[llvm] r321345 - Rewrite the cached map used for locating the most precise DIE among

David Blaikie via llvm-commits llvm-commits at lists.llvm.org
Mon Feb 12 17:56:27 PST 2018


Currently reverted in r324981 due to some cases of missing inlining in
symbolized results. Will work on getting this sorted out and recommitted
with tests+fixes as soon as possible.

On Thu, Dec 21, 2017 at 10:42 PM Chandler Carruth via llvm-commits <
llvm-commits at lists.llvm.org> wrote:

> Author: chandlerc
> Date: Thu Dec 21 22:41:23 2017
> New Revision: 321345
>
> URL: http://llvm.org/viewvc/llvm-project?rev=321345&view=rev
> Log:
> Rewrite the cached map used for locating the most precise DIE among
> inlined subroutines for a given address.
>
> This is essentially the hot path of llvm-symbolizer when extracting
> inlined frames during symbolization. Previously, we would read every
> subprogram and every inlined subroutine, building a std::map across the
> entire PC space to the best DIE, and then do only a handful of queries
> as we symbolized a backtrace. A huge fraction of the time was spent
> building the map itself.
>
> This patch changes it two a two-level system. First, we just build a map
> from PC-interval to DWARF subprograms. These are required to be disjoint
> and so constructing this is pretty easy. Second, we build a map *just*
> for the inlined subroutines within the subprogram containing the query
> address. This allows us to look at far fewer DIEs and build a *much*
> smaller set of cached maps in the llvm-symbolizer case where only a few
> address get symbolized during the entire run.
>
> It also builds both interval maps in a very different way. It constructs
> a single flat vector of pairs that maps from offset -> index. The
> indices point into collections of DIE objects, but can also be
> "tombstones" (-1) to mark gaps. In the case of subprograms, this mostly
> just simplifies the data structure a bit. For inlined subroutines,
> because we carefully split them as we build the map, we end up in many
> cases having no holes and not having to store both start and stop
> offsets.
>
> Finally, the PC ranges for the inlined subroutines are compressed into
> 32-bits by making them relative to the base PC of the outer subprogram.
> This means that if you have a single function body with over 2gb of
> executable code in it, we will stop mapping address past the first 2gb
> of that function into inlined subroutines and just give you the
> subprogram. This doesn't seem like a problem. ;]
>
> All of this combines to make llvm-symbolizer *well* over 2x faster for
> symbolizing backtraces out of LLVM's unittests. Death-test heavy unit
> tests are running >2x faster. I'm still going to look at completely
> disabling symbolization there, but figured while I had a good benchmark
> we should make symbolization a bit better.
>
> Sadly, the logic to build the flat interval map for the inlined
> subroutines is fairly complex. I'm not super happy about this and
> welcome any simplifying suggestions.
>
> Huge thanks to Dave Blaikie who helped walk me through what the various
> things I needed to do in DWARF to make this work.
>
> Differential Revision: https://reviews.llvm.org/D40987
>
> Modified:
>     llvm/trunk/include/llvm/DebugInfo/DWARF/DWARFUnit.h
>     llvm/trunk/lib/DebugInfo/DWARF/DWARFUnit.cpp
>
> Modified: llvm/trunk/include/llvm/DebugInfo/DWARF/DWARFUnit.h
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/DebugInfo/DWARF/DWARFUnit.h?rev=321345&r1=321344&r2=321345&view=diff
>
> ==============================================================================
> --- llvm/trunk/include/llvm/DebugInfo/DWARF/DWARFUnit.h (original)
> +++ llvm/trunk/include/llvm/DebugInfo/DWARF/DWARFUnit.h Thu Dec 21
> 22:41:23 2017
> @@ -220,10 +220,40 @@ class DWARFUnit {
>    /// The compile unit debug information entry items.
>    std::vector<DWARFDebugInfoEntry> DieArray;
>
> -  /// Map from range's start address to end address and corresponding DIE.
> -  /// IntervalMap does not support range removal, as a result, we use the
> -  /// std::map::upper_bound for address range lookup.
> -  std::map<uint64_t, std::pair<uint64_t, DWARFDie>> AddrDieMap;
> +  /// The vector of inlined subroutine DIEs that we can map directly to
> from
> +  /// their subprogram below.
> +  std::vector<DWARFDie> InlinedSubroutineDIEs;
> +
> +  /// A type representing a subprogram DIE and a map (built using a sorted
> +  /// vector) into that subprogram's inlined subroutine DIEs.
> +  struct SubprogramDIEAddrInfo {
> +    DWARFDie SubprogramDIE;
> +
> +    uint64_t SubprogramBasePC;
> +
> +    /// A vector sorted to allow mapping from a relative PC to the inlined
> +    /// subroutine DIE with the most specific address range covering that
> PC.
> +    ///
> +    /// The PCs are relative to the `SubprogramBasePC`.
> +    ///
> +    /// The vector is sorted in ascending order of the first int which
> +    /// represents the relative PC for an interval in the map. The second
> int
> +    /// represents the index into the `InlinedSubroutineDIEs` vector of
> the DIE
> +    /// that interval maps to. An index of '-1` indicates an empty
> mapping. The
> +    /// interval covered is from the `.first` relative PC to the next
> entry's
> +    /// `.first` relative PC.
> +    std::vector<std::pair<uint32_t, int32_t>> InlinedSubroutineDIEAddrMap;
> +  };
> +
> +  /// Vector of the subprogram DIEs and their subroutine address maps.
> +  std::vector<SubprogramDIEAddrInfo> SubprogramDIEAddrInfos;
> +
> +  /// A vector sorted to allow mapping from a PC to the subprogram DIE
> (and
> +  /// associated addr map) index. Subprograms with overlapping PC ranges
> aren't
> +  /// supported here. Nothing will crash, but the mapping may be
> inaccurate.
> +  /// This vector may also contain "empty" ranges marked by an address
> with
> +  /// a DIE index of '-1'.
> +  std::vector<std::pair<uint64_t, int64_t>> SubprogramDIEAddrMap;
>
>    using die_iterator_range =
>        iterator_range<std::vector<DWARFDebugInfoEntry>::iterator>;
> @@ -282,9 +312,6 @@ public:
>      AddrOffsetSectionBase = Base;
>    }
>
> -  /// Recursively update address to Die map.
> -  void updateAddressDieMap(DWARFDie Die);
> -
>    void setRangesSection(const DWARFSection *RS, uint32_t Base) {
>      RangeSection = RS;
>      RangeSectionBase = Base;
> @@ -480,6 +507,9 @@ private:
>    /// parseDWO - Parses .dwo file for current compile unit. Returns true
> if
>    /// it was actually constructed.
>    bool parseDWO();
> +
> +  void buildSubprogramDIEAddrMap();
> +  void buildInlinedSubroutineDIEAddrMap(SubprogramDIEAddrInfo &SPInfo);
>  };
>
>  } // end namespace llvm
>
> Modified: llvm/trunk/lib/DebugInfo/DWARF/DWARFUnit.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/DebugInfo/DWARF/DWARFUnit.cpp?rev=321345&r1=321344&r2=321345&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/DebugInfo/DWARF/DWARFUnit.cpp (original)
> +++ llvm/trunk/lib/DebugInfo/DWARF/DWARFUnit.cpp Thu Dec 21 22:41:23 2017
> @@ -8,6 +8,7 @@
>
>  //===----------------------------------------------------------------------===//
>
>  #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
> +#include "llvm/ADT/STLExtras.h"
>  #include "llvm/ADT/SmallString.h"
>  #include "llvm/ADT/StringRef.h"
>  #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
> @@ -359,45 +360,378 @@ void DWARFUnit::collectAddressRanges(DWA
>      clearDIEs(true);
>  }
>
> -void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
> -  if (Die.isSubroutineDIE()) {
> +// Populates a map from PC addresses to subprogram DIEs.
> +//
> +// This routine tries to look at the smallest amount of the debug info it
> can
> +// to locate the DIEs. This is because many subprograms will never end up
> being
> +// read or needed at all. We want to be as lazy as possible.
> +void DWARFUnit::buildSubprogramDIEAddrMap() {
> +  assert(SubprogramDIEAddrMap.empty() && "Must only build this map
> once!");
> +  SmallVector<DWARFDie, 16> Worklist;
> +  Worklist.push_back(getUnitDIE());
> +  do {
> +    DWARFDie Die = Worklist.pop_back_val();
> +
> +    // Queue up child DIEs to recurse through.
> +    // FIXME: This causes us to read a lot more debug info than we really
> need.
> +    // We should look at pruning out DIEs which cannot transitively hold
> +    // separate subprograms.
> +    for (DWARFDie Child : Die.children())
> +      Worklist.push_back(Child);
> +
> +    // If handling a non-subprogram DIE, nothing else to do.
> +    if (!Die.isSubprogramDIE())
> +      continue;
> +
> +    // For subprogram DIEs, store them, and insert relevant markers into
> the
> +    // address map. We don't care about overlap at all here as DWARF
> doesn't
> +    // meaningfully support that, so we simply will insert a range with
> no DIE
> +    // starting from the high PC. In the event there are overlaps, sorting
> +    // these may truncate things in surprising ways but still will allow
> +    // lookups to proceed.
> +    int DIEIndex = SubprogramDIEAddrInfos.size();
> +    SubprogramDIEAddrInfos.push_back({Die, (uint64_t)-1, {}});
>      for (const auto &R : Die.getAddressRanges()) {
>        // Ignore 0-sized ranges.
>        if (R.LowPC == R.HighPC)
>          continue;
> -      auto B = AddrDieMap.upper_bound(R.LowPC);
> -      if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
> -        // The range is a sub-range of existing ranges, we need to split
> the
> -        // existing range.
> -        if (R.HighPC < B->second.first)
> -          AddrDieMap[R.HighPC] = B->second;
> -        if (R.LowPC > B->first)
> -          AddrDieMap[B->first].first = R.LowPC;
> +
> +      SubprogramDIEAddrMap.push_back({R.LowPC, DIEIndex});
> +      SubprogramDIEAddrMap.push_back({R.HighPC, -1});
> +
> +      if (R.LowPC < SubprogramDIEAddrInfos.back().SubprogramBasePC)
> +        SubprogramDIEAddrInfos.back().SubprogramBasePC = R.LowPC;
> +    }
> +  } while (!Worklist.empty());
> +
> +  if (SubprogramDIEAddrMap.empty()) {
> +    // If we found no ranges, create a no-op map so that lookups remain
> simple
> +    // but never find anything.
> +    SubprogramDIEAddrMap.push_back({0, -1});
> +    return;
> +  }
> +
> +  // Next, sort the ranges and remove both exact duplicates and runs with
> the
> +  // same DIE index. We order the ranges so that non-empty ranges are
> +  // preferred. Because there may be ties, we also need to use stable
> sort.
> +  std::stable_sort(SubprogramDIEAddrMap.begin(),
> SubprogramDIEAddrMap.end(),
> +                   [](const std::pair<uint64_t, int64_t> &LHS,
> +                      const std::pair<uint64_t, int64_t> &RHS) {
> +                     if (LHS.first < RHS.first)
> +                       return true;
> +                     if (LHS.first > RHS.first)
> +                       return false;
> +
> +                     // For ranges that start at the same address, keep
> the one
> +                     // with a DIE.
> +                     if (LHS.second != -1 && RHS.second == -1)
> +                       return true;
> +
> +                     return false;
> +                   });
> +  SubprogramDIEAddrMap.erase(
> +      std::unique(SubprogramDIEAddrMap.begin(),
> SubprogramDIEAddrMap.end(),
> +                  [](const std::pair<uint64_t, int64_t> &LHS,
> +                     const std::pair<uint64_t, int64_t> &RHS) {
> +                    // If the start addresses are exactly the same, we can
> +                    // remove all but the first one as it is the only one
> that
> +                    // will be found and used.
> +                    //
> +                    // If the DIE indices are the same, we can "merge" the
> +                    // ranges by eliminating the second.
> +                    return LHS.first == RHS.first || LHS.second ==
> RHS.second;
> +                  }),
> +      SubprogramDIEAddrMap.end());
> +
> +  assert(SubprogramDIEAddrMap.back().second == -1 &&
> +         "The last interval must not have a DIE as each DIE's address
> range is "
> +         "bounded.");
> +}
> +
> +// Build the second level of mapping from PC to DIE, specifically one
> that maps
> +// a PC *within* a particular DWARF subprogram into a precise, maximally
> nested
> +// inlined subroutine DIE (if any exists). We build a separate map for
> each
> +// subprogram because many subprograms will never get queried for an
> address
> +// and this allows us to be significantly lazier in reading the DWARF
> itself.
> +void DWARFUnit::buildInlinedSubroutineDIEAddrMap(
> +    SubprogramDIEAddrInfo &SPInfo) {
> +  auto &AddrMap = SPInfo.InlinedSubroutineDIEAddrMap;
> +  uint64_t BasePC = SPInfo.SubprogramBasePC;
> +
> +  auto SubroutineAddrMapSorter = [](const std::pair<int, int> &LHS,
> +                                    const std::pair<int, int> &RHS) {
> +    if (LHS.first < RHS.first)
> +      return true;
> +    if (LHS.first > RHS.first)
> +      return false;
> +
> +    // For ranges that start at the same address, keep the
> +    // non-empty one.
> +    if (LHS.second != -1 && RHS.second == -1)
> +      return true;
> +
> +    return false;
> +  };
> +  auto SubroutineAddrMapUniquer = [](const std::pair<int, int> &LHS,
> +                                     const std::pair<int, int> &RHS) {
> +    // If the start addresses are exactly the same, we can
> +    // remove all but the first one as it is the only one that
> +    // will be found and used.
> +    //
> +    // If the DIE indices are the same, we can "merge" the
> +    // ranges by eliminating the second.
> +    return LHS.first == RHS.first || LHS.second == RHS.second;
> +  };
> +
> +  struct DieAndParentIntervalRange {
> +    DWARFDie Die;
> +    int ParentIntervalsBeginIdx, ParentIntervalsEndIdx;
> +  };
> +
> +  SmallVector<DieAndParentIntervalRange, 16> Worklist;
> +  auto EnqueueChildDIEs = [&](const DWARFDie &Die, int
> ParentIntervalsBeginIdx,
> +                              int ParentIntervalsEndIdx) {
> +    for (DWARFDie Child : Die.children())
> +      Worklist.push_back(
> +          {Child, ParentIntervalsBeginIdx, ParentIntervalsEndIdx});
> +  };
> +  EnqueueChildDIEs(SPInfo.SubprogramDIE, 0, 0);
> +  while (!Worklist.empty()) {
> +    DWARFDie Die = Worklist.back().Die;
> +    int ParentIntervalsBeginIdx = Worklist.back().ParentIntervalsBeginIdx;
> +    int ParentIntervalsEndIdx = Worklist.back().ParentIntervalsEndIdx;
> +    Worklist.pop_back();
> +
> +    // If we encounter a nested subprogram, simply ignore it. We map to
> +    // (disjoint) subprograms before arriving here and we don't want to
> examine
> +    // any inlined subroutines of an unrelated subpragram.
> +    if (Die.getTag() == DW_TAG_subprogram)
> +      continue;
> +
> +    // For non-subroutines, just recurse to keep searching for inlined
> +    // subroutines.
> +    if (Die.getTag() != DW_TAG_inlined_subroutine) {
> +      EnqueueChildDIEs(Die, ParentIntervalsBeginIdx,
> ParentIntervalsEndIdx);
> +      continue;
> +    }
> +
> +    // Capture the inlined subroutine DIE that we will reference from the
> map.
> +    int DIEIndex = InlinedSubroutineDIEs.size();
> +    InlinedSubroutineDIEs.push_back(Die);
> +
> +    int DieIntervalsBeginIdx = AddrMap.size();
> +    // First collect the PC ranges for this DIE into our subroutine
> interval
> +    // map.
> +    for (auto R : Die.getAddressRanges()) {
> +      // Clamp the PCs to be above the base.
> +      R.LowPC = std::max(R.LowPC, BasePC);
> +      R.HighPC = std::max(R.HighPC, BasePC);
> +      // Compute relative PCs from the subprogram base and drop down to an
> +      // unsigned 32-bit int to represent them within the data structure.
> This
> +      // lets us cover a 4gb single subprogram. Because subprograms may be
> +      // partitioned into distant parts of a binary (think hot/cold
> +      // partitioning) we want to preserve as much as we can here without
> +      // burning extra memory. Past that, we will simply truncate and
> lose the
> +      // ability to map those PCs to a DIE more precise than the
> subprogram.
> +      const uint32_t MaxRelativePC = std::numeric_limits<uint32_t>::max();
> +      uint32_t RelativeLowPC = (R.LowPC - BasePC) >
> (uint64_t)MaxRelativePC
> +                                   ? MaxRelativePC
> +                                   : (uint32_t)(R.LowPC - BasePC);
> +      uint32_t RelativeHighPC = (R.HighPC - BasePC) >
> (uint64_t)MaxRelativePC
> +                                    ? MaxRelativePC
> +                                    : (uint32_t)(R.HighPC - BasePC);
> +      // Ignore empty or bogus ranges.
> +      if (RelativeLowPC >= RelativeHighPC)
> +        continue;
> +      AddrMap.push_back({RelativeLowPC, DIEIndex});
> +      AddrMap.push_back({RelativeHighPC, -1});
> +    }
> +
> +    // If there are no address ranges, there is nothing to do to map into
> them
> +    // and there cannot be any child subroutine DIEs with address ranges
> of
> +    // interest as those would all be required to nest within this DIE's
> +    // non-existent ranges, so we can immediately continue to the next
> DIE in
> +    // the worklist.
> +    if (DieIntervalsBeginIdx == (int)AddrMap.size())
> +      continue;
> +
> +    // The PCs from this DIE should never overlap, so we can easily sort
> them
> +    // here.
> +    std::sort(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(),
> +              SubroutineAddrMapSorter);
> +    // Remove any dead ranges. These should only come from "empty" ranges
> that
> +    // were clobbered by some other range.
> +    AddrMap.erase(std::unique(AddrMap.begin() + DieIntervalsBeginIdx,
> +                              AddrMap.end(), SubroutineAddrMapUniquer),
> +                  AddrMap.end());
> +
> +    // Compute the end index of this DIE's addr map intervals.
> +    int DieIntervalsEndIdx = AddrMap.size();
> +
> +    assert(DieIntervalsBeginIdx != DieIntervalsEndIdx &&
> +           "Must not have an empty map for this layer!");
> +    assert(AddrMap.back().second == -1 && "Must end with an empty
> range!");
> +    assert(std::is_sorted(AddrMap.begin() + DieIntervalsBeginIdx,
> AddrMap.end(),
> +                          less_first()) &&
> +           "Failed to sort this DIE's interals!");
> +
> +    // If we have any parent intervals, walk the newly added ranges and
> find
> +    // the parent ranges they were inserted into. Both of these are
> sorted and
> +    // neither has any overlaps. We need to append new ranges to split up
> any
> +    // parent ranges these new ranges would overlap when we merge them.
> +    if (ParentIntervalsBeginIdx != ParentIntervalsEndIdx) {
> +      int ParentIntervalIdx = ParentIntervalsBeginIdx;
> +      for (int i = DieIntervalsBeginIdx, e = DieIntervalsEndIdx - 1; i <
> e;
> +           ++i) {
> +        const uint32_t IntervalStart = AddrMap[i].first;
> +        const uint32_t IntervalEnd = AddrMap[i + 1].first;
> +        const int IntervalDieIdx = AddrMap[i].second;
> +        if (IntervalDieIdx == -1) {
> +          // For empty intervals, nothing is required. This is a bit
> surprising
> +          // however. If the prior interval overlaps a parent interval
> and this
> +          // would be necessary to mark the end, we will synthesize a new
> end
> +          // that switches back to the parent DIE below. And this
> interval will
> +          // get dropped in favor of one with a DIE attached. However,
> we'll
> +          // still include this and so worst-case, it will still end the
> prior
> +          // interval.
> +          continue;
> +        }
> +
> +        // We are walking the new ranges in order, so search forward from
> the
> +        // last point for a parent range that might overlap.
> +        auto ParentIntervalsRange =
> +            make_range(AddrMap.begin() + ParentIntervalIdx,
> +                       AddrMap.begin() + ParentIntervalsEndIdx);
> +        assert(std::is_sorted(ParentIntervalsRange.begin(),
> +                              ParentIntervalsRange.end(), less_first()) &&
> +               "Unsorted parent intervals can't be searched!");
> +        auto PI = std::upper_bound(
> +            ParentIntervalsRange.begin(), ParentIntervalsRange.end(),
> +            IntervalStart,
> +            [](uint32_t LHS, const std::pair<uint32_t, int32_t> &RHS) {
> +              return LHS < RHS.first;
> +            });
> +        if (PI == ParentIntervalsRange.begin() ||
> +            PI == ParentIntervalsRange.end())
> +          continue;
> +
> +        ParentIntervalIdx = PI - AddrMap.begin();
> +        int32_t &ParentIntervalDieIdx = std::prev(PI)->second;
> +        uint32_t &ParentIntervalStart = std::prev(PI)->first;
> +        const uint32_t ParentIntervalEnd = PI->first;
> +
> +        // If the new range starts exactly at the position of the parent
> range,
> +        // we need to adjust the parent range. Note that these collisions
> can
> +        // only happen with the original parent range because we will
> merge any
> +        // adjacent ranges in the child.
> +        if (IntervalStart == ParentIntervalStart) {
> +          // If there will be a tail, just shift the start of the parent
> +          // forward. Note that this cannot change the parent ordering.
> +          if (IntervalEnd < ParentIntervalEnd) {
> +            ParentIntervalStart = IntervalEnd;
> +            continue;
> +          }
> +          // Otherwise, mark this as becoming empty so we'll remove it and
> +          // prefer the child range.
> +          ParentIntervalDieIdx = -1;
> +          continue;
> +        }
> +
> +        // Finally, if the parent interval will need to remain as a
> prefix to
> +        // this one, insert a new interval to cover any tail.
> +        if (IntervalEnd < ParentIntervalEnd)
> +          AddrMap.push_back({IntervalEnd, ParentIntervalDieIdx});
>        }
> -      AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
>      }
> +
> +    // Note that we don't need to re-sort even this DIE's address map
> intervals
> +    // after this. All of the newly added intervals actually fill in
> *gaps* in
> +    // this DIE's address map, and we know that children won't need to
> lookup
> +    // into those gaps.
> +
> +    // Recurse through its children, giving them the interval map range
> of this
> +    // DIE to use as their parent intervals.
> +    EnqueueChildDIEs(Die, DieIntervalsBeginIdx, DieIntervalsEndIdx);
>    }
> -  // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
> -  // simplify the logic to update AddrDieMap. The child's range will
> always
> -  // be equal or smaller than the parent's range. With this assumption,
> when
> -  // adding one range into the map, it will at most split a range into 3
> -  // sub-ranges.
> -  for (DWARFDie Child = Die.getFirstChild(); Child; Child =
> Child.getSibling())
> -    updateAddressDieMap(Child);
> +
> +  if (AddrMap.empty()) {
> +    AddrMap.push_back({0, -1});
> +    return;
> +  }
> +
> +  // Now that we've added all of the intervals needed, we need to resort
> and
> +  // unique them. Most notably, this will remove all the empty ranges
> that had
> +  // a parent range covering, etc. We only expect a single non-empty
> interval
> +  // at any given start point, so we just use std::sort. This could
> potentially
> +  // produce non-deterministic maps for invalid DWARF.
> +  std::sort(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapSorter);
> +  AddrMap.erase(
> +      std::unique(AddrMap.begin(), AddrMap.end(),
> SubroutineAddrMapUniquer),
> +      AddrMap.end());
>  }
>
>  DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
>    extractDIEsIfNeeded(false);
> -  if (AddrDieMap.empty())
> -    updateAddressDieMap(getUnitDIE());
> -  auto R = AddrDieMap.upper_bound(Address);
> -  if (R == AddrDieMap.begin())
> +
> +  // We use a two-level mapping structure to locate subroutines for a
> given PC
> +  // address.
> +  //
> +  // First, we map the address to a subprogram. This can be done more
> cheaply
> +  // because subprograms cannot nest within each other. It also allows us
> to
> +  // avoid detailed examination of many subprograms, instead only
> focusing on
> +  // the ones which we end up actively querying.
> +  if (SubprogramDIEAddrMap.empty())
> +    buildSubprogramDIEAddrMap();
> +
> +  assert(!SubprogramDIEAddrMap.empty() &&
> +         "We must always end up with a non-empty map!");
> +
> +  auto I = std::upper_bound(
> +      SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), Address,
> +      [](uint64_t LHS, const std::pair<uint64_t, int64_t> &RHS) {
> +        return LHS < RHS.first;
> +      });
> +  // If we find the beginning, then the address is before the first
> subprogram.
> +  if (I == SubprogramDIEAddrMap.begin())
>      return DWARFDie();
> -  // upper_bound's previous item contains Address.
> -  --R;
> -  if (Address >= R->second.first)
> +  // Back up to the interval containing the address and see if it
> +  // has a DIE associated with it.
> +  --I;
> +  if (I->second == -1)
>      return DWARFDie();
> -  return R->second.second;
> +
> +  auto &SPInfo = SubprogramDIEAddrInfos[I->second];
> +
> +  // Now that we have the subprogram for this address, we do the second
> level
> +  // mapping by building a map within a subprogram's PC range to any
> specific
> +  // inlined subroutine.
> +  if (SPInfo.InlinedSubroutineDIEAddrMap.empty())
> +    buildInlinedSubroutineDIEAddrMap(SPInfo);
> +
> +  // We lookup within the inlined subroutine using a subprogram-relative
> +  // address.
> +  assert(Address >= SPInfo.SubprogramBasePC &&
> +         "Address isn't above the start of the subprogram!");
> +  uint32_t RelativeAddr = ((Address - SPInfo.SubprogramBasePC) >
> +                           (uint64_t)std::numeric_limits<uint32_t>::max())
> +                              ? std::numeric_limits<uint32_t>::max()
> +                              : (uint32_t)(Address -
> SPInfo.SubprogramBasePC);
> +
> +  auto J =
> +      std::upper_bound(SPInfo.InlinedSubroutineDIEAddrMap.begin(),
> +                       SPInfo.InlinedSubroutineDIEAddrMap.end(),
> RelativeAddr,
> +                       [](uint32_t LHS, const std::pair<uint32_t,
> int32_t> &RHS) {
> +                         return LHS < RHS.first;
> +                       });
> +  // If we find the beginning, the address is before any inlined
> subroutine so
> +  // return the subprogram DIE.
> +  if (J == SPInfo.InlinedSubroutineDIEAddrMap.begin())
> +    return SPInfo.SubprogramDIE;
> +  // Back up `J` and return the inlined subroutine if we have one or the
> +  // subprogram if we don't.
> +  --J;
> +  return J->second == -1 ? SPInfo.SubprogramDIE
> +                         : InlinedSubroutineDIEs[J->second];
>  }
>
>  void
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20180213/09035da9/attachment-0001.html>


More information about the llvm-commits mailing list