[llvm] r332999 - diff --git a/utils/TableGen/GlobalISelEmitter.cpp b/utils/TableGen/GlobalISelEmitter.cpp

Roman Tereshin via llvm-commits llvm-commits at lists.llvm.org
Tue May 22 10:05:52 PDT 2018


Oh, my, this is horrible.

Well, good morning everyone :D

I have re-committed this with a normal message.

Damn.

I'm terribly sorry for this.

Best,
Roman

> On May 22, 2018, at 9:51 AM, Roman Tereshin via llvm-commits <llvm-commits at lists.llvm.org> wrote:
> 
> Author: rtereshin
> Date: Tue May 22 09:51:54 2018
> New Revision: 332999
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=332999&view=rev
> Log:
> diff --git a/utils/TableGen/GlobalISelEmitter.cpp b/utils/TableGen/GlobalISelEmitter.cpp
> index cdc9df7bf6b..be08165a200 100644
> --- a/utils/TableGen/GlobalISelEmitter.cpp
> +++ b/utils/TableGen/GlobalISelEmitter.cpp
> @@ -1,4531 +1,4539 @@
> //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
> //
> //                     The LLVM Compiler Infrastructure
> //
> // This file is distributed under the University of Illinois Open Source
> // License. See LICENSE.TXT for details.
> //
> //===----------------------------------------------------------------------===//
> //
> /// \file
> /// This tablegen backend emits code for use by the GlobalISel instruction
> /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
> ///
> /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
> /// backend, filters out the ones that are unsupported, maps
> /// SelectionDAG-specific constructs to their GlobalISel counterpart
> /// (when applicable: MVT to LLT;  SDNode to generic Instruction).
> ///
> /// Not all patterns are supported: pass the tablegen invocation
> /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
> /// as well as why.
> ///
> /// The generated file defines a single method:
> ///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
> /// intended to be used in InstructionSelector::select as the first-step
> /// selector for the patterns that don't require complex C++.
> ///
> /// FIXME: We'll probably want to eventually define a base
> /// "TargetGenInstructionSelector" class.
> ///
> //===----------------------------------------------------------------------===//
> 
> #include "CodeGenDAGPatterns.h"
> #include "SubtargetFeatureInfo.h"
> #include "llvm/ADT/Optional.h"
> #include "llvm/ADT/SmallSet.h"
> #include "llvm/ADT/Statistic.h"
> #include "llvm/Support/CodeGenCoverage.h"
> #include "llvm/Support/CommandLine.h"
> #include "llvm/Support/Error.h"
> #include "llvm/Support/LowLevelTypeImpl.h"
> #include "llvm/Support/MachineValueType.h"
> #include "llvm/Support/ScopedPrinter.h"
> #include "llvm/TableGen/Error.h"
> #include "llvm/TableGen/Record.h"
> #include "llvm/TableGen/TableGenBackend.h"
> #include <numeric>
> #include <string>
> using namespace llvm;
> 
> #define DEBUG_TYPE "gisel-emitter"
> 
> STATISTIC(NumPatternTotal, "Total number of patterns");
> STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
> STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
> STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
> STATISTIC(NumPatternEmitted, "Number of patterns emitted");
> 
> cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
> 
> static cl::opt<bool> WarnOnSkippedPatterns(
>     "warn-on-skipped-patterns",
>     cl::desc("Explain why a pattern was skipped for inclusion "
>              "in the GlobalISel selector"),
>     cl::init(false), cl::cat(GlobalISelEmitterCat));
> 
> static cl::opt<bool> GenerateCoverage(
>     "instrument-gisel-coverage",
>     cl::desc("Generate coverage instrumentation for GlobalISel"),
>     cl::init(false), cl::cat(GlobalISelEmitterCat));
> 
> static cl::opt<std::string> UseCoverageFile(
>     "gisel-coverage-file", cl::init(""),
>     cl::desc("Specify file to retrieve coverage information from"),
>     cl::cat(GlobalISelEmitterCat));
> 
> static cl::opt<bool> OptimizeMatchTable(
>     "optimize-match-table",
>     cl::desc("Generate an optimized version of the match table"),
>     cl::init(true), cl::cat(GlobalISelEmitterCat));
> 
> namespace {
> //===- Helper functions ---------------------------------------------------===//
> 
> /// Get the name of the enum value used to number the predicate function.
> std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
>   return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
>          Predicate.getFnName();
> }
> 
> /// Get the opcode used to check this predicate.
> std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
>   return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
> }
> 
> /// This class stands in for LLT wherever we want to tablegen-erate an
> /// equivalent at compiler run-time.
> class LLTCodeGen {
> private:
>   LLT Ty;
> 
> public:
>   LLTCodeGen() = default;
>   LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
> 
>   std::string getCxxEnumValue() const {
>     std::string Str;
>     raw_string_ostream OS(Str);
> 
>     emitCxxEnumValue(OS);
>     return OS.str();
>   }
> 
>   void emitCxxEnumValue(raw_ostream &OS) const {
>     if (Ty.isScalar()) {
>       OS << "GILLT_s" << Ty.getSizeInBits();
>       return;
>     }
>     if (Ty.isVector()) {
>       OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
>       return;
>     }
>     if (Ty.isPointer()) {
>       OS << "GILLT_p" << Ty.getAddressSpace();
>       if (Ty.getSizeInBits() > 0)
>         OS << "s" << Ty.getSizeInBits();
>       return;
>     }
>     llvm_unreachable("Unhandled LLT");
>   }
> 
>   void emitCxxConstructorCall(raw_ostream &OS) const {
>     if (Ty.isScalar()) {
>       OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
>       return;
>     }
>     if (Ty.isVector()) {
>       OS << "LLT::vector(" << Ty.getNumElements() << ", "
>          << Ty.getScalarSizeInBits() << ")";
>       return;
>     }
>     if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
>       OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
>          << Ty.getSizeInBits() << ")";
>       return;
>     }
>     llvm_unreachable("Unhandled LLT");
>   }
> 
>   const LLT &get() const { return Ty; }
> 
>   /// This ordering is used for std::unique() and llvm::sort(). There's no
>   /// particular logic behind the order but either A < B or B < A must be
>   /// true if A != B.
>   bool operator<(const LLTCodeGen &Other) const {
>     if (Ty.isValid() != Other.Ty.isValid())
>       return Ty.isValid() < Other.Ty.isValid();
>     if (!Ty.isValid())
>       return false;
> 
>     if (Ty.isVector() != Other.Ty.isVector())
>       return Ty.isVector() < Other.Ty.isVector();
>     if (Ty.isScalar() != Other.Ty.isScalar())
>       return Ty.isScalar() < Other.Ty.isScalar();
>     if (Ty.isPointer() != Other.Ty.isPointer())
>       return Ty.isPointer() < Other.Ty.isPointer();
> 
>     if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
>       return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
> 
>     if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
>       return Ty.getNumElements() < Other.Ty.getNumElements();
> 
>     return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
>   }
> 
>   bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
> };
> 
> // Track all types that are used so we can emit the corresponding enum.
> std::set<LLTCodeGen> KnownTypes;
> 
> class InstructionMatcher;
> /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
> /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
> static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
>   MVT VT(SVT);
> 
>   if (VT.isVector() && VT.getVectorNumElements() != 1)
>     return LLTCodeGen(
>         LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
> 
>   if (VT.isInteger() || VT.isFloatingPoint())
>     return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
>   return None;
> }
> 
> static std::string explainPredicates(const TreePatternNode *N) {
>   std::string Explanation = "";
>   StringRef Separator = "";
>   for (const auto &P : N->getPredicateFns()) {
>     Explanation +=
>         (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
>     Separator = ", ";
> 
>     if (P.isAlwaysTrue())
>       Explanation += " always-true";
>     if (P.isImmediatePattern())
>       Explanation += " immediate";
> 
>     if (P.isUnindexed())
>       Explanation += " unindexed";
> 
>     if (P.isNonExtLoad())
>       Explanation += " non-extload";
>     if (P.isAnyExtLoad())
>       Explanation += " extload";
>     if (P.isSignExtLoad())
>       Explanation += " sextload";
>     if (P.isZeroExtLoad())
>       Explanation += " zextload";
> 
>     if (P.isNonTruncStore())
>       Explanation += " non-truncstore";
>     if (P.isTruncStore())
>       Explanation += " truncstore";
> 
>     if (Record *VT = P.getMemoryVT())
>       Explanation += (" MemVT=" + VT->getName()).str();
>     if (Record *VT = P.getScalarMemoryVT())
>       Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
> 
>     if (P.isAtomicOrderingMonotonic())
>       Explanation += " monotonic";
>     if (P.isAtomicOrderingAcquire())
>       Explanation += " acquire";
>     if (P.isAtomicOrderingRelease())
>       Explanation += " release";
>     if (P.isAtomicOrderingAcquireRelease())
>       Explanation += " acq_rel";
>     if (P.isAtomicOrderingSequentiallyConsistent())
>       Explanation += " seq_cst";
>     if (P.isAtomicOrderingAcquireOrStronger())
>       Explanation += " >=acquire";
>     if (P.isAtomicOrderingWeakerThanAcquire())
>       Explanation += " <acquire";
>     if (P.isAtomicOrderingReleaseOrStronger())
>       Explanation += " >=release";
>     if (P.isAtomicOrderingWeakerThanRelease())
>       Explanation += " <release";
>   }
>   return Explanation;
> }
> 
> std::string explainOperator(Record *Operator) {
>   if (Operator->isSubClassOf("SDNode"))
>     return (" (" + Operator->getValueAsString("Opcode") + ")").str();
> 
>   if (Operator->isSubClassOf("Intrinsic"))
>     return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
> 
>   if (Operator->isSubClassOf("ComplexPattern"))
>     return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
>             ")")
>         .str();
> 
>   if (Operator->isSubClassOf("SDNodeXForm"))
>     return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
>             ")")
>         .str();
> 
>   return (" (Operator " + Operator->getName() + " not understood)").str();
> }
> 
> /// Helper function to let the emitter report skip reason error messages.
> static Error failedImport(const Twine &Reason) {
>   return make_error<StringError>(Reason, inconvertibleErrorCode());
> }
> 
> static Error isTrivialOperatorNode(const TreePatternNode *N) {
>   std::string Explanation = "";
>   std::string Separator = "";
> 
>   bool HasUnsupportedPredicate = false;
>   for (const auto &Predicate : N->getPredicateFns()) {
>     if (Predicate.isAlwaysTrue())
>       continue;
> 
>     if (Predicate.isImmediatePattern())
>       continue;
> 
>     if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
>         Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
>       continue;
> 
>     if (Predicate.isNonTruncStore())
>       continue;
> 
>     if (Predicate.isLoad() && Predicate.getMemoryVT())
>       continue;
> 
>     if (Predicate.isLoad() || Predicate.isStore()) {
>       if (Predicate.isUnindexed())
>         continue;
>     }
> 
>     if (Predicate.isAtomic() && Predicate.getMemoryVT())
>       continue;
> 
>     if (Predicate.isAtomic() &&
>         (Predicate.isAtomicOrderingMonotonic() ||
>          Predicate.isAtomicOrderingAcquire() ||
>          Predicate.isAtomicOrderingRelease() ||
>          Predicate.isAtomicOrderingAcquireRelease() ||
>          Predicate.isAtomicOrderingSequentiallyConsistent() ||
>          Predicate.isAtomicOrderingAcquireOrStronger() ||
>          Predicate.isAtomicOrderingWeakerThanAcquire() ||
>          Predicate.isAtomicOrderingReleaseOrStronger() ||
>          Predicate.isAtomicOrderingWeakerThanRelease()))
>       continue;
> 
>     HasUnsupportedPredicate = true;
>     Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
>     Separator = ", ";
>     Explanation += (Separator + "first-failing:" +
>                     Predicate.getOrigPatFragRecord()->getRecord()->getName())
>                        .str();
>     break;
>   }
> 
>   if (!HasUnsupportedPredicate)
>     return Error::success();
> 
>   return failedImport(Explanation);
> }
> 
> static Record *getInitValueAsRegClass(Init *V) {
>   if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
>     if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
>       return VDefInit->getDef()->getValueAsDef("RegClass");
>     if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
>       return VDefInit->getDef();
>   }
>   return nullptr;
> }
> 
> std::string
> getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
>   std::string Name = "GIFBS";
>   for (const auto &Feature : FeatureBitset)
>     Name += ("_" + Feature->getName()).str();
>   return Name;
> }
> 
> //===- MatchTable Helpers -------------------------------------------------===//
> 
> class MatchTable;
> 
> /// A record to be stored in a MatchTable.
> ///
> /// This class represents any and all output that may be required to emit the
> /// MatchTable. Instances  are most often configured to represent an opcode or
> /// value that will be emitted to the table with some formatting but it can also
> /// represent commas, comments, and other formatting instructions.
> struct MatchTableRecord {
>   enum RecordFlagsBits {
>     MTRF_None = 0x0,
>     /// Causes EmitStr to be formatted as comment when emitted.
>     MTRF_Comment = 0x1,
>     /// Causes the record value to be followed by a comma when emitted.
>     MTRF_CommaFollows = 0x2,
>     /// Causes the record value to be followed by a line break when emitted.
>     MTRF_LineBreakFollows = 0x4,
>     /// Indicates that the record defines a label and causes an additional
>     /// comment to be emitted containing the index of the label.
>     MTRF_Label = 0x8,
>     /// Causes the record to be emitted as the index of the label specified by
>     /// LabelID along with a comment indicating where that label is.
>     MTRF_JumpTarget = 0x10,
>     /// Causes the formatter to add a level of indentation before emitting the
>     /// record.
>     MTRF_Indent = 0x20,
>     /// Causes the formatter to remove a level of indentation after emitting the
>     /// record.
>     MTRF_Outdent = 0x40,
>   };
> 
>   /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
>   /// reference or define.
>   unsigned LabelID;
>   /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
>   /// value, a label name.
>   std::string EmitStr;
> 
> private:
>   /// The number of MatchTable elements described by this record. Comments are 0
>   /// while values are typically 1. Values >1 may occur when we need to emit
>   /// values that exceed the size of a MatchTable element.
>   unsigned NumElements;
> 
> public:
>   /// A bitfield of RecordFlagsBits flags.
>   unsigned Flags;
> 
>   /// The actual run-time value, if known
>   int64_t RawValue;
> 
>   MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
>                    unsigned NumElements, unsigned Flags,
>                    int64_t RawValue = std::numeric_limits<int64_t>::min())
>       : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
>         EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
>         RawValue(RawValue) {
> 
>     assert((!LabelID_.hasValue() || LabelID != ~0u) &&
>            "This value is reserved for non-labels");
>   }
>   MatchTableRecord(const MatchTableRecord &Other) = default;
>   MatchTableRecord(MatchTableRecord &&Other) = default;
> 
>   /// Useful if a Match Table Record gets optimized out
>   void turnIntoComment() {
>     Flags |= MTRF_Comment;
>     Flags &= ~MTRF_CommaFollows;
>     NumElements = 0;
>   }
> 
>   /// For Jump Table generation purposes
>   bool operator<(const MatchTableRecord &Other) const {
>     return RawValue < Other.RawValue;
>   }
>   int64_t getRawValue() const { return RawValue; }
> 
>   void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
>             const MatchTable &Table) const;
>   unsigned size() const { return NumElements; }
> };
> 
> class Matcher;
> 
> /// Holds the contents of a generated MatchTable to enable formatting and the
> /// necessary index tracking needed to support GIM_Try.
> class MatchTable {
>   /// An unique identifier for the table. The generated table will be named
>   /// MatchTable${ID}.
>   unsigned ID;
>   /// The records that make up the table. Also includes comments describing the
>   /// values being emitted and line breaks to format it.
>   std::vector<MatchTableRecord> Contents;
>   /// The currently defined labels.
>   DenseMap<unsigned, unsigned> LabelMap;
>   /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
>   unsigned CurrentSize = 0;
>   /// A unique identifier for a MatchTable label.
>   unsigned CurrentLabelID = 0;
>   /// Determines if the table should be instrumented for rule coverage tracking.
>   bool IsWithCoverage;
> 
> public:
>   static MatchTableRecord LineBreak;
>   static MatchTableRecord Comment(StringRef Comment) {
>     return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
>   }
>   static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
>     unsigned ExtraFlags = 0;
>     if (IndentAdjust > 0)
>       ExtraFlags |= MatchTableRecord::MTRF_Indent;
>     if (IndentAdjust < 0)
>       ExtraFlags |= MatchTableRecord::MTRF_Outdent;
> 
>     return MatchTableRecord(None, Opcode, 1,
>                             MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
>   }
>   static MatchTableRecord NamedValue(StringRef NamedValue) {
>     return MatchTableRecord(None, NamedValue, 1,
>                             MatchTableRecord::MTRF_CommaFollows);
>   }
>   static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
>     return MatchTableRecord(None, NamedValue, 1,
>                             MatchTableRecord::MTRF_CommaFollows, RawValue);
>   }
>   static MatchTableRecord NamedValue(StringRef Namespace,
>                                      StringRef NamedValue) {
>     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
>                             MatchTableRecord::MTRF_CommaFollows);
>   }
>   static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
>                                      int64_t RawValue) {
>     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
>                             MatchTableRecord::MTRF_CommaFollows, RawValue);
>   }
>   static MatchTableRecord IntValue(int64_t IntValue) {
>     return MatchTableRecord(None, llvm::to_string(IntValue), 1,
>                             MatchTableRecord::MTRF_CommaFollows);
>   }
>   static MatchTableRecord Label(unsigned LabelID) {
>     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
>                             MatchTableRecord::MTRF_Label |
>                                 MatchTableRecord::MTRF_Comment |
>                                 MatchTableRecord::MTRF_LineBreakFollows);
>   }
>   static MatchTableRecord JumpTarget(unsigned LabelID) {
>     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
>                             MatchTableRecord::MTRF_JumpTarget |
>                                 MatchTableRecord::MTRF_Comment |
>                                 MatchTableRecord::MTRF_CommaFollows);
>   }
> 
>   static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
> 
>   MatchTable(bool WithCoverage, unsigned ID = 0)
>       : ID(ID), IsWithCoverage(WithCoverage) {}
> 
>   bool isWithCoverage() const { return IsWithCoverage; }
> 
>   void push_back(const MatchTableRecord &Value) {
>     if (Value.Flags & MatchTableRecord::MTRF_Label)
>       defineLabel(Value.LabelID);
>     Contents.push_back(Value);
>     CurrentSize += Value.size();
>   }
> 
>   unsigned allocateLabelID() { return CurrentLabelID++; }
> 
>   void defineLabel(unsigned LabelID) {
>     LabelMap.insert(std::make_pair(LabelID, CurrentSize));
>   }
> 
>   unsigned getLabelIndex(unsigned LabelID) const {
>     const auto I = LabelMap.find(LabelID);
>     assert(I != LabelMap.end() && "Use of undeclared label");
>     return I->second;
>   }
> 
>   void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
> 
>   void emitDeclaration(raw_ostream &OS) const {
>     unsigned Indentation = 4;
>     OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
>     LineBreak.emit(OS, true, *this);
>     OS << std::string(Indentation, ' ');
> 
>     for (auto I = Contents.begin(), E = Contents.end(); I != E;
>          ++I) {
>       bool LineBreakIsNext = false;
>       const auto &NextI = std::next(I);
> 
>       if (NextI != E) {
>         if (NextI->EmitStr == "" &&
>             NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
>           LineBreakIsNext = true;
>       }
> 
>       if (I->Flags & MatchTableRecord::MTRF_Indent)
>         Indentation += 2;
> 
>       I->emit(OS, LineBreakIsNext, *this);
>       if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
>         OS << std::string(Indentation, ' ');
> 
>       if (I->Flags & MatchTableRecord::MTRF_Outdent)
>         Indentation -= 2;
>     }
>     OS << "};\n";
>   }
> };
> 
> MatchTableRecord MatchTable::LineBreak = {
>     None, "" /* Emit String */, 0 /* Elements */,
>     MatchTableRecord::MTRF_LineBreakFollows};
> 
> void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
>                             const MatchTable &Table) const {
>   bool UseLineComment =
>       LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
>   if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
>     UseLineComment = false;
> 
>   if (Flags & MTRF_Comment)
>     OS << (UseLineComment ? "// " : "/*");
> 
>   OS << EmitStr;
>   if (Flags & MTRF_Label)
>     OS << ": @" << Table.getLabelIndex(LabelID);
> 
>   if (Flags & MTRF_Comment && !UseLineComment)
>     OS << "*/";
> 
>   if (Flags & MTRF_JumpTarget) {
>     if (Flags & MTRF_Comment)
>       OS << " ";
>     OS << Table.getLabelIndex(LabelID);
>   }
> 
>   if (Flags & MTRF_CommaFollows) {
>     OS << ",";
>     if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
>       OS << " ";
>   }
> 
>   if (Flags & MTRF_LineBreakFollows)
>     OS << "\n";
> }
> 
> MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
>   Table.push_back(Value);
>   return Table;
> }
> 
> //===- Matchers -----------------------------------------------------------===//
> 
> class OperandMatcher;
> class MatchAction;
> class PredicateMatcher;
> class RuleMatcher;
> 
> class Matcher {
> public:
>   virtual ~Matcher() = default;
>   virtual void optimize() {}
>   virtual void emit(MatchTable &Table) = 0;
> 
>   virtual bool hasFirstCondition() const = 0;
>   virtual const PredicateMatcher &getFirstCondition() const = 0;
>   virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
> };
> 
> MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
>                                   bool WithCoverage) {
>   MatchTable Table(WithCoverage);
>   for (Matcher *Rule : Rules)
>     Rule->emit(Table);
> 
>   return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
> }
> 
> class GroupMatcher final : public Matcher {
>   /// Conditions that form a common prefix of all the matchers contained.
>   SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
> 
>   /// All the nested matchers, sharing a common prefix.
>   std::vector<Matcher *> Matchers;
> 
>   /// An owning collection for any auxiliary matchers created while optimizing
>   /// nested matchers contained.
>   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
> 
> public:
>   /// Add a matcher to the collection of nested matchers if it meets the
>   /// requirements, and return true. If it doesn't, do nothing and return false.
>   ///
>   /// Expected to preserve its argument, so it could be moved out later on.
>   bool addMatcher(Matcher &Candidate);
> 
>   /// Mark the matcher as fully-built and ensure any invariants expected by both
>   /// optimize() and emit(...) methods. Generally, both sequences of calls
>   /// are expected to lead to a sensible result:
>   ///
>   /// addMatcher(...)*; finalize(); optimize(); emit(...); and
>   /// addMatcher(...)*; finalize(); emit(...);
>   ///
>   /// or generally
>   ///
>   /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
>   ///
>   /// Multiple calls to optimize() are expected to be handled gracefully, though
>   /// optimize() is not expected to be idempotent. Multiple calls to finalize()
>   /// aren't generally supported. emit(...) is expected to be non-mutating and
>   /// producing the exact same results upon repeated calls.
>   ///
>   /// addMatcher() calls after the finalize() call are not supported.
>   ///
>   /// finalize() and optimize() are both allowed to mutate the contained
>   /// matchers, so moving them out after finalize() is not supported.
>   void finalize();
>   void optimize() override {}
>   void emit(MatchTable &Table) override;
> 
>   /// Could be used to move out the matchers added previously, unless finalize()
>   /// has been already called. If any of the matchers are moved out, the group
>   /// becomes safe to destroy, but not safe to re-use for anything else.
>   iterator_range<std::vector<Matcher *>::iterator> matchers() {
>     return make_range(Matchers.begin(), Matchers.end());
>   }
>   size_t size() const { return Matchers.size(); }
>   bool empty() const { return Matchers.empty(); }
> 
>   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
>     assert(!Conditions.empty() &&
>            "Trying to pop a condition from a condition-less group");
>     std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
>     Conditions.erase(Conditions.begin());
>     return P;
>   }
>   const PredicateMatcher &getFirstCondition() const override {
>     assert(!Conditions.empty() &&
>            "Trying to get a condition from a condition-less group");
>     return *Conditions.front();
>   }
>   bool hasFirstCondition() const override { return !Conditions.empty(); }
> 
> private:
>   /// See if a candidate matcher could be added to this group solely by
>   /// analyzing its first condition.
>   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
> };
> 
> /// Generates code to check that a match rule matches.
> class RuleMatcher : public Matcher {
> public:
>   using ActionList = std::list<std::unique_ptr<MatchAction>>;
>   using action_iterator = ActionList::iterator;
> 
> protected:
>   /// A list of matchers that all need to succeed for the current rule to match.
>   /// FIXME: This currently supports a single match position but could be
>   /// extended to support multiple positions to support div/rem fusion or
>   /// load-multiple instructions.
>   using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
>   MatchersTy Matchers;
> 
>   /// A list of actions that need to be taken when all predicates in this rule
>   /// have succeeded.
>   ActionList Actions;
> 
>   using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
> 
>   /// A map of instruction matchers to the local variables
>   DefinedInsnVariablesMap InsnVariableIDs;
> 
>   using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
> 
>   // The set of instruction matchers that have not yet been claimed for mutation
>   // by a BuildMI.
>   MutatableInsnSet MutatableInsns;
> 
>   /// A map of named operands defined by the matchers that may be referenced by
>   /// the renderers.
>   StringMap<OperandMatcher *> DefinedOperands;
> 
>   /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
>   unsigned NextInsnVarID;
> 
>   /// ID for the next output instruction allocated with allocateOutputInsnID()
>   unsigned NextOutputInsnID;
> 
>   /// ID for the next temporary register ID allocated with allocateTempRegID()
>   unsigned NextTempRegID;
> 
>   std::vector<Record *> RequiredFeatures;
>   std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
> 
>   ArrayRef<SMLoc> SrcLoc;
> 
>   typedef std::tuple<Record *, unsigned, unsigned>
>       DefinedComplexPatternSubOperand;
>   typedef StringMap<DefinedComplexPatternSubOperand>
>       DefinedComplexPatternSubOperandMap;
>   /// A map of Symbolic Names to ComplexPattern sub-operands.
>   DefinedComplexPatternSubOperandMap ComplexSubOperands;
> 
>   uint64_t RuleID;
>   static uint64_t NextRuleID;
> 
> public:
>   RuleMatcher(ArrayRef<SMLoc> SrcLoc)
>       : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
>         DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
>         NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
>         RuleID(NextRuleID++) {}
>   RuleMatcher(RuleMatcher &&Other) = default;
>   RuleMatcher &operator=(RuleMatcher &&Other) = default;
> 
>   uint64_t getRuleID() const { return RuleID; }
> 
>   InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
>   void addRequiredFeature(Record *Feature);
>   const std::vector<Record *> &getRequiredFeatures() const;
> 
>   template <class Kind, class... Args> Kind &addAction(Args &&... args);
>   template <class Kind, class... Args>
>   action_iterator insertAction(action_iterator InsertPt, Args &&... args);
> 
>   /// Define an instruction without emitting any code to do so.
>   unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
> 
>   unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
>   DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
>     return InsnVariableIDs.begin();
>   }
>   DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
>     return InsnVariableIDs.end();
>   }
>   iterator_range<typename DefinedInsnVariablesMap::const_iterator>
>   defined_insn_vars() const {
>     return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
>   }
> 
>   MutatableInsnSet::const_iterator mutatable_insns_begin() const {
>     return MutatableInsns.begin();
>   }
>   MutatableInsnSet::const_iterator mutatable_insns_end() const {
>     return MutatableInsns.end();
>   }
>   iterator_range<typename MutatableInsnSet::const_iterator>
>   mutatable_insns() const {
>     return make_range(mutatable_insns_begin(), mutatable_insns_end());
>   }
>   void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
>     bool R = MutatableInsns.erase(InsnMatcher);
>     assert(R && "Reserving a mutatable insn that isn't available");
>     (void)R;
>   }
> 
>   action_iterator actions_begin() { return Actions.begin(); }
>   action_iterator actions_end() { return Actions.end(); }
>   iterator_range<action_iterator> actions() {
>     return make_range(actions_begin(), actions_end());
>   }
> 
>   void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
> 
>   void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
>                                unsigned RendererID, unsigned SubOperandID) {
>     assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
>     ComplexSubOperands[SymbolicName] =
>         std::make_tuple(ComplexPattern, RendererID, SubOperandID);
>   }
>   Optional<DefinedComplexPatternSubOperand>
>   getComplexSubOperand(StringRef SymbolicName) const {
>     const auto &I = ComplexSubOperands.find(SymbolicName);
>     if (I == ComplexSubOperands.end())
>       return None;
>     return I->second;
>   }
> 
>   InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
>   const OperandMatcher &getOperandMatcher(StringRef Name) const;
> 
>   void optimize() override;
>   void emit(MatchTable &Table) override;
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   bool isHigherPriorityThan(const RuleMatcher &B) const;
> 
>   /// Report the maximum number of temporary operands needed by the rule
>   /// matcher.
>   unsigned countRendererFns() const;
> 
>   std::unique_ptr<PredicateMatcher> popFirstCondition() override;
>   const PredicateMatcher &getFirstCondition() const override;
> -  LLTCodeGen getFirstConditionAsRootType();
>   bool hasFirstCondition() const override;
>   unsigned getNumOperands() const;
>   StringRef getOpcode() const;
> 
>   // FIXME: Remove this as soon as possible
>   InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
> 
>   unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
>   unsigned allocateTempRegID() { return NextTempRegID++; }
> 
>   iterator_range<MatchersTy::iterator> insnmatchers() {
>     return make_range(Matchers.begin(), Matchers.end());
>   }
>   bool insnmatchers_empty() const { return Matchers.empty(); }
>   void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
> };
> 
> uint64_t RuleMatcher::NextRuleID = 0;
> 
> using action_iterator = RuleMatcher::action_iterator;
> 
> template <class PredicateTy> class PredicateListMatcher {
> private:
>   /// Template instantiations should specialize this to return a string to use
>   /// for the comment emitted when there are no predicates.
>   std::string getNoPredicateComment() const;
> 
> protected:
>   using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
>   PredicatesTy Predicates;
> 
>   /// Track if the list of predicates was manipulated by one of the optimization
>   /// methods.
>   bool Optimized = false;
> 
> public:
>   /// Construct a new predicate and add it to the matcher.
>   template <class Kind, class... Args>
>   Optional<Kind *> addPredicate(Args &&... args);
> 
>   typename PredicatesTy::iterator predicates_begin() {
>     return Predicates.begin();
>   }
>   typename PredicatesTy::iterator predicates_end() {
>     return Predicates.end();
>   }
>   iterator_range<typename PredicatesTy::iterator> predicates() {
>     return make_range(predicates_begin(), predicates_end());
>   }
>   typename PredicatesTy::size_type predicates_size() const {
>     return Predicates.size();
>   }
>   bool predicates_empty() const { return Predicates.empty(); }
> 
>   std::unique_ptr<PredicateTy> predicates_pop_front() {
>     std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
>     Predicates.pop_front();
>     Optimized = true;
>     return Front;
>   }
> 
>   void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
>     Predicates.push_front(std::move(Predicate));
>   }
> 
>   void eraseNullPredicates() {
>     const auto NewEnd =
>         std::stable_partition(Predicates.begin(), Predicates.end(),
>                               std::logical_not<std::unique_ptr<PredicateTy>>());
>     if (NewEnd != Predicates.begin()) {
>       Predicates.erase(Predicates.begin(), NewEnd);
>       Optimized = true;
>     }
>   }
> 
>   /// Emit MatchTable opcodes that tests whether all the predicates are met.
>   template <class... Args>
>   void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
>     if (Predicates.empty() && !Optimized) {
>       Table << MatchTable::Comment(getNoPredicateComment())
>             << MatchTable::LineBreak;
>       return;
>     }
> 
>     for (const auto &Predicate : predicates())
>       Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
>   }
> };
> 
> class PredicateMatcher {
> public:
>   /// This enum is used for RTTI and also defines the priority that is given to
>   /// the predicate when generating the matcher code. Kinds with higher priority
>   /// must be tested first.
>   ///
>   /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
>   /// but OPM_Int must have priority over OPM_RegBank since constant integers
>   /// are represented by a virtual register defined by a G_CONSTANT instruction.
>   ///
>   /// Note: The relative priority between IPM_ and OPM_ does not matter, they
>   /// are currently not compared between each other.
>   enum PredicateKind {
>     IPM_Opcode,
>     IPM_NumOperands,
>     IPM_ImmPredicate,
>     IPM_AtomicOrderingMMO,
>     IPM_MemoryLLTSize,
>     IPM_MemoryVsLLTSize,
>     OPM_SameOperand,
>     OPM_ComplexPattern,
>     OPM_IntrinsicID,
>     OPM_Instruction,
>     OPM_Int,
>     OPM_LiteralInt,
>     OPM_LLT,
>     OPM_PointerToAny,
>     OPM_RegBank,
>     OPM_MBB,
>   };
> 
> protected:
>   PredicateKind Kind;
>   unsigned InsnVarID;
>   unsigned OpIdx;
> 
> public:
>   PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
>       : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
> 
>   unsigned getInsnVarID() const { return InsnVarID; }
>   unsigned getOpIdx() const { return OpIdx; }
> 
>   virtual ~PredicateMatcher() = default;
>   /// Emit MatchTable opcodes that check the predicate for the given operand.
>   virtual void emitPredicateOpcodes(MatchTable &Table,
>                                     RuleMatcher &Rule) const = 0;
> 
>   PredicateKind getKind() const { return Kind; }
> 
>   virtual bool isIdentical(const PredicateMatcher &B) const {
>     return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
>            OpIdx == B.OpIdx;
>   }
> 
>   virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
>     return hasValue() && PredicateMatcher::isIdentical(B);
>   }
> 
>   virtual MatchTableRecord getValue() const {
>     assert(hasValue() && "Can not get a value of a value-less predicate!");
>     llvm_unreachable("Not implemented yet");
>   }
>   virtual bool hasValue() const { return false; }
> 
>   /// Report the maximum number of temporary operands needed by the predicate
>   /// matcher.
>   virtual unsigned countRendererFns() const { return 0; }
> };
> 
> /// Generates code to check a predicate of an operand.
> ///
> /// Typical predicates include:
> /// * Operand is a particular register.
> /// * Operand is assigned a particular register bank.
> /// * Operand is an MBB.
> class OperandPredicateMatcher : public PredicateMatcher {
> public:
>   OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
>                           unsigned OpIdx)
>       : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
>   virtual ~OperandPredicateMatcher() {}
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
> };
> 
> template <>
> std::string
> PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
>   return "No operand predicates";
> }
> 
> /// Generates code to check that a register operand is defined by the same exact
> /// one as another.
> class SameOperandMatcher : public OperandPredicateMatcher {
>   std::string MatchingName;
> 
> public:
>   SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
>       : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
>         MatchingName(MatchingName) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_SameOperand;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override;
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
>   }
> };
> 
> /// Generates code to check that an operand is a particular LLT.
> class LLTOperandMatcher : public OperandPredicateMatcher {
> protected:
>   LLTCodeGen Ty;
> 
> public:
>   static std::map<LLTCodeGen, unsigned> TypeIDValues;
> 
>   static void initTypeIDValuesMap() {
>     TypeIDValues.clear();
> 
>     unsigned ID = 0;
>     for (const LLTCodeGen LLTy : KnownTypes)
>       TypeIDValues[LLTy] = ID++;
>   }
> 
>   LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
>       : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
>     KnownTypes.insert(Ty);
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_LLT;
>   }
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            Ty == cast<LLTOperandMatcher>(&B)->Ty;
>   }
>   MatchTableRecord getValue() const override {
>     const auto VI = TypeIDValues.find(Ty);
>     if (VI == TypeIDValues.end())
>       return MatchTable::NamedValue(getTy().getCxxEnumValue());
>     return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
>   }
>   bool hasValue() const override {
>     if (TypeIDValues.size() != KnownTypes.size())
>       initTypeIDValuesMap();
>     return TypeIDValues.count(Ty);
>   }
> 
>   LLTCodeGen getTy() const { return Ty; }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
>           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
>           << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
>           << getValue() << MatchTable::LineBreak;
>   }
> };
> 
> std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
> 
> /// Generates code to check that an operand is a pointer to any address space.
> ///
> /// In SelectionDAG, the types did not describe pointers or address spaces. As a
> /// result, iN is used to describe a pointer of N bits to any address space and
> /// PatFrag predicates are typically used to constrain the address space. There's
> /// no reliable means to derive the missing type information from the pattern so
> /// imported rules must test the components of a pointer separately.
> ///
> /// If SizeInBits is zero, then the pointer size will be obtained from the
> /// subtarget.
> class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
> protected:
>   unsigned SizeInBits;
> 
> public:
>   PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
>                              unsigned SizeInBits)
>       : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
>         SizeInBits(SizeInBits) {}
> 
>   static bool classof(const OperandPredicateMatcher *P) {
>     return P->getKind() == OPM_PointerToAny;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckPointerToAny")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::Comment("SizeInBits")
>           << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that an operand is a particular target constant.
> class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
> protected:
>   const OperandMatcher &Operand;
>   const Record &TheDef;
> 
>   unsigned getAllocatedTemporariesBaseID() const;
> 
> public:
>   bool isIdentical(const PredicateMatcher &B) const override { return false; }
> 
>   ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
>                                const OperandMatcher &Operand,
>                                const Record &TheDef)
>       : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
>         Operand(Operand), TheDef(TheDef) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_ComplexPattern;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     unsigned ID = getAllocatedTemporariesBaseID();
>     Table << MatchTable::Opcode("GIM_CheckComplexPattern")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
>           << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
>           << MatchTable::LineBreak;
>   }
> 
>   unsigned countRendererFns() const override {
>     return 1;
>   }
> };
> 
> /// Generates code to check that an operand is in a particular register bank.
> class RegisterBankOperandMatcher : public OperandPredicateMatcher {
> protected:
>   const CodeGenRegisterClass &RC;
> 
> public:
>   RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
>                              const CodeGenRegisterClass &RC)
>       : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_RegBank;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::Comment("RC")
>           << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that an operand is a basic block.
> class MBBOperandMatcher : public OperandPredicateMatcher {
> public:
>   MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
>       : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_MBB;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
>           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
>           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that an operand is a G_CONSTANT with a particular
> /// int.
> class ConstantIntOperandMatcher : public OperandPredicateMatcher {
> protected:
>   int64_t Value;
> 
> public:
>   ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
>       : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            Value == cast<ConstantIntOperandMatcher>(&B)->Value;
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_Int;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckConstantInt")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that an operand is a raw int (where MO.isImm() or
> /// MO.isCImm() is true).
> class LiteralIntOperandMatcher : public OperandPredicateMatcher {
> protected:
>   int64_t Value;
> 
> public:
>   LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
>       : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
>         Value(Value) {}
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            Value == cast<LiteralIntOperandMatcher>(&B)->Value;
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_LiteralInt;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckLiteralInt")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that an operand is an intrinsic ID.
> class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
> protected:
>   const CodeGenIntrinsic *II;
> 
> public:
>   IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
>                             const CodeGenIntrinsic *II)
>       : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return OperandPredicateMatcher::isIdentical(B) &&
>            II == cast<IntrinsicIDOperandMatcher>(&B)->II;
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_IntrinsicID;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that a set of predicates match for a particular
> /// operand.
> class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
> protected:
>   InstructionMatcher &Insn;
>   unsigned OpIdx;
>   std::string SymbolicName;
> 
>   /// The index of the first temporary variable allocated to this operand. The
>   /// number of allocated temporaries can be found with
>   /// countRendererFns().
>   unsigned AllocatedTemporariesBaseID;
> 
> public:
>   OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
>                  const std::string &SymbolicName,
>                  unsigned AllocatedTemporariesBaseID)
>       : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
>         AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
> 
>   bool hasSymbolicName() const { return !SymbolicName.empty(); }
>   const StringRef getSymbolicName() const { return SymbolicName; }
>   void setSymbolicName(StringRef Name) {
>     assert(SymbolicName.empty() && "Operand already has a symbolic name");
>     SymbolicName = Name;
>   }
> 
>   /// Construct a new operand predicate and add it to the matcher.
>   template <class Kind, class... Args>
>   Optional<Kind *> addPredicate(Args &&... args) {
>     if (isSameAsAnotherOperand())
>       return None;
>     Predicates.emplace_back(llvm::make_unique<Kind>(
>         getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
>     return static_cast<Kind *>(Predicates.back().get());
>   }
> 
>   unsigned getOpIdx() const { return OpIdx; }
>   unsigned getInsnVarID() const;
> 
>   std::string getOperandExpr(unsigned InsnVarID) const {
>     return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
>            llvm::to_string(OpIdx) + ")";
>   }
> 
>   InstructionMatcher &getInstructionMatcher() const { return Insn; }
> 
>   Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
>                               bool OperandIsAPointer);
> 
>   /// Emit MatchTable opcodes that test whether the instruction named in
>   /// InsnVarID matches all the predicates and all the operands.
>   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
>     if (!Optimized) {
>       std::string Comment;
>       raw_string_ostream CommentOS(Comment);
>       CommentOS << "MIs[" << getInsnVarID() << "] ";
>       if (SymbolicName.empty())
>         CommentOS << "Operand " << OpIdx;
>       else
>         CommentOS << SymbolicName;
>       Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
>     }
> 
>     emitPredicateListOpcodes(Table, Rule);
>   }
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   bool isHigherPriorityThan(OperandMatcher &B) {
>     // Operand matchers involving more predicates have higher priority.
>     if (predicates_size() > B.predicates_size())
>       return true;
>     if (predicates_size() < B.predicates_size())
>       return false;
> 
>     // This assumes that predicates are added in a consistent order.
>     for (auto &&Predicate : zip(predicates(), B.predicates())) {
>       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
>         return true;
>       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
>         return false;
>     }
> 
>     return false;
>   };
> 
>   /// Report the maximum number of temporary operands needed by the operand
>   /// matcher.
>   unsigned countRendererFns() {
>     return std::accumulate(
>         predicates().begin(), predicates().end(), 0,
>         [](unsigned A,
>            const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
>           return A + Predicate->countRendererFns();
>         });
>   }
> 
>   unsigned getAllocatedTemporariesBaseID() const {
>     return AllocatedTemporariesBaseID;
>   }
> 
>   bool isSameAsAnotherOperand() {
>     for (const auto &Predicate : predicates())
>       if (isa<SameOperandMatcher>(Predicate))
>         return true;
>     return false;
>   }
> };
> 
> Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
>                                             bool OperandIsAPointer) {
>   if (!VTy.isMachineValueType())
>     return failedImport("unsupported typeset");
> 
>   if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
>     addPredicate<PointerToAnyOperandMatcher>(0);
>     return Error::success();
>   }
> 
>   auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
>   if (!OpTyOrNone)
>     return failedImport("unsupported type");
> 
>   if (OperandIsAPointer)
>     addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
>   else
>     addPredicate<LLTOperandMatcher>(*OpTyOrNone);
>   return Error::success();
> }
> 
> unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
>   return Operand.getAllocatedTemporariesBaseID();
> }
> 
> /// Generates code to check a predicate on an instruction.
> ///
> /// Typical predicates include:
> /// * The opcode of the instruction is a particular value.
> /// * The nsw/nuw flag is/isn't set.
> class InstructionPredicateMatcher : public PredicateMatcher {
> public:
>   InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
>       : PredicateMatcher(Kind, InsnVarID) {}
>   virtual ~InstructionPredicateMatcher() {}
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   virtual bool
>   isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
>     return Kind < B.Kind;
>   };
> };
> 
> template <>
> std::string
> PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
>   return "No instruction predicates";
> }
> 
> /// Generates code to check the opcode of an instruction.
> class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
> protected:
>   const CodeGenInstruction *I;
> 
>   static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
> 
> public:
>   static void initOpcodeValuesMap(const CodeGenTarget &Target) {
>     OpcodeValues.clear();
> 
>     unsigned OpcodeValue = 0;
>     for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
>       OpcodeValues[I] = OpcodeValue++;
>   }
> 
>   InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
>       : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_Opcode;
>   }
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return InstructionPredicateMatcher::isIdentical(B) &&
>            I == cast<InstructionOpcodeMatcher>(&B)->I;
>   }
>   MatchTableRecord getValue() const override {
>     const auto VI = OpcodeValues.find(I);
>     if (VI != OpcodeValues.end())
>       return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
>                                     VI->second);
>     return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
>   }
>   bool hasValue() const override { return OpcodeValues.count(I); }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
>           << MatchTable::IntValue(InsnVarID) << getValue()
>           << MatchTable::LineBreak;
>   }
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   bool
>   isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
>     if (InstructionPredicateMatcher::isHigherPriorityThan(B))
>       return true;
>     if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
>       return false;
> 
>     // Prioritize opcodes for cosmetic reasons in the generated source. Although
>     // this is cosmetic at the moment, we may want to drive a similar ordering
>     // using instruction frequency information to improve compile time.
>     if (const InstructionOpcodeMatcher *BO =
>             dyn_cast<InstructionOpcodeMatcher>(&B))
>       return I->TheDef->getName() < BO->I->TheDef->getName();
> 
>     return false;
>   };
> 
>   bool isConstantInstruction() const {
>     return I->TheDef->getName() == "G_CONSTANT";
>   }
> 
>   StringRef getOpcode() const { return I->TheDef->getName(); }
>   unsigned getNumOperands() const { return I->Operands.size(); }
> 
>   StringRef getOperandType(unsigned OpIdx) const {
>     return I->Operands[OpIdx].OperandType;
>   }
> };
> 
> DenseMap<const CodeGenInstruction *, unsigned>
>     InstructionOpcodeMatcher::OpcodeValues;
> 
> class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
>   unsigned NumOperands = 0;
> 
> public:
>   InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
>       : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
>         NumOperands(NumOperands) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_NumOperands;
>   }
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return InstructionPredicateMatcher::isIdentical(B) &&
>            NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckNumOperands")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Expected")
>           << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that this instruction is a constant whose value
> /// meets an immediate predicate.
> ///
> /// Immediates are slightly odd since they are typically used like an operand
> /// but are represented as an operator internally. We typically write simm8:$src
> /// in a tablegen pattern, but this is just syntactic sugar for
> /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
> /// that will be matched and the predicate (which is attached to the imm
> /// operator) that will be tested. In SelectionDAG this describes a
> /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
> ///
> /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
> /// this representation, the immediate could be tested with an
> /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
> /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
> /// there are two implementation issues with producing that matcher
> /// configuration from the SelectionDAG pattern:
> /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
> ///   were we to sink the immediate predicate to the operand we would have to
> ///   have two partial implementations of PatFrag support, one for immediates
> ///   and one for non-immediates.
> /// * At the point we handle the predicate, the OperandMatcher hasn't been
> ///   created yet. If we were to sink the predicate to the OperandMatcher we
> ///   would also have to complicate (or duplicate) the code that descends and
> ///   creates matchers for the subtree.
> /// Overall, it's simpler to handle it in the place it was found.
> class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
> protected:
>   TreePredicateFn Predicate;
> 
> public:
>   InstructionImmPredicateMatcher(unsigned InsnVarID,
>                                  const TreePredicateFn &Predicate)
>       : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
>         Predicate(Predicate) {}
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return InstructionPredicateMatcher::isIdentical(B) &&
>            Predicate.getOrigPatFragRecord() ==
>                cast<InstructionImmPredicateMatcher>(&B)
>                    ->Predicate.getOrigPatFragRecord();
>   }
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_ImmPredicate;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("Predicate")
>           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that a memory instruction has a atomic ordering
> /// MachineMemoryOperand.
> class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
> public:
>   enum AOComparator {
>     AO_Exactly,
>     AO_OrStronger,
>     AO_WeakerThan,
>   };
> 
> protected:
>   StringRef Order;
>   AOComparator Comparator;
> 
> public:
>   AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
>                                     AOComparator Comparator = AO_Exactly)
>       : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
>         Order(Order), Comparator(Comparator) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_AtomicOrderingMMO;
>   }
> 
>   bool isIdentical(const PredicateMatcher &B) const override {
>     if (!InstructionPredicateMatcher::isIdentical(B))
>       return false;
>     const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
>     return Order == R.Order && Comparator == R.Comparator;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     StringRef Opcode = "GIM_CheckAtomicOrdering";
> 
>     if (Comparator == AO_OrStronger)
>       Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
>     if (Comparator == AO_WeakerThan)
>       Opcode = "GIM_CheckAtomicOrderingWeakerThan";
> 
>     Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
>           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
>           << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that the size of an MMO is exactly N bytes.
> class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
> protected:
>   unsigned MMOIdx;
>   uint64_t Size;
> 
> public:
>   MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
>       : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
>         MMOIdx(MMOIdx), Size(Size) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_MemoryLLTSize;
>   }
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return InstructionPredicateMatcher::isIdentical(B) &&
>            MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
>            Size == cast<MemorySizePredicateMatcher>(&B)->Size;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
>           << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that the size of an MMO is less-than, equal-to, or
> /// greater than a given LLT.
> class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
> public:
>   enum RelationKind {
>     GreaterThan,
>     EqualTo,
>     LessThan,
>   };
> 
> protected:
>   unsigned MMOIdx;
>   RelationKind Relation;
>   unsigned OpIdx;
> 
> public:
>   MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
>                                   enum RelationKind Relation,
>                                   unsigned OpIdx)
>       : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
>         MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == IPM_MemoryVsLLTSize;
>   }
>   bool isIdentical(const PredicateMatcher &B) const override {
>     return InstructionPredicateMatcher::isIdentical(B) &&
>            MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
>            Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
>            OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode(Relation == EqualTo
>                                     ? "GIM_CheckMemorySizeEqualToLLT"
>                                     : Relation == GreaterThan
>                                           ? "GIM_CheckMemorySizeGreaterThanLLT"
>                                           : "GIM_CheckMemorySizeLessThanLLT")
>           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
>           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to check that a set of predicates and operands match for a
> /// particular instruction.
> ///
> /// Typical predicates include:
> /// * Has a specific opcode.
> /// * Has an nsw/nuw flag or doesn't.
> class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
> protected:
>   typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
> 
>   RuleMatcher &Rule;
> 
>   /// The operands to match. All rendered operands must be present even if the
>   /// condition is always true.
>   OperandVec Operands;
>   bool NumOperandsCheck = true;
> 
>   std::string SymbolicName;
>   unsigned InsnVarID;
> 
> public:
>   InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
>       : Rule(Rule), SymbolicName(SymbolicName) {
>     // We create a new instruction matcher.
>     // Get a new ID for that instruction.
>     InsnVarID = Rule.implicitlyDefineInsnVar(*this);
>   }
> 
>   /// Construct a new instruction predicate and add it to the matcher.
>   template <class Kind, class... Args>
>   Optional<Kind *> addPredicate(Args &&... args) {
>     Predicates.emplace_back(
>         llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
>     return static_cast<Kind *>(Predicates.back().get());
>   }
> 
>   RuleMatcher &getRuleMatcher() const { return Rule; }
> 
>   unsigned getInsnVarID() const { return InsnVarID; }
> 
>   /// Add an operand to the matcher.
>   OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
>                              unsigned AllocatedTemporariesBaseID) {
>     Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
>                                              AllocatedTemporariesBaseID));
>     if (!SymbolicName.empty())
>       Rule.defineOperand(SymbolicName, *Operands.back());
> 
>     return *Operands.back();
>   }
> 
>   OperandMatcher &getOperand(unsigned OpIdx) {
>     auto I = std::find_if(Operands.begin(), Operands.end(),
>                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
>                             return X->getOpIdx() == OpIdx;
>                           });
>     if (I != Operands.end())
>       return **I;
>     llvm_unreachable("Failed to lookup operand");
>   }
> 
>   StringRef getSymbolicName() const { return SymbolicName; }
>   unsigned getNumOperands() const { return Operands.size(); }
>   OperandVec::iterator operands_begin() { return Operands.begin(); }
>   OperandVec::iterator operands_end() { return Operands.end(); }
>   iterator_range<OperandVec::iterator> operands() {
>     return make_range(operands_begin(), operands_end());
>   }
>   OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
>   OperandVec::const_iterator operands_end() const { return Operands.end(); }
>   iterator_range<OperandVec::const_iterator> operands() const {
>     return make_range(operands_begin(), operands_end());
>   }
>   bool operands_empty() const { return Operands.empty(); }
> 
>   void pop_front() { Operands.erase(Operands.begin()); }
> 
>   void optimize();
> 
>   /// Emit MatchTable opcodes that test whether the instruction named in
>   /// InsnVarName matches all the predicates and all the operands.
>   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
>     if (NumOperandsCheck)
>       InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
>           .emitPredicateOpcodes(Table, Rule);
> 
>     emitPredicateListOpcodes(Table, Rule);
> 
>     for (const auto &Operand : Operands)
>       Operand->emitPredicateOpcodes(Table, Rule);
>   }
> 
>   /// Compare the priority of this object and B.
>   ///
>   /// Returns true if this object is more important than B.
>   bool isHigherPriorityThan(InstructionMatcher &B) {
>     // Instruction matchers involving more operands have higher priority.
>     if (Operands.size() > B.Operands.size())
>       return true;
>     if (Operands.size() < B.Operands.size())
>       return false;
> 
>     for (auto &&P : zip(predicates(), B.predicates())) {
>       auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
>       auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
>       if (L->isHigherPriorityThan(*R))
>         return true;
>       if (R->isHigherPriorityThan(*L))
>         return false;
>     }
> 
>     for (const auto &Operand : zip(Operands, B.Operands)) {
>       if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
>         return true;
>       if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
>         return false;
>     }
> 
>     return false;
>   };
> 
>   /// Report the maximum number of temporary operands needed by the instruction
>   /// matcher.
>   unsigned countRendererFns() {
>     return std::accumulate(
>                predicates().begin(), predicates().end(), 0,
>                [](unsigned A,
>                   const std::unique_ptr<PredicateMatcher> &Predicate) {
>                  return A + Predicate->countRendererFns();
>                }) +
>            std::accumulate(
>                Operands.begin(), Operands.end(), 0,
>                [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
>                  return A + Operand->countRendererFns();
>                });
>   }
> 
>   InstructionOpcodeMatcher &getOpcodeMatcher() {
>     for (auto &P : predicates())
>       if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
>         return *OpMatcher;
>     llvm_unreachable("Didn't find an opcode matcher");
>   }
> 
>   bool isConstantInstruction() {
>     return getOpcodeMatcher().isConstantInstruction();
>   }
> 
>   StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
> };
> 
> StringRef RuleMatcher::getOpcode() const {
>   return Matchers.front()->getOpcode();
> }
> 
> unsigned RuleMatcher::getNumOperands() const {
>   return Matchers.front()->getNumOperands();
> }
> 
> -LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
> -  InstructionMatcher &InsnMatcher = *Matchers.front();
> -  if (!InsnMatcher.predicates_empty())
> -    if (const auto *TM =
> -            dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
> -      if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
> -        return TM->getTy();
> -  return {};
> -}
> -
> /// Generates code to check that the operand is a register defined by an
> /// instruction that matches the given instruction matcher.
> ///
> /// For example, the pattern:
> ///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
> /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
> /// the:
> ///   (G_ADD $src1, $src2)
> /// subpattern.
> class InstructionOperandMatcher : public OperandPredicateMatcher {
> protected:
>   std::unique_ptr<InstructionMatcher> InsnMatcher;
> 
> public:
>   InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
>                             RuleMatcher &Rule, StringRef SymbolicName)
>       : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
>         InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
> 
>   static bool classof(const PredicateMatcher *P) {
>     return P->getKind() == OPM_Instruction;
>   }
> 
>   InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
> 
>   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
>     const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
>     Table << MatchTable::Opcode("GIM_RecordInsn")
>           << MatchTable::Comment("DefineMI")
>           << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
>           << MatchTable::IntValue(getInsnVarID())
>           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
>           << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
>           << MatchTable::LineBreak;
>   }
> 
>   void emitPredicateOpcodes(MatchTable &Table,
>                             RuleMatcher &Rule) const override {
>     emitCaptureOpcodes(Table, Rule);
>     InsnMatcher->emitPredicateOpcodes(Table, Rule);
>   }
> 
>   bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
>     if (OperandPredicateMatcher::isHigherPriorityThan(B))
>       return true;
>     if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
>       return false;
> 
>     if (const InstructionOperandMatcher *BP =
>             dyn_cast<InstructionOperandMatcher>(&B))
>       if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
>         return true;
>     return false;
>   }
> };
> 
> void InstructionMatcher::optimize() {
>   SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
>   const auto &OpcMatcher = getOpcodeMatcher();
> 
>   Stash.push_back(predicates_pop_front());
>   if (Stash.back().get() == &OpcMatcher) {
>     if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
>       Stash.emplace_back(
>           new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
>     NumOperandsCheck = false;
>   }
> 
>   if (InsnVarID > 0) {
>     assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
>     for (auto &OP : Operands[0]->predicates())
>       OP.reset();
>     Operands[0]->eraseNullPredicates();
>   }
>   while (!Stash.empty())
>     prependPredicate(Stash.pop_back_val());
> }
> 
> //===- Actions ------------------------------------------------------------===//
> class OperandRenderer {
> public:
>   enum RendererKind {
>     OR_Copy,
>     OR_CopyOrAddZeroReg,
>     OR_CopySubReg,
>     OR_CopyConstantAsImm,
>     OR_CopyFConstantAsFPImm,
>     OR_Imm,
>     OR_Register,
>     OR_TempRegister,
>     OR_ComplexPattern,
>     OR_Custom
>   };
> 
> protected:
>   RendererKind Kind;
> 
> public:
>   OperandRenderer(RendererKind Kind) : Kind(Kind) {}
>   virtual ~OperandRenderer() {}
> 
>   RendererKind getKind() const { return Kind; }
> 
>   virtual void emitRenderOpcodes(MatchTable &Table,
>                                  RuleMatcher &Rule) const = 0;
> };
> 
> /// A CopyRenderer emits code to copy a single operand from an existing
> /// instruction to the one being built.
> class CopyRenderer : public OperandRenderer {
> protected:
>   unsigned NewInsnID;
>   /// The name of the operand.
>   const StringRef SymbolicName;
> 
> public:
>   CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
>       : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
>         SymbolicName(SymbolicName) {
>     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
>   }
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_Copy;
>   }
> 
>   const StringRef getSymbolicName() const { return SymbolicName; }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
>     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
>           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
>           << MatchTable::IntValue(Operand.getOpIdx())
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
> /// existing instruction to the one being built. If the operand turns out to be
> /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
> class CopyOrAddZeroRegRenderer : public OperandRenderer {
> protected:
>   unsigned NewInsnID;
>   /// The name of the operand.
>   const StringRef SymbolicName;
>   const Record *ZeroRegisterDef;
> 
> public:
>   CopyOrAddZeroRegRenderer(unsigned NewInsnID,
>                            StringRef SymbolicName, Record *ZeroRegisterDef)
>       : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
>         SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
>     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
>   }
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_CopyOrAddZeroReg;
>   }
> 
>   const StringRef getSymbolicName() const { return SymbolicName; }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
>     Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
>           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
>           << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
>           << MatchTable::IntValue(Operand.getOpIdx())
>           << MatchTable::NamedValue(
>                  (ZeroRegisterDef->getValue("Namespace")
>                       ? ZeroRegisterDef->getValueAsString("Namespace")
>                       : ""),
>                  ZeroRegisterDef->getName())
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
> /// an extended immediate operand.
> class CopyConstantAsImmRenderer : public OperandRenderer {
> protected:
>   unsigned NewInsnID;
>   /// The name of the operand.
>   const std::string SymbolicName;
>   bool Signed;
> 
> public:
>   CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
>       : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
>         SymbolicName(SymbolicName), Signed(true) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_CopyConstantAsImm;
>   }
> 
>   const StringRef getSymbolicName() const { return SymbolicName; }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
>     Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
>                                        : "GIR_CopyConstantAsUImm")
>           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
>           << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID)
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
> /// instruction to an extended immediate operand.
> class CopyFConstantAsFPImmRenderer : public OperandRenderer {
> protected:
>   unsigned NewInsnID;
>   /// The name of the operand.
>   const std::string SymbolicName;
> 
> public:
>   CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
>       : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
>         SymbolicName(SymbolicName) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_CopyFConstantAsFPImm;
>   }
> 
>   const StringRef getSymbolicName() const { return SymbolicName; }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
>     Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
>           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
>           << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID)
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// A CopySubRegRenderer emits code to copy a single register operand from an
> /// existing instruction to the one being built and indicate that only a
> /// subregister should be copied.
> class CopySubRegRenderer : public OperandRenderer {
> protected:
>   unsigned NewInsnID;
>   /// The name of the operand.
>   const StringRef SymbolicName;
>   /// The subregister to extract.
>   const CodeGenSubRegIndex *SubReg;
> 
> public:
>   CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
>                      const CodeGenSubRegIndex *SubReg)
>       : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
>         SymbolicName(SymbolicName), SubReg(SubReg) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_CopySubReg;
>   }
> 
>   const StringRef getSymbolicName() const { return SymbolicName; }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
>     Table << MatchTable::Opcode("GIR_CopySubReg")
>           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
>           << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
>           << MatchTable::IntValue(Operand.getOpIdx())
>           << MatchTable::Comment("SubRegIdx")
>           << MatchTable::IntValue(SubReg->EnumValue)
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// Adds a specific physical register to the instruction being built.
> /// This is typically useful for WZR/XZR on AArch64.
> class AddRegisterRenderer : public OperandRenderer {
> protected:
>   unsigned InsnID;
>   const Record *RegisterDef;
> 
> public:
>   AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
>       : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
>   }
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_Register;
>   }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_AddRegister")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::NamedValue(
>                  (RegisterDef->getValue("Namespace")
>                       ? RegisterDef->getValueAsString("Namespace")
>                       : ""),
>                  RegisterDef->getName())
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Adds a specific temporary virtual register to the instruction being built.
> /// This is used to chain instructions together when emitting multiple
> /// instructions.
> class TempRegRenderer : public OperandRenderer {
> protected:
>   unsigned InsnID;
>   unsigned TempRegID;
>   bool IsDef;
> 
> public:
>   TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
>       : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
>         IsDef(IsDef) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_TempRegister;
>   }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_AddTempRegister")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
>           << MatchTable::Comment("TempRegFlags");
>     if (IsDef)
>       Table << MatchTable::NamedValue("RegState::Define");
>     else
>       Table << MatchTable::IntValue(0);
>     Table << MatchTable::LineBreak;
>   }
> };
> 
> /// Adds a specific immediate to the instruction being built.
> class ImmRenderer : public OperandRenderer {
> protected:
>   unsigned InsnID;
>   int64_t Imm;
> 
> public:
>   ImmRenderer(unsigned InsnID, int64_t Imm)
>       : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_Imm;
>   }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
>           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
>           << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
>   }
> };
> 
> /// Adds operands by calling a renderer function supplied by the ComplexPattern
> /// matcher function.
> class RenderComplexPatternOperand : public OperandRenderer {
> private:
>   unsigned InsnID;
>   const Record &TheDef;
>   /// The name of the operand.
>   const StringRef SymbolicName;
>   /// The renderer number. This must be unique within a rule since it's used to
>   /// identify a temporary variable to hold the renderer function.
>   unsigned RendererID;
>   /// When provided, this is the suboperand of the ComplexPattern operand to
>   /// render. Otherwise all the suboperands will be rendered.
>   Optional<unsigned> SubOperand;
> 
>   unsigned getNumOperands() const {
>     return TheDef.getValueAsDag("Operands")->getNumArgs();
>   }
> 
> public:
>   RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
>                               StringRef SymbolicName, unsigned RendererID,
>                               Optional<unsigned> SubOperand = None)
>       : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
>         SymbolicName(SymbolicName), RendererID(RendererID),
>         SubOperand(SubOperand) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_ComplexPattern;
>   }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
>                                                       : "GIR_ComplexRenderer")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::Comment("RendererID")
>           << MatchTable::IntValue(RendererID);
>     if (SubOperand.hasValue())
>       Table << MatchTable::Comment("SubOperand")
>             << MatchTable::IntValue(SubOperand.getValue());
>     Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> class CustomRenderer : public OperandRenderer {
> protected:
>   unsigned InsnID;
>   const Record &Renderer;
>   /// The name of the operand.
>   const std::string SymbolicName;
> 
> public:
>   CustomRenderer(unsigned InsnID, const Record &Renderer,
>                  StringRef SymbolicName)
>       : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
>         SymbolicName(SymbolicName) {}
> 
>   static bool classof(const OperandRenderer *R) {
>     return R->getKind() == OR_Custom;
>   }
> 
>   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
>     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
>     Table << MatchTable::Opcode("GIR_CustomRenderer")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::Comment("OldInsnID")
>           << MatchTable::IntValue(OldInsnVarID)
>           << MatchTable::Comment("Renderer")
>           << MatchTable::NamedValue(
>                  "GICR_" + Renderer.getValueAsString("RendererFn").str())
>           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
>   }
> };
> 
> /// An action taken when all Matcher predicates succeeded for a parent rule.
> ///
> /// Typical actions include:
> /// * Changing the opcode of an instruction.
> /// * Adding an operand to an instruction.
> class MatchAction {
> public:
>   virtual ~MatchAction() {}
> 
>   /// Emit the MatchTable opcodes to implement the action.
>   virtual void emitActionOpcodes(MatchTable &Table,
>                                  RuleMatcher &Rule) const = 0;
> };
> 
> /// Generates a comment describing the matched rule being acted upon.
> class DebugCommentAction : public MatchAction {
> private:
>   std::string S;
> 
> public:
>   DebugCommentAction(StringRef S) : S(S) {}
> 
>   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Comment(S) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to build an instruction or mutate an existing instruction
> /// into the desired instruction when this is possible.
> class BuildMIAction : public MatchAction {
> private:
>   unsigned InsnID;
>   const CodeGenInstruction *I;
>   InstructionMatcher *Matched;
>   std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
> 
>   /// True if the instruction can be built solely by mutating the opcode.
>   bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
>     if (!Insn)
>       return false;
> 
>     if (OperandRenderers.size() != Insn->getNumOperands())
>       return false;
> 
>     for (const auto &Renderer : enumerate(OperandRenderers)) {
>       if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
>         const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
>         if (Insn != &OM.getInstructionMatcher() ||
>             OM.getOpIdx() != Renderer.index())
>           return false;
>       } else
>         return false;
>     }
> 
>     return true;
>   }
> 
> public:
>   BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
>       : InsnID(InsnID), I(I), Matched(nullptr) {}
> 
>   unsigned getInsnID() const { return InsnID; }
>   const CodeGenInstruction *getCGI() const { return I; }
> 
>   void chooseInsnToMutate(RuleMatcher &Rule) {
>     for (auto *MutateCandidate : Rule.mutatable_insns()) {
>       if (canMutate(Rule, MutateCandidate)) {
>         // Take the first one we're offered that we're able to mutate.
>         Rule.reserveInsnMatcherForMutation(MutateCandidate);
>         Matched = MutateCandidate;
>         return;
>       }
>     }
>   }
> 
>   template <class Kind, class... Args>
>   Kind &addRenderer(Args&&... args) {
>     OperandRenderers.emplace_back(
>         llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
>     return *static_cast<Kind *>(OperandRenderers.back().get());
>   }
> 
>   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     if (Matched) {
>       assert(canMutate(Rule, Matched) &&
>              "Arranged to mutate an insn that isn't mutatable");
> 
>       unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
>       Table << MatchTable::Opcode("GIR_MutateOpcode")
>             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>             << MatchTable::Comment("RecycleInsnID")
>             << MatchTable::IntValue(RecycleInsnID)
>             << MatchTable::Comment("Opcode")
>             << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
>             << MatchTable::LineBreak;
> 
>       if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
>         for (auto Def : I->ImplicitDefs) {
>           auto Namespace = Def->getValue("Namespace")
>                                ? Def->getValueAsString("Namespace")
>                                : "";
>           Table << MatchTable::Opcode("GIR_AddImplicitDef")
>                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>                 << MatchTable::NamedValue(Namespace, Def->getName())
>                 << MatchTable::LineBreak;
>         }
>         for (auto Use : I->ImplicitUses) {
>           auto Namespace = Use->getValue("Namespace")
>                                ? Use->getValueAsString("Namespace")
>                                : "";
>           Table << MatchTable::Opcode("GIR_AddImplicitUse")
>                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>                 << MatchTable::NamedValue(Namespace, Use->getName())
>                 << MatchTable::LineBreak;
>         }
>       }
>       return;
>     }
> 
>     // TODO: Simple permutation looks like it could be almost as common as
>     //       mutation due to commutative operations.
> 
>     Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
>           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
>           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
>           << MatchTable::LineBreak;
>     for (const auto &Renderer : OperandRenderers)
>       Renderer->emitRenderOpcodes(Table, Rule);
> 
>     if (I->mayLoad || I->mayStore) {
>       Table << MatchTable::Opcode("GIR_MergeMemOperands")
>             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>             << MatchTable::Comment("MergeInsnID's");
>       // Emit the ID's for all the instructions that are matched by this rule.
>       // TODO: Limit this to matched instructions that mayLoad/mayStore or have
>       //       some other means of having a memoperand. Also limit this to
>       //       emitted instructions that expect to have a memoperand too. For
>       //       example, (G_SEXT (G_LOAD x)) that results in separate load and
>       //       sign-extend instructions shouldn't put the memoperand on the
>       //       sign-extend since it has no effect there.
>       std::vector<unsigned> MergeInsnIDs;
>       for (const auto &IDMatcherPair : Rule.defined_insn_vars())
>         MergeInsnIDs.push_back(IDMatcherPair.second);
>       llvm::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
>       for (const auto &MergeInsnID : MergeInsnIDs)
>         Table << MatchTable::IntValue(MergeInsnID);
>       Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
>             << MatchTable::LineBreak;
>     }
> 
>     // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
>     //        better for combines. Particularly when there are multiple match
>     //        roots.
>     if (InsnID == 0)
>       Table << MatchTable::Opcode("GIR_EraseFromParent")
>             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>             << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to constrain the operands of an output instruction to the
> /// register classes specified by the definition of that instruction.
> class ConstrainOperandsToDefinitionAction : public MatchAction {
>   unsigned InsnID;
> 
> public:
>   ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
> 
>   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to constrain the specified operand of an output instruction
> /// to the specified register class.
> class ConstrainOperandToRegClassAction : public MatchAction {
>   unsigned InsnID;
>   unsigned OpIdx;
>   const CodeGenRegisterClass &RC;
> 
> public:
>   ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
>                                    const CodeGenRegisterClass &RC)
>       : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
> 
>   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
>           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
>           << MatchTable::Comment("RC " + RC.getName())
>           << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
>   }
> };
> 
> /// Generates code to create a temporary register which can be used to chain
> /// instructions together.
> class MakeTempRegisterAction : public MatchAction {
> private:
>   LLTCodeGen Ty;
>   unsigned TempRegID;
> 
> public:
>   MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
>       : Ty(Ty), TempRegID(TempRegID) {}
> 
>   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
>     Table << MatchTable::Opcode("GIR_MakeTempReg")
>           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
>           << MatchTable::Comment("TypeID")
>           << MatchTable::NamedValue(Ty.getCxxEnumValue())
>           << MatchTable::LineBreak;
>   }
> };
> 
> InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
>   Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
>   MutatableInsns.insert(Matchers.back().get());
>   return *Matchers.back();
> }
> 
> void RuleMatcher::addRequiredFeature(Record *Feature) {
>   RequiredFeatures.push_back(Feature);
> }
> 
> const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
>   return RequiredFeatures;
> }
> 
> // Emplaces an action of the specified Kind at the end of the action list.
> //
> // Returns a reference to the newly created action.
> //
> // Like std::vector::emplace_back(), may invalidate all iterators if the new
> // size exceeds the capacity. Otherwise, only invalidates the past-the-end
> // iterator.
> template <class Kind, class... Args>
> Kind &RuleMatcher::addAction(Args &&... args) {
>   Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
>   return *static_cast<Kind *>(Actions.back().get());
> }
> 
> // Emplaces an action of the specified Kind before the given insertion point.
> //
> // Returns an iterator pointing at the newly created instruction.
> //
> // Like std::vector::insert(), may invalidate all iterators if the new size
> // exceeds the capacity. Otherwise, only invalidates the iterators from the
> // insertion point onwards.
> template <class Kind, class... Args>
> action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
>                                           Args &&... args) {
>   return Actions.emplace(InsertPt,
>                          llvm::make_unique<Kind>(std::forward<Args>(args)...));
> }
> 
> unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
>   unsigned NewInsnVarID = NextInsnVarID++;
>   InsnVariableIDs[&Matcher] = NewInsnVarID;
>   return NewInsnVarID;
> }
> 
> unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
>   const auto &I = InsnVariableIDs.find(&InsnMatcher);
>   if (I != InsnVariableIDs.end())
>     return I->second;
>   llvm_unreachable("Matched Insn was not captured in a local variable");
> }
> 
> void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
>   if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
>     DefinedOperands[SymbolicName] = &OM;
>     return;
>   }
> 
>   // If the operand is already defined, then we must ensure both references in
>   // the matcher have the exact same node.
>   OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
> }
> 
> InstructionMatcher &
> RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
>   for (const auto &I : InsnVariableIDs)
>     if (I.first->getSymbolicName() == SymbolicName)
>       return *I.first;
>   llvm_unreachable(
>       ("Failed to lookup instruction " + SymbolicName).str().c_str());
> }
> 
> const OperandMatcher &
> RuleMatcher::getOperandMatcher(StringRef Name) const {
>   const auto &I = DefinedOperands.find(Name);
> 
>   if (I == DefinedOperands.end())
>     PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
> 
>   return *I->second;
> }
> 
> void RuleMatcher::emit(MatchTable &Table) {
>   if (Matchers.empty())
>     llvm_unreachable("Unexpected empty matcher!");
> 
>   // The representation supports rules that require multiple roots such as:
>   //    %ptr(p0) = ...
>   //    %elt0(s32) = G_LOAD %ptr
>   //    %1(p0) = G_ADD %ptr, 4
>   //    %elt1(s32) = G_LOAD p0 %1
>   // which could be usefully folded into:
>   //    %ptr(p0) = ...
>   //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
>   // on some targets but we don't need to make use of that yet.
>   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
> 
>   unsigned LabelID = Table.allocateLabelID();
>   Table << MatchTable::Opcode("GIM_Try", +1)
>         << MatchTable::Comment("On fail goto")
>         << MatchTable::JumpTarget(LabelID)
>         << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
>         << MatchTable::LineBreak;
> 
>   if (!RequiredFeatures.empty()) {
>     Table << MatchTable::Opcode("GIM_CheckFeatures")
>           << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
>           << MatchTable::LineBreak;
>   }
> 
>   Matchers.front()->emitPredicateOpcodes(Table, *this);
> 
>   // We must also check if it's safe to fold the matched instructions.
>   if (InsnVariableIDs.size() >= 2) {
>     // Invert the map to create stable ordering (by var names)
>     SmallVector<unsigned, 2> InsnIDs;
>     for (const auto &Pair : InsnVariableIDs) {
>       // Skip the root node since it isn't moving anywhere. Everything else is
>       // sinking to meet it.
>       if (Pair.first == Matchers.front().get())
>         continue;
> 
>       InsnIDs.push_back(Pair.second);
>     }
>     llvm::sort(InsnIDs.begin(), InsnIDs.end());
> 
>     for (const auto &InsnID : InsnIDs) {
>       // Reject the difficult cases until we have a more accurate check.
>       Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
>             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
>             << MatchTable::LineBreak;
> 
>       // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
>       //        account for unsafe cases.
>       //
>       //        Example:
>       //          MI1--> %0 = ...
>       //                 %1 = ... %0
>       //          MI0--> %2 = ... %0
>       //          It's not safe to erase MI1. We currently handle this by not
>       //          erasing %0 (even when it's dead).
>       //
>       //        Example:
>       //          MI1--> %0 = load volatile @a
>       //                 %1 = load volatile @a
>       //          MI0--> %2 = ... %0
>       //          It's not safe to sink %0's def past %1. We currently handle
>       //          this by rejecting all loads.
>       //
>       //        Example:
>       //          MI1--> %0 = load @a
>       //                 %1 = store @a
>       //          MI0--> %2 = ... %0
>       //          It's not safe to sink %0's def past %1. We currently handle
>       //          this by rejecting all loads.
>       //
>       //        Example:
>       //                   G_CONDBR %cond, @BB1
>       //                 BB0:
>       //          MI1-->   %0 = load @a
>       //                   G_BR @BB1
>       //                 BB1:
>       //          MI0-->   %2 = ... %0
>       //          It's not always safe to sink %0 across control flow. In this
>       //          case it may introduce a memory fault. We currentl handle this
>       //          by rejecting all loads.
>     }
>   }
> 
>   for (const auto &PM : EpilogueMatchers)
>     PM->emitPredicateOpcodes(Table, *this);
> 
>   for (const auto &MA : Actions)
>     MA->emitActionOpcodes(Table, *this);
> 
>   if (Table.isWithCoverage())
>     Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
>           << MatchTable::LineBreak;
>   else
>     Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
>           << MatchTable::LineBreak;
> 
>   Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
>         << MatchTable::Label(LabelID);
>   ++NumPatternEmitted;
> }
> 
> bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
>   // Rules involving more match roots have higher priority.
>   if (Matchers.size() > B.Matchers.size())
>     return true;
>   if (Matchers.size() < B.Matchers.size())
>     return false;
> 
>   for (const auto &Matcher : zip(Matchers, B.Matchers)) {
>     if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
>       return true;
>     if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
>       return false;
>   }
> 
>   return false;
> }
> 
> unsigned RuleMatcher::countRendererFns() const {
>   return std::accumulate(
>       Matchers.begin(), Matchers.end(), 0,
>       [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
>         return A + Matcher->countRendererFns();
>       });
> }
> 
> bool OperandPredicateMatcher::isHigherPriorityThan(
>     const OperandPredicateMatcher &B) const {
>   // Generally speaking, an instruction is more important than an Int or a
>   // LiteralInt because it can cover more nodes but theres an exception to
>   // this. G_CONSTANT's are less important than either of those two because they
>   // are more permissive.
> 
>   const InstructionOperandMatcher *AOM =
>       dyn_cast<InstructionOperandMatcher>(this);
>   const InstructionOperandMatcher *BOM =
>       dyn_cast<InstructionOperandMatcher>(&B);
>   bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
>   bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
> 
>   if (AOM && BOM) {
>     // The relative priorities between a G_CONSTANT and any other instruction
>     // don't actually matter but this code is needed to ensure a strict weak
>     // ordering. This is particularly important on Windows where the rules will
>     // be incorrectly sorted without it.
>     if (AIsConstantInsn != BIsConstantInsn)
>       return AIsConstantInsn < BIsConstantInsn;
>     return false;
>   }
> 
>   if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
>     return false;
>   if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
>     return true;
> 
>   return Kind < B.Kind;
> }
> 
> void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
>                                               RuleMatcher &Rule) const {
>   const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
>   unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
>   assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
> 
>   Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
>         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
>         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
>         << MatchTable::Comment("OtherMI")
>         << MatchTable::IntValue(OtherInsnVarID)
>         << MatchTable::Comment("OtherOpIdx")
>         << MatchTable::IntValue(OtherOM.getOpIdx())
>         << MatchTable::LineBreak;
> }
> 
> //===- GlobalISelEmitter class --------------------------------------------===//
> 
> class GlobalISelEmitter {
> public:
>   explicit GlobalISelEmitter(RecordKeeper &RK);
>   void run(raw_ostream &OS);
> 
> private:
>   const RecordKeeper &RK;
>   const CodeGenDAGPatterns CGP;
>   const CodeGenTarget &Target;
>   CodeGenRegBank CGRegs;
> 
>   /// Keep track of the equivalence between SDNodes and Instruction by mapping
>   /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
>   /// check for attributes on the relation such as CheckMMOIsNonAtomic.
>   /// This is defined using 'GINodeEquiv' in the target description.
>   DenseMap<Record *, Record *> NodeEquivs;
> 
>   /// Keep track of the equivalence between ComplexPattern's and
>   /// GIComplexOperandMatcher. Map entries are specified by subclassing
>   /// GIComplexPatternEquiv.
>   DenseMap<const Record *, const Record *> ComplexPatternEquivs;
> 
>   /// Keep track of the equivalence between SDNodeXForm's and
>   /// GICustomOperandRenderer. Map entries are specified by subclassing
>   /// GISDNodeXFormEquiv.
>   DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
> 
>   /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
>   /// This adds compatibility for RuleMatchers to use this for ordering rules.
>   DenseMap<uint64_t, int> RuleMatcherScores;
> 
>   // Map of predicates to their subtarget features.
>   SubtargetFeatureInfoMap SubtargetFeatures;
> 
>   // Rule coverage information.
>   Optional<CodeGenCoverage> RuleCoverage;
> 
>   void gatherOpcodeValues();
>   void gatherTypeIDValues();
>   void gatherNodeEquivs();
>   Record *findNodeEquiv(Record *N) const;
>   const CodeGenInstruction *getEquivNode(Record &Equiv,
>                                          const TreePatternNode *N) const;
> 
>   Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
>   Expected<InstructionMatcher &> createAndImportSelDAGMatcher(
>       RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
>       const TreePatternNode *Src, unsigned &TempOpIdx) const;
>   Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
>                                            unsigned &TempOpIdx) const;
>   Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
>                            const TreePatternNode *SrcChild,
>                            bool OperandIsAPointer, unsigned OpIdx,
>                            unsigned &TempOpIdx) const;
> 
>   Expected<BuildMIAction &>
>   createAndImportInstructionRenderer(RuleMatcher &M,
>                                      const TreePatternNode *Dst);
>   Expected<action_iterator> createAndImportSubInstructionRenderer(
>       action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
>       unsigned TempReg);
>   Expected<action_iterator>
>   createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
>                             const TreePatternNode *Dst);
>   void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
>   Expected<action_iterator>
>   importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
>                              BuildMIAction &DstMIBuilder,
>                              const llvm::TreePatternNode *Dst);
>   Expected<action_iterator>
>   importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
>                             BuildMIAction &DstMIBuilder,
>                             TreePatternNode *DstChild);
>   Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
>                                       DagInit *DefaultOps) const;
>   Error
>   importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
>                              const std::vector<Record *> &ImplicitDefs) const;
> 
>   void emitImmPredicates(raw_ostream &OS, StringRef TypeIdentifier,
>                          StringRef Type,
>                          std::function<bool(const Record *R)> Filter);
> 
>   /// Analyze pattern \p P, returning a matcher for it if possible.
>   /// Otherwise, return an Error explaining why we don't support it.
>   Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
> 
>   void declareSubtargetFeature(Record *Predicate);
> 
>   MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
>                              bool WithCoverage);
> 
> public:
>   /// Takes a sequence of \p Rules and group them based on the predicates
>   /// they share. \p MatcherStorage is used as a memory container
>   /// for the group that are created as part of this process.
>   ///
>   /// What this optimization does looks like if GroupT = GroupMatcher:
>   /// Output without optimization:
>   /// \verbatim
>   /// # R1
>   ///  # predicate A
>   ///  # predicate B
>   ///  ...
>   /// # R2
>   ///  # predicate A // <-- effectively this is going to be checked twice.
>   ///                //     Once in R1 and once in R2.
>   ///  # predicate C
>   /// \endverbatim
>   /// Output with optimization:
>   /// \verbatim
>   /// # Group1_2
>   ///  # predicate A // <-- Check is now shared.
>   ///  # R1
>   ///   # predicate B
>   ///  # R2
>   ///   # predicate C
>   /// \endverbatim
>   template <class GroupT>
>   static std::vector<Matcher *> optimizeRules(
>       ArrayRef<Matcher *> Rules,
>       std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
> };
> 
> void GlobalISelEmitter::gatherOpcodeValues() {
>   InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
> }
> 
> void GlobalISelEmitter::gatherTypeIDValues() {
>   LLTOperandMatcher::initTypeIDValuesMap();
> }
> 
> void GlobalISelEmitter::gatherNodeEquivs() {
>   assert(NodeEquivs.empty());
>   for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
>     NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
> 
>   assert(ComplexPatternEquivs.empty());
>   for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
>     Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
>     if (!SelDAGEquiv)
>       continue;
>     ComplexPatternEquivs[SelDAGEquiv] = Equiv;
>  }
> 
>  assert(SDNodeXFormEquivs.empty());
>  for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
>    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
>    if (!SelDAGEquiv)
>      continue;
>    SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
>  }
> }
> 
> Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
>   return NodeEquivs.lookup(N);
> }
> 
> const CodeGenInstruction *
> GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
>   for (const auto &Predicate : N->getPredicateFns()) {
>     if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
>         Predicate.isSignExtLoad())
>       return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
>     if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
>         Predicate.isZeroExtLoad())
>       return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
>   }
>   return &Target.getInstruction(Equiv.getValueAsDef("I"));
> }
> 
> GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
>     : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
>       CGRegs(RK, Target.getHwModes()) {}
> 
> //===- Emitter ------------------------------------------------------------===//
> 
> Error
> GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
>                                         ArrayRef<Predicate> Predicates) {
>   for (const Predicate &P : Predicates) {
>     if (!P.Def)
>       continue;
>     declareSubtargetFeature(P.Def);
>     M.addRequiredFeature(P.Def);
>   }
> 
>   return Error::success();
> }
> 
> Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
>     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
>     const TreePatternNode *Src, unsigned &TempOpIdx) const {
>   Record *SrcGIEquivOrNull = nullptr;
>   const CodeGenInstruction *SrcGIOrNull = nullptr;
> 
>   // Start with the defined operands (i.e., the results of the root operator).
>   if (Src->getExtTypes().size() > 1)
>     return failedImport("Src pattern has multiple results");
> 
>   if (Src->isLeaf()) {
>     Init *SrcInit = Src->getLeafValue();
>     if (isa<IntInit>(SrcInit)) {
>       InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
>           &Target.getInstruction(RK.getDef("G_CONSTANT")));
>     } else
>       return failedImport(
>           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
>   } else {
>     SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
>     if (!SrcGIEquivOrNull)
>       return failedImport("Pattern operator lacks an equivalent Instruction" +
>                           explainOperator(Src->getOperator()));
>     SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
> 
>     // The operators look good: match the opcode
>     InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
>   }
> 
>   unsigned OpIdx = 0;
>   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
>     // Results don't have a name unless they are the root node. The caller will
>     // set the name if appropriate.
>     OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
>     if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
>       return failedImport(toString(std::move(Error)) +
>                           " for result of Src pattern operator");
>   }
> 
>   for (const auto &Predicate : Src->getPredicateFns()) {
>     if (Predicate.isAlwaysTrue())
>       continue;
> 
>     if (Predicate.isImmediatePattern()) {
>       InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
>       continue;
>     }
> 
>     // G_LOAD is used for both non-extending and any-extending loads. 
>     if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
>       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
>           0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
>       continue;
>     }
>     if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
>       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
>           0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
>       continue;
>     }
> 
>     // No check required. We already did it by swapping the opcode.
>     if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
>         Predicate.isSignExtLoad())
>       continue;
> 
>     // No check required. We already did it by swapping the opcode.
>     if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
>         Predicate.isZeroExtLoad())
>       continue;
> 
>     // No check required. G_STORE by itself is a non-extending store.
>     if (Predicate.isNonTruncStore())
>       continue;
> 
>     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
>       if (Predicate.getMemoryVT() != nullptr) {
>         Optional<LLTCodeGen> MemTyOrNone =
>             MVTToLLT(getValueType(Predicate.getMemoryVT()));
> 
>         if (!MemTyOrNone)
>           return failedImport("MemVT could not be converted to LLT");
> 
>         // MMO's work in bytes so we must take care of unusual types like i1
>         // don't round down.
>         unsigned MemSizeInBits =
>             llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
> 
>         InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
>             0, MemSizeInBits / 8);
>         continue;
>       }
>     }
> 
>     if (Predicate.isLoad() || Predicate.isStore()) {
>       // No check required. A G_LOAD/G_STORE is an unindexed load.
>       if (Predicate.isUnindexed())
>         continue;
>     }
> 
>     if (Predicate.isAtomic()) {
>       if (Predicate.isAtomicOrderingMonotonic()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "Monotonic");
>         continue;
>       }
>       if (Predicate.isAtomicOrderingAcquire()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
>         continue;
>       }
>       if (Predicate.isAtomicOrderingRelease()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
>         continue;
>       }
>       if (Predicate.isAtomicOrderingAcquireRelease()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "AcquireRelease");
>         continue;
>       }
>       if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "SequentiallyConsistent");
>         continue;
>       }
> 
>       if (Predicate.isAtomicOrderingAcquireOrStronger()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
>         continue;
>       }
>       if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
>         continue;
>       }
> 
>       if (Predicate.isAtomicOrderingReleaseOrStronger()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
>         continue;
>       }
>       if (Predicate.isAtomicOrderingWeakerThanRelease()) {
>         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
>             "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
>         continue;
>       }
>     }
> 
>     return failedImport("Src pattern child has predicate (" +
>                         explainPredicates(Src) + ")");
>   }
>   if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
>     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
> 
>   if (Src->isLeaf()) {
>     Init *SrcInit = Src->getLeafValue();
>     if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
>       OperandMatcher &OM =
>           InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
>       OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
>     } else
>       return failedImport(
>           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
>   } else {
>     assert(SrcGIOrNull &&
>            "Expected to have already found an equivalent Instruction");
>     if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
>         SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
>       // imm/fpimm still have operands but we don't need to do anything with it
>       // here since we don't support ImmLeaf predicates yet. However, we still
>       // need to note the hidden operand to get GIM_CheckNumOperands correct.
>       InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
>       return InsnMatcher;
>     }
> 
>     // Match the used operands (i.e. the children of the operator).
>     for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
>       TreePatternNode *SrcChild = Src->getChild(i);
> 
>       // SelectionDAG allows pointers to be represented with iN since it doesn't
>       // distinguish between pointers and integers but they are different types in GlobalISel.
>       // Coerce integers to pointers to address space 0 if the context indicates a pointer.
>       bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
> 
>       // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
>       // following the defs is an intrinsic ID.
>       if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
>            SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
>           i == 0) {
>         if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
>           OperandMatcher &OM =
>               InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
>           OM.addPredicate<IntrinsicIDOperandMatcher>(II);
>           continue;
>         }
> 
>         return failedImport("Expected IntInit containing instrinsic ID)");
>       }
> 
>       if (auto Error =
>               importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
>                                  OpIdx++, TempOpIdx))
>         return std::move(Error);
>     }
>   }
> 
>   return InsnMatcher;
> }
> 
> Error GlobalISelEmitter::importComplexPatternOperandMatcher(
>     OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
>   const auto &ComplexPattern = ComplexPatternEquivs.find(R);
>   if (ComplexPattern == ComplexPatternEquivs.end())
>     return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
>                         ") not mapped to GlobalISel");
> 
>   OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
>   TempOpIdx++;
>   return Error::success();
> }
> 
> Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
>                                             InstructionMatcher &InsnMatcher,
>                                             const TreePatternNode *SrcChild,
>                                             bool OperandIsAPointer,
>                                             unsigned OpIdx,
>                                             unsigned &TempOpIdx) const {
>   OperandMatcher &OM =
>       InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
>   if (OM.isSameAsAnotherOperand())
>     return Error::success();
> 
>   ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
>   if (ChildTypes.size() != 1)
>     return failedImport("Src pattern child has multiple results");
> 
>   // Check MBB's before the type check since they are not a known type.
>   if (!SrcChild->isLeaf()) {
>     if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
>       auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
>       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
>         OM.addPredicate<MBBOperandMatcher>();
>         return Error::success();
>       }
>     }
>   }
> 
>   if (auto Error =
>           OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
>     return failedImport(toString(std::move(Error)) + " for Src operand (" +
>                         to_string(*SrcChild) + ")");
> 
>   // Check for nested instructions.
>   if (!SrcChild->isLeaf()) {
>     if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
>       // When a ComplexPattern is used as an operator, it should do the same
>       // thing as when used as a leaf. However, the children of the operator
>       // name the sub-operands that make up the complex operand and we must
>       // prepare to reference them in the renderer too.
>       unsigned RendererID = TempOpIdx;
>       if (auto Error = importComplexPatternOperandMatcher(
>               OM, SrcChild->getOperator(), TempOpIdx))
>         return Error;
> 
>       for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
>         auto *SubOperand = SrcChild->getChild(i);
>         if (!SubOperand->getName().empty())
>           Rule.defineComplexSubOperand(SubOperand->getName(),
>                                        SrcChild->getOperator(), RendererID, i);
>       }
> 
>       return Error::success();
>     }
> 
>     auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
>         InsnMatcher.getRuleMatcher(), SrcChild->getName());
>     if (!MaybeInsnOperand.hasValue()) {
>       // This isn't strictly true. If the user were to provide exactly the same
>       // matchers as the original operand then we could allow it. However, it's
>       // simpler to not permit the redundant specification.
>       return failedImport("Nested instruction cannot be the same as another operand");
>     }
> 
>     // Map the node to a gMIR instruction.
>     InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
>     auto InsnMatcherOrError = createAndImportSelDAGMatcher(
>         Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
>     if (auto Error = InsnMatcherOrError.takeError())
>       return Error;
> 
>     return Error::success();
>   }
> 
>   if (SrcChild->hasAnyPredicate())
>     return failedImport("Src pattern child has unsupported predicate");
> 
>   // Check for constant immediates.
>   if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
>     OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
>     return Error::success();
>   }
> 
>   // Check for def's like register classes or ComplexPattern's.
>   if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
>     auto *ChildRec = ChildDefInit->getDef();
> 
>     // Check for register classes.
>     if (ChildRec->isSubClassOf("RegisterClass") ||
>         ChildRec->isSubClassOf("RegisterOperand")) {
>       OM.addPredicate<RegisterBankOperandMatcher>(
>           Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
>       return Error::success();
>     }
> 
>     // Check for ValueType.
>     if (ChildRec->isSubClassOf("ValueType")) {
>       // We already added a type check as standard practice so this doesn't need
>       // to do anything.
>       return Error::success();
>     }
> 
>     // Check for ComplexPattern's.
>     if (ChildRec->isSubClassOf("ComplexPattern"))
>       return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
> 
>     if (ChildRec->isSubClassOf("ImmLeaf")) {
>       return failedImport(
>           "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
>     }
> 
>     return failedImport(
>         "Src pattern child def is an unsupported tablegen class");
>   }
> 
>   return failedImport("Src pattern child is an unsupported kind");
> }
> 
> Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
>     action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
>     TreePatternNode *DstChild) {
> 
>   const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
>   if (SubOperand.hasValue()) {
>     DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
>         *std::get<0>(*SubOperand), DstChild->getName(),
>         std::get<1>(*SubOperand), std::get<2>(*SubOperand));
>     return InsertPt;
>   }
> 
>   if (!DstChild->isLeaf()) {
> 
>     if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
>       auto Child = DstChild->getChild(0);
>       auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
>       if (I != SDNodeXFormEquivs.end()) {
>         DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
>         return InsertPt;
>       }
>       return failedImport("SDNodeXForm " + Child->getName() +
>                           " has no custom renderer");
>     }
> 
>     // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
>     // inline, but in MI it's just another operand.
>     if (DstChild->getOperator()->isSubClassOf("SDNode")) {
>       auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
>       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
>         DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
>         return InsertPt;
>       }
>     }
> 
>     // Similarly, imm is an operator in TreePatternNode's view but must be
>     // rendered as operands.
>     // FIXME: The target should be able to choose sign-extended when appropriate
>     //        (e.g. on Mips).
>     if (DstChild->getOperator()->getName() == "imm") {
>       DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
>       return InsertPt;
>     } else if (DstChild->getOperator()->getName() == "fpimm") {
>       DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
>           DstChild->getName());
>       return InsertPt;
>     }
> 
>     if (DstChild->getOperator()->isSubClassOf("Instruction")) {
>       ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
>       if (ChildTypes.size() != 1)
>         return failedImport("Dst pattern child has multiple results");
> 
>       Optional<LLTCodeGen> OpTyOrNone = None;
>       if (ChildTypes.front().isMachineValueType())
>         OpTyOrNone =
>             MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
>       if (!OpTyOrNone)
>         return failedImport("Dst operand has an unsupported type");
> 
>       unsigned TempRegID = Rule.allocateTempRegID();
>       InsertPt = Rule.insertAction<MakeTempRegisterAction>(
>           InsertPt, OpTyOrNone.getValue(), TempRegID);
>       DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
> 
>       auto InsertPtOrError = createAndImportSubInstructionRenderer(
>           ++InsertPt, Rule, DstChild, TempRegID);
>       if (auto Error = InsertPtOrError.takeError())
>         return std::move(Error);
>       return InsertPtOrError.get();
>     }
> 
>     return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
>   }
> 
>   // It could be a specific immediate in which case we should just check for
>   // that immediate.
>   if (const IntInit *ChildIntInit =
>           dyn_cast<IntInit>(DstChild->getLeafValue())) {
>     DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
>     return InsertPt;
>   }
> 
>   // Otherwise, we're looking for a bog-standard RegisterClass operand.
>   if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
>     auto *ChildRec = ChildDefInit->getDef();
> 
>     ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
>     if (ChildTypes.size() != 1)
>       return failedImport("Dst pattern child has multiple results");
> 
>     Optional<LLTCodeGen> OpTyOrNone = None;
>     if (ChildTypes.front().isMachineValueType())
>       OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
>     if (!OpTyOrNone)
>       return failedImport("Dst operand has an unsupported type");
> 
>     if (ChildRec->isSubClassOf("Register")) {
>       DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
>       return InsertPt;
>     }
> 
>     if (ChildRec->isSubClassOf("RegisterClass") ||
>         ChildRec->isSubClassOf("RegisterOperand") ||
>         ChildRec->isSubClassOf("ValueType")) {
>       if (ChildRec->isSubClassOf("RegisterOperand") &&
>           !ChildRec->isValueUnset("GIZeroRegister")) {
>         DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
>             DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
>         return InsertPt;
>       }
> 
>       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
>       return InsertPt;
>     }
> 
>     if (ChildRec->isSubClassOf("ComplexPattern")) {
>       const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
>       if (ComplexPattern == ComplexPatternEquivs.end())
>         return failedImport(
>             "SelectionDAG ComplexPattern not mapped to GlobalISel");
> 
>       const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
>       DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
>           *ComplexPattern->second, DstChild->getName(),
>           OM.getAllocatedTemporariesBaseID());
>       return InsertPt;
>     }
> 
>     return failedImport(
>         "Dst pattern child def is an unsupported tablegen class");
>   }
> 
>   return failedImport("Dst pattern child is an unsupported kind");
> }
> 
> Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
>     RuleMatcher &M, const TreePatternNode *Dst) {
>   auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
>   if (auto Error = InsertPtOrError.takeError())
>     return std::move(Error);
> 
>   action_iterator InsertPt = InsertPtOrError.get();
>   BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
> 
>   importExplicitDefRenderers(DstMIBuilder);
> 
>   if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
>                        .takeError())
>     return std::move(Error);
> 
>   return DstMIBuilder;
> }
> 
> Expected<action_iterator>
> GlobalISelEmitter::createAndImportSubInstructionRenderer(
>     const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
>     unsigned TempRegID) {
>   auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
> 
>   // TODO: Assert there's exactly one result.
> 
>   if (auto Error = InsertPtOrError.takeError())
>     return std::move(Error);
> 
>   BuildMIAction &DstMIBuilder =
>       *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
> 
>   // Assign the result to TempReg.
>   DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
> 
>   InsertPtOrError =
>       importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
>   if (auto Error = InsertPtOrError.takeError())
>     return std::move(Error);
> 
>   M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
>                                                       DstMIBuilder.getInsnID());
>   return InsertPtOrError.get();
> }
> 
> Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
>     action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
>   Record *DstOp = Dst->getOperator();
>   if (!DstOp->isSubClassOf("Instruction")) {
>     if (DstOp->isSubClassOf("ValueType"))
>       return failedImport(
>           "Pattern operator isn't an instruction (it's a ValueType)");
>     return failedImport("Pattern operator isn't an instruction");
>   }
>   CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
> 
>   // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
>   // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
>   if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
>     DstI = &Target.getInstruction(RK.getDef("COPY"));
>   else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
>     DstI = &Target.getInstruction(RK.getDef("COPY"));
>   else if (DstI->TheDef->getName() == "REG_SEQUENCE")
>     return failedImport("Unable to emit REG_SEQUENCE");
> 
>   return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
>                                        DstI);
> }
> 
> void GlobalISelEmitter::importExplicitDefRenderers(
>     BuildMIAction &DstMIBuilder) {
>   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
>   for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
>     const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
>     DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
>   }
> }
> 
> Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
>     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
>     const llvm::TreePatternNode *Dst) {
>   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
>   CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
> 
>   // EXTRACT_SUBREG needs to use a subregister COPY.
>   if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
>     if (!Dst->getChild(0)->isLeaf())
>       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
> 
>     if (DefInit *SubRegInit =
>             dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
>       Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
>       if (!RCDef)
>         return failedImport("EXTRACT_SUBREG child #0 could not "
>                             "be coerced to a register class");
> 
>       CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
>       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
> 
>       const auto &SrcRCDstRCPair =
>           RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
>       if (SrcRCDstRCPair.hasValue()) {
>         assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
>         if (SrcRCDstRCPair->first != RC)
>           return failedImport("EXTRACT_SUBREG requires an additional COPY");
>       }
> 
>       DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
>                                                    SubIdx);
>       return InsertPt;
>     }
> 
>     return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
>   }
> 
>   // Render the explicit uses.
>   unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
>   unsigned ExpectedDstINumUses = Dst->getNumChildren();
>   if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
>     DstINumUses--; // Ignore the class constraint.
>     ExpectedDstINumUses--;
>   }
> 
>   unsigned Child = 0;
>   unsigned NumDefaultOps = 0;
>   for (unsigned I = 0; I != DstINumUses; ++I) {
>     const CGIOperandList::OperandInfo &DstIOperand =
>         DstI->Operands[DstI->Operands.NumDefs + I];
> 
>     // If the operand has default values, introduce them now.
>     // FIXME: Until we have a decent test case that dictates we should do
>     // otherwise, we're going to assume that operands with default values cannot
>     // be specified in the patterns. Therefore, adding them will not cause us to
>     // end up with too many rendered operands.
>     if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
>       DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
>       if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
>         return std::move(Error);
>       ++NumDefaultOps;
>       continue;
>     }
> 
>     auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
>                                                      Dst->getChild(Child));
>     if (auto Error = InsertPtOrError.takeError())
>       return std::move(Error);
>     InsertPt = InsertPtOrError.get();
>     ++Child;
>   }
> 
>   if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
>     return failedImport("Expected " + llvm::to_string(DstINumUses) +
>                         " used operands but found " +
>                         llvm::to_string(ExpectedDstINumUses) +
>                         " explicit ones and " + llvm::to_string(NumDefaultOps) +
>                         " default ones");
> 
>   return InsertPt;
> }
> 
> Error GlobalISelEmitter::importDefaultOperandRenderers(
>     BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
>   for (const auto *DefaultOp : DefaultOps->getArgs()) {
>     // Look through ValueType operators.
>     if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
>       if (const DefInit *DefaultDagOperator =
>               dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
>         if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
>           DefaultOp = DefaultDagOp->getArg(0);
>       }
>     }
> 
>     if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
>       DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
>       continue;
>     }
> 
>     if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
>       DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
>       continue;
>     }
> 
>     return failedImport("Could not add default op");
>   }
> 
>   return Error::success();
> }
> 
> Error GlobalISelEmitter::importImplicitDefRenderers(
>     BuildMIAction &DstMIBuilder,
>     const std::vector<Record *> &ImplicitDefs) const {
>   if (!ImplicitDefs.empty())
>     return failedImport("Pattern defines a physical register");
>   return Error::success();
> }
> 
> Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
>   // Keep track of the matchers and actions to emit.
>   int Score = P.getPatternComplexity(CGP);
>   RuleMatcher M(P.getSrcRecord()->getLoc());
>   RuleMatcherScores[M.getRuleID()] = Score;
>   M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
>                                   "  =>  " +
>                                   llvm::to_string(*P.getDstPattern()));
> 
>   if (auto Error = importRulePredicates(M, P.getPredicates()))
>     return std::move(Error);
> 
>   // Next, analyze the pattern operators.
>   TreePatternNode *Src = P.getSrcPattern();
>   TreePatternNode *Dst = P.getDstPattern();
> 
>   // If the root of either pattern isn't a simple operator, ignore it.
>   if (auto Err = isTrivialOperatorNode(Dst))
>     return failedImport("Dst pattern root isn't a trivial operator (" +
>                         toString(std::move(Err)) + ")");
>   if (auto Err = isTrivialOperatorNode(Src))
>     return failedImport("Src pattern root isn't a trivial operator (" +
>                         toString(std::move(Err)) + ")");
> 
>   // The different predicates and matchers created during
>   // addInstructionMatcher use the RuleMatcher M to set up their
>   // instruction ID (InsnVarID) that are going to be used when
>   // M is going to be emitted.
>   // However, the code doing the emission still relies on the IDs
>   // returned during that process by the RuleMatcher when issuing
>   // the recordInsn opcodes.
>   // Because of that:
>   // 1. The order in which we created the predicates
>   //    and such must be the same as the order in which we emit them,
>   //    and
>   // 2. We need to reset the generation of the IDs in M somewhere between
>   //    addInstructionMatcher and emit
>   //
>   // FIXME: Long term, we don't want to have to rely on this implicit
>   // naming being the same. One possible solution would be to have
>   // explicit operator for operation capture and reference those.
>   // The plus side is that it would expose opportunities to share
>   // the capture accross rules. The downside is that it would
>   // introduce a dependency between predicates (captures must happen
>   // before their first use.)
>   InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
>   unsigned TempOpIdx = 0;
>   auto InsnMatcherOrError =
>       createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
>   if (auto Error = InsnMatcherOrError.takeError())
>     return std::move(Error);
>   InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
> 
>   if (Dst->isLeaf()) {
>     Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
> 
>     const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
>     if (RCDef) {
>       // We need to replace the def and all its uses with the specified
>       // operand. However, we must also insert COPY's wherever needed.
>       // For now, emit a copy and let the register allocator clean up.
>       auto &DstI = Target.getInstruction(RK.getDef("COPY"));
>       const auto &DstIOperand = DstI.Operands[0];
> 
>       OperandMatcher &OM0 = InsnMatcher.getOperand(0);
>       OM0.setSymbolicName(DstIOperand.Name);
>       M.defineOperand(OM0.getSymbolicName(), OM0);
>       OM0.addPredicate<RegisterBankOperandMatcher>(RC);
> 
>       auto &DstMIBuilder =
>           M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
>       DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
>       DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
>       M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
> 
>       // We're done with this pattern!  It's eligible for GISel emission; return
>       // it.
>       ++NumPatternImported;
>       return std::move(M);
>     }
> 
>     return failedImport("Dst pattern root isn't a known leaf");
>   }
> 
>   // Start with the defined operands (i.e., the results of the root operator).
>   Record *DstOp = Dst->getOperator();
>   if (!DstOp->isSubClassOf("Instruction"))
>     return failedImport("Pattern operator isn't an instruction");
> 
>   auto &DstI = Target.getInstruction(DstOp);
>   if (DstI.Operands.NumDefs != Src->getExtTypes().size())
>     return failedImport("Src pattern results and dst MI defs are different (" +
>                         to_string(Src->getExtTypes().size()) + " def(s) vs " +
>                         to_string(DstI.Operands.NumDefs) + " def(s))");
> 
>   // The root of the match also has constraints on the register bank so that it
>   // matches the result instruction.
>   unsigned OpIdx = 0;
>   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
>     (void)VTy;
> 
>     const auto &DstIOperand = DstI.Operands[OpIdx];
>     Record *DstIOpRec = DstIOperand.Rec;
>     if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
>       DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
> 
>       if (DstIOpRec == nullptr)
>         return failedImport(
>             "COPY_TO_REGCLASS operand #1 isn't a register class");
>     } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
>       if (!Dst->getChild(0)->isLeaf())
>         return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
> 
>       // We can assume that a subregister is in the same bank as it's super
>       // register.
>       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
> 
>       if (DstIOpRec == nullptr)
>         return failedImport(
>             "EXTRACT_SUBREG operand #0 isn't a register class");
>     } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
>       DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
>     else if (!DstIOpRec->isSubClassOf("RegisterClass"))
>       return failedImport("Dst MI def isn't a register class" +
>                           to_string(*Dst));
> 
>     OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
>     OM.setSymbolicName(DstIOperand.Name);
>     M.defineOperand(OM.getSymbolicName(), OM);
>     OM.addPredicate<RegisterBankOperandMatcher>(
>         Target.getRegisterClass(DstIOpRec));
>     ++OpIdx;
>   }
> 
>   auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
>   if (auto Error = DstMIBuilderOrError.takeError())
>     return std::move(Error);
>   BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
> 
>   // Render the implicit defs.
>   // These are only added to the root of the result.
>   if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
>     return std::move(Error);
> 
>   DstMIBuilder.chooseInsnToMutate(M);
> 
>   // Constrain the registers to classes. This is normally derived from the
>   // emitted instruction but a few instructions require special handling.
>   if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
>     // COPY_TO_REGCLASS does not provide operand constraints itself but the
>     // result is constrained to the class given by the second child.
>     Record *DstIOpRec =
>         getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
> 
>     if (DstIOpRec == nullptr)
>       return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
> 
>     M.addAction<ConstrainOperandToRegClassAction>(
>         0, 0, Target.getRegisterClass(DstIOpRec));
> 
>     // We're done with this pattern!  It's eligible for GISel emission; return
>     // it.
>     ++NumPatternImported;
>     return std::move(M);
>   }
> 
>   if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
>     // EXTRACT_SUBREG selects into a subregister COPY but unlike most
>     // instructions, the result register class is controlled by the
>     // subregisters of the operand. As a result, we must constrain the result
>     // class rather than check that it's already the right one.
>     if (!Dst->getChild(0)->isLeaf())
>       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
> 
>     DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
>     if (!SubRegInit)
>       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
> 
>     // Constrain the result to the same register bank as the operand.
>     Record *DstIOpRec =
>         getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
> 
>     if (DstIOpRec == nullptr)
>       return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
> 
>     CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
>     CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
> 
>     // It would be nice to leave this constraint implicit but we're required
>     // to pick a register class so constrain the result to a register class
>     // that can hold the correct MVT.
>     //
>     // FIXME: This may introduce an extra copy if the chosen class doesn't
>     //        actually contain the subregisters.
>     assert(Src->getExtTypes().size() == 1 &&
>              "Expected Src of EXTRACT_SUBREG to have one result type");
> 
>     const auto &SrcRCDstRCPair =
>         SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
>     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
>     M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
>     M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
> 
>     // We're done with this pattern!  It's eligible for GISel emission; return
>     // it.
>     ++NumPatternImported;
>     return std::move(M);
>   }
> 
>   M.addAction<ConstrainOperandsToDefinitionAction>(0);
> 
>   // We're done with this pattern!  It's eligible for GISel emission; return it.
>   ++NumPatternImported;
>   return std::move(M);
> }
> 
> // Emit imm predicate table and an enum to reference them with.
> // The 'Predicate_' part of the name is redundant but eliminating it is more
> // trouble than it's worth.
> void GlobalISelEmitter::emitImmPredicates(
>     raw_ostream &OS, StringRef TypeIdentifier, StringRef Type,
>     std::function<bool(const Record *R)> Filter) {
>   std::vector<const Record *> MatchedRecords;
>   const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
>   std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
>                [&](Record *Record) {
>                  return !Record->getValueAsString("ImmediateCode").empty() &&
>                         Filter(Record);
>                });
> 
>   if (!MatchedRecords.empty()) {
>     OS << "// PatFrag predicates.\n"
>        << "enum {\n";
>     std::string EnumeratorSeparator =
>         (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
>     for (const auto *Record : MatchedRecords) {
>       OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
>          << EnumeratorSeparator;
>       EnumeratorSeparator = ",\n";
>     }
>     OS << "};\n";
>   }
> 
>   OS << "bool " << Target.getName() << "InstructionSelector::testImmPredicate_"
>      << TypeIdentifier << "(unsigned PredicateID, " << Type
>      << " Imm) const {\n";
>   if (!MatchedRecords.empty())
>     OS << "  switch (PredicateID) {\n";
>   for (const auto *Record : MatchedRecords) {
>     OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
>        << Record->getName() << ": {\n"
>        << "    " << Record->getValueAsString("ImmediateCode") << "\n"
>        << "    llvm_unreachable(\"ImmediateCode should have returned\");\n"
>        << "    return false;\n"
>        << "  }\n";
>   }
>   if (!MatchedRecords.empty())
>     OS << "  }\n";
>   OS << "  llvm_unreachable(\"Unknown predicate\");\n"
>      << "  return false;\n"
>      << "}\n";
> }
> 
> template <class GroupT>
> std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
>     ArrayRef<Matcher *> Rules,
>     std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
> 
>   std::vector<Matcher *> OptRules;
>   std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
>   assert(CurrentGroup->empty() && "Newly created group isn't empty!");
>   unsigned NumGroups = 0;
> 
>   auto ProcessCurrentGroup = [&]() {
>     if (CurrentGroup->empty())
>       // An empty group is good to be reused:
>       return;
> 
>     // If the group isn't large enough to provide any benefit, move all the
>     // added rules out of it and make sure to re-create the group to properly
>     // re-initialize it:
>     if (CurrentGroup->size() < 2)
>       for (Matcher *M : CurrentGroup->matchers())
>         OptRules.push_back(M);
>     else {
>       CurrentGroup->finalize();
>       OptRules.push_back(CurrentGroup.get());
>       MatcherStorage.emplace_back(std::move(CurrentGroup));
>       ++NumGroups;
>     }
>     CurrentGroup = make_unique<GroupT>();
>   };
>   for (Matcher *Rule : Rules) {
>     // Greedily add as many matchers as possible to the current group:
>     if (CurrentGroup->addMatcher(*Rule))
>       continue;
> 
>     ProcessCurrentGroup();
>     assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
> 
>     // Try to add the pending matcher to a newly created empty group:
>     if (!CurrentGroup->addMatcher(*Rule))
>       // If we couldn't add the matcher to an empty group, that group type
>       // doesn't support that kind of matchers at all, so just skip it:
>       OptRules.push_back(Rule);
>   }
>   ProcessCurrentGroup();
> 
>   DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
>   assert(CurrentGroup->empty() && "The last group wasn't properly processed");
>   return OptRules;
> }
> 
> MatchTable
> GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
>                                    bool Optimize, bool WithCoverage) {
>   std::vector<Matcher *> InputRules;
>   for (Matcher &Rule : Rules)
>     InputRules.push_back(&Rule);
> 
>   if (!Optimize)
>     return MatchTable::buildTable(InputRules, WithCoverage);
> 
> +  unsigned CurrentOrdering = 0;
> +  StringMap<unsigned> OpcodeOrder;
> +  for (RuleMatcher &Rule : Rules) {
> +    const StringRef Opcode = Rule.getOpcode();
> +    assert(!Opcode.empty() && "Didn't expect an undefined opcode");
> +    if (OpcodeOrder.count(Opcode) == 0)
> +      OpcodeOrder[Opcode] = CurrentOrdering++;
> +  }
> +
> +  std::stable_sort(InputRules.begin(), InputRules.end(),
> +                   [&OpcodeOrder](const Matcher *A, const Matcher *B) {
> +                     auto *L = static_cast<const RuleMatcher *>(A);
> +                     auto *R = static_cast<const RuleMatcher *>(B);
> +                     return std::make_tuple(OpcodeOrder[L->getOpcode()],
> +                                            L->getNumOperands()) <
> +                            std::make_tuple(OpcodeOrder[R->getOpcode()],
> +                                            R->getNumOperands());
> +                   });
> +
>   for (Matcher *Rule : InputRules)
>     Rule->optimize();
> 
>   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
>   std::vector<Matcher *> OptRules =
>       optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
> 
>   for (Matcher *Rule : OptRules)
>     Rule->optimize();
> 
>   return MatchTable::buildTable(OptRules, WithCoverage);
> }
> 
> void GlobalISelEmitter::run(raw_ostream &OS) {
>   if (!UseCoverageFile.empty()) {
>     RuleCoverage = CodeGenCoverage();
>     auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
>     if (!RuleCoverageBufOrErr) {
>       PrintWarning(SMLoc(), "Missing rule coverage data");
>       RuleCoverage = None;
>     } else {
>       if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
>         PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
>         RuleCoverage = None;
>       }
>     }
>   }
> 
>   // Track the run-time opcode values
>   gatherOpcodeValues();
>   // Track the run-time LLT ID values
>   gatherTypeIDValues();
> 
>   // Track the GINodeEquiv definitions.
>   gatherNodeEquivs();
> 
>   emitSourceFileHeader(("Global Instruction Selector for the " +
>                        Target.getName() + " target").str(), OS);
>   std::vector<RuleMatcher> Rules;
>   // Look through the SelectionDAG patterns we found, possibly emitting some.
>   for (const PatternToMatch &Pat : CGP.ptms()) {
>     ++NumPatternTotal;
> 
>     auto MatcherOrErr = runOnPattern(Pat);
> 
>     // The pattern analysis can fail, indicating an unsupported pattern.
>     // Report that if we've been asked to do so.
>     if (auto Err = MatcherOrErr.takeError()) {
>       if (WarnOnSkippedPatterns) {
>         PrintWarning(Pat.getSrcRecord()->getLoc(),
>                      "Skipped pattern: " + toString(std::move(Err)));
>       } else {
>         consumeError(std::move(Err));
>       }
>       ++NumPatternImportsSkipped;
>       continue;
>     }
> 
>     if (RuleCoverage) {
>       if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
>         ++NumPatternsTested;
>       else
>         PrintWarning(Pat.getSrcRecord()->getLoc(),
>                      "Pattern is not covered by a test");
>     }
>     Rules.push_back(std::move(MatcherOrErr.get()));
>   }
> 
>   // Comparison function to order records by name.
>   auto orderByName = [](const Record *A, const Record *B) {
>     return A->getName() < B->getName();
>   };
> 
>   std::vector<Record *> ComplexPredicates =
>       RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
>   llvm::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);
> 
>   std::vector<Record *> CustomRendererFns =
>       RK.getAllDerivedDefinitions("GICustomOperandRenderer");
>   llvm::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);
> 
>   unsigned MaxTemporaries = 0;
>   for (const auto &Rule : Rules)
>     MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
> 
>   OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
>      << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
>      << ";\n"
>      << "using PredicateBitset = "
>         "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
>      << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
> 
>   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
>      << "  mutable MatcherState State;\n"
>      << "  typedef "
>         "ComplexRendererFns("
>      << Target.getName()
>      << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
> 
>      << "  typedef void(" << Target.getName()
>      << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
>         "MachineInstr&) "
>         "const;\n"
>      << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
>         "CustomRendererFn> "
>         "ISelInfo;\n";
>   OS << "  static " << Target.getName()
>      << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
>      << "  static " << Target.getName()
>      << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
>      << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
>         "override;\n"
>      << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
>         "const override;\n"
>      << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
>         "&Imm) const override;\n"
>      << "  const int64_t *getMatchTable() const override;\n"
>      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
> 
>   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
>      << ", State(" << MaxTemporaries << "),\n"
>      << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
>      << ", ComplexPredicateFns, CustomRenderers)\n"
>      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
> 
>   OS << "#ifdef GET_GLOBALISEL_IMPL\n";
>   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
>                                                            OS);
> 
>   // Separate subtarget features by how often they must be recomputed.
>   SubtargetFeatureInfoMap ModuleFeatures;
>   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
>                std::inserter(ModuleFeatures, ModuleFeatures.end()),
>                [](const SubtargetFeatureInfoMap::value_type &X) {
>                  return !X.second.mustRecomputePerFunction();
>                });
>   SubtargetFeatureInfoMap FunctionFeatures;
>   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
>                std::inserter(FunctionFeatures, FunctionFeatures.end()),
>                [](const SubtargetFeatureInfoMap::value_type &X) {
>                  return X.second.mustRecomputePerFunction();
>                });
> 
>   SubtargetFeatureInfo::emitComputeAvailableFeatures(
>       Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
>       ModuleFeatures, OS);
>   SubtargetFeatureInfo::emitComputeAvailableFeatures(
>       Target.getName(), "InstructionSelector",
>       "computeAvailableFunctionFeatures", FunctionFeatures, OS,
>       "const MachineFunction *MF");
> 
>   // Emit a table containing the LLT objects needed by the matcher and an enum
>   // for the matcher to reference them with.
>   std::vector<LLTCodeGen> TypeObjects;
>   for (const auto &Ty : KnownTypes)
>     TypeObjects.push_back(Ty);
>   llvm::sort(TypeObjects.begin(), TypeObjects.end());
>   OS << "// LLT Objects.\n"
>      << "enum {\n";
>   for (const auto &TypeObject : TypeObjects) {
>     OS << "  ";
>     TypeObject.emitCxxEnumValue(OS);
>     OS << ",\n";
>   }
>   OS << "};\n";
>   OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
>      << "const static LLT TypeObjects[] = {\n";
>   for (const auto &TypeObject : TypeObjects) {
>     OS << "  ";
>     TypeObject.emitCxxConstructorCall(OS);
>     OS << ",\n";
>   }
>   OS << "};\n\n";
> 
>   // Emit a table containing the PredicateBitsets objects needed by the matcher
>   // and an enum for the matcher to reference them with.
>   std::vector<std::vector<Record *>> FeatureBitsets;
>   for (auto &Rule : Rules)
>     FeatureBitsets.push_back(Rule.getRequiredFeatures());
>   llvm::sort(
>       FeatureBitsets.begin(), FeatureBitsets.end(),
>       [&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
>         if (A.size() < B.size())
>           return true;
>         if (A.size() > B.size())
>           return false;
>         for (const auto &Pair : zip(A, B)) {
>           if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
>             return true;
>           if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
>             return false;
>         }
>         return false;
>       });
>   FeatureBitsets.erase(
>       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
>       FeatureBitsets.end());
>   OS << "// Feature bitsets.\n"
>      << "enum {\n"
>      << "  GIFBS_Invalid,\n";
>   for (const auto &FeatureBitset : FeatureBitsets) {
>     if (FeatureBitset.empty())
>       continue;
>     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
>   }
>   OS << "};\n"
>      << "const static PredicateBitset FeatureBitsets[] {\n"
>      << "  {}, // GIFBS_Invalid\n";
>   for (const auto &FeatureBitset : FeatureBitsets) {
>     if (FeatureBitset.empty())
>       continue;
>     OS << "  {";
>     for (const auto &Feature : FeatureBitset) {
>       const auto &I = SubtargetFeatures.find(Feature);
>       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
>       OS << I->second.getEnumBitName() << ", ";
>     }
>     OS << "},\n";
>   }
>   OS << "};\n\n";
> 
>   // Emit complex predicate table and an enum to reference them with.
>   OS << "// ComplexPattern predicates.\n"
>      << "enum {\n"
>      << "  GICP_Invalid,\n";
>   for (const auto &Record : ComplexPredicates)
>     OS << "  GICP_" << Record->getName() << ",\n";
>   OS << "};\n"
>      << "// See constructor for table contents\n\n";
> 
>   emitImmPredicates(OS, "I64", "int64_t", [](const Record *R) {
>     bool Unset;
>     return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
>            !R->getValueAsBit("IsAPInt");
>   });
>   emitImmPredicates(OS, "APFloat", "const APFloat &", [](const Record *R) {
>     bool Unset;
>     return R->getValueAsBitOrUnset("IsAPFloat", Unset);
>   });
>   emitImmPredicates(OS, "APInt", "const APInt &", [](const Record *R) {
>     return R->getValueAsBit("IsAPInt");
>   });
>   OS << "\n";
> 
>   OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
>      << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
>      << "  nullptr, // GICP_Invalid\n";
>   for (const auto &Record : ComplexPredicates)
>     OS << "  &" << Target.getName()
>        << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
>        << ", // " << Record->getName() << "\n";
>   OS << "};\n\n";
> 
>   OS << "// Custom renderers.\n"
>      << "enum {\n"
>      << "  GICR_Invalid,\n";
>   for (const auto &Record : CustomRendererFns)
>     OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
>   OS << "};\n";
> 
>   OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
>      << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
>      << "  nullptr, // GICP_Invalid\n";
>   for (const auto &Record : CustomRendererFns)
>     OS << "  &" << Target.getName()
>        << "InstructionSelector::" << Record->getValueAsString("RendererFn")
>        << ", // " << Record->getName() << "\n";
>   OS << "};\n\n";
> 
>   std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
>                                                    const RuleMatcher &B) {
>     int ScoreA = RuleMatcherScores[A.getRuleID()];
>     int ScoreB = RuleMatcherScores[B.getRuleID()];
>     if (ScoreA > ScoreB)
>       return true;
>     if (ScoreB > ScoreA)
>       return false;
>     if (A.isHigherPriorityThan(B)) {
>       assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
>                                            "and less important at "
>                                            "the same time");
>       return true;
>     }
>     return false;
>   });
> 
>   OS << "bool " << Target.getName()
>      << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
>         "&CoverageInfo) const {\n"
>      << "  MachineFunction &MF = *I.getParent()->getParent();\n"
>      << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
>      << "  // FIXME: This should be computed on a per-function basis rather "
>         "than per-insn.\n"
>      << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
>         "&MF);\n"
>      << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
>      << "  NewMIVector OutMIs;\n"
>      << "  State.MIs.clear();\n"
>      << "  State.MIs.push_back(&I);\n\n"
>      << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
>      << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
>      << ", CoverageInfo)) {\n"
>      << "    return true;\n"
>      << "  }\n\n"
>      << "  return false;\n"
>      << "}\n\n";
> 
>   const MatchTable Table =
>       buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
>   OS << "const int64_t *" << Target.getName()
>      << "InstructionSelector::getMatchTable() const {\n";
>   Table.emitDeclaration(OS);
>   OS << "  return ";
>   Table.emitUse(OS);
>   OS << ";\n}\n";
>   OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
> 
>   OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
>      << "PredicateBitset AvailableModuleFeatures;\n"
>      << "mutable PredicateBitset AvailableFunctionFeatures;\n"
>      << "PredicateBitset getAvailableFeatures() const {\n"
>      << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
>      << "}\n"
>      << "PredicateBitset\n"
>      << "computeAvailableModuleFeatures(const " << Target.getName()
>      << "Subtarget *Subtarget) const;\n"
>      << "PredicateBitset\n"
>      << "computeAvailableFunctionFeatures(const " << Target.getName()
>      << "Subtarget *Subtarget,\n"
>      << "                                 const MachineFunction *MF) const;\n"
>      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
> 
>   OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
>      << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
>      << "AvailableFunctionFeatures()\n"
>      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
> }
> 
> void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
>   if (SubtargetFeatures.count(Predicate) == 0)
>     SubtargetFeatures.emplace(
>         Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
> }
> 
> void RuleMatcher::optimize() {
>   for (auto &Item : InsnVariableIDs) {
>     InstructionMatcher &InsnMatcher = *Item.first;
>     for (auto &OM : InsnMatcher.operands()) {
>       // Register Banks checks rarely fail, but often crash as targets usually
>       // provide only partially defined RegisterBankInfo::getRegBankFromRegClass
>       // method. Often the problem is hidden as non-optimized MatchTable checks
>       // banks rather late, most notably after checking target / function /
>       // module features and a few opcodes. That makes these checks a)
>       // beneficial to delay until the very end (we don't want to perform a lot
>       // of checks that all pass and then fail at the very end) b) not safe to
>       // have as early checks.
>       for (auto &OP : OM->predicates())
>         if (isa<RegisterBankOperandMatcher>(OP) ||
>             isa<ComplexPatternOperandMatcher>(OP))
>           EpilogueMatchers.emplace_back(std::move(OP));
>       OM->eraseNullPredicates();
>     }
>     InsnMatcher.optimize();
>   }
>   llvm::sort(
>       EpilogueMatchers.begin(), EpilogueMatchers.end(),
>       [](const std::unique_ptr<PredicateMatcher> &L,
>          const std::unique_ptr<PredicateMatcher> &R) {
>         return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
>                std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
>       });
> }
> 
> bool RuleMatcher::hasFirstCondition() const {
>   if (insnmatchers_empty())
>     return false;
>   InstructionMatcher &Matcher = insnmatchers_front();
>   if (!Matcher.predicates_empty())
>     return true;
>   for (auto &OM : Matcher.operands())
>     for (auto &OP : OM->predicates())
>       if (!isa<InstructionOperandMatcher>(OP))
>         return true;
>   return false;
> }
> 
> const PredicateMatcher &RuleMatcher::getFirstCondition() const {
>   assert(!insnmatchers_empty() &&
>          "Trying to get a condition from an empty RuleMatcher");
> 
>   InstructionMatcher &Matcher = insnmatchers_front();
>   if (!Matcher.predicates_empty())
>     return **Matcher.predicates_begin();
>   // If there is no more predicate on the instruction itself, look at its
>   // operands.
>   for (auto &OM : Matcher.operands())
>     for (auto &OP : OM->predicates())
>       if (!isa<InstructionOperandMatcher>(OP))
>         return *OP;
> 
>   llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
>                    "no conditions");
> }
> 
> std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
>   assert(!insnmatchers_empty() &&
>          "Trying to pop a condition from an empty RuleMatcher");
> 
>   InstructionMatcher &Matcher = insnmatchers_front();
>   if (!Matcher.predicates_empty())
>     return Matcher.predicates_pop_front();
>   // If there is no more predicate on the instruction itself, look at its
>   // operands.
>   for (auto &OM : Matcher.operands())
>     for (auto &OP : OM->predicates())
>       if (!isa<InstructionOperandMatcher>(OP)) {
>         std::unique_ptr<PredicateMatcher> Result = std::move(OP);
>         OM->eraseNullPredicates();
>         return Result;
>       }
> 
>   llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
>                    "no conditions");
> }
> 
> bool GroupMatcher::candidateConditionMatches(
>     const PredicateMatcher &Predicate) const {
> 
>   if (empty()) {
>     // Sharing predicates for nested instructions is not supported yet as we
>     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
>     // only work on the original root instruction (InsnVarID == 0):
>     if (Predicate.getInsnVarID() != 0)
>       return false;
>     // ... otherwise an empty group can handle any predicate with no specific
>     // requirements:
>     return true;
>   }
> 
>   const Matcher &Representative = **Matchers.begin();
>   const auto &RepresentativeCondition = Representative.getFirstCondition();
>   // ... if not empty, the group can only accomodate matchers with the exact
>   // same first condition:
>   return Predicate.isIdentical(RepresentativeCondition);
> }
> 
> bool GroupMatcher::addMatcher(Matcher &Candidate) {
>   if (!Candidate.hasFirstCondition())
>     return false;
> 
>   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
>   if (!candidateConditionMatches(Predicate))
>     return false;
> 
>   Matchers.push_back(&Candidate);
>   return true;
> }
> 
> void GroupMatcher::finalize() {
>   assert(Conditions.empty() && "Already finalized?");
>   if (empty())
>     return;
> 
>   Matcher &FirstRule = **Matchers.begin();
> 
>   Conditions.push_back(FirstRule.popFirstCondition());
>   for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
>     Matchers[I]->popFirstCondition();
> }
> 
> void GroupMatcher::emit(MatchTable &Table) {
>   unsigned LabelID = ~0U;
>   if (!Conditions.empty()) {
>     LabelID = Table.allocateLabelID();
>     Table << MatchTable::Opcode("GIM_Try", +1)
>           << MatchTable::Comment("On fail goto")
>           << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
>   }
>   for (auto &Condition : Conditions)
>     Condition->emitPredicateOpcodes(
>         Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
> 
>   for (const auto &M : Matchers)
>     M->emit(Table);
> 
>   // Exit the group
>   if (!Conditions.empty())
>     Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
>           << MatchTable::Label(LabelID);
> }
> 
> unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
> 
> } // end anonymous namespace
> 
> //===----------------------------------------------------------------------===//
> 
> namespace llvm {
> void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
>   GlobalISelEmitter(RK).run(OS);
> }
> } // End llvm namespace
> 
> Modified:
>    llvm/trunk/utils/TableGen/GlobalISelEmitter.cpp
> 
> Modified: llvm/trunk/utils/TableGen/GlobalISelEmitter.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/utils/TableGen/GlobalISelEmitter.cpp?rev=332999&r1=332998&r2=332999&view=diff
> ==============================================================================
> --- llvm/trunk/utils/TableGen/GlobalISelEmitter.cpp (original)
> +++ llvm/trunk/utils/TableGen/GlobalISelEmitter.cpp Tue May 22 09:51:54 2018
> @@ -851,7 +851,6 @@ public:
> 
>   std::unique_ptr<PredicateMatcher> popFirstCondition() override;
>   const PredicateMatcher &getFirstCondition() const override;
> -  LLTCodeGen getFirstConditionAsRootType();
>   bool hasFirstCondition() const override;
>   unsigned getNumOperands() const;
>   StringRef getOpcode() const;
> @@ -1922,16 +1921,6 @@ unsigned RuleMatcher::getNumOperands() c
>   return Matchers.front()->getNumOperands();
> }
> 
> -LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
> -  InstructionMatcher &InsnMatcher = *Matchers.front();
> -  if (!InsnMatcher.predicates_empty())
> -    if (const auto *TM =
> -            dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
> -      if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
> -        return TM->getTy();
> -  return {};
> -}
> -
> /// Generates code to check that the operand is a register defined by an
> /// instruction that matches the given instruction matcher.
> ///
> @@ -4027,6 +4016,25 @@ GlobalISelEmitter::buildMatchTable(Mutab
>   if (!Optimize)
>     return MatchTable::buildTable(InputRules, WithCoverage);
> 
> +  unsigned CurrentOrdering = 0;
> +  StringMap<unsigned> OpcodeOrder;
> +  for (RuleMatcher &Rule : Rules) {
> +    const StringRef Opcode = Rule.getOpcode();
> +    assert(!Opcode.empty() && "Didn't expect an undefined opcode");
> +    if (OpcodeOrder.count(Opcode) == 0)
> +      OpcodeOrder[Opcode] = CurrentOrdering++;
> +  }
> +
> +  std::stable_sort(InputRules.begin(), InputRules.end(),
> +                   [&OpcodeOrder](const Matcher *A, const Matcher *B) {
> +                     auto *L = static_cast<const RuleMatcher *>(A);
> +                     auto *R = static_cast<const RuleMatcher *>(B);
> +                     return std::make_tuple(OpcodeOrder[L->getOpcode()],
> +                                            L->getNumOperands()) <
> +                            std::make_tuple(OpcodeOrder[R->getOpcode()],
> +                                            R->getNumOperands());
> +                   });
> +
>   for (Matcher *Rule : InputRules)
>     Rule->optimize();
> 
> 
> 
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits



More information about the llvm-commits mailing list