[llvm] r314411 - [LVI] Move LVILatticeVal class to separate header file (NFC).

Philip Reames via llvm-commits llvm-commits at lists.llvm.org
Fri Sep 29 08:49:03 PDT 2017


Are we sure that sharing code is a good idea?  These two transforms have 
evolved fairly independently over time and I'm worried that coupling 
their development is not worth the small amount of code sharing.

Can you provide a sketch of your overall plan here?

Philip


On 09/28/2017 04:09 AM, Florian Hahn via llvm-commits wrote:
> Author: fhahn
> Date: Thu Sep 28 04:09:22 2017
> New Revision: 314411
>
> URL: http://llvm.org/viewvc/llvm-project?rev=314411&view=rev
> Log:
> [LVI] Move LVILatticeVal class to separate header file (NFC).
>
> Summary:
> This allows sharing the lattice value code between LVI and SCCP (D36656).
>
> It also adds a `satisfiesPredicate` function, used by D36656.
>
> Reviewers: davide, sanjoy, efriedma
>
> Reviewed By: sanjoy
>
> Subscribers: mgorny, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D37591
>
> Added:
>      llvm/trunk/include/llvm/Analysis/ValueLattice.h
>      llvm/trunk/lib/Analysis/ValueLattice.cpp
>      llvm/trunk/unittests/Analysis/ValueLatticeTest.cpp
> Modified:
>      llvm/trunk/lib/Analysis/CMakeLists.txt
>      llvm/trunk/lib/Analysis/LazyValueInfo.cpp
>      llvm/trunk/unittests/Analysis/CMakeLists.txt
>
> Added: llvm/trunk/include/llvm/Analysis/ValueLattice.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ValueLattice.h?rev=314411&view=auto
> ==============================================================================
> --- llvm/trunk/include/llvm/Analysis/ValueLattice.h (added)
> +++ llvm/trunk/include/llvm/Analysis/ValueLattice.h Thu Sep 28 04:09:22 2017
> @@ -0,0 +1,250 @@
> +//===- ValueLattice.h - Value constraint analysis ---------------*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#ifndef LLVM_ANALYSIS_VALUELATTICE_H
> +#define LLVM_ANALYSIS_VALUELATTICE_H
> +
> +#include "llvm/IR/ConstantRange.h"
> +#include "llvm/IR/Constants.h"
> +//
> +//===----------------------------------------------------------------------===//
> +//                               ValueLatticeElement
> +//===----------------------------------------------------------------------===//
> +
> +/// This class represents lattice values for constants.
> +///
> +/// FIXME: This is basically just for bringup, this can be made a lot more rich
> +/// in the future.
> +///
> +
> +namespace llvm {
> +class ValueLatticeElement {
> +  enum ValueLatticeElementTy {
> +    /// This Value has no known value yet.  As a result, this implies the
> +    /// producing instruction is dead.  Caution: We use this as the starting
> +    /// state in our local meet rules.  In this usage, it's taken to mean
> +    /// "nothing known yet".
> +    undefined,
> +
> +    /// This Value has a specific constant value.  (For constant integers,
> +    /// constantrange is used instead.  Integer typed constantexprs can appear
> +    /// as constant.)
> +    constant,
> +
> +    /// This Value is known to not have the specified value.  (For constant
> +    /// integers, constantrange is used instead.  As above, integer typed
> +    /// constantexprs can appear here.)
> +    notconstant,
> +
> +    /// The Value falls within this range. (Used only for integer typed values.)
> +    constantrange,
> +
> +    /// We can not precisely model the dynamic values this value might take.
> +    overdefined
> +  };
> +
> +  /// Val: This stores the current lattice value along with the Constant* for
> +  /// the constant if this is a 'constant' or 'notconstant' value.
> +  ValueLatticeElementTy Tag;
> +  Constant *Val;
> +  ConstantRange Range;
> +
> +public:
> +  ValueLatticeElement() : Tag(undefined), Val(nullptr), Range(1, true) {}
> +
> +  static ValueLatticeElement get(Constant *C) {
> +    ValueLatticeElement Res;
> +    if (!isa<UndefValue>(C))
> +      Res.markConstant(C);
> +    return Res;
> +  }
> +  static ValueLatticeElement getNot(Constant *C) {
> +    ValueLatticeElement Res;
> +    if (!isa<UndefValue>(C))
> +      Res.markNotConstant(C);
> +    return Res;
> +  }
> +  static ValueLatticeElement getRange(ConstantRange CR) {
> +    ValueLatticeElement Res;
> +    Res.markConstantRange(std::move(CR));
> +    return Res;
> +  }
> +  static ValueLatticeElement getOverdefined() {
> +    ValueLatticeElement Res;
> +    Res.markOverdefined();
> +    return Res;
> +  }
> +
> +  bool isUndefined() const { return Tag == undefined; }
> +  bool isConstant() const { return Tag == constant; }
> +  bool isNotConstant() const { return Tag == notconstant; }
> +  bool isConstantRange() const { return Tag == constantrange; }
> +  bool isOverdefined() const { return Tag == overdefined; }
> +
> +  Constant *getConstant() const {
> +    assert(isConstant() && "Cannot get the constant of a non-constant!");
> +    return Val;
> +  }
> +
> +  Constant *getNotConstant() const {
> +    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
> +    return Val;
> +  }
> +
> +  const ConstantRange &getConstantRange() const {
> +    assert(isConstantRange() &&
> +           "Cannot get the constant-range of a non-constant-range!");
> +    return Range;
> +  }
> +
> +  Optional<APInt> asConstantInteger() const {
> +    if (isConstant() && isa<ConstantInt>(Val)) {
> +      return cast<ConstantInt>(Val)->getValue();
> +    } else if (isConstantRange() && Range.isSingleElement()) {
> +      return *Range.getSingleElement();
> +    }
> +    return None;
> +  }
> +
> +private:
> +  void markOverdefined() {
> +    if (isOverdefined())
> +      return;
> +    Tag = overdefined;
> +  }
> +
> +  void markConstant(Constant *V) {
> +    assert(V && "Marking constant with NULL");
> +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
> +      markConstantRange(ConstantRange(CI->getValue()));
> +      return;
> +    }
> +    if (isa<UndefValue>(V))
> +      return;
> +
> +    assert((!isConstant() || getConstant() == V) &&
> +           "Marking constant with different value");
> +    assert(isUndefined());
> +    Tag = constant;
> +    Val = V;
> +  }
> +
> +  void markNotConstant(Constant *V) {
> +    assert(V && "Marking constant with NULL");
> +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
> +      markConstantRange(ConstantRange(CI->getValue() + 1, CI->getValue()));
> +      return;
> +    }
> +    if (isa<UndefValue>(V))
> +      return;
> +
> +    assert((!isConstant() || getConstant() != V) &&
> +           "Marking constant !constant with same value");
> +    assert((!isNotConstant() || getNotConstant() == V) &&
> +           "Marking !constant with different value");
> +    assert(isUndefined() || isConstant());
> +    Tag = notconstant;
> +    Val = V;
> +  }
> +
> +  void markConstantRange(ConstantRange NewR) {
> +    if (isConstantRange()) {
> +      if (NewR.isEmptySet())
> +        markOverdefined();
> +      else {
> +        Range = std::move(NewR);
> +      }
> +      return;
> +    }
> +
> +    assert(isUndefined());
> +    if (NewR.isEmptySet())
> +      markOverdefined();
> +    else {
> +      Tag = constantrange;
> +      Range = std::move(NewR);
> +    }
> +  }
> +
> +public:
> +  /// Updates this object to approximate both this object and RHS. Returns
> +  /// true if this object has been changed.
> +  bool mergeIn(const ValueLatticeElement &RHS, const DataLayout &DL) {
> +    if (RHS.isUndefined() || isOverdefined())
> +      return false;
> +    if (RHS.isOverdefined()) {
> +      markOverdefined();
> +      return true;
> +    }
> +
> +    if (isUndefined()) {
> +      *this = RHS;
> +      return !RHS.isUndefined();
> +    }
> +
> +    if (isConstant()) {
> +      if (RHS.isConstant() && Val == RHS.Val)
> +        return false;
> +      markOverdefined();
> +      return true;
> +    }
> +
> +    if (isNotConstant()) {
> +      if (RHS.isNotConstant() && Val == RHS.Val)
> +        return false;
> +      markOverdefined();
> +      return true;
> +    }
> +
> +    assert(isConstantRange() && "New ValueLattice type?");
> +    if (!RHS.isConstantRange()) {
> +      // We can get here if we've encountered a constantexpr of integer type
> +      // and merge it with a constantrange.
> +      markOverdefined();
> +      return true;
> +    }
> +    ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
> +    if (NewR.isFullSet())
> +      markOverdefined();
> +    else
> +      markConstantRange(std::move(NewR));
> +    return true;
> +  }
> +
> +  ConstantInt *getConstantInt() const {
> +    assert(isConstant() && isa<ConstantInt>(getConstant()) &&
> +           "No integer constant");
> +    return cast<ConstantInt>(getConstant());
> +  }
> +
> +  bool satisfiesPredicate(CmpInst::Predicate Pred,
> +                          const ValueLatticeElement &Other) const {
> +    // TODO: share with LVI getPredicateResult.
> +
> +    if (isUndefined() || Other.isUndefined())
> +      return true;
> +
> +    if (isConstant() && Other.isConstant() && Pred == CmpInst::FCMP_OEQ)
> +      return getConstant() == Other.getConstant();
> +
> +    // Integer constants are represented as ConstantRanges with single
> +    // elements.
> +    if (!isConstantRange() || !Other.isConstantRange())
> +      return false;
> +
> +    const auto &CR = getConstantRange();
> +    const auto &OtherCR = Other.getConstantRange();
> +    return ConstantRange::makeSatisfyingICmpRegion(Pred, OtherCR).contains(CR);
> +  }
> +};
> +
> +raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val);
> +
> +} // end namespace llvm
> +#endif
>
> Modified: llvm/trunk/lib/Analysis/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/CMakeLists.txt?rev=314411&r1=314410&r2=314411&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Analysis/CMakeLists.txt (original)
> +++ llvm/trunk/lib/Analysis/CMakeLists.txt Thu Sep 28 04:09:22 2017
> @@ -81,6 +81,7 @@ add_llvm_library(LLVMAnalysis
>     TypeBasedAliasAnalysis.cpp
>     TypeMetadataUtils.cpp
>     ScopedNoAliasAA.cpp
> +  ValueLattice.cpp
>     ValueTracking.cpp
>     VectorUtils.cpp
>   
>
> Modified: llvm/trunk/lib/Analysis/LazyValueInfo.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/LazyValueInfo.cpp?rev=314411&r1=314410&r2=314411&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Analysis/LazyValueInfo.cpp (original)
> +++ llvm/trunk/lib/Analysis/LazyValueInfo.cpp Thu Sep 28 04:09:22 2017
> @@ -20,6 +20,7 @@
>   #include "llvm/Analysis/InstructionSimplify.h"
>   #include "llvm/Analysis/TargetLibraryInfo.h"
>   #include "llvm/Analysis/ValueTracking.h"
> +#include "llvm/Analysis/ValueLattice.h"
>   #include "llvm/IR/AssemblyAnnotationWriter.h"
>   #include "llvm/IR/CFG.h"
>   #include "llvm/IR/ConstantRange.h"
> @@ -60,234 +61,10 @@ namespace llvm {
>   
>   AnalysisKey LazyValueAnalysis::Key;
>   
> -//===----------------------------------------------------------------------===//
> -//                               LVILatticeVal
> -//===----------------------------------------------------------------------===//
> -
> -/// This is the information tracked by LazyValueInfo for each value.
> -///
> -/// FIXME: This is basically just for bringup, this can be made a lot more rich
> -/// in the future.
> -///
> -namespace {
> -class LVILatticeVal {
> -  enum LatticeValueTy {
> -    /// This Value has no known value yet.  As a result, this implies the
> -    /// producing instruction is dead.  Caution: We use this as the starting
> -    /// state in our local meet rules.  In this usage, it's taken to mean
> -    /// "nothing known yet".
> -    undefined,
> -
> -    /// This Value has a specific constant value.  (For constant integers,
> -    /// constantrange is used instead.  Integer typed constantexprs can appear
> -    /// as constant.)
> -    constant,
> -
> -    /// This Value is known to not have the specified value.  (For constant
> -    /// integers, constantrange is used instead.  As above, integer typed
> -    /// constantexprs can appear here.)
> -    notconstant,
> -
> -    /// The Value falls within this range. (Used only for integer typed values.)
> -    constantrange,
> -
> -    /// We can not precisely model the dynamic values this value might take.
> -    overdefined
> -  };
> -
> -  /// Val: This stores the current lattice value along with the Constant* for
> -  /// the constant if this is a 'constant' or 'notconstant' value.
> -  LatticeValueTy Tag;
> -  Constant *Val;
> -  ConstantRange Range;
> -
> -public:
> -  LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
> -
> -  static LVILatticeVal get(Constant *C) {
> -    LVILatticeVal Res;
> -    if (!isa<UndefValue>(C))
> -      Res.markConstant(C);
> -    return Res;
> -  }
> -  static LVILatticeVal getNot(Constant *C) {
> -    LVILatticeVal Res;
> -    if (!isa<UndefValue>(C))
> -      Res.markNotConstant(C);
> -    return Res;
> -  }
> -  static LVILatticeVal getRange(ConstantRange CR) {
> -    LVILatticeVal Res;
> -    Res.markConstantRange(std::move(CR));
> -    return Res;
> -  }
> -  static LVILatticeVal getOverdefined() {
> -    LVILatticeVal Res;
> -    Res.markOverdefined();
> -    return Res;
> -  }
> -
> -  bool isUndefined() const     { return Tag == undefined; }
> -  bool isConstant() const      { return Tag == constant; }
> -  bool isNotConstant() const   { return Tag == notconstant; }
> -  bool isConstantRange() const { return Tag == constantrange; }
> -  bool isOverdefined() const   { return Tag == overdefined; }
> -
> -  Constant *getConstant() const {
> -    assert(isConstant() && "Cannot get the constant of a non-constant!");
> -    return Val;
> -  }
> -
> -  Constant *getNotConstant() const {
> -    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
> -    return Val;
> -  }
> -
> -  const ConstantRange &getConstantRange() const {
> -    assert(isConstantRange() &&
> -           "Cannot get the constant-range of a non-constant-range!");
> -    return Range;
> -  }
> -
> -  Optional<APInt> asConstantInteger() const {
> -    if (isConstant() && isa<ConstantInt>(Val)) {
> -      return cast<ConstantInt>(Val)->getValue();
> -    } else if (isConstantRange() && Range.isSingleElement()) {
> -      return *Range.getSingleElement();
> -    }
> -    return None;
> -  }
> -
> -private:
> -  void markOverdefined() {
> -    if (isOverdefined())
> -      return;
> -    Tag = overdefined;
> -  }
> -
> -  void markConstant(Constant *V) {
> -    assert(V && "Marking constant with NULL");
> -    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
> -      markConstantRange(ConstantRange(CI->getValue()));
> -      return;
> -    }
> -    if (isa<UndefValue>(V))
> -      return;
> -
> -    assert((!isConstant() || getConstant() == V) &&
> -           "Marking constant with different value");
> -    assert(isUndefined());
> -    Tag = constant;
> -    Val = V;
> -  }
> -
> -  void markNotConstant(Constant *V) {
> -    assert(V && "Marking constant with NULL");
> -    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
> -      markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
> -      return;
> -    }
> -    if (isa<UndefValue>(V))
> -      return;
> -
> -    assert((!isConstant() || getConstant() != V) &&
> -           "Marking constant !constant with same value");
> -    assert((!isNotConstant() || getNotConstant() == V) &&
> -           "Marking !constant with different value");
> -    assert(isUndefined() || isConstant());
> -    Tag = notconstant;
> -    Val = V;
> -  }
> -
> -  void markConstantRange(ConstantRange NewR) {
> -    if (isConstantRange()) {
> -      if (NewR.isEmptySet())
> -        markOverdefined();
> -      else {
> -        Range = std::move(NewR);
> -      }
> -      return;
> -    }
> -
> -    assert(isUndefined());
> -    if (NewR.isEmptySet())
> -      markOverdefined();
> -    else {
> -      Tag = constantrange;
> -      Range = std::move(NewR);
> -    }
> -  }
> -
> -public:
> -
> -  /// Merge the specified lattice value into this one, updating this
> -  /// one and returning true if anything changed.
> -  void mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
> -    if (RHS.isUndefined() || isOverdefined())
> -      return;
> -    if (RHS.isOverdefined()) {
> -      markOverdefined();
> -      return;
> -    }
> -
> -    if (isUndefined()) {
> -      *this = RHS;
> -      return;
> -    }
> -
> -    if (isConstant()) {
> -      if (RHS.isConstant() && Val == RHS.Val)
> -          return;
> -      markOverdefined();
> -      return;
> -    }
> -
> -    if (isNotConstant()) {
> -      if (RHS.isNotConstant() && Val == RHS.Val)
> -          return;
> -      markOverdefined();
> -      return;
> -    }
> -
> -    assert(isConstantRange() && "New LVILattice type?");
> -    if (!RHS.isConstantRange()) {
> -      // We can get here if we've encountered a constantexpr of integer type
> -      // and merge it with a constantrange.
> -      markOverdefined();
> -      return;
> -    }
> -    ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
> -    if (NewR.isFullSet())
> -      markOverdefined();
> -    else
> -      markConstantRange(std::move(NewR));
> -  }
> -};
> -
> -} // end anonymous namespace.
> -
> -namespace llvm {
> -raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
> -    LLVM_ATTRIBUTE_USED;
> -raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
> -  if (Val.isUndefined())
> -    return OS << "undefined";
> -  if (Val.isOverdefined())
> -    return OS << "overdefined";
> -
> -  if (Val.isNotConstant())
> -    return OS << "notconstant<" << *Val.getNotConstant() << '>';
> -  if (Val.isConstantRange())
> -    return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
> -              << Val.getConstantRange().getUpper() << '>';
> -  return OS << "constant<" << *Val.getConstant() << '>';
> -}
> -}
> -
>   /// Returns true if this lattice value represents at most one possible value.
>   /// This is as precise as any lattice value can get while still representing
>   /// reachable code.
> -static bool hasSingleValue(const LVILatticeVal &Val) {
> +static bool hasSingleValue(const ValueLatticeElement &Val) {
>     if (Val.isConstantRange() &&
>         Val.getConstantRange().isSingleElement())
>       // Integer constants are single element ranges
> @@ -312,7 +89,8 @@ static bool hasSingleValue(const LVILatt
>   ///   contradictory.  If this happens, we return some valid lattice value so as
>   ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
>   ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
> -static LVILatticeVal intersect(const LVILatticeVal &A, const LVILatticeVal &B) {
> +static ValueLatticeElement intersect(const ValueLatticeElement &A,
> +                                     const ValueLatticeElement &B) {
>     // Undefined is the strongest state.  It means the value is known to be along
>     // an unreachable path.
>     if (A.isUndefined())
> @@ -344,7 +122,7 @@ static LVILatticeVal intersect(const LVI
>     // Note: An empty range is implicitly converted to overdefined internally.
>     // TODO: We could instead use Undefined here since we've proven a conflict
>     // and thus know this path must be unreachable.
> -  return LVILatticeVal::getRange(std::move(Range));
> +  return ValueLatticeElement::getRange(std::move(Range));
>   }
>   
>   //===----------------------------------------------------------------------===//
> @@ -382,7 +160,7 @@ namespace {
>       struct ValueCacheEntryTy {
>         ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
>         LVIValueHandle Handle;
> -      SmallDenseMap<PoisoningVH<BasicBlock>, LVILatticeVal, 4> BlockVals;
> +      SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
>       };
>   
>       /// This tracks, on a per-block basis, the set of values that are
> @@ -400,7 +178,8 @@ namespace {
>   
>   
>     public:
> -    void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
> +    void insertResult(Value *Val, BasicBlock *BB,
> +                      const ValueLatticeElement &Result) {
>         SeenBlocks.insert(BB);
>   
>         // Insert over-defined values into their own cache to reduce memory
> @@ -438,16 +217,16 @@ namespace {
>         return I->second->BlockVals.count(BB);
>       }
>   
> -    LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) const {
> +    ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
>         if (isOverdefined(V, BB))
> -        return LVILatticeVal::getOverdefined();
> +        return ValueLatticeElement::getOverdefined();
>   
>         auto I = ValueCache.find_as(V);
>         if (I == ValueCache.end())
> -        return LVILatticeVal();
> +        return ValueLatticeElement();
>         auto BBI = I->second->BlockVals.find(BB);
>         if (BBI == I->second->BlockVals.end())
> -        return LVILatticeVal();
> +        return ValueLatticeElement();
>         return BBI->second;
>       }
>   
> @@ -624,26 +403,29 @@ namespace {
>       const DataLayout &DL; ///< A mandatory DataLayout
>       DominatorTree *DT;    ///< An optional DT pointer.
>   
> -  LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
> +  ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
>     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
> -                    LVILatticeVal &Result, Instruction *CxtI = nullptr);
> +                    ValueLatticeElement &Result, Instruction *CxtI = nullptr);
>     bool hasBlockValue(Value *Val, BasicBlock *BB);
>   
>     // These methods process one work item and may add more. A false value
>     // returned means that the work item was not completely processed and must
>     // be revisited after going through the new items.
>     bool solveBlockValue(Value *Val, BasicBlock *BB);
> -  bool solveBlockValueImpl(LVILatticeVal &Res, Value *Val, BasicBlock *BB);
> -  bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB);
> -  bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB);
> -  bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S,
> +  bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
> +                           BasicBlock *BB);
> +  bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
> +                               BasicBlock *BB);
> +  bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
> +                              BasicBlock *BB);
> +  bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
>                                BasicBlock *BB);
> -  bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, BinaryOperator *BBI,
> +  bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
>                                  BasicBlock *BB);
> -  bool solveBlockValueCast(LVILatticeVal &BBLV, CastInst *CI,
> +  bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
>                              BasicBlock *BB);
>     void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
> -                                                     LVILatticeVal &BBLV,
> +                                                     ValueLatticeElement &BBLV,
>                                                        Instruction *BBI);
>   
>     void solve();
> @@ -651,18 +433,19 @@ namespace {
>     public:
>       /// This is the query interface to determine the lattice
>       /// value for the specified Value* at the end of the specified block.
> -    LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
> -                                  Instruction *CxtI = nullptr);
> +    ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
> +                                        Instruction *CxtI = nullptr);
>   
>       /// This is the query interface to determine the lattice
>       /// value for the specified Value* at the specified instruction (generally
>       /// from an assume intrinsic).
> -    LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
> +    ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
>   
>       /// This is the query interface to determine the lattice
>       /// value for the specified Value* that is true on the specified edge.
> -    LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
> -                                 Instruction *CxtI = nullptr);
> +    ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
> +                                       BasicBlock *ToBB,
> +                                   Instruction *CxtI = nullptr);
>   
>       /// Complete flush all previously computed values
>       void clear() {
> @@ -713,7 +496,7 @@ void LazyValueInfoImpl::solve() {
>         while (!StartingStack.empty()) {
>           std::pair<BasicBlock *, Value *> &e = StartingStack.back();
>           TheCache.insertResult(e.second, e.first,
> -                              LVILatticeVal::getOverdefined());
> +                              ValueLatticeElement::getOverdefined());
>           StartingStack.pop_back();
>         }
>         BlockValueSet.clear();
> @@ -749,15 +532,16 @@ bool LazyValueInfoImpl::hasBlockValue(Va
>     return TheCache.hasCachedValueInfo(Val, BB);
>   }
>   
> -LVILatticeVal LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB) {
> +ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
> +                                                     BasicBlock *BB) {
>     // If already a constant, there is nothing to compute.
>     if (Constant *VC = dyn_cast<Constant>(Val))
> -    return LVILatticeVal::get(VC);
> +    return ValueLatticeElement::get(VC);
>   
>     return TheCache.getCachedValueInfo(Val, BB);
>   }
>   
> -static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
> +static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
>     switch (BBI->getOpcode()) {
>     default: break;
>     case Instruction::Load:
> @@ -765,12 +549,13 @@ static LVILatticeVal getFromRangeMetadat
>     case Instruction::Invoke:
>       if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
>         if (isa<IntegerType>(BBI->getType())) {
> -        return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges));
> +        return ValueLatticeElement::getRange(
> +            getConstantRangeFromMetadata(*Ranges));
>         }
>       break;
>     };
>     // Nothing known - will be intersected with other facts
> -  return LVILatticeVal::getOverdefined();
> +  return ValueLatticeElement::getOverdefined();
>   }
>   
>   bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
> @@ -790,7 +575,7 @@ bool LazyValueInfoImpl::solveBlockValue(
>   
>     // Hold off inserting this value into the Cache in case we have to return
>     // false and come back later.
> -  LVILatticeVal Res;
> +  ValueLatticeElement Res;
>     if (!solveBlockValueImpl(Res, Val, BB))
>       // Work pushed, will revisit
>       return false;
> @@ -799,7 +584,7 @@ bool LazyValueInfoImpl::solveBlockValue(
>     return true;
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValueImpl(LVILatticeVal &Res,
> +bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
>                                               Value *Val, BasicBlock *BB) {
>   
>     Instruction *BBI = dyn_cast<Instruction>(Val);
> @@ -823,7 +608,7 @@ bool LazyValueInfoImpl::solveBlockValueI
>     // That is unfortunate.
>     PointerType *PT = dyn_cast<PointerType>(BBI->getType());
>     if (PT && isKnownNonZero(BBI, DL)) {
> -    Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
> +    Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
>       return true;
>     }
>     if (BBI->getType()->isIntegerTy()) {
> @@ -890,9 +675,9 @@ static bool isObjectDereferencedInBlock(
>     return false;
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
> +bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
>                                                    Value *Val, BasicBlock *BB) {
> -  LVILatticeVal Result;  // Start Undefined.
> +  ValueLatticeElement Result;  // Start Undefined.
>   
>     // If this is the entry block, we must be asking about an argument.  The
>     // value is overdefined.
> @@ -903,9 +688,9 @@ bool LazyValueInfoImpl::solveBlockValueN
>       if (Val->getType()->isPointerTy() &&
>           (isKnownNonZero(Val, DL) || isObjectDereferencedInBlock(Val, BB))) {
>         PointerType *PTy = cast<PointerType>(Val->getType());
> -      Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
> +      Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
>       } else {
> -      Result = LVILatticeVal::getOverdefined();
> +      Result = ValueLatticeElement::getOverdefined();
>       }
>       BBLV = Result;
>       return true;
> @@ -921,7 +706,7 @@ bool LazyValueInfoImpl::solveBlockValueN
>     // canonicalizing to make this true rather than relying on this happy
>     // accident.
>     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
> -    LVILatticeVal EdgeResult;
> +    ValueLatticeElement EdgeResult;
>       if (!getEdgeValue(Val, *PI, BB, EdgeResult))
>         // Explore that input, then return here
>         return false;
> @@ -938,7 +723,7 @@ bool LazyValueInfoImpl::solveBlockValueN
>         if (Val->getType()->isPointerTy() &&
>             isObjectDereferencedInBlock(Val, BB)) {
>           PointerType *PTy = cast<PointerType>(Val->getType());
> -        Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
> +        Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
>         }
>   
>         BBLV = Result;
> @@ -952,9 +737,9 @@ bool LazyValueInfoImpl::solveBlockValueN
>     return true;
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
> -                                                PHINode *PN, BasicBlock *BB) {
> -  LVILatticeVal Result;  // Start Undefined.
> +bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
> +                                               PHINode *PN, BasicBlock *BB) {
> +  ValueLatticeElement Result;  // Start Undefined.
>   
>     // Loop over all of our predecessors, merging what we know from them into
>     // result.  See the comment about the chosen traversal order in
> @@ -962,7 +747,7 @@ bool LazyValueInfoImpl::solveBlockValueP
>     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
>       BasicBlock *PhiBB = PN->getIncomingBlock(i);
>       Value *PhiVal = PN->getIncomingValue(i);
> -    LVILatticeVal EdgeResult;
> +    ValueLatticeElement EdgeResult;
>       // Note that we can provide PN as the context value to getEdgeValue, even
>       // though the results will be cached, because PN is the value being used as
>       // the cache key in the caller.
> @@ -989,13 +774,13 @@ bool LazyValueInfoImpl::solveBlockValueP
>     return true;
>   }
>   
> -static LVILatticeVal getValueFromCondition(Value *Val, Value *Cond,
> -                                           bool isTrueDest = true);
> +static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
> +                                                 bool isTrueDest = true);
>   
>   // If we can determine a constraint on the value given conditions assumed by
>   // the program, intersect those constraints with BBLV
>   void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
> -        Value *Val, LVILatticeVal &BBLV, Instruction *BBI) {
> +        Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
>     BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
>     if (!BBI)
>       return;
> @@ -1024,35 +809,35 @@ void LazyValueInfoImpl::intersectAssumeO
>     }
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
> -                                               SelectInst *SI, BasicBlock *BB) {
> +bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
> +                                              SelectInst *SI, BasicBlock *BB) {
>   
>     // Recurse on our inputs if needed
>     if (!hasBlockValue(SI->getTrueValue(), BB)) {
>       if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
>         return false;
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
> -  LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB);
> +  ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
>     // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
>     // extra slots in the table if we can.
>     if (TrueVal.isOverdefined()) {
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
>   
>     if (!hasBlockValue(SI->getFalseValue(), BB)) {
>       if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
>         return false;
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
> -  LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB);
> +  ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
>     // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
>     // extra slots in the table if we can.
>     if (FalseVal.isOverdefined()) {
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
>   
> @@ -1080,7 +865,7 @@ bool LazyValueInfoImpl::solveBlockValueS
>             return TrueCR.umax(FalseCR);
>           };
>         }();
> -      BBLV = LVILatticeVal::getRange(ResultCR);
> +      BBLV = ValueLatticeElement::getRange(ResultCR);
>         return true;
>       }
>   
> @@ -1123,7 +908,7 @@ bool LazyValueInfoImpl::solveBlockValueS
>                                                m_ConstantInt(CIAdded)))) {
>             auto ResNot = addConstants(CIBase, CIAdded);
>             FalseVal = intersect(FalseVal,
> -                               LVILatticeVal::getNot(ResNot));
> +                               ValueLatticeElement::getNot(ResNot));
>           }
>           break;
>         case ICmpInst::ICMP_NE:
> @@ -1131,27 +916,27 @@ bool LazyValueInfoImpl::solveBlockValueS
>                                               m_ConstantInt(CIAdded)))) {
>             auto ResNot = addConstants(CIBase, CIAdded);
>             TrueVal = intersect(TrueVal,
> -                              LVILatticeVal::getNot(ResNot));
> +                              ValueLatticeElement::getNot(ResNot));
>           }
>           break;
>         };
>       }
>     }
>   
> -  LVILatticeVal Result;  // Start Undefined.
> +  ValueLatticeElement Result;  // Start Undefined.
>     Result.mergeIn(TrueVal, DL);
>     Result.mergeIn(FalseVal, DL);
>     BBLV = Result;
>     return true;
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
> +bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
>                                               CastInst *CI,
>                                               BasicBlock *BB) {
>     if (!CI->getOperand(0)->getType()->isSized()) {
>       // Without knowing how wide the input is, we can't analyze it in any useful
>       // way.
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
>   
> @@ -1168,7 +953,7 @@ bool LazyValueInfoImpl::solveBlockValueC
>       // Unhandled instructions are overdefined.
>       DEBUG(dbgs() << " compute BB '" << BB->getName()
>                    << "' - overdefined (unknown cast).\n");
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     }
>   
> @@ -1184,7 +969,7 @@ bool LazyValueInfoImpl::solveBlockValueC
>       DL.getTypeSizeInBits(CI->getOperand(0)->getType());
>     ConstantRange LHSRange = ConstantRange(OperandBitWidth);
>     if (hasBlockValue(CI->getOperand(0), BB)) {
> -    LVILatticeVal LHSVal = getBlockValue(CI->getOperand(0), BB);
> +    ValueLatticeElement LHSVal = getBlockValue(CI->getOperand(0), BB);
>       intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal,
>                                                     CI);
>       if (LHSVal.isConstantRange())
> @@ -1196,14 +981,14 @@ bool LazyValueInfoImpl::solveBlockValueC
>     // NOTE: We're currently limited by the set of operations that ConstantRange
>     // can evaluate symbolically.  Enhancing that set will allows us to analyze
>     // more definitions.
> -  BBLV = LVILatticeVal::getRange(LHSRange.castOp(CI->getOpcode(),
> -                                                 ResultBitWidth));
> +  BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
> +                                                       ResultBitWidth));
>     return true;
>   }
>   
> -bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
> -                                                 BinaryOperator *BO,
> -                                                 BasicBlock *BB) {
> +bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
> +                                                BinaryOperator *BO,
> +                                                BasicBlock *BB) {
>   
>     assert(BO->getOperand(0)->getType()->isSized() &&
>            "all operands to binary operators are sized");
> @@ -1226,7 +1011,7 @@ bool LazyValueInfoImpl::solveBlockValueB
>       // Unhandled instructions are overdefined.
>       DEBUG(dbgs() << " compute BB '" << BB->getName()
>                    << "' - overdefined (unknown binary operator).\n");
> -    BBLV = LVILatticeVal::getOverdefined();
> +    BBLV = ValueLatticeElement::getOverdefined();
>       return true;
>     };
>   
> @@ -1242,7 +1027,7 @@ bool LazyValueInfoImpl::solveBlockValueB
>       DL.getTypeSizeInBits(BO->getOperand(0)->getType());
>     ConstantRange LHSRange = ConstantRange(OperandBitWidth);
>     if (hasBlockValue(BO->getOperand(0), BB)) {
> -    LVILatticeVal LHSVal = getBlockValue(BO->getOperand(0), BB);
> +    ValueLatticeElement LHSVal = getBlockValue(BO->getOperand(0), BB);
>       intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal,
>                                                     BO);
>       if (LHSVal.isConstantRange())
> @@ -1256,12 +1041,12 @@ bool LazyValueInfoImpl::solveBlockValueB
>     // can evaluate symbolically.  Enhancing that set will allows us to analyze
>     // more definitions.
>     Instruction::BinaryOps BinOp = BO->getOpcode();
> -  BBLV = LVILatticeVal::getRange(LHSRange.binaryOp(BinOp, RHSRange));
> +  BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange));
>     return true;
>   }
>   
> -static LVILatticeVal getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
> -                                               bool isTrueDest) {
> +static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
> +                                                     bool isTrueDest) {
>     Value *LHS = ICI->getOperand(0);
>     Value *RHS = ICI->getOperand(1);
>     CmpInst::Predicate Predicate = ICI->getPredicate();
> @@ -1271,14 +1056,14 @@ static LVILatticeVal getValueFromICmpCon
>         // We know that V has the RHS constant if this is a true SETEQ or
>         // false SETNE.
>         if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
> -        return LVILatticeVal::get(cast<Constant>(RHS));
> +        return ValueLatticeElement::get(cast<Constant>(RHS));
>         else
> -        return LVILatticeVal::getNot(cast<Constant>(RHS));
> +        return ValueLatticeElement::getNot(cast<Constant>(RHS));
>       }
>     }
>   
>     if (!Val->getType()->isIntegerTy())
> -    return LVILatticeVal::getOverdefined();
> +    return ValueLatticeElement::getOverdefined();
>   
>     // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
>     // range of Val guaranteed by the condition. Recognize comparisons in the from
> @@ -1317,19 +1102,19 @@ static LVILatticeVal getValueFromICmpCon
>       if (Offset) // Apply the offset from above.
>         TrueValues = TrueValues.subtract(Offset->getValue());
>   
> -    return LVILatticeVal::getRange(std::move(TrueValues));
> +    return ValueLatticeElement::getRange(std::move(TrueValues));
>     }
>   
> -  return LVILatticeVal::getOverdefined();
> +  return ValueLatticeElement::getOverdefined();
>   }
>   
> -static LVILatticeVal
> +static ValueLatticeElement
>   getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
> -                      DenseMap<Value*, LVILatticeVal> &Visited);
> +                      DenseMap<Value*, ValueLatticeElement> &Visited);
>   
> -static LVILatticeVal
> +static ValueLatticeElement
>   getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
> -                          DenseMap<Value*, LVILatticeVal> &Visited) {
> +                          DenseMap<Value*, ValueLatticeElement> &Visited) {
>     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
>       return getValueFromICmpCondition(Val, ICI, isTrueDest);
>   
> @@ -1340,16 +1125,16 @@ getValueFromConditionImpl(Value *Val, Va
>     BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
>     if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
>                (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
> -    return LVILatticeVal::getOverdefined();
> +    return ValueLatticeElement::getOverdefined();
>   
>     auto RHS = getValueFromCondition(Val, BO->getOperand(0), isTrueDest, Visited);
>     auto LHS = getValueFromCondition(Val, BO->getOperand(1), isTrueDest, Visited);
>     return intersect(RHS, LHS);
>   }
>   
> -static LVILatticeVal
> +static ValueLatticeElement
>   getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
> -                      DenseMap<Value*, LVILatticeVal> &Visited) {
> +                      DenseMap<Value*, ValueLatticeElement> &Visited) {
>     auto I = Visited.find(Cond);
>     if (I != Visited.end())
>       return I->second;
> @@ -1359,9 +1144,10 @@ getValueFromCondition(Value *Val, Value
>     return Result;
>   }
>   
> -LVILatticeVal getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest) {
> +ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
> +                                          bool isTrueDest) {
>     assert(Cond && "precondition");
> -  DenseMap<Value*, LVILatticeVal> Visited;
> +  DenseMap<Value*, ValueLatticeElement> Visited;
>     return getValueFromCondition(Val, Cond, isTrueDest, Visited);
>   }
>   
> @@ -1382,9 +1168,9 @@ static bool isOperationFoldable(User *Us
>   // of its operands Op is an integer constant OpConstVal. If so, return it as an
>   // lattice value range with a single element or otherwise return an overdefined
>   // lattice value.
> -static LVILatticeVal constantFoldUser(User *Usr, Value *Op,
> -                                      const APInt &OpConstVal,
> -                                      const DataLayout &DL) {
> +static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
> +                                            const APInt &OpConstVal,
> +                                            const DataLayout &DL) {
>     assert(isOperationFoldable(Usr) && "Precondition");
>     Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
>     // Check if Usr can be simplified to a constant.
> @@ -1393,7 +1179,7 @@ static LVILatticeVal constantFoldUser(Us
>       if (auto *C = dyn_cast_or_null<ConstantInt>(
>               SimplifyCastInst(CI->getOpcode(), OpConst,
>                                CI->getDestTy(), DL))) {
> -      return LVILatticeVal::getRange(ConstantRange(C->getValue()));
> +      return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
>       }
>     } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
>       bool Op0Match = BO->getOperand(0) == Op;
> @@ -1404,17 +1190,17 @@ static LVILatticeVal constantFoldUser(Us
>       Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
>       if (auto *C = dyn_cast_or_null<ConstantInt>(
>               SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
> -      return LVILatticeVal::getRange(ConstantRange(C->getValue()));
> +      return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
>       }
>     }
> -  return LVILatticeVal::getOverdefined();
> +  return ValueLatticeElement::getOverdefined();
>   }
>   
>   /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
>   /// Val is not constrained on the edge.  Result is unspecified if return value
>   /// is false.
>   static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
> -                              BasicBlock *BBTo, LVILatticeVal &Result) {
> +                              BasicBlock *BBTo, ValueLatticeElement &Result) {
>     // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
>     // know that v != 0.
>     if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
> @@ -1430,7 +1216,7 @@ static bool getEdgeValueLocal(Value *Val
>         // If V is the condition of the branch itself, then we know exactly what
>         // it is.
>         if (Condition == Val) {
> -        Result = LVILatticeVal::get(ConstantInt::get(
> +        Result = ValueLatticeElement::get(ConstantInt::get(
>                                 Type::getInt1Ty(Val->getContext()), isTrueDest));
>           return true;
>         }
> @@ -1468,7 +1254,7 @@ static bool getEdgeValueLocal(Value *Val
>               //    br i1 %Condition, label %then, label %else
>               for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
>                 Value *Op = Usr->getOperand(i);
> -              LVILatticeVal OpLatticeVal =
> +              ValueLatticeElement OpLatticeVal =
>                     getValueFromCondition(Op, Condition, isTrueDest);
>                 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
>                   Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
> @@ -1511,7 +1297,7 @@ static bool getEdgeValueLocal(Value *Val
>         if (ValUsesConditionAndMayBeFoldable) {
>           User *Usr = cast<User>(Val);
>           const DataLayout &DL = BBTo->getModule()->getDataLayout();
> -        LVILatticeVal EdgeLatticeVal =
> +        ValueLatticeElement EdgeLatticeVal =
>               constantFoldUser(Usr, Condition, CaseValue, DL);
>           if (EdgeLatticeVal.isOverdefined())
>             return false;
> @@ -1529,7 +1315,7 @@ static bool getEdgeValueLocal(Value *Val
>         } else if (Case.getCaseSuccessor() == BBTo)
>           EdgesVals = EdgesVals.unionWith(EdgeVal);
>       }
> -    Result = LVILatticeVal::getRange(std::move(EdgesVals));
> +    Result = ValueLatticeElement::getRange(std::move(EdgesVals));
>       return true;
>     }
>     return false;
> @@ -1538,19 +1324,20 @@ static bool getEdgeValueLocal(Value *Val
>   /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
>   /// the basic block if the edge does not constrain Val.
>   bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
> -                                     BasicBlock *BBTo, LVILatticeVal &Result,
> +                                     BasicBlock *BBTo,
> +                                     ValueLatticeElement &Result,
>                                        Instruction *CxtI) {
>     // If already a constant, there is nothing to compute.
>     if (Constant *VC = dyn_cast<Constant>(Val)) {
> -    Result = LVILatticeVal::get(VC);
> +    Result = ValueLatticeElement::get(VC);
>       return true;
>     }
>   
> -  LVILatticeVal LocalResult;
> +  ValueLatticeElement LocalResult;
>     if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
>       // If we couldn't constrain the value on the edge, LocalResult doesn't
>       // provide any information.
> -    LocalResult = LVILatticeVal::getOverdefined();
> +    LocalResult = ValueLatticeElement::getOverdefined();
>   
>     if (hasSingleValue(LocalResult)) {
>       // Can't get any more precise here
> @@ -1567,7 +1354,7 @@ bool LazyValueInfoImpl::getEdgeValue(Val
>     }
>   
>     // Try to intersect ranges of the BB and the constraint on the edge.
> -  LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
> +  ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
>     intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
>                                                   BBFrom->getTerminator());
>     // We can use the context instruction (generically the ultimate instruction
> @@ -1584,8 +1371,8 @@ bool LazyValueInfoImpl::getEdgeValue(Val
>     return true;
>   }
>   
> -LVILatticeVal LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
> -                                                  Instruction *CxtI) {
> +ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
> +                                                       Instruction *CxtI) {
>     DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
>           << BB->getName() << "'\n");
>   
> @@ -1594,21 +1381,21 @@ LVILatticeVal LazyValueInfoImpl::getValu
>       pushBlockValue(std::make_pair(BB, V));
>       solve();
>     }
> -  LVILatticeVal Result = getBlockValue(V, BB);
> +  ValueLatticeElement Result = getBlockValue(V, BB);
>     intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
>   
>     DEBUG(dbgs() << "  Result = " << Result << "\n");
>     return Result;
>   }
>   
> -LVILatticeVal LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
> +ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
>     DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
>           << CxtI->getName() << "'\n");
>   
>     if (auto *C = dyn_cast<Constant>(V))
> -    return LVILatticeVal::get(C);
> +    return ValueLatticeElement::get(C);
>   
> -  LVILatticeVal Result = LVILatticeVal::getOverdefined();
> +  ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
>     if (auto *I = dyn_cast<Instruction>(V))
>       Result = getFromRangeMetadata(I);
>     intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
> @@ -1617,13 +1404,13 @@ LVILatticeVal LazyValueInfoImpl::getValu
>     return Result;
>   }
>   
> -LVILatticeVal LazyValueInfoImpl::
> +ValueLatticeElement LazyValueInfoImpl::
>   getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
>                  Instruction *CxtI) {
>     DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
>           << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
>   
> -  LVILatticeVal Result;
> +  ValueLatticeElement Result;
>     if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
>       solve();
>       bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
> @@ -1703,7 +1490,8 @@ bool LazyValueInfo::invalidate(Function
>   
>   void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
>   
> -LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
> +LazyValueInfo LazyValueAnalysis::run(Function &F,
> +                                     FunctionAnalysisManager &FAM) {
>     auto &AC = FAM.getResult<AssumptionAnalysis>(F);
>     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
>     auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
> @@ -1732,7 +1520,7 @@ Constant *LazyValueInfo::getConstant(Val
>       return nullptr;
>   
>     const DataLayout &DL = BB->getModule()->getDataLayout();
> -  LVILatticeVal Result =
> +  ValueLatticeElement Result =
>         getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
>   
>     if (Result.isConstant())
> @@ -1750,7 +1538,7 @@ ConstantRange LazyValueInfo::getConstant
>     assert(V->getType()->isIntegerTy());
>     unsigned Width = V->getType()->getIntegerBitWidth();
>     const DataLayout &DL = BB->getModule()->getDataLayout();
> -  LVILatticeVal Result =
> +  ValueLatticeElement Result =
>         getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
>     if (Result.isUndefined())
>       return ConstantRange(Width, /*isFullSet=*/false);
> @@ -1769,7 +1557,7 @@ Constant *LazyValueInfo::getConstantOnEd
>                                              BasicBlock *ToBB,
>                                              Instruction *CxtI) {
>     const DataLayout &DL = FromBB->getModule()->getDataLayout();
> -  LVILatticeVal Result =
> +  ValueLatticeElement Result =
>         getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
>   
>     if (Result.isConstant())
> @@ -1788,7 +1576,7 @@ ConstantRange LazyValueInfo::getConstant
>                                                       Instruction *CxtI) {
>     unsigned Width = V->getType()->getIntegerBitWidth();
>     const DataLayout &DL = FromBB->getModule()->getDataLayout();
> -  LVILatticeVal Result =
> +  ValueLatticeElement Result =
>         getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
>   
>     if (Result.isUndefined())
> @@ -1802,11 +1590,9 @@ ConstantRange LazyValueInfo::getConstant
>     return ConstantRange(Width, /*isFullSet=*/true);
>   }
>   
> -static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
> -                                                  const LVILatticeVal &Val,
> -                                                  const DataLayout &DL,
> -                                                  TargetLibraryInfo *TLI) {
> -
> +static LazyValueInfo::Tristate
> +getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
> +                   const DataLayout &DL, TargetLibraryInfo *TLI) {
>     // If we know the value is a constant, evaluate the conditional.
>     Constant *Res = nullptr;
>     if (Val.isConstant()) {
> @@ -1876,7 +1662,7 @@ LazyValueInfo::getPredicateOnEdge(unsign
>                                     BasicBlock *FromBB, BasicBlock *ToBB,
>                                     Instruction *CxtI) {
>     const DataLayout &DL = FromBB->getModule()->getDataLayout();
> -  LVILatticeVal Result =
> +  ValueLatticeElement Result =
>         getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
>   
>     return getPredicateResult(Pred, C, Result, DL, TLI);
> @@ -1897,7 +1683,7 @@ LazyValueInfo::getPredicateAt(unsigned P
>       else if (Pred == ICmpInst::ICMP_NE)
>         return LazyValueInfo::True;
>     }
> -  LVILatticeVal Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
> +  ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
>     Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
>     if (Ret != Unknown)
>       return Ret;
> @@ -2011,7 +1797,7 @@ void LazyValueInfoAnnotatedWriter::emitB
>     // Find if there are latticevalues defined for arguments of the function.
>     auto *F = BB->getParent();
>     for (auto &Arg : F->args()) {
> -    LVILatticeVal Result = LVIImpl->getValueInBlock(
> +    ValueLatticeElement Result = LVIImpl->getValueInBlock(
>           const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
>       if (Result.isUndefined())
>         continue;
> @@ -2036,7 +1822,7 @@ void LazyValueInfoAnnotatedWriter::emitI
>     auto printResult = [&](const BasicBlock *BB) {
>       if (!BlocksContainingLVI.insert(BB).second)
>         return;
> -    LVILatticeVal Result = LVIImpl->getValueInBlock(
> +    ValueLatticeElement Result = LVIImpl->getValueInBlock(
>           const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
>         OS << "; LatticeVal for: '" << *I << "' in BB: '";
>         BB->printAsOperand(OS, false);
>
> Added: llvm/trunk/lib/Analysis/ValueLattice.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ValueLattice.cpp?rev=314411&view=auto
> ==============================================================================
> --- llvm/trunk/lib/Analysis/ValueLattice.cpp (added)
> +++ llvm/trunk/lib/Analysis/ValueLattice.cpp Thu Sep 28 04:09:22 2017
> @@ -0,0 +1,26 @@
> +//===- ValueLattice.cpp - Value constraint analysis -------------*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#include "llvm/Analysis/ValueLattice.h"
> +
> +namespace llvm {
> +raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val) {
> +  if (Val.isUndefined())
> +    return OS << "undefined";
> +  if (Val.isOverdefined())
> +    return OS << "overdefined";
> +
> +  if (Val.isNotConstant())
> +    return OS << "notconstant<" << *Val.getNotConstant() << ">";
> +  if (Val.isConstantRange())
> +    return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
> +              << Val.getConstantRange().getUpper() << ">";
> +  return OS << "constant<" << *Val.getConstant() << ">";
> +}
> +} // end namespace llvm
>
> Modified: llvm/trunk/unittests/Analysis/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/Analysis/CMakeLists.txt?rev=314411&r1=314410&r2=314411&view=diff
> ==============================================================================
> --- llvm/trunk/unittests/Analysis/CMakeLists.txt (original)
> +++ llvm/trunk/unittests/Analysis/CMakeLists.txt Thu Sep 28 04:09:22 2017
> @@ -14,6 +14,7 @@ add_llvm_unittest(AnalysisTests
>     CFGTest.cpp
>     CGSCCPassManagerTest.cpp
>     GlobalsModRefTest.cpp
> +  ValueLatticeTest.cpp
>     LazyCallGraphTest.cpp
>     LoopInfoTest.cpp
>     MemoryBuiltinsTest.cpp
>
> Added: llvm/trunk/unittests/Analysis/ValueLatticeTest.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/Analysis/ValueLatticeTest.cpp?rev=314411&view=auto
> ==============================================================================
> --- llvm/trunk/unittests/Analysis/ValueLatticeTest.cpp (added)
> +++ llvm/trunk/unittests/Analysis/ValueLatticeTest.cpp Thu Sep 28 04:09:22 2017
> @@ -0,0 +1,148 @@
> +//===- ValueLatticeTest.cpp - ScalarEvolution unit tests --------------===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +
> +#include "llvm/Analysis/ValueLattice.h"
> +#include "llvm/ADT/SmallVector.h"
> +#include "llvm/IR/ConstantRange.h"
> +#include "llvm/IR/Constants.h"
> +#include "llvm/IR/IRBuilder.h"
> +#include "llvm/IR/LLVMContext.h"
> +#include "llvm/IR/Module.h"
> +#include "gtest/gtest.h"
> +
> +namespace llvm {
> +namespace {
> +
> +// We use this fixture to ensure that we clean up ScalarEvolution before
> +// deleting the PassManager.
> +class ValueLatticeTest : public testing::Test {
> +protected:
> +  LLVMContext Context;
> +  Module M;
> +
> +  ValueLatticeTest() : M("", Context) {}
> +};
> +
> +TEST_F(ValueLatticeTest, ValueLatticeGetters) {
> +  auto I32Ty = IntegerType::get(Context, 32);
> +  auto *C1 = ConstantInt::get(I32Ty, 1);
> +
> +  EXPECT_TRUE(ValueLatticeElement::get(C1).isConstantRange());
> +  EXPECT_TRUE(
> +      ValueLatticeElement::getRange({C1->getValue()}).isConstantRange());
> +  EXPECT_TRUE(ValueLatticeElement::getOverdefined().isOverdefined());
> +
> +  auto FloatTy = Type::getFloatTy(Context);
> +  auto *C2 = ConstantFP::get(FloatTy, 1.1);
> +  EXPECT_TRUE(ValueLatticeElement::get(C2).isConstant());
> +  EXPECT_TRUE(ValueLatticeElement::getNot(C2).isNotConstant());
> +}
> +
> +TEST_F(ValueLatticeTest, MergeIn) {
> +  auto I32Ty = IntegerType::get(Context, 32);
> +  auto *C1 = ConstantInt::get(I32Ty, 1);
> +
> +  // Merge to lattice values with equal integer constant.
> +  auto LV1 = ValueLatticeElement::get(C1);
> +  LV1.mergeIn(ValueLatticeElement::get(C1), M.getDataLayout());
> +  EXPECT_TRUE(LV1.isConstantRange());
> +  EXPECT_EQ(LV1.asConstantInteger().getValue().getLimitedValue(), 1U);
> +
> +  // Merge LV1 with different integer constant.
> +  LV1.mergeIn(ValueLatticeElement::get(ConstantInt::get(I32Ty, 99)),
> +              M.getDataLayout());
> +  EXPECT_TRUE(LV1.isConstantRange());
> +  EXPECT_EQ(LV1.getConstantRange().getLower().getLimitedValue(), 1U);
> +  EXPECT_EQ(LV1.getConstantRange().getUpper().getLimitedValue(), 100U);
> +
> +  // Merge LV1 in undefined value.
> +  ValueLatticeElement LV2;
> +  LV2.mergeIn(LV1, M.getDataLayout());
> +  EXPECT_TRUE(LV1.isConstantRange());
> +  EXPECT_EQ(LV1.getConstantRange().getLower().getLimitedValue(), 1U);
> +  EXPECT_EQ(LV1.getConstantRange().getUpper().getLimitedValue(), 100U);
> +  EXPECT_TRUE(LV2.isConstantRange());
> +  EXPECT_EQ(LV2.getConstantRange().getLower().getLimitedValue(), 1U);
> +  EXPECT_EQ(LV2.getConstantRange().getUpper().getLimitedValue(), 100U);
> +
> +  // Merge with overdefined.
> +  LV1.mergeIn(ValueLatticeElement::getOverdefined(), M.getDataLayout());
> +  EXPECT_TRUE(LV1.isOverdefined());
> +}
> +
> +TEST_F(ValueLatticeTest, satisfiesPredicateIntegers) {
> +  auto I32Ty = IntegerType::get(Context, 32);
> +  auto *C1 = ConstantInt::get(I32Ty, 1);
> +  auto LV1 = ValueLatticeElement::get(C1);
> +
> +  // Check satisfiesPredicate for equal integer constants.
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_EQ, LV1));
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SGE, LV1));
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLE, LV1));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_NE, LV1));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SLT, LV1));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGT, LV1));
> +
> +  auto LV2 =
> +      ValueLatticeElement::getRange({APInt(32, 10, true), APInt(32, 20, true)});
> +  // Check satisfiesPredicate with distinct integer ranges.
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLT, LV2));
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLE, LV2));
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_NE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_EQ, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGT, LV2));
> +
> +  auto LV3 =
> +      ValueLatticeElement::getRange({APInt(32, 15, true), APInt(32, 19, true)});
> +  // Check satisfiesPredicate with a subset integer ranges.
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SLT, LV3));
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SLE, LV3));
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_NE, LV3));
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_EQ, LV3));
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SGE, LV3));
> +  EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SGT, LV3));
> +
> +  auto LV4 =
> +      ValueLatticeElement::getRange({APInt(32, 15, true), APInt(32, 25, true)});
> +  // Check satisfiesPredicate with overlapping integer ranges.
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SLT, LV4));
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SLE, LV4));
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_NE, LV4));
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_EQ, LV4));
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SGE, LV4));
> +  EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SGT, LV4));
> +}
> +
> +TEST_F(ValueLatticeTest, satisfiesPredicateFloat) {
> +  auto FloatTy = IntegerType::getFloatTy(Context);
> +  auto *C1 = ConstantFP::get(FloatTy, 1.0);
> +  auto LV1 = ValueLatticeElement::get(C1);
> +  auto LV2 = ValueLatticeElement::get(C1);
> +
> +  // Check satisfiesPredicate for equal floating point constants.
> +  EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::FCMP_OEQ, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_ONE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLT, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGT, LV2));
> +
> +  LV1.mergeIn(ValueLatticeElement::get(ConstantFP::get(FloatTy, 2.2)),
> +              M.getDataLayout());
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OEQ, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_ONE, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLT, LV2));
> +  EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGT, LV2));
> +}
> +
> +} // end anonymous namespace
> +} // end namespace llvm
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits



More information about the llvm-commits mailing list