[llvm] r331139 - [NFC][LV][LoopUtil] Move LoopVectorizationLegality to its own file

Hideki Saito via llvm-commits llvm-commits at lists.llvm.org
Sun Apr 29 00:26:18 PDT 2018


Author: hsaito
Date: Sun Apr 29 00:26:18 2018
New Revision: 331139

URL: http://llvm.org/viewvc/llvm-project?rev=331139&view=rev
Log:
[NFC][LV][LoopUtil] Move LoopVectorizationLegality to its own file

Summary:
This is a follow up to D45420 (included here since it is still under review and this change is dependent on that) and D45072 (committed).
Actual change for this patch is LoopVectorize* and cmakefile. All others are all from D45420.

LoopVectorizationLegality is an analysis and thus really belongs to Analysis tree. It is modular enough and it is reusable enough ---- we can further improve those aspects once uses outside of LV picks up.

Hopefully, this will make it easier for people familiar with vectorization theory, but not necessarily LV itself to contribute, by lowering the volume of code they should deal with. We probably should start adding some code in LV to check its own capability (i.e., vectorization is legal but LV is not ready to handle it) and then bail out.


Reviewers: rengolin, fhahn, hfinkel, mkuper, aemerson, mssimpso, dcaballe, sguggill

Reviewed By: rengolin, dcaballe

Subscribers: egarcia, rogfer01, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D45552

Added:
    llvm/trunk/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
    llvm/trunk/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
Modified:
    llvm/trunk/lib/Transforms/Vectorize/CMakeLists.txt
    llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp

Added: llvm/trunk/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h?rev=331139&view=auto
==============================================================================
--- llvm/trunk/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h (added)
+++ llvm/trunk/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h Sun Apr 29 00:26:18 2018
@@ -0,0 +1,482 @@
+//===- llvm/Transforms/Vectorize/LoopVectorizationLegality.h ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file defines the LoopVectorizationLegality class. Original code
+/// in Loop Vectorizer has been moved out to its own file for modularity
+/// and reusability.
+///
+/// Currently, it works for innermost loop vectorization. Extending this to
+/// outer loop vectorization is a TODO item.
+///
+/// Also provides:
+/// 1) LoopVectorizeHints class which keeps a number of loop annotations
+/// locally for easy look up. It has the ability to write them back as
+/// loop metadata, upon request.
+/// 2) LoopVectorizationRequirements class for lazy bail out for the purpose
+/// of reporting useful failure to vectorize message.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
+#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
+
+#include "llvm/ADT/MapVector.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+namespace llvm {
+
+/// Create an analysis remark that explains why vectorization failed
+///
+/// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
+/// RemarkName is the identifier for the remark.  If \p I is passed it is an
+/// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
+/// the location of the remark.  \return the remark object that can be
+/// streamed to.
+OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
+                                                  StringRef RemarkName,
+                                                  Loop *TheLoop,
+                                                  Instruction *I = nullptr);
+
+/// Utility class for getting and setting loop vectorizer hints in the form
+/// of loop metadata.
+/// This class keeps a number of loop annotations locally (as member variables)
+/// and can, upon request, write them back as metadata on the loop. It will
+/// initially scan the loop for existing metadata, and will update the local
+/// values based on information in the loop.
+/// We cannot write all values to metadata, as the mere presence of some info,
+/// for example 'force', means a decision has been made. So, we need to be
+/// careful NOT to add them if the user hasn't specifically asked so.
+class LoopVectorizeHints {
+  enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };
+
+  /// Hint - associates name and validation with the hint value.
+  struct Hint {
+    const char *Name;
+    unsigned Value; // This may have to change for non-numeric values.
+    HintKind Kind;
+
+    Hint(const char *Name, unsigned Value, HintKind Kind)
+        : Name(Name), Value(Value), Kind(Kind) {}
+
+    bool validate(unsigned Val);
+  };
+
+  /// Vectorization width.
+  Hint Width;
+
+  /// Vectorization interleave factor.
+  Hint Interleave;
+
+  /// Vectorization forced
+  Hint Force;
+
+  /// Already Vectorized
+  Hint IsVectorized;
+
+  /// Return the loop metadata prefix.
+  static StringRef Prefix() { return "llvm.loop."; }
+
+  /// True if there is any unsafe math in the loop.
+  bool PotentiallyUnsafe = false;
+
+public:
+  enum ForceKind {
+    FK_Undefined = -1, ///< Not selected.
+    FK_Disabled = 0,   ///< Forcing disabled.
+    FK_Enabled = 1,    ///< Forcing enabled.
+  };
+
+  LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
+                     OptimizationRemarkEmitter &ORE);
+
+  /// Mark the loop L as already vectorized by setting the width to 1.
+  void setAlreadyVectorized() {
+    IsVectorized.Value = 1;
+    Hint Hints[] = {IsVectorized};
+    writeHintsToMetadata(Hints);
+  }
+
+  bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const;
+
+  /// Dumps all the hint information.
+  void emitRemarkWithHints() const;
+
+  unsigned getWidth() const { return Width.Value; }
+  unsigned getInterleave() const { return Interleave.Value; }
+  unsigned getIsVectorized() const { return IsVectorized.Value; }
+  enum ForceKind getForce() const { return (ForceKind)Force.Value; }
+
+  /// \brief If hints are provided that force vectorization, use the AlwaysPrint
+  /// pass name to force the frontend to print the diagnostic.
+  const char *vectorizeAnalysisPassName() const;
+
+  bool allowReordering() const {
+    // When enabling loop hints are provided we allow the vectorizer to change
+    // the order of operations that is given by the scalar loop. This is not
+    // enabled by default because can be unsafe or inefficient. For example,
+    // reordering floating-point operations will change the way round-off
+    // error accumulates in the loop.
+    return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
+  }
+
+  bool isPotentiallyUnsafe() const {
+    // Avoid FP vectorization if the target is unsure about proper support.
+    // This may be related to the SIMD unit in the target not handling
+    // IEEE 754 FP ops properly, or bad single-to-double promotions.
+    // Otherwise, a sequence of vectorized loops, even without reduction,
+    // could lead to different end results on the destination vectors.
+    return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
+  }
+
+  void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
+
+private:
+  /// Find hints specified in the loop metadata and update local values.
+  void getHintsFromMetadata();
+
+  /// Checks string hint with one operand and set value if valid.
+  void setHint(StringRef Name, Metadata *Arg);
+
+  /// Create a new hint from name / value pair.
+  MDNode *createHintMetadata(StringRef Name, unsigned V) const;
+
+  /// Matches metadata with hint name.
+  bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes);
+
+  /// Sets current hints into loop metadata, keeping other values intact.
+  void writeHintsToMetadata(ArrayRef<Hint> HintTypes);
+
+  /// The loop these hints belong to.
+  const Loop *TheLoop;
+
+  /// Interface to emit optimization remarks.
+  OptimizationRemarkEmitter &ORE;
+};
+
+/// \brief This holds vectorization requirements that must be verified late in
+/// the process. The requirements are set by legalize and costmodel. Once
+/// vectorization has been determined to be possible and profitable the
+/// requirements can be verified by looking for metadata or compiler options.
+/// For example, some loops require FP commutativity which is only allowed if
+/// vectorization is explicitly specified or if the fast-math compiler option
+/// has been provided.
+/// Late evaluation of these requirements allows helpful diagnostics to be
+/// composed that tells the user what need to be done to vectorize the loop. For
+/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
+/// evaluation should be used only when diagnostics can generated that can be
+/// followed by a non-expert user.
+class LoopVectorizationRequirements {
+public:
+  LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}
+
+  void addUnsafeAlgebraInst(Instruction *I) {
+    // First unsafe algebra instruction.
+    if (!UnsafeAlgebraInst)
+      UnsafeAlgebraInst = I;
+  }
+
+  void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
+
+  bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints);
+
+private:
+  unsigned NumRuntimePointerChecks = 0;
+  Instruction *UnsafeAlgebraInst = nullptr;
+
+  /// Interface to emit optimization remarks.
+  OptimizationRemarkEmitter &ORE;
+};
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+///   will change the order of memory accesses in a way that will change the
+///   correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+  LoopVectorizationLegality(
+      Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
+      TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
+      std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
+      OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
+      LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
+      : TheLoop(L), LI(LI), PSE(PSE), TLI(TLI), DT(DT), GetLAA(GetLAA),
+        ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {}
+
+  /// ReductionList contains the reduction descriptors for all
+  /// of the reductions that were found in the loop.
+  using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;
+
+  /// InductionList saves induction variables and maps them to the
+  /// induction descriptor.
+  using InductionList = MapVector<PHINode *, InductionDescriptor>;
+
+  /// RecurrenceSet contains the phi nodes that are recurrences other than
+  /// inductions and reductions.
+  using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
+
+  /// Returns true if it is legal to vectorize this loop.
+  /// This does not mean that it is profitable to vectorize this
+  /// loop, only that it is legal to do so.
+  /// Temporarily taking UseVPlanNativePath parameter. If true, take
+  /// the new code path being implemented for outer loop vectorization
+  /// (should be functional for inner loop vectorization) based on VPlan.
+  /// If false, good old LV code.
+  bool canVectorize(bool UseVPlanNativePath);
+
+  /// Returns the primary induction variable.
+  PHINode *getPrimaryInduction() { return PrimaryInduction; }
+
+  /// Returns the reduction variables found in the loop.
+  ReductionList *getReductionVars() { return &Reductions; }
+
+  /// Returns the induction variables found in the loop.
+  InductionList *getInductionVars() { return &Inductions; }
+
+  /// Return the first-order recurrences found in the loop.
+  RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
+
+  /// Return the set of instructions to sink to handle first-order recurrences.
+  DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }
+
+  /// Returns the widest induction type.
+  Type *getWidestInductionType() { return WidestIndTy; }
+
+  /// Returns True if V is a Phi node of an induction variable in this loop.
+  bool isInductionPhi(const Value *V);
+
+  /// Returns True if V is a cast that is part of an induction def-use chain,
+  /// and had been proven to be redundant under a runtime guard (in other
+  /// words, the cast has the same SCEV expression as the induction phi).
+  bool isCastedInductionVariable(const Value *V);
+
+  /// Returns True if V can be considered as an induction variable in this
+  /// loop. V can be the induction phi, or some redundant cast in the def-use
+  /// chain of the inducion phi.
+  bool isInductionVariable(const Value *V);
+
+  /// Returns True if PN is a reduction variable in this loop.
+  bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
+
+  /// Returns True if Phi is a first-order recurrence in this loop.
+  bool isFirstOrderRecurrence(const PHINode *Phi);
+
+  /// Return true if the block BB needs to be predicated in order for the loop
+  /// to be vectorized.
+  bool blockNeedsPredication(BasicBlock *BB);
+
+  /// Check if this pointer is consecutive when vectorizing. This happens
+  /// when the last index of the GEP is the induction variable, or that the
+  /// pointer itself is an induction variable.
+  /// This check allows us to vectorize A[idx] into a wide load/store.
+  /// Returns:
+  /// 0 - Stride is unknown or non-consecutive.
+  /// 1 - Address is consecutive.
+  /// -1 - Address is consecutive, and decreasing.
+  /// NOTE: This method must only be used before modifying the original scalar
+  /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
+  int isConsecutivePtr(Value *Ptr);
+
+  /// Returns true if the value V is uniform within the loop.
+  bool isUniform(Value *V);
+
+  /// Returns the information that we collected about runtime memory check.
+  const RuntimePointerChecking *getRuntimePointerChecking() const {
+    return LAI->getRuntimePointerChecking();
+  }
+
+  const LoopAccessInfo *getLAI() const { return LAI; }
+
+  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
+
+  uint64_t getMaxSafeRegisterWidth() const {
+    return LAI->getDepChecker().getMaxSafeRegisterWidth();
+  }
+
+  bool hasStride(Value *V) { return LAI->hasStride(V); }
+
+  /// Returns true if vector representation of the instruction \p I
+  /// requires mask.
+  bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
+
+  unsigned getNumStores() const { return LAI->getNumStores(); }
+  unsigned getNumLoads() const { return LAI->getNumLoads(); }
+
+  // Returns true if the NoNaN attribute is set on the function.
+  bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
+
+private:
+  /// Return true if the pre-header, exiting and latch blocks of \p Lp and all
+  /// its nested loops are considered legal for vectorization. These legal
+  /// checks are common for inner and outer loop vectorization.
+  /// Temporarily taking UseVPlanNativePath parameter. If true, take
+  /// the new code path being implemented for outer loop vectorization
+  /// (should be functional for inner loop vectorization) based on VPlan.
+  /// If false, good old LV code.
+  bool canVectorizeLoopNestCFG(Loop *Lp, bool UseVPlanNativePath);
+
+  /// Return true if the pre-header, exiting and latch blocks of \p Lp
+  /// (non-recursive) are considered legal for vectorization.
+  /// Temporarily taking UseVPlanNativePath parameter. If true, take
+  /// the new code path being implemented for outer loop vectorization
+  /// (should be functional for inner loop vectorization) based on VPlan.
+  /// If false, good old LV code.
+  bool canVectorizeLoopCFG(Loop *Lp, bool UseVPlanNativePath);
+
+  /// Check if a single basic block loop is vectorizable.
+  /// At this point we know that this is a loop with a constant trip count
+  /// and we only need to check individual instructions.
+  bool canVectorizeInstrs();
+
+  /// When we vectorize loops we may change the order in which
+  /// we read and write from memory. This method checks if it is
+  /// legal to vectorize the code, considering only memory constrains.
+  /// Returns true if the loop is vectorizable
+  bool canVectorizeMemory();
+
+  /// Return true if we can vectorize this loop using the IF-conversion
+  /// transformation.
+  bool canVectorizeWithIfConvert();
+
+  /// Return true if we can vectorize this outer loop. The method performs
+  /// specific checks for outer loop vectorization.
+  bool canVectorizeOuterLoop();
+
+  /// Return true if all of the instructions in the block can be speculatively
+  /// executed. \p SafePtrs is a list of addresses that are known to be legal
+  /// and we know that we can read from them without segfault.
+  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
+
+  /// Updates the vectorization state by adding \p Phi to the inductions list.
+  /// This can set \p Phi as the main induction of the loop if \p Phi is a
+  /// better choice for the main induction than the existing one.
+  void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
+                       SmallPtrSetImpl<Value *> &AllowedExit);
+
+  /// Create an analysis remark that explains why vectorization failed
+  ///
+  /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
+  /// an instruction that prevents vectorization.  Otherwise the loop is used
+  /// for the location of the remark.  \return the remark object that can be
+  /// streamed to.
+  OptimizationRemarkAnalysis
+  createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
+    return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
+                                  RemarkName, TheLoop, I);
+  }
+
+  /// \brief If an access has a symbolic strides, this maps the pointer value to
+  /// the stride symbol.
+  const ValueToValueMap *getSymbolicStrides() {
+    // FIXME: Currently, the set of symbolic strides is sometimes queried before
+    // it's collected.  This happens from canVectorizeWithIfConvert, when the
+    // pointer is checked to reference consecutive elements suitable for a
+    // masked access.
+    return LAI ? &LAI->getSymbolicStrides() : nullptr;
+  }
+
+  /// The loop that we evaluate.
+  Loop *TheLoop;
+
+  /// Loop Info analysis.
+  LoopInfo *LI;
+
+  /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
+  /// Applies dynamic knowledge to simplify SCEV expressions in the context
+  /// of existing SCEV assumptions. The analysis will also add a minimal set
+  /// of new predicates if this is required to enable vectorization and
+  /// unrolling.
+  PredicatedScalarEvolution &PSE;
+
+  /// Target Library Info.
+  TargetLibraryInfo *TLI;
+
+  /// Dominator Tree.
+  DominatorTree *DT;
+
+  // LoopAccess analysis.
+  std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
+
+  // And the loop-accesses info corresponding to this loop.  This pointer is
+  // null until canVectorizeMemory sets it up.
+  const LoopAccessInfo *LAI = nullptr;
+
+  /// Interface to emit optimization remarks.
+  OptimizationRemarkEmitter *ORE;
+
+  //  ---  vectorization state --- //
+
+  /// Holds the primary induction variable. This is the counter of the
+  /// loop.
+  PHINode *PrimaryInduction = nullptr;
+
+  /// Holds the reduction variables.
+  ReductionList Reductions;
+
+  /// Holds all of the induction variables that we found in the loop.
+  /// Notice that inductions don't need to start at zero and that induction
+  /// variables can be pointers.
+  InductionList Inductions;
+
+  /// Holds all the casts that participate in the update chain of the induction
+  /// variables, and that have been proven to be redundant (possibly under a
+  /// runtime guard). These casts can be ignored when creating the vectorized
+  /// loop body.
+  SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
+
+  /// Holds the phi nodes that are first-order recurrences.
+  RecurrenceSet FirstOrderRecurrences;
+
+  /// Holds instructions that need to sink past other instructions to handle
+  /// first-order recurrences.
+  DenseMap<Instruction *, Instruction *> SinkAfter;
+
+  /// Holds the widest induction type encountered.
+  Type *WidestIndTy = nullptr;
+
+  /// Allowed outside users. This holds the induction and reduction
+  /// vars which can be accessed from outside the loop.
+  SmallPtrSet<Value *, 4> AllowedExit;
+
+  /// Can we assume the absence of NaNs.
+  bool HasFunNoNaNAttr = false;
+
+  /// Vectorization requirements that will go through late-evaluation.
+  LoopVectorizationRequirements *Requirements;
+
+  /// Used to emit an analysis of any legality issues.
+  LoopVectorizeHints *Hints;
+
+  /// The demanded bits analsyis is used to compute the minimum type size in
+  /// which a reduction can be computed.
+  DemandedBits *DB;
+
+  /// The assumption cache analysis is used to compute the minimum type size in
+  /// which a reduction can be computed.
+  AssumptionCache *AC;
+
+  /// While vectorizing these instructions we have to generate a
+  /// call to the appropriate masked intrinsic
+  SmallPtrSet<const Instruction *, 8> MaskedOp;
+};
+
+} // namespace llvm
+
+#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H

Modified: llvm/trunk/lib/Transforms/Vectorize/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/CMakeLists.txt?rev=331139&r1=331138&r2=331139&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/CMakeLists.txt (original)
+++ llvm/trunk/lib/Transforms/Vectorize/CMakeLists.txt Sun Apr 29 00:26:18 2018
@@ -1,5 +1,6 @@
 add_llvm_library(LLVMVectorize
   LoadStoreVectorizer.cpp
+  LoopVectorizationLegality.cpp
   LoopVectorize.cpp
   SLPVectorizer.cpp
   Vectorize.cpp

Added: llvm/trunk/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp?rev=331139&view=auto
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (added)
+++ llvm/trunk/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp Sun Apr 29 00:26:18 2018
@@ -0,0 +1,1068 @@
+//===- LoopVectorizationLegality.cpp --------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides loop vectorization legality analysis. Original code
+// resided in LoopVectorize.cpp for a long time.
+//
+// At this point, it is implemented as a utility class, not as an analysis
+// pass. It should be easy to create an analysis pass around it if there
+// is a need (but D45420 needs to happen first).
+//
+#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/IntrinsicInst.h"
+
+using namespace llvm;
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+static cl::opt<bool>
+    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+                       cl::desc("Enable if-conversion during vectorization."));
+
+static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
+    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
+    cl::desc("The maximum allowed number of runtime memory checks with a "
+             "vectorize(enable) pragma."));
+
+static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
+    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
+    cl::desc("The maximum number of SCEV checks allowed."));
+
+static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
+    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
+    cl::desc("The maximum number of SCEV checks allowed with a "
+             "vectorize(enable) pragma"));
+
+/// Maximum vectorization interleave count.
+static const unsigned MaxInterleaveFactor = 16;
+
+namespace llvm {
+
+OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
+                                                  StringRef RemarkName,
+                                                  Loop *TheLoop,
+                                                  Instruction *I) {
+  Value *CodeRegion = TheLoop->getHeader();
+  DebugLoc DL = TheLoop->getStartLoc();
+
+  if (I) {
+    CodeRegion = I->getParent();
+    // If there is no debug location attached to the instruction, revert back to
+    // using the loop's.
+    if (I->getDebugLoc())
+      DL = I->getDebugLoc();
+  }
+
+  OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
+  R << "loop not vectorized: ";
+  return R;
+}
+
+bool LoopVectorizeHints::Hint::validate(unsigned Val) {
+  switch (Kind) {
+  case HK_WIDTH:
+    return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
+  case HK_UNROLL:
+    return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
+  case HK_FORCE:
+    return (Val <= 1);
+  case HK_ISVECTORIZED:
+    return (Val == 0 || Val == 1);
+  }
+  return false;
+}
+
+LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
+                                       OptimizationRemarkEmitter &ORE)
+    : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
+      Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
+      Force("vectorize.enable", FK_Undefined, HK_FORCE),
+      IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
+  // Populate values with existing loop metadata.
+  getHintsFromMetadata();
+
+  // force-vector-interleave overrides DisableInterleaving.
+  if (VectorizerParams::isInterleaveForced())
+    Interleave.Value = VectorizerParams::VectorizationInterleave;
+
+  if (IsVectorized.Value != 1)
+    // If the vectorization width and interleaving count are both 1 then
+    // consider the loop to have been already vectorized because there's
+    // nothing more that we can do.
+    IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
+  DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
+        << "LV: Interleaving disabled by the pass manager\n");
+}
+
+bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
+                                            bool AlwaysVectorize) const {
+  if (getForce() == LoopVectorizeHints::FK_Disabled) {
+    DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+    emitRemarkWithHints();
+    return false;
+  }
+
+  if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
+    DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+    emitRemarkWithHints();
+    return false;
+  }
+
+  if (getIsVectorized() == 1) {
+    DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
+    // FIXME: Add interleave.disable metadata. This will allow
+    // vectorize.disable to be used without disabling the pass and errors
+    // to differentiate between disabled vectorization and a width of 1.
+    ORE.emit([&]() {
+      return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
+                                        "AllDisabled", L->getStartLoc(),
+                                        L->getHeader())
+             << "loop not vectorized: vectorization and interleaving are "
+                "explicitly disabled, or the loop has already been "
+                "vectorized";
+    });
+    return false;
+  }
+
+  return true;
+}
+
+void LoopVectorizeHints::emitRemarkWithHints() const {
+  using namespace ore;
+
+  ORE.emit([&]() {
+    if (Force.Value == LoopVectorizeHints::FK_Disabled)
+      return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
+                                      TheLoop->getStartLoc(),
+                                      TheLoop->getHeader())
+             << "loop not vectorized: vectorization is explicitly disabled";
+    else {
+      OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
+                                 TheLoop->getStartLoc(), TheLoop->getHeader());
+      R << "loop not vectorized";
+      if (Force.Value == LoopVectorizeHints::FK_Enabled) {
+        R << " (Force=" << NV("Force", true);
+        if (Width.Value != 0)
+          R << ", Vector Width=" << NV("VectorWidth", Width.Value);
+        if (Interleave.Value != 0)
+          R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
+        R << ")";
+      }
+      return R;
+    }
+  });
+}
+
+const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
+  if (getWidth() == 1)
+    return LV_NAME;
+  if (getForce() == LoopVectorizeHints::FK_Disabled)
+    return LV_NAME;
+  if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
+    return LV_NAME;
+  return OptimizationRemarkAnalysis::AlwaysPrint;
+}
+
+void LoopVectorizeHints::getHintsFromMetadata() {
+  MDNode *LoopID = TheLoop->getLoopID();
+  if (!LoopID)
+    return;
+
+  // First operand should refer to the loop id itself.
+  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+    const MDString *S = nullptr;
+    SmallVector<Metadata *, 4> Args;
+
+    // The expected hint is either a MDString or a MDNode with the first
+    // operand a MDString.
+    if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
+      if (!MD || MD->getNumOperands() == 0)
+        continue;
+      S = dyn_cast<MDString>(MD->getOperand(0));
+      for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
+        Args.push_back(MD->getOperand(i));
+    } else {
+      S = dyn_cast<MDString>(LoopID->getOperand(i));
+      assert(Args.size() == 0 && "too many arguments for MDString");
+    }
+
+    if (!S)
+      continue;
+
+    // Check if the hint starts with the loop metadata prefix.
+    StringRef Name = S->getString();
+    if (Args.size() == 1)
+      setHint(Name, Args[0]);
+  }
+}
+
+void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
+  if (!Name.startswith(Prefix()))
+    return;
+  Name = Name.substr(Prefix().size(), StringRef::npos);
+
+  const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
+  if (!C)
+    return;
+  unsigned Val = C->getZExtValue();
+
+  Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
+  for (auto H : Hints) {
+    if (Name == H->Name) {
+      if (H->validate(Val))
+        H->Value = Val;
+      else
+        DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
+      break;
+    }
+  }
+}
+
+MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
+                                               unsigned V) const {
+  LLVMContext &Context = TheLoop->getHeader()->getContext();
+  Metadata *MDs[] = {
+      MDString::get(Context, Name),
+      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
+  return MDNode::get(Context, MDs);
+}
+
+bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
+                                                 ArrayRef<Hint> HintTypes) {
+  MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
+  if (!Name)
+    return false;
+
+  for (auto H : HintTypes)
+    if (Name->getString().endswith(H.Name))
+      return true;
+  return false;
+}
+
+void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
+  if (HintTypes.empty())
+    return;
+
+  // Reserve the first element to LoopID (see below).
+  SmallVector<Metadata *, 4> MDs(1);
+  // If the loop already has metadata, then ignore the existing operands.
+  MDNode *LoopID = TheLoop->getLoopID();
+  if (LoopID) {
+    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
+      // If node in update list, ignore old value.
+      if (!matchesHintMetadataName(Node, HintTypes))
+        MDs.push_back(Node);
+    }
+  }
+
+  // Now, add the missing hints.
+  for (auto H : HintTypes)
+    MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
+
+  // Replace current metadata node with new one.
+  LLVMContext &Context = TheLoop->getHeader()->getContext();
+  MDNode *NewLoopID = MDNode::get(Context, MDs);
+  // Set operand 0 to refer to the loop id itself.
+  NewLoopID->replaceOperandWith(0, NewLoopID);
+
+  TheLoop->setLoopID(NewLoopID);
+}
+
+bool LoopVectorizationRequirements::doesNotMeet(
+    Function *F, Loop *L, const LoopVectorizeHints &Hints) {
+  const char *PassName = Hints.vectorizeAnalysisPassName();
+  bool Failed = false;
+  if (UnsafeAlgebraInst && !Hints.allowReordering()) {
+    ORE.emit([&]() {
+      return OptimizationRemarkAnalysisFPCommute(
+                 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
+                 UnsafeAlgebraInst->getParent())
+             << "loop not vectorized: cannot prove it is safe to reorder "
+                "floating-point operations";
+    });
+    Failed = true;
+  }
+
+  // Test if runtime memcheck thresholds are exceeded.
+  bool PragmaThresholdReached =
+      NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
+  bool ThresholdReached =
+      NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
+  if ((ThresholdReached && !Hints.allowReordering()) ||
+      PragmaThresholdReached) {
+    ORE.emit([&]() {
+      return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
+                                                L->getStartLoc(),
+                                                L->getHeader())
+             << "loop not vectorized: cannot prove it is safe to reorder "
+                "memory operations";
+    });
+    DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
+    Failed = true;
+  }
+
+  return Failed;
+}
+
+// Return true if the inner loop \p Lp is uniform with regard to the outer loop
+// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
+// executing the inner loop will execute the same iterations). This check is
+// very constrained for now but it will be relaxed in the future. \p Lp is
+// considered uniform if it meets all the following conditions:
+//   1) it has a canonical IV (starting from 0 and with stride 1),
+//   2) its latch terminator is a conditional branch and,
+//   3) its latch condition is a compare instruction whose operands are the
+//      canonical IV and an OuterLp invariant.
+// This check doesn't take into account the uniformity of other conditions not
+// related to the loop latch because they don't affect the loop uniformity.
+//
+// NOTE: We decided to keep all these checks and its associated documentation
+// together so that we can easily have a picture of the current supported loop
+// nests. However, some of the current checks don't depend on \p OuterLp and
+// would be redundantly executed for each \p Lp if we invoked this function for
+// different candidate outer loops. This is not the case for now because we
+// don't currently have the infrastructure to evaluate multiple candidate outer
+// loops and \p OuterLp will be a fixed parameter while we only support explicit
+// outer loop vectorization. It's also very likely that these checks go away
+// before introducing the aforementioned infrastructure. However, if this is not
+// the case, we should move the \p OuterLp independent checks to a separate
+// function that is only executed once for each \p Lp.
+static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
+  assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
+
+  // If Lp is the outer loop, it's uniform by definition.
+  if (Lp == OuterLp)
+    return true;
+  assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
+
+  // 1.
+  PHINode *IV = Lp->getCanonicalInductionVariable();
+  if (!IV) {
+    DEBUG(dbgs() << "LV: Canonical IV not found.\n");
+    return false;
+  }
+
+  // 2.
+  BasicBlock *Latch = Lp->getLoopLatch();
+  auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
+  if (!LatchBr || LatchBr->isUnconditional()) {
+    DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
+    return false;
+  }
+
+  // 3.
+  auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
+  if (!LatchCmp) {
+    DEBUG(dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
+    return false;
+  }
+
+  Value *CondOp0 = LatchCmp->getOperand(0);
+  Value *CondOp1 = LatchCmp->getOperand(1);
+  Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
+  if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
+      !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
+    DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
+    return false;
+  }
+
+  return true;
+}
+
+// Return true if \p Lp and all its nested loops are uniform with regard to \p
+// OuterLp.
+static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
+  if (!isUniformLoop(Lp, OuterLp))
+    return false;
+
+  // Check if nested loops are uniform.
+  for (Loop *SubLp : *Lp)
+    if (!isUniformLoopNest(SubLp, OuterLp))
+      return false;
+
+  return true;
+}
+
+/// \brief Check whether it is safe to if-convert this phi node.
+///
+/// Phi nodes with constant expressions that can trap are not safe to if
+/// convert.
+static bool canIfConvertPHINodes(BasicBlock *BB) {
+  for (PHINode &Phi : BB->phis()) {
+    for (Value *V : Phi.incoming_values())
+      if (auto *C = dyn_cast<Constant>(V))
+        if (C->canTrap())
+          return false;
+  }
+  return true;
+}
+
+static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
+  if (Ty->isPointerTy())
+    return DL.getIntPtrType(Ty);
+
+  // It is possible that char's or short's overflow when we ask for the loop's
+  // trip count, work around this by changing the type size.
+  if (Ty->getScalarSizeInBits() < 32)
+    return Type::getInt32Ty(Ty->getContext());
+
+  return Ty;
+}
+
+static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
+  Ty0 = convertPointerToIntegerType(DL, Ty0);
+  Ty1 = convertPointerToIntegerType(DL, Ty1);
+  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
+    return Ty0;
+  return Ty1;
+}
+
+/// \brief Check that the instruction has outside loop users and is not an
+/// identified reduction variable.
+static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
+                               SmallPtrSetImpl<Value *> &AllowedExit) {
+  // Reduction and Induction instructions are allowed to have exit users. All
+  // other instructions must not have external users.
+  if (!AllowedExit.count(Inst))
+    // Check that all of the users of the loop are inside the BB.
+    for (User *U : Inst->users()) {
+      Instruction *UI = cast<Instruction>(U);
+      // This user may be a reduction exit value.
+      if (!TheLoop->contains(UI)) {
+        DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
+        return true;
+      }
+    }
+  return false;
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+  const ValueToValueMap &Strides =
+      getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
+
+  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
+  if (Stride == 1 || Stride == -1)
+    return Stride;
+  return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+  return LAI->isUniform(V);
+}
+
+bool LoopVectorizationLegality::canVectorizeOuterLoop() {
+  assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
+  // Store the result and return it at the end instead of exiting early, in case
+  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+  bool Result = true;
+  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+  for (BasicBlock *BB : TheLoop->blocks()) {
+    // Check whether the BB terminator is a BranchInst. Any other terminator is
+    // not supported yet.
+    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
+    if (!Br) {
+      DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
+      ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+                << "loop control flow is not understood by vectorizer");
+      if (DoExtraAnalysis)
+        Result = false;
+      else
+        return false;
+    }
+
+    // Check whether the BranchInst is a supported one. Only unconditional
+    // branches, conditional branches with an outer loop invariant condition or
+    // backedges are supported.
+    if (Br && Br->isConditional() &&
+        !TheLoop->isLoopInvariant(Br->getCondition()) &&
+        !LI->isLoopHeader(Br->getSuccessor(0)) &&
+        !LI->isLoopHeader(Br->getSuccessor(1))) {
+      DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
+      ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+                << "loop control flow is not understood by vectorizer");
+      if (DoExtraAnalysis)
+        Result = false;
+      else
+        return false;
+    }
+  }
+
+  // Check whether inner loops are uniform. At this point, we only support
+  // simple outer loops scenarios with uniform nested loops.
+  if (!isUniformLoopNest(TheLoop /*loop nest*/,
+                         TheLoop /*context outer loop*/)) {
+    DEBUG(dbgs()
+          << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
+    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+              << "loop control flow is not understood by vectorizer");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  return Result;
+}
+
+void LoopVectorizationLegality::addInductionPhi(
+    PHINode *Phi, const InductionDescriptor &ID,
+    SmallPtrSetImpl<Value *> &AllowedExit) {
+  Inductions[Phi] = ID;
+
+  // In case this induction also comes with casts that we know we can ignore
+  // in the vectorized loop body, record them here. All casts could be recorded
+  // here for ignoring, but suffices to record only the first (as it is the
+  // only one that may bw used outside the cast sequence).
+  const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
+  if (!Casts.empty())
+    InductionCastsToIgnore.insert(*Casts.begin());
+
+  Type *PhiTy = Phi->getType();
+  const DataLayout &DL = Phi->getModule()->getDataLayout();
+
+  // Get the widest type.
+  if (!PhiTy->isFloatingPointTy()) {
+    if (!WidestIndTy)
+      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
+    else
+      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
+  }
+
+  // Int inductions are special because we only allow one IV.
+  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
+      ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
+      isa<Constant>(ID.getStartValue()) &&
+      cast<Constant>(ID.getStartValue())->isNullValue()) {
+
+    // Use the phi node with the widest type as induction. Use the last
+    // one if there are multiple (no good reason for doing this other
+    // than it is expedient). We've checked that it begins at zero and
+    // steps by one, so this is a canonical induction variable.
+    if (!PrimaryInduction || PhiTy == WidestIndTy)
+      PrimaryInduction = Phi;
+  }
+
+  // Both the PHI node itself, and the "post-increment" value feeding
+  // back into the PHI node may have external users.
+  // We can allow those uses, except if the SCEVs we have for them rely
+  // on predicates that only hold within the loop, since allowing the exit
+  // currently means re-using this SCEV outside the loop.
+  if (PSE.getUnionPredicate().isAlwaysTrue()) {
+    AllowedExit.insert(Phi);
+    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
+  }
+
+  DEBUG(dbgs() << "LV: Found an induction variable.\n");
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+  BasicBlock *Header = TheLoop->getHeader();
+
+  // Look for the attribute signaling the absence of NaNs.
+  Function &F = *Header->getParent();
+  HasFunNoNaNAttr =
+      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+  // For each block in the loop.
+  for (BasicBlock *BB : TheLoop->blocks()) {
+    // Scan the instructions in the block and look for hazards.
+    for (Instruction &I : *BB) {
+      if (auto *Phi = dyn_cast<PHINode>(&I)) {
+        Type *PhiTy = Phi->getType();
+        // Check that this PHI type is allowed.
+        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
+            !PhiTy->isPointerTy()) {
+          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
+                    << "loop control flow is not understood by vectorizer");
+          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+          return false;
+        }
+
+        // If this PHINode is not in the header block, then we know that we
+        // can convert it to select during if-conversion. No need to check if
+        // the PHIs in this block are induction or reduction variables.
+        if (BB != Header) {
+          // Check that this instruction has no outside users or is an
+          // identified reduction value with an outside user.
+          if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
+            continue;
+          ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
+                    << "value could not be identified as "
+                       "an induction or reduction variable");
+          return false;
+        }
+
+        // We only allow if-converted PHIs with exactly two incoming values.
+        if (Phi->getNumIncomingValues() != 2) {
+          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
+                    << "control flow not understood by vectorizer");
+          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+          return false;
+        }
+
+        RecurrenceDescriptor RedDes;
+        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
+                                                 DT)) {
+          if (RedDes.hasUnsafeAlgebra())
+            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
+          AllowedExit.insert(RedDes.getLoopExitInstr());
+          Reductions[Phi] = RedDes;
+          continue;
+        }
+
+        InductionDescriptor ID;
+        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
+          addInductionPhi(Phi, ID, AllowedExit);
+          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
+            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
+          continue;
+        }
+
+        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
+                                                         SinkAfter, DT)) {
+          FirstOrderRecurrences.insert(Phi);
+          continue;
+        }
+
+        // As a last resort, coerce the PHI to a AddRec expression
+        // and re-try classifying it a an induction PHI.
+        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
+          addInductionPhi(Phi, ID, AllowedExit);
+          continue;
+        }
+
+        ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
+                  << "value that could not be identified as "
+                     "reduction is used outside the loop");
+        DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
+        return false;
+      } // end of PHI handling
+
+      // We handle calls that:
+      //   * Are debug info intrinsics.
+      //   * Have a mapping to an IR intrinsic.
+      //   * Have a vector version available.
+      auto *CI = dyn_cast<CallInst>(&I);
+      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
+          !isa<DbgInfoIntrinsic>(CI) &&
+          !(CI->getCalledFunction() && TLI &&
+            TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
+        ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
+                  << "call instruction cannot be vectorized");
+        DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
+        return false;
+      }
+
+      // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
+      // second argument is the same (i.e. loop invariant)
+      if (CI && hasVectorInstrinsicScalarOpd(
+                    getVectorIntrinsicIDForCall(CI, TLI), 1)) {
+        auto *SE = PSE.getSE();
+        if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
+          ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
+                    << "intrinsic instruction cannot be vectorized");
+          DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
+          return false;
+        }
+      }
+
+      // Check that the instruction return type is vectorizable.
+      // Also, we can't vectorize extractelement instructions.
+      if ((!VectorType::isValidElementType(I.getType()) &&
+           !I.getType()->isVoidTy()) ||
+          isa<ExtractElementInst>(I)) {
+        ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
+                  << "instruction return type cannot be vectorized");
+        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
+        return false;
+      }
+
+      // Check that the stored type is vectorizable.
+      if (auto *ST = dyn_cast<StoreInst>(&I)) {
+        Type *T = ST->getValueOperand()->getType();
+        if (!VectorType::isValidElementType(T)) {
+          ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
+                    << "store instruction cannot be vectorized");
+          return false;
+        }
+
+        // FP instructions can allow unsafe algebra, thus vectorizable by
+        // non-IEEE-754 compliant SIMD units.
+        // This applies to floating-point math operations and calls, not memory
+        // operations, shuffles, or casts, as they don't change precision or
+        // semantics.
+      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
+                 !I.isFast()) {
+        DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
+        Hints->setPotentiallyUnsafe();
+      }
+
+      // Reduction instructions are allowed to have exit users.
+      // All other instructions must not have external users.
+      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
+        ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
+                  << "value cannot be used outside the loop");
+        return false;
+      }
+    } // next instr.
+  }
+
+  if (!PrimaryInduction) {
+    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+    if (Inductions.empty()) {
+      ORE->emit(createMissedAnalysis("NoInductionVariable")
+                << "loop induction variable could not be identified");
+      return false;
+    }
+  }
+
+  // Now we know the widest induction type, check if our found induction
+  // is the same size. If it's not, unset it here and InnerLoopVectorizer
+  // will create another.
+  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
+    PrimaryInduction = nullptr;
+
+  return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+  LAI = &(*GetLAA)(*TheLoop);
+  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
+  if (LAR) {
+    ORE->emit([&]() {
+      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
+                                        "loop not vectorized: ", *LAR);
+    });
+  }
+  if (!LAI->canVectorizeMemory())
+    return false;
+
+  if (LAI->hasStoreToLoopInvariantAddress()) {
+    ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
+              << "write to a loop invariant address could not be vectorized");
+    DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+    return false;
+  }
+
+  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
+  PSE.addPredicate(LAI->getPSE().getUnionPredicate());
+
+  return true;
+}
+
+bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
+  Value *In0 = const_cast<Value *>(V);
+  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+  if (!PN)
+    return false;
+
+  return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
+  auto *Inst = dyn_cast<Instruction>(V);
+  return (Inst && InductionCastsToIgnore.count(Inst));
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+  return isInductionPhi(V) || isCastedInductionVariable(V);
+}
+
+bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
+  return FirstOrderRecurrences.count(Phi);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(
+    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
+  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
+
+  for (Instruction &I : *BB) {
+    // Check that we don't have a constant expression that can trap as operand.
+    for (Value *Operand : I.operands()) {
+      if (auto *C = dyn_cast<Constant>(Operand))
+        if (C->canTrap())
+          return false;
+    }
+    // We might be able to hoist the load.
+    if (I.mayReadFromMemory()) {
+      auto *LI = dyn_cast<LoadInst>(&I);
+      if (!LI)
+        return false;
+      if (!SafePtrs.count(LI->getPointerOperand())) {
+        // !llvm.mem.parallel_loop_access implies if-conversion safety.
+        // Otherwise, record that the load needs (real or emulated) masking
+        // and let the cost model decide.
+        if (!IsAnnotatedParallel)
+          MaskedOp.insert(LI);
+        continue;
+      }
+    }
+
+    if (I.mayWriteToMemory()) {
+      auto *SI = dyn_cast<StoreInst>(&I);
+      if (!SI)
+        return false;
+      // Predicated store requires some form of masking:
+      // 1) masked store HW instruction,
+      // 2) emulation via load-blend-store (only if safe and legal to do so,
+      //    be aware on the race conditions), or
+      // 3) element-by-element predicate check and scalar store.
+      MaskedOp.insert(SI);
+      continue;
+    }
+    if (I.mayThrow())
+      return false;
+  }
+
+  return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+  if (!EnableIfConversion) {
+    ORE->emit(createMissedAnalysis("IfConversionDisabled")
+              << "if-conversion is disabled");
+    return false;
+  }
+
+  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+
+  // A list of pointers that we can safely read and write to.
+  SmallPtrSet<Value *, 8> SafePointes;
+
+  // Collect safe addresses.
+  for (BasicBlock *BB : TheLoop->blocks()) {
+    if (blockNeedsPredication(BB))
+      continue;
+
+    for (Instruction &I : *BB)
+      if (auto *Ptr = getLoadStorePointerOperand(&I))
+        SafePointes.insert(Ptr);
+  }
+
+  // Collect the blocks that need predication.
+  BasicBlock *Header = TheLoop->getHeader();
+  for (BasicBlock *BB : TheLoop->blocks()) {
+    // We don't support switch statements inside loops.
+    if (!isa<BranchInst>(BB->getTerminator())) {
+      ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
+                << "loop contains a switch statement");
+      return false;
+    }
+
+    // We must be able to predicate all blocks that need to be predicated.
+    if (blockNeedsPredication(BB)) {
+      if (!blockCanBePredicated(BB, SafePointes)) {
+        ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
+                  << "control flow cannot be substituted for a select");
+        return false;
+      }
+    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
+      ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
+                << "control flow cannot be substituted for a select");
+      return false;
+    }
+  }
+
+  // We can if-convert this loop.
+  return true;
+}
+
+// Helper function to canVectorizeLoopNestCFG.
+bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
+                                                    bool UseVPlanNativePath) {
+  assert((UseVPlanNativePath || Lp->empty()) &&
+         "VPlan-native path is not enabled.");
+
+  // TODO: ORE should be improved to show more accurate information when an
+  // outer loop can't be vectorized because a nested loop is not understood or
+  // legal. Something like: "outer_loop_location: loop not vectorized:
+  // (inner_loop_location) loop control flow is not understood by vectorizer".
+
+  // Store the result and return it at the end instead of exiting early, in case
+  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+  bool Result = true;
+  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+  // We must have a loop in canonical form. Loops with indirectbr in them cannot
+  // be canonicalized.
+  if (!Lp->getLoopPreheader()) {
+    DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
+    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+              << "loop control flow is not understood by vectorizer");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // We must have a single backedge.
+  if (Lp->getNumBackEdges() != 1) {
+    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+              << "loop control flow is not understood by vectorizer");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // We must have a single exiting block.
+  if (!Lp->getExitingBlock()) {
+    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+              << "loop control flow is not understood by vectorizer");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // We only handle bottom-tested loops, i.e. loop in which the condition is
+  // checked at the end of each iteration. With that we can assume that all
+  // instructions in the loop are executed the same number of times.
+  if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
+    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+              << "loop control flow is not understood by vectorizer");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  return Result;
+}
+
+bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
+    Loop *Lp, bool UseVPlanNativePath) {
+  // Store the result and return it at the end instead of exiting early, in case
+  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+  bool Result = true;
+  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+  if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // Recursively check whether the loop control flow of nested loops is
+  // understood.
+  for (Loop *SubLp : *Lp)
+    if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
+      if (DoExtraAnalysis)
+        Result = false;
+      else
+        return false;
+    }
+
+  return Result;
+}
+
+bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
+  // Store the result and return it at the end instead of exiting early, in case
+  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+  bool Result = true;
+
+  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+  // Check whether the loop-related control flow in the loop nest is expected by
+  // vectorizer.
+  if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // We need to have a loop header.
+  DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
+               << '\n');
+
+  // Specific checks for outer loops. We skip the remaining legal checks at this
+  // point because they don't support outer loops.
+  if (!TheLoop->empty()) {
+    assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
+
+    if (!canVectorizeOuterLoop()) {
+      DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
+      // TODO: Implement DoExtraAnalysis when subsequent legal checks support
+      // outer loops.
+      return false;
+    }
+
+    DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
+    return Result;
+  }
+
+  assert(TheLoop->empty() && "Inner loop expected.");
+  // Check if we can if-convert non-single-bb loops.
+  unsigned NumBlocks = TheLoop->getNumBlocks();
+  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // Check if we can vectorize the instructions and CFG in this loop.
+  if (!canVectorizeInstrs()) {
+    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // Go over each instruction and look at memory deps.
+  if (!canVectorizeMemory()) {
+    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  DEBUG(dbgs() << "LV: We can vectorize this loop"
+               << (LAI->getRuntimePointerChecking()->Need
+                       ? " (with a runtime bound check)"
+                       : "")
+               << "!\n");
+
+  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
+  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
+    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
+
+  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
+    ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
+              << "Too many SCEV assumptions need to be made and checked "
+              << "at runtime");
+    DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
+    if (DoExtraAnalysis)
+      Result = false;
+    else
+      return false;
+  }
+
+  // Okay! We've done all the tests. If any have failed, return false. Otherwise
+  // we can vectorize, and at this point we don't have any other mem analysis
+  // which may limit our maximum vectorization factor, so just return true with
+  // no restrictions.
+  return Result;
+}
+
+} // namespace llvm

Modified: llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp?rev=331139&r1=331138&r2=331139&view=diff
==============================================================================
--- llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp (original)
+++ llvm/trunk/lib/Transforms/Vectorize/LoopVectorize.cpp Sun Apr 29 00:26:18 2018
@@ -131,6 +131,7 @@
 #include "llvm/Transforms/Utils/LoopSimplify.h"
 #include "llvm/Transforms/Utils/LoopUtils.h"
 #include "llvm/Transforms/Utils/LoopVersioning.h"
+#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
 #include <algorithm>
 #include <cassert>
 #include <cstdint>
@@ -152,10 +153,6 @@ using namespace llvm;
 STATISTIC(LoopsVectorized, "Number of loops vectorized");
 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
 
-static cl::opt<bool>
-    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
-                       cl::desc("Enable if-conversion during vectorization."));
-
 /// Loops with a known constant trip count below this number are vectorized only
 /// if no scalar iteration overheads are incurred.
 static cl::opt<unsigned> TinyTripCountVectorThreshold(
@@ -191,9 +188,6 @@ static cl::opt<unsigned> ForceTargetNumV
     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
     cl::desc("A flag that overrides the target's number of vector registers."));
 
-/// Maximum vectorization interleave count.
-static const unsigned MaxInterleaveFactor = 16;
-
 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
     cl::desc("A flag that overrides the target's max interleave factor for "
@@ -245,57 +239,11 @@ static cl::opt<unsigned> MaxNestedScalar
     cl::desc("The maximum interleave count to use when interleaving a scalar "
              "reduction in a nested loop."));
 
-static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
-    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
-    cl::desc("The maximum allowed number of runtime memory checks with a "
-             "vectorize(enable) pragma."));
-
-static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
-    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
-    cl::desc("The maximum number of SCEV checks allowed."));
-
-static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
-    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
-    cl::desc("The maximum number of SCEV checks allowed with a "
-             "vectorize(enable) pragma"));
-
 static cl::opt<bool> EnableVPlanNativePath(
     "enable-vplan-native-path", cl::init(false), cl::Hidden,
     cl::desc("Enable VPlan-native vectorization path with "
              "support for outer loop vectorization."));
 
-/// Create an analysis remark that explains why vectorization failed
-///
-/// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
-/// RemarkName is the identifier for the remark.  If \p I is passed it is an
-/// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
-/// the location of the remark.  \return the remark object that can be
-/// streamed to.
-static OptimizationRemarkAnalysis
-createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
-                     Instruction *I = nullptr) {
-  Value *CodeRegion = TheLoop->getHeader();
-  DebugLoc DL = TheLoop->getStartLoc();
-
-  if (I) {
-    CodeRegion = I->getParent();
-    // If there is no debug location attached to the instruction, revert back to
-    // using the loop's.
-    if (I->getDebugLoc())
-      DL = I->getDebugLoc();
-  }
-
-  OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
-  R << "loop not vectorized: ";
-  return R;
-}
-
-namespace {
-
-class LoopVectorizationRequirements;
-
-} // end anonymous namespace
-
 /// A helper function for converting Scalar types to vector types.
 /// If the incoming type is void, we return void. If the VF is 1, we return
 /// the scalar type.
@@ -1177,315 +1125,6 @@ private:
   }
 };
 
-/// Utility class for getting and setting loop vectorizer hints in the form
-/// of loop metadata.
-/// This class keeps a number of loop annotations locally (as member variables)
-/// and can, upon request, write them back as metadata on the loop. It will
-/// initially scan the loop for existing metadata, and will update the local
-/// values based on information in the loop.
-/// We cannot write all values to metadata, as the mere presence of some info,
-/// for example 'force', means a decision has been made. So, we need to be
-/// careful NOT to add them if the user hasn't specifically asked so.
-class LoopVectorizeHints {
-  enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };
-
-  /// Hint - associates name and validation with the hint value.
-  struct Hint {
-    const char *Name;
-    unsigned Value; // This may have to change for non-numeric values.
-    HintKind Kind;
-
-    Hint(const char *Name, unsigned Value, HintKind Kind)
-        : Name(Name), Value(Value), Kind(Kind) {}
-
-    bool validate(unsigned Val) {
-      switch (Kind) {
-      case HK_WIDTH:
-        return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
-      case HK_UNROLL:
-        return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
-      case HK_FORCE:
-        return (Val <= 1);
-      case HK_ISVECTORIZED:
-        return (Val==0 || Val==1);
-      }
-      return false;
-    }
-  };
-
-  /// Vectorization width.
-  Hint Width;
-
-  /// Vectorization interleave factor.
-  Hint Interleave;
-
-  /// Vectorization forced
-  Hint Force;
-
-  /// Already Vectorized
-  Hint IsVectorized;
-
-  /// Return the loop metadata prefix.
-  static StringRef Prefix() { return "llvm.loop."; }
-
-  /// True if there is any unsafe math in the loop.
-  bool PotentiallyUnsafe = false;
-
-public:
-  enum ForceKind {
-    FK_Undefined = -1, ///< Not selected.
-    FK_Disabled = 0,   ///< Forcing disabled.
-    FK_Enabled = 1,    ///< Forcing enabled.
-  };
-
-  LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
-                     OptimizationRemarkEmitter &ORE)
-      : Width("vectorize.width", VectorizerParams::VectorizationFactor,
-              HK_WIDTH),
-        Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
-        Force("vectorize.enable", FK_Undefined, HK_FORCE),
-        IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
-    // Populate values with existing loop metadata.
-    getHintsFromMetadata();
-
-    // force-vector-interleave overrides DisableInterleaving.
-    if (VectorizerParams::isInterleaveForced())
-      Interleave.Value = VectorizerParams::VectorizationInterleave;
-
-    if (IsVectorized.Value != 1)
-      // If the vectorization width and interleaving count are both 1 then
-      // consider the loop to have been already vectorized because there's
-      // nothing more that we can do.
-      IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
-    DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
-          << "LV: Interleaving disabled by the pass manager\n");
-  }
-
-  /// Mark the loop L as already vectorized by setting the width to 1.
-  void setAlreadyVectorized() {
-    IsVectorized.Value = 1;
-    Hint Hints[] = {IsVectorized};
-    writeHintsToMetadata(Hints);
-  }
-
-  bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
-    if (getForce() == LoopVectorizeHints::FK_Disabled) {
-      DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
-      emitRemarkWithHints();
-      return false;
-    }
-
-    if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
-      DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
-      emitRemarkWithHints();
-      return false;
-    }
-
-    if (getIsVectorized() == 1) {
-      DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
-      // FIXME: Add interleave.disable metadata. This will allow
-      // vectorize.disable to be used without disabling the pass and errors
-      // to differentiate between disabled vectorization and a width of 1.
-      ORE.emit([&]() {
-        return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
-                                          "AllDisabled", L->getStartLoc(),
-                                          L->getHeader())
-               << "loop not vectorized: vectorization and interleaving are "
-                  "explicitly disabled, or the loop has already been "
-                  "vectorized";
-      });
-      return false;
-    }
-
-    return true;
-  }
-
-  /// Dumps all the hint information.
-  void emitRemarkWithHints() const {
-    using namespace ore;
-
-    ORE.emit([&]() {
-      if (Force.Value == LoopVectorizeHints::FK_Disabled)
-        return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
-                                        TheLoop->getStartLoc(),
-                                        TheLoop->getHeader())
-               << "loop not vectorized: vectorization is explicitly disabled";
-      else {
-        OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
-                                   TheLoop->getStartLoc(),
-                                   TheLoop->getHeader());
-        R << "loop not vectorized";
-        if (Force.Value == LoopVectorizeHints::FK_Enabled) {
-          R << " (Force=" << NV("Force", true);
-          if (Width.Value != 0)
-            R << ", Vector Width=" << NV("VectorWidth", Width.Value);
-          if (Interleave.Value != 0)
-            R << ", Interleave Count="
-              << NV("InterleaveCount", Interleave.Value);
-          R << ")";
-        }
-        return R;
-      }
-    });
-  }
-
-  unsigned getWidth() const { return Width.Value; }
-  unsigned getInterleave() const { return Interleave.Value; }
-  unsigned getIsVectorized() const { return IsVectorized.Value; }
-  enum ForceKind getForce() const { return (ForceKind)Force.Value; }
-
-  /// \brief If hints are provided that force vectorization, use the AlwaysPrint
-  /// pass name to force the frontend to print the diagnostic.
-  const char *vectorizeAnalysisPassName() const {
-    if (getWidth() == 1)
-      return LV_NAME;
-    if (getForce() == LoopVectorizeHints::FK_Disabled)
-      return LV_NAME;
-    if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
-      return LV_NAME;
-    return OptimizationRemarkAnalysis::AlwaysPrint;
-  }
-
-  bool allowReordering() const {
-    // When enabling loop hints are provided we allow the vectorizer to change
-    // the order of operations that is given by the scalar loop. This is not
-    // enabled by default because can be unsafe or inefficient. For example,
-    // reordering floating-point operations will change the way round-off
-    // error accumulates in the loop.
-    return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
-  }
-
-  bool isPotentiallyUnsafe() const {
-    // Avoid FP vectorization if the target is unsure about proper support.
-    // This may be related to the SIMD unit in the target not handling
-    // IEEE 754 FP ops properly, or bad single-to-double promotions.
-    // Otherwise, a sequence of vectorized loops, even without reduction,
-    // could lead to different end results on the destination vectors.
-    return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
-  }
-
-  void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
-
-private:
-  /// Find hints specified in the loop metadata and update local values.
-  void getHintsFromMetadata() {
-    MDNode *LoopID = TheLoop->getLoopID();
-    if (!LoopID)
-      return;
-
-    // First operand should refer to the loop id itself.
-    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
-    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
-
-    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
-      const MDString *S = nullptr;
-      SmallVector<Metadata *, 4> Args;
-
-      // The expected hint is either a MDString or a MDNode with the first
-      // operand a MDString.
-      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
-        if (!MD || MD->getNumOperands() == 0)
-          continue;
-        S = dyn_cast<MDString>(MD->getOperand(0));
-        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
-          Args.push_back(MD->getOperand(i));
-      } else {
-        S = dyn_cast<MDString>(LoopID->getOperand(i));
-        assert(Args.size() == 0 && "too many arguments for MDString");
-      }
-
-      if (!S)
-        continue;
-
-      // Check if the hint starts with the loop metadata prefix.
-      StringRef Name = S->getString();
-      if (Args.size() == 1)
-        setHint(Name, Args[0]);
-    }
-  }
-
-  /// Checks string hint with one operand and set value if valid.
-  void setHint(StringRef Name, Metadata *Arg) {
-    if (!Name.startswith(Prefix()))
-      return;
-    Name = Name.substr(Prefix().size(), StringRef::npos);
-
-    const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
-    if (!C)
-      return;
-    unsigned Val = C->getZExtValue();
-
-    Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
-    for (auto H : Hints) {
-      if (Name == H->Name) {
-        if (H->validate(Val))
-          H->Value = Val;
-        else
-          DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
-        break;
-      }
-    }
-  }
-
-  /// Create a new hint from name / value pair.
-  MDNode *createHintMetadata(StringRef Name, unsigned V) const {
-    LLVMContext &Context = TheLoop->getHeader()->getContext();
-    Metadata *MDs[] = {MDString::get(Context, Name),
-                       ConstantAsMetadata::get(
-                           ConstantInt::get(Type::getInt32Ty(Context), V))};
-    return MDNode::get(Context, MDs);
-  }
-
-  /// Matches metadata with hint name.
-  bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
-    MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
-    if (!Name)
-      return false;
-
-    for (auto H : HintTypes)
-      if (Name->getString().endswith(H.Name))
-        return true;
-    return false;
-  }
-
-  /// Sets current hints into loop metadata, keeping other values intact.
-  void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
-    if (HintTypes.empty())
-      return;
-
-    // Reserve the first element to LoopID (see below).
-    SmallVector<Metadata *, 4> MDs(1);
-    // If the loop already has metadata, then ignore the existing operands.
-    MDNode *LoopID = TheLoop->getLoopID();
-    if (LoopID) {
-      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
-        MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
-        // If node in update list, ignore old value.
-        if (!matchesHintMetadataName(Node, HintTypes))
-          MDs.push_back(Node);
-      }
-    }
-
-    // Now, add the missing hints.
-    for (auto H : HintTypes)
-      MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
-
-    // Replace current metadata node with new one.
-    LLVMContext &Context = TheLoop->getHeader()->getContext();
-    MDNode *NewLoopID = MDNode::get(Context, MDs);
-    // Set operand 0 to refer to the loop id itself.
-    NewLoopID->replaceOperandWith(0, NewLoopID);
-
-    TheLoop->setLoopID(NewLoopID);
-  }
-
-  /// The loop these hints belong to.
-  const Loop *TheLoop;
-
-  /// Interface to emit optimization remarks.
-  OptimizationRemarkEmitter &ORE;
-};
-
 } // end anonymous namespace
 
 static void emitMissedWarning(Function *F, Loop *L,
@@ -1511,275 +1150,6 @@ static void emitMissedWarning(Function *
 
 namespace llvm {
 
-/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
-/// to what vectorization factor.
-/// This class does not look at the profitability of vectorization, only the
-/// legality. This class has two main kinds of checks:
-/// * Memory checks - The code in canVectorizeMemory checks if vectorization
-///   will change the order of memory accesses in a way that will change the
-///   correctness of the program.
-/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
-/// checks for a number of different conditions, such as the availability of a
-/// single induction variable, that all types are supported and vectorize-able,
-/// etc. This code reflects the capabilities of InnerLoopVectorizer.
-/// This class is also used by InnerLoopVectorizer for identifying
-/// induction variable and the different reduction variables.
-class LoopVectorizationLegality {
-public:
-  LoopVectorizationLegality(
-      Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
-      TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
-      std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
-      OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
-      LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
-      : TheLoop(L), LI(LI), PSE(PSE), TLI(TLI), DT(DT), GetLAA(GetLAA),
-        ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {}
-
-  /// ReductionList contains the reduction descriptors for all
-  /// of the reductions that were found in the loop.
-  using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;
-
-  /// InductionList saves induction variables and maps them to the
-  /// induction descriptor.
-  using InductionList = MapVector<PHINode *, InductionDescriptor>;
-
-  /// RecurrenceSet contains the phi nodes that are recurrences other than
-  /// inductions and reductions.
-  using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
-
-  /// Returns true if it is legal to vectorize this loop.
-  /// This does not mean that it is profitable to vectorize this
-  /// loop, only that it is legal to do so.
-  bool canVectorize();
-
-  /// Returns the primary induction variable.
-  PHINode *getPrimaryInduction() { return PrimaryInduction; }
-
-  /// Returns the reduction variables found in the loop.
-  ReductionList *getReductionVars() { return &Reductions; }
-
-  /// Returns the induction variables found in the loop.
-  InductionList *getInductionVars() { return &Inductions; }
-
-  /// Return the first-order recurrences found in the loop.
-  RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
-
-  /// Return the set of instructions to sink to handle first-order recurrences.
-  DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }
-
-  /// Returns the widest induction type.
-  Type *getWidestInductionType() { return WidestIndTy; }
-
-  /// Returns True if V is a Phi node of an induction variable in this loop.
-  bool isInductionPhi(const Value *V);
-
-  /// Returns True if V is a cast that is part of an induction def-use chain,
-  /// and had been proven to be redundant under a runtime guard (in other
-  /// words, the cast has the same SCEV expression as the induction phi).
-  bool isCastedInductionVariable(const Value *V);
-
-  /// Returns True if V can be considered as an induction variable in this 
-  /// loop. V can be the induction phi, or some redundant cast in the def-use
-  /// chain of the inducion phi.
-  bool isInductionVariable(const Value *V);
-
-  /// Returns True if PN is a reduction variable in this loop.
-  bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
-
-  /// Returns True if Phi is a first-order recurrence in this loop.
-  bool isFirstOrderRecurrence(const PHINode *Phi);
-
-  /// Return true if the block BB needs to be predicated in order for the loop
-  /// to be vectorized.
-  bool blockNeedsPredication(BasicBlock *BB);
-
-  /// Check if this pointer is consecutive when vectorizing. This happens
-  /// when the last index of the GEP is the induction variable, or that the
-  /// pointer itself is an induction variable.
-  /// This check allows us to vectorize A[idx] into a wide load/store.
-  /// Returns:
-  /// 0 - Stride is unknown or non-consecutive.
-  /// 1 - Address is consecutive.
-  /// -1 - Address is consecutive, and decreasing.
-  /// NOTE: This method must only be used before modifying the original scalar
-  /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
-  int isConsecutivePtr(Value *Ptr);
-
-  /// Returns true if the value V is uniform within the loop.
-  bool isUniform(Value *V);
-
-  /// Returns the information that we collected about runtime memory check.
-  const RuntimePointerChecking *getRuntimePointerChecking() const {
-    return LAI->getRuntimePointerChecking();
-  }
-
-  const LoopAccessInfo *getLAI() const { return LAI; }
-
-  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
-
-  uint64_t getMaxSafeRegisterWidth() const {
-	  return LAI->getDepChecker().getMaxSafeRegisterWidth();
-  }
-
-  bool hasStride(Value *V) { return LAI->hasStride(V); }
-
-  /// Returns true if vector representation of the instruction \p I
-  /// requires mask.
-  bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
-
-  unsigned getNumStores() const { return LAI->getNumStores(); }
-  unsigned getNumLoads() const { return LAI->getNumLoads(); }
-
-  // Returns true if the NoNaN attribute is set on the function.
-  bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
-
-private:
-  /// Return true if the pre-header, exiting and latch blocks of \p Lp and all
-  /// its nested loops are considered legal for vectorization. These legal
-  /// checks are common for inner and outer loop vectorization.
-  bool canVectorizeLoopNestCFG(Loop *Lp);
-
-  /// Return true if the pre-header, exiting and latch blocks of \p Lp
-  /// (non-recursive) are considered legal for vectorization.
-  bool canVectorizeLoopCFG(Loop *Lp);
-
-  /// Check if a single basic block loop is vectorizable.
-  /// At this point we know that this is a loop with a constant trip count
-  /// and we only need to check individual instructions.
-  bool canVectorizeInstrs();
-
-  /// When we vectorize loops we may change the order in which
-  /// we read and write from memory. This method checks if it is
-  /// legal to vectorize the code, considering only memory constrains.
-  /// Returns true if the loop is vectorizable
-  bool canVectorizeMemory();
-
-  /// Return true if we can vectorize this loop using the IF-conversion
-  /// transformation.
-  bool canVectorizeWithIfConvert();
-
-  /// Return true if we can vectorize this outer loop. The method performs
-  /// specific checks for outer loop vectorization.
-  bool canVectorizeOuterLoop();
-
-  /// Return true if all of the instructions in the block can be speculatively
-  /// executed. \p SafePtrs is a list of addresses that are known to be legal
-  /// and we know that we can read from them without segfault.
-  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
-
-  /// Updates the vectorization state by adding \p Phi to the inductions list.
-  /// This can set \p Phi as the main induction of the loop if \p Phi is a
-  /// better choice for the main induction than the existing one.
-  void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
-                       SmallPtrSetImpl<Value *> &AllowedExit);
-
-  /// Create an analysis remark that explains why vectorization failed
-  ///
-  /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
-  /// an instruction that prevents vectorization.  Otherwise the loop is used
-  /// for the location of the remark.  \return the remark object that can be
-  /// streamed to.
-  OptimizationRemarkAnalysis
-  createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
-    return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
-                                  RemarkName, TheLoop, I);
-  }
-
-  /// \brief If an access has a symbolic strides, this maps the pointer value to
-  /// the stride symbol.
-  const ValueToValueMap *getSymbolicStrides() {
-    // FIXME: Currently, the set of symbolic strides is sometimes queried before
-    // it's collected.  This happens from canVectorizeWithIfConvert, when the
-    // pointer is checked to reference consecutive elements suitable for a
-    // masked access.
-    return LAI ? &LAI->getSymbolicStrides() : nullptr;
-  }
-
-  /// The loop that we evaluate.
-  Loop *TheLoop;
-
-  /// Loop Info analysis.
-  LoopInfo *LI;
-
-  /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
-  /// Applies dynamic knowledge to simplify SCEV expressions in the context
-  /// of existing SCEV assumptions. The analysis will also add a minimal set
-  /// of new predicates if this is required to enable vectorization and
-  /// unrolling.
-  PredicatedScalarEvolution &PSE;
-
-  /// Target Library Info.
-  TargetLibraryInfo *TLI;
-
-  /// Dominator Tree.
-  DominatorTree *DT;
-
-  // LoopAccess analysis.
-  std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
-
-  // And the loop-accesses info corresponding to this loop.  This pointer is
-  // null until canVectorizeMemory sets it up.
-  const LoopAccessInfo *LAI = nullptr;
-
-  /// Interface to emit optimization remarks.
-  OptimizationRemarkEmitter *ORE;
-
-  //  ---  vectorization state --- //
-
-  /// Holds the primary induction variable. This is the counter of the
-  /// loop.
-  PHINode *PrimaryInduction = nullptr;
-
-  /// Holds the reduction variables.
-  ReductionList Reductions;
-
-  /// Holds all of the induction variables that we found in the loop.
-  /// Notice that inductions don't need to start at zero and that induction
-  /// variables can be pointers.
-  InductionList Inductions;
-
-  /// Holds all the casts that participate in the update chain of the induction 
-  /// variables, and that have been proven to be redundant (possibly under a 
-  /// runtime guard). These casts can be ignored when creating the vectorized 
-  /// loop body.
-  SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
-
-  /// Holds the phi nodes that are first-order recurrences.
-  RecurrenceSet FirstOrderRecurrences;
-
-  /// Holds instructions that need to sink past other instructions to handle
-  /// first-order recurrences.
-  DenseMap<Instruction *, Instruction *> SinkAfter;
-
-  /// Holds the widest induction type encountered.
-  Type *WidestIndTy = nullptr;
-
-  /// Allowed outside users. This holds the induction and reduction
-  /// vars which can be accessed from outside the loop.
-  SmallPtrSet<Value *, 4> AllowedExit;
-
-  /// Can we assume the absence of NaNs.
-  bool HasFunNoNaNAttr = false;
-
-  /// Vectorization requirements that will go through late-evaluation.
-  LoopVectorizationRequirements *Requirements;
-
-  /// Used to emit an analysis of any legality issues.
-  LoopVectorizeHints *Hints;
-
-  /// The demanded bits analsyis is used to compute the minimum type size in
-  /// which a reduction can be computed.
-  DemandedBits *DB;
-
-  /// The assumption cache analysis is used to compute the minimum type size in
-  /// which a reduction can be computed.
-  AssumptionCache *AC;
-
-  /// While vectorizing these instructions we have to generate a
-  /// call to the appropriate masked intrinsic
-  SmallPtrSet<const Instruction *, 8> MaskedOp;
-};
-
 /// LoopVectorizationCostModel - estimates the expected speedups due to
 /// vectorization.
 /// In many cases vectorization is not profitable. This can happen because of
@@ -2117,7 +1487,7 @@ private:
   /// \p RemarkName is the identifier for the remark.  \return the remark object
   /// that can be streamed to.
   OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
-    return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
+    return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
                                   RemarkName, TheLoop);
   }
 
@@ -2232,78 +1602,6 @@ public:
 
 } // end namespace llvm
 
-namespace {
-
-/// \brief This holds vectorization requirements that must be verified late in
-/// the process. The requirements are set by legalize and costmodel. Once
-/// vectorization has been determined to be possible and profitable the
-/// requirements can be verified by looking for metadata or compiler options.
-/// For example, some loops require FP commutativity which is only allowed if
-/// vectorization is explicitly specified or if the fast-math compiler option
-/// has been provided.
-/// Late evaluation of these requirements allows helpful diagnostics to be
-/// composed that tells the user what need to be done to vectorize the loop. For
-/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
-/// evaluation should be used only when diagnostics can generated that can be
-/// followed by a non-expert user.
-class LoopVectorizationRequirements {
-public:
-  LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}
-
-  void addUnsafeAlgebraInst(Instruction *I) {
-    // First unsafe algebra instruction.
-    if (!UnsafeAlgebraInst)
-      UnsafeAlgebraInst = I;
-  }
-
-  void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
-
-  bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
-    const char *PassName = Hints.vectorizeAnalysisPassName();
-    bool Failed = false;
-    if (UnsafeAlgebraInst && !Hints.allowReordering()) {
-      ORE.emit([&]() {
-        return OptimizationRemarkAnalysisFPCommute(
-                   PassName, "CantReorderFPOps",
-                   UnsafeAlgebraInst->getDebugLoc(),
-                   UnsafeAlgebraInst->getParent())
-               << "loop not vectorized: cannot prove it is safe to reorder "
-                  "floating-point operations";
-      });
-      Failed = true;
-    }
-
-    // Test if runtime memcheck thresholds are exceeded.
-    bool PragmaThresholdReached =
-        NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
-    bool ThresholdReached =
-        NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
-    if ((ThresholdReached && !Hints.allowReordering()) ||
-        PragmaThresholdReached) {
-      ORE.emit([&]() {
-        return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
-                                                  L->getStartLoc(),
-                                                  L->getHeader())
-               << "loop not vectorized: cannot prove it is safe to reorder "
-                  "memory operations";
-      });
-      DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
-      Failed = true;
-    }
-
-    return Failed;
-  }
-
-private:
-  unsigned NumRuntimePointerChecks = 0;
-  Instruction *UnsafeAlgebraInst = nullptr;
-
-  /// Interface to emit optimization remarks.
-  OptimizationRemarkEmitter &ORE;
-};
-
-} // end anonymous namespace
-
 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
 // vectorization. The loop needs to be annotated with #pragma omp simd
 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
@@ -2767,20 +2065,6 @@ void InnerLoopVectorizer::buildScalarSte
   }
 }
 
-int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
-  const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
-    ValueToValueMap();
-
-  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
-  if (Stride == 1 || Stride == -1)
-    return Stride;
-  return 0;
-}
-
-bool LoopVectorizationLegality::isUniform(Value *V) {
-  return LAI->isUniform(V);
-}
-
 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
   assert(V != Induction && "The new induction variable should not be used.");
   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
@@ -4839,644 +4123,6 @@ void InnerLoopVectorizer::updateAnalysis
   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
 }
 
-/// \brief Check whether it is safe to if-convert this phi node.
-///
-/// Phi nodes with constant expressions that can trap are not safe to if
-/// convert.
-static bool canIfConvertPHINodes(BasicBlock *BB) {
-  for (PHINode &Phi : BB->phis()) {
-    for (Value *V : Phi.incoming_values())
-      if (auto *C = dyn_cast<Constant>(V))
-        if (C->canTrap())
-          return false;
-  }
-  return true;
-}
-
-bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
-  if (!EnableIfConversion) {
-    ORE->emit(createMissedAnalysis("IfConversionDisabled")
-              << "if-conversion is disabled");
-    return false;
-  }
-
-  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
-
-  // A list of pointers that we can safely read and write to.
-  SmallPtrSet<Value *, 8> SafePointes;
-
-  // Collect safe addresses.
-  for (BasicBlock *BB : TheLoop->blocks()) {
-    if (blockNeedsPredication(BB))
-      continue;
-
-    for (Instruction &I : *BB)
-      if (auto *Ptr = getLoadStorePointerOperand(&I))
-        SafePointes.insert(Ptr);
-  }
-
-  // Collect the blocks that need predication.
-  BasicBlock *Header = TheLoop->getHeader();
-  for (BasicBlock *BB : TheLoop->blocks()) {
-    // We don't support switch statements inside loops.
-    if (!isa<BranchInst>(BB->getTerminator())) {
-      ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
-                << "loop contains a switch statement");
-      return false;
-    }
-
-    // We must be able to predicate all blocks that need to be predicated.
-    if (blockNeedsPredication(BB)) {
-      if (!blockCanBePredicated(BB, SafePointes)) {
-        ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
-                  << "control flow cannot be substituted for a select");
-        return false;
-      }
-    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
-      ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
-                << "control flow cannot be substituted for a select");
-      return false;
-    }
-  }
-
-  // We can if-convert this loop.
-  return true;
-}
-
-// Helper function to canVectorizeLoopNestCFG.
-bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp) {
-  assert((EnableVPlanNativePath || Lp->empty()) &&
-         "VPlan-native path is not enabled.");
-
-  // TODO: ORE should be improved to show more accurate information when an
-  // outer loop can't be vectorized because a nested loop is not understood or
-  // legal. Something like: "outer_loop_location: loop not vectorized:
-  // (inner_loop_location) loop control flow is not understood by vectorizer".
-
-  // Store the result and return it at the end instead of exiting early, in case
-  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
-  bool Result = true;
-  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-
-  // We must have a loop in canonical form. Loops with indirectbr in them cannot
-  // be canonicalized.
-  if (!Lp->getLoopPreheader()) {
-    DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
-    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-              << "loop control flow is not understood by vectorizer");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // We must have a single backedge.
-  if (Lp->getNumBackEdges() != 1) {
-    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-              << "loop control flow is not understood by vectorizer");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // We must have a single exiting block.
-  if (!Lp->getExitingBlock()) {
-    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-              << "loop control flow is not understood by vectorizer");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // We only handle bottom-tested loops, i.e. loop in which the condition is
-  // checked at the end of each iteration. With that we can assume that all
-  // instructions in the loop are executed the same number of times.
-  if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
-    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-              << "loop control flow is not understood by vectorizer");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  return Result;
-}
-
-bool LoopVectorizationLegality::canVectorizeLoopNestCFG(Loop *Lp) {
-  // Store the result and return it at the end instead of exiting early, in case
-  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
-  bool Result = true;
-  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-  if (!canVectorizeLoopCFG(Lp)) {
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // Recursively check whether the loop control flow of nested loops is
-  // understood.
-  for (Loop *SubLp : *Lp)
-    if (!canVectorizeLoopNestCFG(SubLp)) {
-      if (DoExtraAnalysis)
-        Result = false;
-      else
-        return false;
-    }
-
-  return Result;
-}
-
-bool LoopVectorizationLegality::canVectorize() {
-  // Store the result and return it at the end instead of exiting early, in case
-  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
-  bool Result = true;
-
-  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-  // Check whether the loop-related control flow in the loop nest is expected by
-  // vectorizer.
-  if (!canVectorizeLoopNestCFG(TheLoop)) {
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // We need to have a loop header.
-  DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
-               << '\n');
-
-  // Specific checks for outer loops. We skip the remaining legal checks at this
-  // point because they don't support outer loops.
-  if (!TheLoop->empty()) {
-    assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
-
-    if (!canVectorizeOuterLoop()) {
-      DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
-      // TODO: Implement DoExtraAnalysis when subsequent legal checks support
-      // outer loops.
-      return false;
-    }
-
-    DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
-    return Result;
-  }
-
-  assert(TheLoop->empty() && "Inner loop expected.");
-  // Check if we can if-convert non-single-bb loops.
-  unsigned NumBlocks = TheLoop->getNumBlocks();
-  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
-    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // Check if we can vectorize the instructions and CFG in this loop.
-  if (!canVectorizeInstrs()) {
-    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // Go over each instruction and look at memory deps.
-  if (!canVectorizeMemory()) {
-    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  DEBUG(dbgs() << "LV: We can vectorize this loop"
-               << (LAI->getRuntimePointerChecking()->Need
-                       ? " (with a runtime bound check)"
-                       : "")
-               << "!\n");
-
-  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
-  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
-    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
-
-  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
-    ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
-              << "Too many SCEV assumptions need to be made and checked "
-              << "at runtime");
-    DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  // Okay! We've done all the tests. If any have failed, return false. Otherwise
-  // we can vectorize, and at this point we don't have any other mem analysis
-  // which may limit our maximum vectorization factor, so just return true with
-  // no restrictions.
-  return Result;
-}
-
-// Return true if the inner loop \p Lp is uniform with regard to the outer loop
-// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
-// executing the inner loop will execute the same iterations). This check is
-// very constrained for now but it will be relaxed in the future. \p Lp is
-// considered uniform if it meets all the following conditions:
-//   1) it has a canonical IV (starting from 0 and with stride 1),
-//   2) its latch terminator is a conditional branch and,
-//   3) its latch condition is a compare instruction whose operands are the
-//      canonical IV and an OuterLp invariant.
-// This check doesn't take into account the uniformity of other conditions not
-// related to the loop latch because they don't affect the loop uniformity.
-//
-// NOTE: We decided to keep all these checks and its associated documentation
-// together so that we can easily have a picture of the current supported loop
-// nests. However, some of the current checks don't depend on \p OuterLp and
-// would be redundantly executed for each \p Lp if we invoked this function for
-// different candidate outer loops. This is not the case for now because we
-// don't currently have the infrastructure to evaluate multiple candidate outer
-// loops and \p OuterLp will be a fixed parameter while we only support explicit
-// outer loop vectorization. It's also very likely that these checks go away
-// before introducing the aforementioned infrastructure. However, if this is not
-// the case, we should move the \p OuterLp independent checks to a separate
-// function that is only executed once for each \p Lp.
-static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
-  assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
-
-  // If Lp is the outer loop, it's uniform by definition.
-  if (Lp == OuterLp)
-    return true;
-  assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
-
-  // 1.
-  PHINode *IV = Lp->getCanonicalInductionVariable();
-  if (!IV) {
-    DEBUG(dbgs() << "LV: Canonical IV not found.\n");
-    return false;
-  }
-
-  // 2.
-  BasicBlock *Latch = Lp->getLoopLatch();
-  auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
-  if (!LatchBr || LatchBr->isUnconditional()) {
-    DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
-    return false;
-  }
-
-  // 3.
-  auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
-  if (!LatchCmp) {
-    DEBUG(dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
-    return false;
-  }
-
-  Value *CondOp0 = LatchCmp->getOperand(0);
-  Value *CondOp1 = LatchCmp->getOperand(1);
-  Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
-  if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
-      !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
-    DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
-    return false;
-  }
-
-  return true;
-}
-
-// Return true if \p Lp and all its nested loops are uniform with regard to \p
-// OuterLp.
-static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
-  if (!isUniformLoop(Lp, OuterLp))
-    return false;
-
-  // Check if nested loops are uniform.
-  for (Loop *SubLp : *Lp)
-    if (!isUniformLoopNest(SubLp, OuterLp))
-      return false;
-
-  return true;
-}
-
-bool LoopVectorizationLegality::canVectorizeOuterLoop() {
-  assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
-  // Store the result and return it at the end instead of exiting early, in case
-  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
-  bool Result = true;
-  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-
-  for (BasicBlock *BB : TheLoop->blocks()) {
-    // Check whether the BB terminator is a BranchInst. Any other terminator is
-    // not supported yet.
-    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
-    if (!Br) {
-      DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
-      ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-                << "loop control flow is not understood by vectorizer");
-      if (DoExtraAnalysis)
-        Result = false;
-      else
-        return false;
-    }
-
-    // Check whether the BranchInst is a supported one. Only unconditional
-    // branches, conditional branches with an outer loop invariant condition or
-    // backedges are supported.
-    if (Br && Br->isConditional() &&
-        !TheLoop->isLoopInvariant(Br->getCondition()) &&
-        !LI->isLoopHeader(Br->getSuccessor(0)) &&
-        !LI->isLoopHeader(Br->getSuccessor(1))) {
-      DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
-      ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-                << "loop control flow is not understood by vectorizer");
-      if (DoExtraAnalysis)
-        Result = false;
-      else
-        return false;
-    }
-  }
-
-  // Check whether inner loops are uniform. At this point, we only support
-  // simple outer loops scenarios with uniform nested loops.
-  if (!isUniformLoopNest(TheLoop /*loop nest*/,
-                         TheLoop /*context outer loop*/)) {
-    DEBUG(dbgs()
-          << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
-    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
-              << "loop control flow is not understood by vectorizer");
-    if (DoExtraAnalysis)
-      Result = false;
-    else
-      return false;
-  }
-
-  return Result;
-}
-
-static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
-  if (Ty->isPointerTy())
-    return DL.getIntPtrType(Ty);
-
-  // It is possible that char's or short's overflow when we ask for the loop's
-  // trip count, work around this by changing the type size.
-  if (Ty->getScalarSizeInBits() < 32)
-    return Type::getInt32Ty(Ty->getContext());
-
-  return Ty;
-}
-
-static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
-  Ty0 = convertPointerToIntegerType(DL, Ty0);
-  Ty1 = convertPointerToIntegerType(DL, Ty1);
-  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
-    return Ty0;
-  return Ty1;
-}
-
-/// \brief Check that the instruction has outside loop users and is not an
-/// identified reduction variable.
-static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
-                               SmallPtrSetImpl<Value *> &AllowedExit) {
-  // Reduction and Induction instructions are allowed to have exit users. All
-  // other instructions must not have external users.
-  if (!AllowedExit.count(Inst))
-    // Check that all of the users of the loop are inside the BB.
-    for (User *U : Inst->users()) {
-      Instruction *UI = cast<Instruction>(U);
-      // This user may be a reduction exit value.
-      if (!TheLoop->contains(UI)) {
-        DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
-        return true;
-      }
-    }
-  return false;
-}
-
-void LoopVectorizationLegality::addInductionPhi(
-    PHINode *Phi, const InductionDescriptor &ID,
-    SmallPtrSetImpl<Value *> &AllowedExit) {
-  Inductions[Phi] = ID;
-
-  // In case this induction also comes with casts that we know we can ignore
-  // in the vectorized loop body, record them here. All casts could be recorded
-  // here for ignoring, but suffices to record only the first (as it is the
-  // only one that may bw used outside the cast sequence).
-  const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
-  if (!Casts.empty())
-    InductionCastsToIgnore.insert(*Casts.begin());
-
-  Type *PhiTy = Phi->getType();
-  const DataLayout &DL = Phi->getModule()->getDataLayout();
-
-  // Get the widest type.
-  if (!PhiTy->isFloatingPointTy()) {
-    if (!WidestIndTy)
-      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
-    else
-      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
-  }
-
-  // Int inductions are special because we only allow one IV.
-  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
-      ID.getConstIntStepValue() &&
-      ID.getConstIntStepValue()->isOne() &&
-      isa<Constant>(ID.getStartValue()) &&
-      cast<Constant>(ID.getStartValue())->isNullValue()) {
-
-    // Use the phi node with the widest type as induction. Use the last
-    // one if there are multiple (no good reason for doing this other
-    // than it is expedient). We've checked that it begins at zero and
-    // steps by one, so this is a canonical induction variable.
-    if (!PrimaryInduction || PhiTy == WidestIndTy)
-      PrimaryInduction = Phi;
-  }
-
-  // Both the PHI node itself, and the "post-increment" value feeding
-  // back into the PHI node may have external users.
-  // We can allow those uses, except if the SCEVs we have for them rely
-  // on predicates that only hold within the loop, since allowing the exit
-  // currently means re-using this SCEV outside the loop.
-  if (PSE.getUnionPredicate().isAlwaysTrue()) {
-    AllowedExit.insert(Phi);
-    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
-  }
-
-  DEBUG(dbgs() << "LV: Found an induction variable.\n");
-}
-
-bool LoopVectorizationLegality::canVectorizeInstrs() {
-  BasicBlock *Header = TheLoop->getHeader();
-
-  // Look for the attribute signaling the absence of NaNs.
-  Function &F = *Header->getParent();
-  HasFunNoNaNAttr =
-      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
-
-  // For each block in the loop.
-  for (BasicBlock *BB : TheLoop->blocks()) {
-    // Scan the instructions in the block and look for hazards.
-    for (Instruction &I : *BB) {
-      if (auto *Phi = dyn_cast<PHINode>(&I)) {
-        Type *PhiTy = Phi->getType();
-        // Check that this PHI type is allowed.
-        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
-            !PhiTy->isPointerTy()) {
-          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
-                    << "loop control flow is not understood by vectorizer");
-          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
-          return false;
-        }
-
-        // If this PHINode is not in the header block, then we know that we
-        // can convert it to select during if-conversion. No need to check if
-        // the PHIs in this block are induction or reduction variables.
-        if (BB != Header) {
-          // Check that this instruction has no outside users or is an
-          // identified reduction value with an outside user.
-          if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
-            continue;
-          ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
-                    << "value could not be identified as "
-                       "an induction or reduction variable");
-          return false;
-        }
-
-        // We only allow if-converted PHIs with exactly two incoming values.
-        if (Phi->getNumIncomingValues() != 2) {
-          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
-                    << "control flow not understood by vectorizer");
-          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
-          return false;
-        }
-
-        RecurrenceDescriptor RedDes;
-        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
-                                                 DT)) {
-          if (RedDes.hasUnsafeAlgebra())
-            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
-          AllowedExit.insert(RedDes.getLoopExitInstr());
-          Reductions[Phi] = RedDes;
-          continue;
-        }
-
-        InductionDescriptor ID;
-        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
-          addInductionPhi(Phi, ID, AllowedExit);
-          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
-            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
-          continue;
-        }
-
-        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
-                                                         SinkAfter, DT)) {
-          FirstOrderRecurrences.insert(Phi);
-          continue;
-        }
-
-        // As a last resort, coerce the PHI to a AddRec expression
-        // and re-try classifying it a an induction PHI.
-        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
-          addInductionPhi(Phi, ID, AllowedExit);
-          continue;
-        }
-
-        ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
-                  << "value that could not be identified as "
-                     "reduction is used outside the loop");
-        DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
-        return false;
-      } // end of PHI handling
-
-      // We handle calls that:
-      //   * Are debug info intrinsics.
-      //   * Have a mapping to an IR intrinsic.
-      //   * Have a vector version available.
-      auto *CI = dyn_cast<CallInst>(&I);
-      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
-          !isa<DbgInfoIntrinsic>(CI) &&
-          !(CI->getCalledFunction() && TLI &&
-            TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
-        ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
-                  << "call instruction cannot be vectorized");
-        DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
-        return false;
-      }
-
-      // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
-      // second argument is the same (i.e. loop invariant)
-      if (CI && hasVectorInstrinsicScalarOpd(
-                    getVectorIntrinsicIDForCall(CI, TLI), 1)) {
-        auto *SE = PSE.getSE();
-        if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
-          ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
-                    << "intrinsic instruction cannot be vectorized");
-          DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
-          return false;
-        }
-      }
-
-      // Check that the instruction return type is vectorizable.
-      // Also, we can't vectorize extractelement instructions.
-      if ((!VectorType::isValidElementType(I.getType()) &&
-           !I.getType()->isVoidTy()) ||
-          isa<ExtractElementInst>(I)) {
-        ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
-                  << "instruction return type cannot be vectorized");
-        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
-        return false;
-      }
-
-      // Check that the stored type is vectorizable.
-      if (auto *ST = dyn_cast<StoreInst>(&I)) {
-        Type *T = ST->getValueOperand()->getType();
-        if (!VectorType::isValidElementType(T)) {
-          ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
-                    << "store instruction cannot be vectorized");
-          return false;
-        }
-
-        // FP instructions can allow unsafe algebra, thus vectorizable by
-        // non-IEEE-754 compliant SIMD units.
-        // This applies to floating-point math operations and calls, not memory
-        // operations, shuffles, or casts, as they don't change precision or
-        // semantics.
-      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
-                 !I.isFast()) {
-        DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
-        Hints->setPotentiallyUnsafe();
-      }
-
-      // Reduction instructions are allowed to have exit users.
-      // All other instructions must not have external users.
-      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
-        ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
-                  << "value cannot be used outside the loop");
-        return false;
-      }
-    } // next instr.
-  }
-
-  if (!PrimaryInduction) {
-    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
-    if (Inductions.empty()) {
-      ORE->emit(createMissedAnalysis("NoInductionVariable")
-                << "loop induction variable could not be identified");
-      return false;
-    }
-  }
-
-  // Now we know the widest induction type, check if our found induction
-  // is the same size. If it's not, unset it here and InnerLoopVectorizer
-  // will create another.
-  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
-    PrimaryInduction = nullptr;
-
-  return true;
-}
-
 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
   // We should not collect Scalars more than once per VF. Right now, this
   // function is called from collectUniformsAndScalars(), which already does
@@ -5882,102 +4528,6 @@ void LoopVectorizationCostModel::collect
   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
 }
 
-bool LoopVectorizationLegality::canVectorizeMemory() {
-  LAI = &(*GetLAA)(*TheLoop);
-  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
-  if (LAR) {
-    ORE->emit([&]() {
-      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
-                                        "loop not vectorized: ", *LAR);
-    });
-  }
-  if (!LAI->canVectorizeMemory())
-    return false;
-
-  if (LAI->hasStoreToLoopInvariantAddress()) {
-    ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
-              << "write to a loop invariant address could not be vectorized");
-    DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
-    return false;
-  }
-
-  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
-  PSE.addPredicate(LAI->getPSE().getUnionPredicate());
-
-  return true;
-}
-
-bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
-  Value *In0 = const_cast<Value *>(V);
-  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
-  if (!PN)
-    return false;
-
-  return Inductions.count(PN);
-}
-
-bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
-  auto *Inst = dyn_cast<Instruction>(V);
-  return (Inst && InductionCastsToIgnore.count(Inst));
-}
-
-bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
-  return isInductionPhi(V) || isCastedInductionVariable(V);
-}
-
-bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
-  return FirstOrderRecurrences.count(Phi);
-}
-
-bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
-  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
-}
-
-bool LoopVectorizationLegality::blockCanBePredicated(
-    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
-  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
-
-  for (Instruction &I : *BB) {
-    // Check that we don't have a constant expression that can trap as operand.
-    for (Value *Operand : I.operands()) {
-      if (auto *C = dyn_cast<Constant>(Operand))
-        if (C->canTrap())
-          return false;
-    }
-    // We might be able to hoist the load.
-    if (I.mayReadFromMemory()) {
-      auto *LI = dyn_cast<LoadInst>(&I);
-      if (!LI)
-        return false;
-      if (!SafePtrs.count(LI->getPointerOperand())) {
-        // !llvm.mem.parallel_loop_access implies if-conversion safety.
-        // Otherwise, record that the load needs (real or emulated) masking
-        // and let the cost model decide.
-        if (!IsAnnotatedParallel)
-          MaskedOp.insert(LI);
-        continue;
-      }
-    }
-
-    if (I.mayWriteToMemory()) {
-      auto *SI = dyn_cast<StoreInst>(&I);
-      if (!SI)
-        return false;
-      // Predicated store requires some form of masking:
-      // 1) masked store HW instruction,
-      // 2) emulation via load-blend-store (only if safe and legal to do so,
-      //    be aware on the race conditions), or
-      // 3) element-by-element predicate check and scalar store.
-      MaskedOp.insert(SI);
-      continue;
-    }
-    if (I.mayThrow())
-      return false;
-  }
-
-  return true;
-}
-
 void InterleavedAccessInfo::collectConstStrideAccesses(
     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
     const ValueToValueMap &Strides) {
@@ -8680,7 +7230,7 @@ bool LoopVectorizePass::processLoop(Loop
   LoopVectorizationRequirements Requirements(*ORE);
   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
                                 &Requirements, &Hints, DB, AC);
-  if (!LVL.canVectorize()) {
+  if (!LVL.canVectorize(EnableVPlanNativePath)) {
     DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
     emitMissedWarning(F, L, Hints, ORE);
     return false;
@@ -8752,8 +7302,8 @@ bool LoopVectorizePass::processLoop(Loop
   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
     DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
                     "attribute is used.\n");
-    ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
-                                   "NoImplicitFloat", L)
+    ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
+                                     "NoImplicitFloat", L)
               << "loop not vectorized due to NoImplicitFloat attribute");
     emitMissedWarning(F, L, Hints, ORE);
     return false;
@@ -8767,7 +7317,7 @@ bool LoopVectorizePass::processLoop(Loop
       TTI->isFPVectorizationPotentiallyUnsafe()) {
     DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
     ORE->emit(
-        createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
+        createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
         << "loop not vectorized due to unsafe FP support.");
     emitMissedWarning(F, L, Hints, ORE);
     return false;




More information about the llvm-commits mailing list