[llvm] r314996 - [SparsePropagation] Move member definitions to header (NFC)

Matthew Simpson via llvm-commits llvm-commits at lists.llvm.org
Thu Oct 5 11:03:30 PDT 2017


Author: mssimpso
Date: Thu Oct  5 11:03:30 2017
New Revision: 314996

URL: http://llvm.org/viewvc/llvm-project?rev=314996&view=rev
Log:
[SparsePropagation] Move member definitions to header (NFC)

AbstractLatticeFunction and SparseSolver are class templates parameterized by a
lattice value, so we need to move these member functions over to the header.

Differential Revision: https://reviews.llvm.org/D38561

Removed:
    llvm/trunk/lib/Analysis/SparsePropagation.cpp
Modified:
    llvm/trunk/include/llvm/Analysis/SparsePropagation.h
    llvm/trunk/lib/Analysis/CMakeLists.txt

Modified: llvm/trunk/include/llvm/Analysis/SparsePropagation.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/SparsePropagation.h?rev=314996&r1=314995&r2=314996&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Analysis/SparsePropagation.h (original)
+++ llvm/trunk/include/llvm/Analysis/SparsePropagation.h Thu Oct  5 11:03:30 2017
@@ -15,25 +15,15 @@
 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
 
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/Debug.h"
 #include <set>
-#include <utility>
-#include <vector>
+
+#define DEBUG_TYPE "sparseprop"
 
 namespace llvm {
 
-class Argument;
-class BasicBlock;
-class Constant;
-class Function;
-class Instruction;
-class PHINode;
-class raw_ostream;
 template <class LatticeVal> class SparseSolver;
-class TerminatorInst;
-class Value;
-template <typename T> class SmallVectorImpl;
 
 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
 /// to specify what the lattice values are and how they handle merges etc.  This
@@ -54,7 +44,7 @@ public:
     UntrackedVal = untrackedVal;
   }
 
-  virtual ~AbstractLatticeFunction();
+  virtual ~AbstractLatticeFunction() = default;
 
   LatticeVal getUndefVal()       const { return UndefVal; }
   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
@@ -132,7 +122,6 @@ public:
       : LatticeFunc(Lattice) {}
   SparseSolver(const SparseSolver &) = delete;
   SparseSolver &operator=(const SparseSolver &) = delete;
-  ~SparseSolver() { delete LatticeFunc; }
 
   /// Solve - Solve for constants and executable blocks.
   void Solve(Function &F);
@@ -192,6 +181,321 @@ private:
   void visitTerminatorInst(TerminatorInst &TI);
 };
 
+//===----------------------------------------------------------------------===//
+//                  AbstractLatticeFunction Implementation
+//===----------------------------------------------------------------------===//
+
+template <class LatticeVal>
+void AbstractLatticeFunction<LatticeVal>::PrintValue(LatticeVal V,
+                                                     raw_ostream &OS) {
+  if (V == UndefVal)
+    OS << "undefined";
+  else if (V == OverdefinedVal)
+    OS << "overdefined";
+  else if (V == UntrackedVal)
+    OS << "untracked";
+  else
+    OS << "unknown lattice value";
+}
+
+//===----------------------------------------------------------------------===//
+//                          SparseSolver Implementation
+//===----------------------------------------------------------------------===//
+
+template <class LatticeVal>
+LatticeVal SparseSolver<LatticeVal>::getValueState(Value *V) {
+  auto I = ValueState.find(V);
+  if (I != ValueState.end())
+    return I->second; // Common case, in the map
+
+  LatticeVal LV;
+  if (LatticeFunc->IsUntrackedValue(V))
+    return LatticeFunc->getUntrackedVal();
+  else if (Constant *C = dyn_cast<Constant>(V))
+    LV = LatticeFunc->ComputeConstant(C);
+  else if (Argument *A = dyn_cast<Argument>(V))
+    LV = LatticeFunc->ComputeArgument(A);
+  else if (!isa<Instruction>(V))
+    // All other non-instructions are overdefined.
+    LV = LatticeFunc->getOverdefinedVal();
+  else
+    // All instructions are underdefined by default.
+    LV = LatticeFunc->getUndefVal();
+
+  // If this value is untracked, don't add it to the map.
+  if (LV == LatticeFunc->getUntrackedVal())
+    return LV;
+  return ValueState[V] = LV;
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::UpdateState(Instruction &Inst, LatticeVal V) {
+  auto I = ValueState.find(&Inst);
+  if (I != ValueState.end() && I->second == V)
+    return; // No change.
+
+  // An update.  Visit uses of I.
+  ValueState[&Inst] = V;
+  InstWorkList.push_back(&Inst);
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::MarkBlockExecutable(BasicBlock *BB) {
+  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
+  BBExecutable.insert(BB);  // Basic block is executable!
+  BBWorkList.push_back(BB); // Add the block to the work list!
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::markEdgeExecutable(BasicBlock *Source,
+                                                  BasicBlock *Dest) {
+  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
+    return; // This edge is already known to be executable!
+
+  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> "
+               << Dest->getName() << "\n");
+
+  if (BBExecutable.count(Dest)) {
+    // The destination is already executable, but we just made an edge
+    // feasible that wasn't before.  Revisit the PHI nodes in the block
+    // because they have potentially new operands.
+    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
+      visitPHINode(*cast<PHINode>(I));
+  } else {
+    MarkBlockExecutable(Dest);
+  }
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::getFeasibleSuccessors(
+    TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
+  Succs.resize(TI.getNumSuccessors());
+  if (TI.getNumSuccessors() == 0)
+    return;
+
+  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
+    if (BI->isUnconditional()) {
+      Succs[0] = true;
+      return;
+    }
+
+    LatticeVal BCValue;
+    if (AggressiveUndef)
+      BCValue = getValueState(BI->getCondition());
+    else
+      BCValue = getLatticeState(BI->getCondition());
+
+    if (BCValue == LatticeFunc->getOverdefinedVal() ||
+        BCValue == LatticeFunc->getUntrackedVal()) {
+      // Overdefined condition variables can branch either way.
+      Succs[0] = Succs[1] = true;
+      return;
+    }
+
+    // If undefined, neither is feasible yet.
+    if (BCValue == LatticeFunc->getUndefVal())
+      return;
+
+    Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
+    if (!C || !isa<ConstantInt>(C)) {
+      // Non-constant values can go either way.
+      Succs[0] = Succs[1] = true;
+      return;
+    }
+
+    // Constant condition variables mean the branch can only go a single way
+    Succs[C->isNullValue()] = true;
+    return;
+  }
+
+  if (isa<InvokeInst>(TI)) {
+    // Invoke instructions successors are always executable.
+    // TODO: Could ask the lattice function if the value can throw.
+    Succs[0] = Succs[1] = true;
+    return;
+  }
+
+  if (isa<IndirectBrInst>(TI)) {
+    Succs.assign(Succs.size(), true);
+    return;
+  }
+
+  SwitchInst &SI = cast<SwitchInst>(TI);
+  LatticeVal SCValue;
+  if (AggressiveUndef)
+    SCValue = getValueState(SI.getCondition());
+  else
+    SCValue = getLatticeState(SI.getCondition());
+
+  if (SCValue == LatticeFunc->getOverdefinedVal() ||
+      SCValue == LatticeFunc->getUntrackedVal()) {
+    // All destinations are executable!
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+
+  // If undefined, neither is feasible yet.
+  if (SCValue == LatticeFunc->getUndefVal())
+    return;
+
+  Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
+  if (!C || !isa<ConstantInt>(C)) {
+    // All destinations are executable!
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
+  Succs[Case.getSuccessorIndex()] = true;
+}
+
+template <class LatticeVal>
+bool SparseSolver<LatticeVal>::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
+                                              bool AggressiveUndef) {
+  SmallVector<bool, 16> SuccFeasible;
+  TerminatorInst *TI = From->getTerminator();
+  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
+
+  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+    if (TI->getSuccessor(i) == To && SuccFeasible[i])
+      return true;
+
+  return false;
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::visitTerminatorInst(TerminatorInst &TI) {
+  SmallVector<bool, 16> SuccFeasible;
+  getFeasibleSuccessors(TI, SuccFeasible, true);
+
+  BasicBlock *BB = TI.getParent();
+
+  // Mark all feasible successors executable...
+  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
+    if (SuccFeasible[i])
+      markEdgeExecutable(BB, TI.getSuccessor(i));
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
+  // The lattice function may store more information on a PHINode than could be
+  // computed from its incoming values.  For example, SSI form stores its sigma
+  // functions as PHINodes with a single incoming value.
+  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
+    LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
+    if (IV != LatticeFunc->getUntrackedVal())
+      UpdateState(PN, IV);
+    return;
+  }
+
+  LatticeVal PNIV = getValueState(&PN);
+  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
+
+  // If this value is already overdefined (common) just return.
+  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
+    return; // Quick exit
+
+  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
+  // and slow us down a lot.  Just mark them overdefined.
+  if (PN.getNumIncomingValues() > 64) {
+    UpdateState(PN, Overdefined);
+    return;
+  }
+
+  // Look at all of the executable operands of the PHI node.  If any of them
+  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
+  // transfer function to give us the merge of the incoming values.
+  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
+    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
+      continue;
+
+    // Merge in this value.
+    LatticeVal OpVal = getValueState(PN.getIncomingValue(i));
+    if (OpVal != PNIV)
+      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
+
+    if (PNIV == Overdefined)
+      break; // Rest of input values don't matter.
+  }
+
+  // Update the PHI with the compute value, which is the merge of the inputs.
+  UpdateState(PN, PNIV);
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::visitInst(Instruction &I) {
+  // PHIs are handled by the propagation logic, they are never passed into the
+  // transfer functions.
+  if (PHINode *PN = dyn_cast<PHINode>(&I))
+    return visitPHINode(*PN);
+
+  // Otherwise, ask the transfer function what the result is.  If this is
+  // something that we care about, remember it.
+  LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
+  if (IV != LatticeFunc->getUntrackedVal())
+    UpdateState(I, IV);
+
+  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
+    visitTerminatorInst(*TI);
+}
+
+template <class LatticeVal> void SparseSolver<LatticeVal>::Solve(Function &F) {
+  MarkBlockExecutable(&F.getEntryBlock());
+
+  // Process the work lists until they are empty!
+  while (!BBWorkList.empty() || !InstWorkList.empty()) {
+    // Process the instruction work list.
+    while (!InstWorkList.empty()) {
+      Instruction *I = InstWorkList.back();
+      InstWorkList.pop_back();
+
+      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
+
+      // "I" got into the work list because it made a transition.  See if any
+      // users are both live and in need of updating.
+      for (User *U : I->users()) {
+        Instruction *UI = cast<Instruction>(U);
+        if (BBExecutable.count(UI->getParent())) // Inst is executable?
+          visitInst(*UI);
+      }
+    }
+
+    // Process the basic block work list.
+    while (!BBWorkList.empty()) {
+      BasicBlock *BB = BBWorkList.back();
+      BBWorkList.pop_back();
+
+      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
+
+      // Notify all instructions in this basic block that they are newly
+      // executable.
+      for (Instruction &I : *BB)
+        visitInst(I);
+    }
+  }
+}
+
+template <class LatticeVal>
+void SparseSolver<LatticeVal>::Print(Function &F, raw_ostream &OS) const {
+  OS << "\nFUNCTION: " << F.getName() << "\n";
+  for (auto &BB : F) {
+    if (!BBExecutable.count(&BB))
+      OS << "INFEASIBLE: ";
+    OS << "\t";
+    if (BB.hasName())
+      OS << BB.getName() << ":\n";
+    else
+      OS << "; anon bb\n";
+    for (auto &I : BB) {
+      LatticeFunc->PrintValue(getLatticeState(&I), OS);
+      OS << I << "\n";
+    }
+
+    OS << "\n";
+  }
+}
 } // end namespace llvm
 
+#undef DEBUG_TYPE
+
 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H

Modified: llvm/trunk/lib/Analysis/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/CMakeLists.txt?rev=314996&r1=314995&r2=314996&view=diff
==============================================================================
--- llvm/trunk/lib/Analysis/CMakeLists.txt (original)
+++ llvm/trunk/lib/Analysis/CMakeLists.txt Thu Oct  5 11:03:30 2017
@@ -74,7 +74,6 @@ add_llvm_library(LLVMAnalysis
   ScalarEvolutionAliasAnalysis.cpp
   ScalarEvolutionExpander.cpp
   ScalarEvolutionNormalization.cpp
-  SparsePropagation.cpp
   TargetLibraryInfo.cpp
   TargetTransformInfo.cpp
   Trace.cpp

Removed: llvm/trunk/lib/Analysis/SparsePropagation.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/SparsePropagation.cpp?rev=314995&view=auto
==============================================================================
--- llvm/trunk/lib/Analysis/SparsePropagation.cpp (original)
+++ llvm/trunk/lib/Analysis/SparsePropagation.cpp (removed)
@@ -1,364 +0,0 @@
-//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements an abstract sparse conditional propagation algorithm,
-// modeled after SCCP, but with a customizable lattice function.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/SparsePropagation.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/User.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "sparseprop"
-
-//===----------------------------------------------------------------------===//
-//                  AbstractLatticeFunction Implementation
-//===----------------------------------------------------------------------===//
-
-template <class LatticeVal>
-AbstractLatticeFunction<LatticeVal>::~AbstractLatticeFunction() = default;
-
-/// PrintValue - Render the specified lattice value to the specified stream.
-template <class LatticeVal>
-void AbstractLatticeFunction<LatticeVal>::PrintValue(LatticeVal V,
-                                                     raw_ostream &OS) {
-  if (V == UndefVal)
-    OS << "undefined";
-  else if (V == OverdefinedVal)
-    OS << "overdefined";
-  else if (V == UntrackedVal)
-    OS << "untracked";
-  else
-    OS << "unknown lattice value";
-}
-
-//===----------------------------------------------------------------------===//
-//                          SparseSolver Implementation
-//===----------------------------------------------------------------------===//
-
-/// getValueState - Return the LatticeVal object that corresponds to the
-/// value, initializing the value's state if it hasn't been entered into the
-/// map yet.   This function is necessary because not all values should start
-/// out in the underdefined state... Arguments should be overdefined, and
-/// constants should be marked as constants.
-template <class LatticeVal>
-LatticeVal SparseSolver<LatticeVal>::getValueState(Value *V) {
-  auto I = ValueState.find(V);
-  if (I != ValueState.end()) return I->second;  // Common case, in the map
-  
-  LatticeVal LV;
-  if (LatticeFunc->IsUntrackedValue(V))
-    return LatticeFunc->getUntrackedVal();
-  else if (Constant *C = dyn_cast<Constant>(V))
-    LV = LatticeFunc->ComputeConstant(C);
-  else if (Argument *A = dyn_cast<Argument>(V))
-    LV = LatticeFunc->ComputeArgument(A);
-  else if (!isa<Instruction>(V))
-    // All other non-instructions are overdefined.
-    LV = LatticeFunc->getOverdefinedVal();
-  else
-    // All instructions are underdefined by default.
-    LV = LatticeFunc->getUndefVal();
-  
-  // If this value is untracked, don't add it to the map.
-  if (LV == LatticeFunc->getUntrackedVal())
-    return LV;
-  return ValueState[V] = LV;
-}
-
-/// UpdateState - When the state for some instruction is potentially updated,
-/// this function notices and adds I to the worklist if needed.
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::UpdateState(Instruction &Inst, LatticeVal V) {
-  auto I = ValueState.find(&Inst);
-  if (I != ValueState.end() && I->second == V)
-    return;  // No change.
-  
-  // An update.  Visit uses of I.
-  ValueState[&Inst] = V;
-  InstWorkList.push_back(&Inst);
-}
-
-/// MarkBlockExecutable - This method can be used by clients to mark all of
-/// the blocks that are known to be intrinsically live in the processed unit.
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::MarkBlockExecutable(BasicBlock *BB) {
-  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
-  BBExecutable.insert(BB);   // Basic block is executable!
-  BBWorkList.push_back(BB);  // Add the block to the work list!
-}
-
-/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
-/// work list if it is not already executable...
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::markEdgeExecutable(BasicBlock *Source,
-                                                  BasicBlock *Dest) {
-  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
-    return;  // This edge is already known to be executable!
-  
-  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
-        << " -> " << Dest->getName() << "\n");
-
-  if (BBExecutable.count(Dest)) {
-    // The destination is already executable, but we just made an edge
-    // feasible that wasn't before.  Revisit the PHI nodes in the block
-    // because they have potentially new operands.
-    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
-      visitPHINode(*cast<PHINode>(I));
-  } else {
-    MarkBlockExecutable(Dest);
-  }
-}
-
-/// getFeasibleSuccessors - Return a vector of booleans to indicate which
-/// successors are reachable from a given terminator instruction.
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::getFeasibleSuccessors(
-    TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
-  Succs.resize(TI.getNumSuccessors());
-  if (TI.getNumSuccessors() == 0) return;
-  
-  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
-    if (BI->isUnconditional()) {
-      Succs[0] = true;
-      return;
-    }
-    
-    LatticeVal BCValue;
-    if (AggressiveUndef)
-      BCValue = getValueState(BI->getCondition());
-    else
-      BCValue = getLatticeState(BI->getCondition());
-    
-    if (BCValue == LatticeFunc->getOverdefinedVal() ||
-        BCValue == LatticeFunc->getUntrackedVal()) {
-      // Overdefined condition variables can branch either way.
-      Succs[0] = Succs[1] = true;
-      return;
-    }
-
-    // If undefined, neither is feasible yet.
-    if (BCValue == LatticeFunc->getUndefVal())
-      return;
-
-    Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
-    if (!C || !isa<ConstantInt>(C)) {
-      // Non-constant values can go either way.
-      Succs[0] = Succs[1] = true;
-      return;
-    }
-
-    // Constant condition variables mean the branch can only go a single way
-    Succs[C->isNullValue()] = true;
-    return;
-  }
-  
-  if (isa<InvokeInst>(TI)) {
-    // Invoke instructions successors are always executable.
-    // TODO: Could ask the lattice function if the value can throw.
-    Succs[0] = Succs[1] = true;
-    return;
-  }
-  
-  if (isa<IndirectBrInst>(TI)) {
-    Succs.assign(Succs.size(), true);
-    return;
-  }
-  
-  SwitchInst &SI = cast<SwitchInst>(TI);
-  LatticeVal SCValue;
-  if (AggressiveUndef)
-    SCValue = getValueState(SI.getCondition());
-  else
-    SCValue = getLatticeState(SI.getCondition());
-  
-  if (SCValue == LatticeFunc->getOverdefinedVal() ||
-      SCValue == LatticeFunc->getUntrackedVal()) {
-    // All destinations are executable!
-    Succs.assign(TI.getNumSuccessors(), true);
-    return;
-  }
-  
-  // If undefined, neither is feasible yet.
-  if (SCValue == LatticeFunc->getUndefVal())
-    return;
-  
-  Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
-  if (!C || !isa<ConstantInt>(C)) {
-    // All destinations are executable!
-    Succs.assign(TI.getNumSuccessors(), true);
-    return;
-  }
-  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
-  Succs[Case.getSuccessorIndex()] = true;
-}
-
-/// isEdgeFeasible - Return true if the control flow edge from the 'From'
-/// basic block to the 'To' basic block is currently feasible...
-template <class LatticeVal>
-bool SparseSolver<LatticeVal>::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
-                                              bool AggressiveUndef) {
-  SmallVector<bool, 16> SuccFeasible;
-  TerminatorInst *TI = From->getTerminator();
-  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
-  
-  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
-    if (TI->getSuccessor(i) == To && SuccFeasible[i])
-      return true;
-  
-  return false;
-}
-
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitTerminatorInst(TerminatorInst &TI) {
-  SmallVector<bool, 16> SuccFeasible;
-  getFeasibleSuccessors(TI, SuccFeasible, true);
-  
-  BasicBlock *BB = TI.getParent();
-  
-  // Mark all feasible successors executable...
-  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
-    if (SuccFeasible[i])
-      markEdgeExecutable(BB, TI.getSuccessor(i));
-}
-
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
-  // The lattice function may store more information on a PHINode than could be
-  // computed from its incoming values.  For example, SSI form stores its sigma
-  // functions as PHINodes with a single incoming value.
-  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
-    LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
-    if (IV != LatticeFunc->getUntrackedVal())
-      UpdateState(PN, IV);
-    return;
-  }
-
-  LatticeVal PNIV = getValueState(&PN);
-  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
-  
-  // If this value is already overdefined (common) just return.
-  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
-    return;  // Quick exit
-  
-  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
-  // and slow us down a lot.  Just mark them overdefined.
-  if (PN.getNumIncomingValues() > 64) {
-    UpdateState(PN, Overdefined);
-    return;
-  }
-  
-  // Look at all of the executable operands of the PHI node.  If any of them
-  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
-  // transfer function to give us the merge of the incoming values.
-  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
-    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
-    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
-      continue;
-    
-    // Merge in this value.
-    LatticeVal OpVal = getValueState(PN.getIncomingValue(i));
-    if (OpVal != PNIV)
-      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
-    
-    if (PNIV == Overdefined)
-      break;  // Rest of input values don't matter.
-  }
-
-  // Update the PHI with the compute value, which is the merge of the inputs.
-  UpdateState(PN, PNIV);
-}
-
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitInst(Instruction &I) {
-  // PHIs are handled by the propagation logic, they are never passed into the
-  // transfer functions.
-  if (PHINode *PN = dyn_cast<PHINode>(&I))
-    return visitPHINode(*PN);
-  
-  // Otherwise, ask the transfer function what the result is.  If this is
-  // something that we care about, remember it.
-  LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
-  if (IV != LatticeFunc->getUntrackedVal())
-    UpdateState(I, IV);
-  
-  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
-    visitTerminatorInst(*TI);
-}
-
-template <class LatticeVal> void SparseSolver<LatticeVal>::Solve(Function &F) {
-  MarkBlockExecutable(&F.getEntryBlock());
-  
-  // Process the work lists until they are empty!
-  while (!BBWorkList.empty() || !InstWorkList.empty()) {
-    // Process the instruction work list.
-    while (!InstWorkList.empty()) {
-      Instruction *I = InstWorkList.back();
-      InstWorkList.pop_back();
-
-      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
-
-      // "I" got into the work list because it made a transition.  See if any
-      // users are both live and in need of updating.
-      for (User *U : I->users()) {
-        Instruction *UI = cast<Instruction>(U);
-        if (BBExecutable.count(UI->getParent()))   // Inst is executable?
-          visitInst(*UI);
-      }
-    }
-
-    // Process the basic block work list.
-    while (!BBWorkList.empty()) {
-      BasicBlock *BB = BBWorkList.back();
-      BBWorkList.pop_back();
-
-      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
-
-      // Notify all instructions in this basic block that they are newly
-      // executable.
-      for (Instruction &I : *BB)
-        visitInst(I);
-    }
-  }
-}
-
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::Print(Function &F, raw_ostream &OS) const {
-  OS << "\nFUNCTION: " << F.getName() << "\n";
-  for (auto &BB : F) {
-    if (!BBExecutable.count(&BB))
-      OS << "INFEASIBLE: ";
-    OS << "\t";
-    if (BB.hasName())
-      OS << BB.getName() << ":\n";
-    else
-      OS << "; anon bb\n";
-    for (auto &I : BB) {
-      LatticeFunc->PrintValue(getLatticeState(&I), OS);
-      OS << I << "\n";
-    }
-    
-    OS << "\n";
-  }
-}




More information about the llvm-commits mailing list