  Predicates:
+; CHECK-EMPTY:
+; CHECK-NEXT: Loop %b1: Trip multiple is 256
+
+
+ at g0 = global i32 0, align 4
+ at g1 = global i16 0, align 2
+
+define signext i32 @f0() {
+b0:
+  br label %b1
+
+b1:                                               ; preds = %b1, %b0
+  %v1 = phi i16 [ 0, %b0 ], [ %v2, %b1 ]
+  %v2 = add i16 %v1, -1
+  %v3 = mul i16 %v2, %v2
+  %v4 = icmp eq i16 %v3, 0
+  br i1 %v4, label %b2, label %b1
+
+b2:                                               ; preds = %b1
+  %v5 = phi i16 [ %v2, %b1 ]
+  %v6 = phi i16 [ %v3, %b1 ]
+  %v7 = sext i16 %v5 to i32
+  store i32 %v7, i32* @g0, align 4
+  store i16 %v6, i16* @g1, align 2
+  ret i32 0
+}
+

Added: llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic.ll?rev=338758&view=auto
==============================================================================
--- llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic.ll (added)
+++ llvm/trunk/test/Analysis/ScalarEvolution/solve-quadratic.ll Thu Aug  2 12:13:35 2018
@@ -0,0 +1,364 @@
+; RUN: opt -analyze -scalar-evolution -S -debug-only=scalar-evolution,apint < %s 2>&1 | FileCheck %s
+; REQUIRES: asserts
+
+; Use the following template to get a chrec {L,+,M,+,N}.
+;
+; define signext i32 @func() {
+; entry:
+;   br label %loop
+;
+; loop:
+;   %ivr = phi i32 [ 0, %entry ], [ %ivr1, %loop ]
+;   %inc = phi i32 [ X, %entry ], [ %inc1, %loop ]
+;   %acc = phi i32 [ Y, %entry ], [ %acc1, %loop ]
+;   %ivr1 = add i32 %ivr, %inc
+;   %inc1 = add i32 %inc, Z                 ; M = inc1 = inc + N = X + N
+;   %acc1 = add i32 %acc, %inc              ; L = acc1 = X + Y
+;   %and  = and i32 %acc1, 2^W-1            ; iW
+;   %cond = icmp eq i32 %and, 0
+;   br i1 %cond, label %exit, label %loop
+;
+; exit:
+;   %rv = phi i32 [ %acc1, %loop ]
+;   ret i32 %rv
+; }
+;
+; From
+;       X + Y = L
+;       X + Z = M
+;           Z = N
+; get
+;       X = M - N
+;       Y = N - M + L
+;       Z = N
+
+; The connection between the chrec coefficients {L,+,M,+,N} and the quadratic
+; coefficients is that the quadratic equation is N x^2 + (2M-N) x + 2L = 0,
+; where the equation was multiplied by 2 to make the coefficient at x^2 an
+; integer (the actual equation is N/2 x^2 + (M-N/2) x + L = 0).
+
+; Quadratic equation: 2x^2 + 2x + 4 in i4, solution (wrap): 4
+; {14,+,14,+,14} -> X=0, Y=14, Z=14
+;
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test01'
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {-2,+,-2,+,-2}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 4
+; CHECK: GetQuadraticEquation: equation -2x^2 + -2x + -4, coeff bw: 5, multiplied by 2
+; CHECK: SolveQuadraticAddRecExact: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving -2x^2 + -2x + -4, rw:5
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 2x^2 + 2x + -28, rw:5
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 4
+; CHECK: Loop %loop: Unpredictable backedge-taken count
+define signext i32 @test01() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [  0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [  0, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ 14, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 14
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, 15
+  %cond = icmp eq i32 %and, 0
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; Quadratic equation: 1x^2 + -73x + -146 in i32, solution (wrap): 75
+; {-72,+,-36,+,1} -> X=-37, Y=-35, Z=1
+;
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test02':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {0,+,-36,+,1}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 32
+; CHECK: GetQuadraticEquation: equation 1x^2 + -73x + 0, coeff bw: 33, multiplied by 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -73x + 4294967154, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -73x + -142, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 75
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -73x + 4294967154, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -73x + -4294967438, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 65573
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -73x + -146, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -73x + -146, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 75
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -73x + -146, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -73x + -146, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 75
+; CHECK: Loop %loop: backedge-taken count is 75
+define signext i32 @test02() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [  0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ -37, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ -35, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 1
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, -1
+  %cond = icmp sgt i32 %and, 0
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; Quadratic equation: 2x^2 - 4x + 34 in i4, solution (exact): 1.
+; {17,+,-1,+,2} -> X=-3, Y=20, Z=2
+;
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test03':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {1,+,-1,+,2}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 4
+; CHECK: GetQuadraticEquation: equation 2x^2 + -4x + 2, coeff bw: 5, multiplied by 2
+; CHECK: SolveQuadraticAddRecExact: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 2x^2 + -4x + 2, rw:5
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 2x^2 + -4x + 2, rw:5
+; CHECK: SolveQuadraticEquationWrap: solution (root): 1
+; CHECK: Loop %loop: backedge-taken count is 1
+define signext i32 @test03() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [  0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ -3, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ 20, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 2
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, 15
+  %cond = icmp eq i32 %and, 0
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; Quadratic equation  4x^2 + 2x + 2 in i16, solution (wrap): 181
+; {1,+,3,+,4} -> X=-1, Y=2, Z=4 (i16)
+;
+; This is an example where the returned solution is the first time an
+; unsigned wrap occurs, whereas the actual exit condition occurs much
+; later. The number of iterations returned by SolveQuadraticEquation
+; is 181, but the loop will iterate 37174 times.
+;
+; Here is a C code that corresponds to this case that calculates the number
+; of iterations:
+;
+; int test04() {
+;   int c = 0;
+;   int ivr = 0;
+;   int inc = -1;
+;   int acc = 2;
+;
+;   while (acc & 0xffff) {
+;     c++;
+;     ivr += inc;
+;     inc += 4;
+;     acc += inc;
+;   }
+;
+;   return c;
+; }
+;
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test04':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {0,+,3,+,4}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 16
+; CHECK: GetQuadraticEquation: equation 4x^2 + 2x + 0, coeff bw: 17, multiplied by 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 4x^2 + 2x + 2, rw:16
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 4x^2 + 2x + -65534, rw:16
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 128
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 4x^2 + 2x + 2, rw:17
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 4x^2 + 2x + -131070, rw:17
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 181
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 4x^2 + 2x + 2, rw:16
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 4x^2 + 2x + -65534, rw:16
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 128
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 4x^2 + 2x + 2, rw:17
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 4x^2 + 2x + -131070, rw:17
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 181
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {1,+,3,+,4}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 16
+; CHECK: GetQuadraticEquation: equation 4x^2 + 2x + 2, coeff bw: 17, multiplied by 2
+; CHECK: SolveQuadraticAddRecExact: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 4x^2 + 2x + 2, rw:17
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 4x^2 + 2x + -131070, rw:17
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 181
+; CHECK: Loop %loop: Unpredictable backedge-taken count.
+define signext i32 @test04() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [  0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ -1, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [  2, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 4
+  %acc1 = add i32 %acc, %inc
+  %and  = trunc i32 %acc1 to i16
+  %cond = icmp eq i16 %and, 0
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; A case with signed arithmetic, but unsigned comparison.
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test05':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {0,+,-1,+,-1}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 32
+; CHECK: GetQuadraticEquation: equation -1x^2 + -1x + 0, coeff bw: 33, multiplied by 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving -1x^2 + -1x + 4, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + 1x + -4, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 2
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving -1x^2 + -1x + 4, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + 1x + -4, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving -1x^2 + -1x + -2, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + 1x + -4294967294, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 65536
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving -1x^2 + -1x + -2, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + 1x + -8589934590, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 92682
+; CHECK: Loop %loop: backedge-taken count is 2
+
+define signext i32 @test05() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [ 0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ 0, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ -1, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, -1
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, -1
+  %cond = icmp ule i32 %and, -3
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; A test that used to crash with one of the earlier versions of the code.
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test06':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {0,+,-99999,+,1}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 32
+; CHECK: GetQuadraticEquation: equation 1x^2 + -199999x + 0, coeff bw: 33, multiplied by 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -199999x + -4294967294, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -199999x + 2, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 1
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -199999x + -4294967294, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -199999x + 4294967298, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 24469
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -199999x + -12, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -199999x + 4294967284, rw:32
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 24469
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 1x^2 + -199999x + -12, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 1x^2 + -199999x + 8589934580, rw:33
+; CHECK: SolveQuadraticEquationWrap: solution (wrap): 62450
+; CHECK: Loop %loop: backedge-taken count is 24469
+define signext i32 @test06() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [ 0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ -100000, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ 100000, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 1
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, -1
+  %cond = icmp sgt i32 %and, 5
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+
+; The equation
+;   532052752x^2 + -450429774x + 71188414 = 0
+; has two exact solutions (up to two decimal digits): 0.21 and 0.64.
+; Since there is no integer between them, there is no integer n that either
+; solves the equation exactly, or changes the sign of it between n and n+1.
+
+; CHECK-LABEL: Printing analysis 'Scalar Evolution Analysis' for function 'test07':
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {0,+,40811489,+,532052752}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 32
+; CHECK: GetQuadraticEquation: equation 532052752x^2 + -450429774x + 0, coeff bw: 33, multiplied by 2
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 532052752x^2 + -450429774x + 71188414, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 532052752x^2 + -450429774x + 71188414, rw:32
+; CHECK: SolveQuadraticEquationWrap: no valid solution
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: no valid solution
+; CHECK: SolveQuadraticAddRecRange: solving for signed overflow
+; CHECK: SolveQuadraticEquationWrap: solving 532052752x^2 + -450429774x + 71188414, rw:32
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 532052752x^2 + -450429774x + 71188414, rw:32
+; CHECK: SolveQuadraticEquationWrap: no valid solution
+; CHECK: SolveQuadraticAddRecRange: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: no valid solution
+; CHECK: GetQuadraticEquation: analyzing quadratic addrec: {35594207,+,40811489,+,532052752}<%loop>
+; CHECK: GetQuadraticEquation: addrec coeff bw: 32
+; CHECK: GetQuadraticEquation: equation 532052752x^2 + -450429774x + 71188414, coeff bw: 33, multiplied by 2
+; CHECK: SolveQuadraticAddRecExact: solving for unsigned overflow
+; CHECK: SolveQuadraticEquationWrap: solving 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: updated coefficients 532052752x^2 + -450429774x + 71188414, rw:33
+; CHECK: SolveQuadraticEquationWrap: no valid solution
+; CHECK: Loop %loop: Unpredictable backedge-taken count.
+define signext i32 @test07() {
+entry:
+  br label %loop
+
+loop:
+  %ivr = phi i32 [ 0, %entry ], [ %ivr1, %loop ]
+  %inc = phi i32 [ -491241263, %entry ], [ %inc1, %loop ]
+  %acc = phi i32 [ 526835470, %entry ], [ %acc1, %loop ]
+  %ivr1 = add i32 %ivr, %inc
+  %inc1 = add i32 %inc, 532052752
+  %acc1 = add i32 %acc, %inc
+  %and  = and i32 %acc1, -1
+  %cond = icmp eq i32 %and, 0
+  br i1 %cond, label %exit, label %loop
+
+exit:
+  %rv = phi i32 [ %acc1, %loop ]
+  ret i32 %rv
+}
+

Modified: llvm/trunk/unittests/ADT/APIntTest.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/ADT/APIntTest.cpp?rev=338758&r1=338757&r2=338758&view=diff
==============================================================================
--- llvm/trunk/unittests/ADT/APIntTest.cpp (original)
+++ llvm/trunk/unittests/ADT/APIntTest.cpp Thu Aug  2 12:13:35 2018
@@ -10,6 +10,7 @@
 #include "llvm/ADT/APInt.h"
 #include "llvm/ADT/ArrayRef.h"
 #include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
 #include "gtest/gtest.h"
 #include <array>
 
@@ -2357,4 +2358,89 @@ TEST(APIntTest, RoundingSDiv) {
   }
 }
 
+TEST(APIntTest, SolveQuadraticEquationWrap) {
+  // Verify that "Solution" is the first non-negative integer that solves
+  // Ax^2 + Bx + C = "0 or overflow", i.e. that it is a correct solution
+  // as calculated by SolveQuadraticEquationWrap.
+  auto Validate = [] (int A, int B, int C, unsigned Width, int Solution) {
+    int Mask = (1 << Width) - 1;
+
+    // Solution should be non-negative.
+    EXPECT_GE(Solution, 0);
+
+    auto OverflowBits = [] (int64_t V, unsigned W) {
+      return V & -(1 << W);
+    };
+
+    int64_t Over0 = OverflowBits(C, Width);
+
+    auto IsZeroOrOverflow = [&] (int X) {
+      int64_t ValueAtX = A*X*X + B*X + C;
+      int64_t OverX = OverflowBits(ValueAtX, Width);
+      return (ValueAtX & Mask) == 0 || OverX != Over0;
+    };
+
+    auto EquationToString = [&] (const char *X_str) {
+      return Twine(A) + Twine(X_str) + Twine("^2 + ") + Twine(B) +
+             Twine(X_str) + Twine(" + ") + Twine(C) + Twine(", bitwidth: ") +
+             Twine(Width);
+    };
+
+    auto IsSolution = [&] (const char *X_str, int X) {
+      if (IsZeroOrOverflow(X))
+        return ::testing::AssertionSuccess()
+                  << X << " is a solution of " << EquationToString(X_str);
+      return ::testing::AssertionFailure()
+                << X << " is not an expected solution of "
+                << EquationToString(X_str);
+    };
+
+    auto IsNotSolution = [&] (const char *X_str, int X) {
+      if (!IsZeroOrOverflow(X))
+        return ::testing::AssertionSuccess()
+                  << X << " is not a solution of " << EquationToString(X_str);
+      return ::testing::AssertionFailure()
+                << X << " is an unexpected solution of "
+                << EquationToString(X_str);
+    };
+
+    // This is the important part: make sure that there is no solution that
+    // is less than the calculated one.
+    if (Solution > 0) {
+      for (int X = 1; X < Solution-1; ++X)
+        EXPECT_PRED_FORMAT1(IsNotSolution, X);
+    }
+
+    // Verify that the calculated solution is indeed a solution.
+    EXPECT_PRED_FORMAT1(IsSolution, Solution);
+  };
+
+  // Generate all possible quadratic equations with Width-bit wide integer
+  // coefficients, get the solution from SolveQuadraticEquationWrap, and
+  // verify that the solution is correct.
+  auto Iterate = [&] (unsigned Width) {
+    assert(1 < Width && Width < 32);
+    int Low = -(1 << (Width-1));
+    int High = (1 << (Width-1));
+
+    for (int A = Low; A != High; ++A) {
+      if (A == 0)
+        continue;
+      for (int B = Low; B != High; ++B) {
+        for (int C = Low; C != High; ++C) {
+          Optional<APInt> S = APIntOps::SolveQuadraticEquationWrap(
+                                APInt(Width, A), APInt(Width, B),
+                                APInt(Width, C), Width);
+          if (S.hasValue())
+            Validate(A, B, C, Width, S->getSExtValue());
+        }
+      }
+    }
+  };
+
+  // Test all widths in [2..6].
+  for (unsigned i = 2; i <= 6; ++i)
+    Iterate(i);
+}
+
 } // end anonymous namespace




More information about the llvm-commits mailing list