[llvm] r310450 - [LCG] Switch one of the update methods for the LazyCallGraph to support

Chandler Carruth via llvm-commits llvm-commits at lists.llvm.org
Wed Aug 9 20:06:40 PDT 2017


(finally) fixed in r310547 -- sorry this took so long to land

On Wed, Aug 9, 2017 at 6:58 PM Chandler Carruth via llvm-commits <
llvm-commits at lists.llvm.org> wrote:

> Sorry, Zach mentioned this to me and I got pulled away before i landed a
> fix. Fix coming up momentarily!
>
> On Wed, Aug 9, 2017 at 5:51 PM Yung, Douglas <douglas.yung at sony.com>
> wrote:
>
>> Hi Chandler,
>>
>> I don't know if you are aware, but this commit seems to have caused the
>> following 11 tests to start failing on one of the bots (
>> http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/4201
>> ):
>>
>> LLVM-Unit ::
>> Analysis/Checking/./AnalysisTests.exe/LazyCallGraphTest.InlineAndDeleteFunction
>> LLVM-Unit ::
>> Analysis/Checking/./AnalysisTests.exe/LazyCallGraphTest.InternalEdgeRemoval
>> LLVM-Unit ::
>> Analysis/Checking/./AnalysisTests.exe/LazyCallGraphTest.InternalMultiEdgeRemoval
>> LLVM :: Other/cgscc-devirt-iteration.ll
>> LLVM :: Other/cgscc-iterate-function-mutation.ll
>> LLVM :: Transforms/Inline/cgscc-incremental-invalidate.ll
>> LLVM :: Transforms/Inline/cgscc-invalidate.ll
>> LLVM :: Transforms/Inline/cgscc-update.ll
>> LLVM :: Transforms/Inline/frameescape.ll
>> LLVM :: Transforms/Inline/internal-scc-members.ll
>> LLVM :: Transforms/Inline/monster_scc.ll
>>
>> In each case, the test fails with an assertion failure:
>>
>> Assertion failed: G && "Can't have a null graph!", file
>> C:\ps4-buildslave2\llvm-clang-x86_64-expensive-checks-win\llvm\lib\Analysis\LazyCallGraph.cpp,
>> line 276
>>
>> Can you take a look?
>>
>> Douglas Yung
>>
>> > -----Original Message-----
>> > From: llvm-commits [mailto:llvm-commits-bounces at lists.llvm.org] On
>> Behalf Of
>> > Chandler Carruth via llvm-commits
>> > Sent: Wednesday, August 09, 2017 2:05
>> > To: llvm-commits at lists.llvm.org
>> > Subject: [llvm] r310450 - [LCG] Switch one of the update methods for the
>> > LazyCallGraph to support
>> >
>> > Author: chandlerc
>> > Date: Wed Aug  9 02:05:27 2017
>> > New Revision: 310450
>> >
>> > URL: http://llvm.org/viewvc/llvm-project?rev=310450&view=rev
>> > Log:
>> > [LCG] Switch one of the update methods for the LazyCallGraph to support
>> > limited batch updates.
>> >
>> > Specifically, allow removing multiple reference edges starting from a
>> common
>> > source node. There are a few constraints that play into supporting this
>> form
>> > of batching:
>> >
>> > 1) The way updates occur during the CGSCC walk, about the most we can
>> >    functionally batch together are those with a common source node. This
>> >    also makes the batching simpler to implement, so it seems
>> >    a worthwhile restriction.
>> > 2) The far and away hottest function for large C++ files I measured
>> >    (generated code for protocol buffers) showed a huge amount of time
>> >    was spent removing ref edges specifically, so it seems worth focusing
>> >    there.
>> > 3) The algorithm for removing ref edges is very amenable to this
>> >    restricted batching. There are just both API and implementation
>> >    special casing for the non-batch case that gets in the way. Once
>> >    removed, supporting batches is nearly trivial.
>> >
>> > This does modify the API in an interesting way -- now, we only preserve
>> the
>> > target RefSCC when the RefSCC structure is unchanged. In the face of any
>> > splits, we create brand new RefSCC objects. However, all of the users
>> were OK
>> > with it that I could find. Only the unittest needed interesting updates
>> here.
>> >
>> > How much does batching these updates help? I instrumented the compiler
>> when
>> > run over a very large generated source file for a protocol buffer and
>> found
>> > that the majority of updates are intrinsically updating one function at
>> a
>> > time. However, nearly 40% of the total ref edges removed are removed as
>> part
>> > of a batch of removals greater than one, so these are the cases
>> batching can
>> > help with.
>> >
>> > When compiling the IR for this file with 'opt' and 'O3', this patch
>> reduces
>> > the total time by 8-9%.
>> >
>> > Differential Revision: https://reviews.llvm.org/D36352
>> >
>> > Modified:
>> >     llvm/trunk/include/llvm/Analysis/LazyCallGraph.h
>> >     llvm/trunk/lib/Analysis/CGSCCPassManager.cpp
>> >     llvm/trunk/lib/Analysis/LazyCallGraph.cpp
>> >     llvm/trunk/unittests/Analysis/LazyCallGraphTest.cpp
>> >
>> > Modified: llvm/trunk/include/llvm/Analysis/LazyCallGraph.h
>> > URL: http://llvm.org/viewvc/llvm-
>> >
>> project/llvm/trunk/include/llvm/Analysis/LazyCallGraph.h?rev=310450&r1=310449&
>> > r2=310450&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/include/llvm/Analysis/LazyCallGraph.h (original)
>> > +++ llvm/trunk/include/llvm/Analysis/LazyCallGraph.h Wed Aug  9 02:05:27
>> > +++ 2017
>> > @@ -795,26 +795,25 @@ public:
>> >      /// though, so be careful calling this while iterating over them.
>> >      void removeOutgoingEdge(Node &SourceN, Node &TargetN);
>> >
>> > -    /// Remove a ref edge which is entirely within this RefSCC.
>> > +    /// Remove a list of ref edges which are entirely within this
>> RefSCC.
>> >      ///
>> > -    /// Both the \a SourceN and the \a TargetN must be within this
>> RefSCC.
>> > -    /// Removing such an edge may break cycles that form this RefSCC
>> and thus
>> > -    /// this operation may change the RefSCC graph significantly. In
>> > +    /// Both the \a SourceN and all of the \a TargetNs must be within
>> this
>> > +    /// RefSCC. Removing these edges may break cycles that form this
>> RefSCC
>> > and
>> > +    /// thus this operation may change the RefSCC graph significantly.
>> > + In
>> >      /// particular, this operation will re-form new RefSCCs based on
>> the
>> >      /// remaining connectivity of the graph. The following invariants
>> are
>> >      /// guaranteed to hold after calling this method:
>> >      ///
>> > -    /// 1) This RefSCC is still a RefSCC in the graph.
>> > -    /// 2) This RefSCC will be the parent of any new RefSCCs. Thus,
>> this
>> > RefSCC
>> > -    ///    is preserved as the root of any new RefSCC DAG formed.
>> > -    /// 3) No RefSCC other than this RefSCC has its member set changed
>> (this
>> > is
>> > +    /// 1) If a ref-cycle remains after removal, it leaves this RefSCC
>> intact
>> > +    ///    and in the graph. No new RefSCCs are built.
>> > +    /// 2) Otherwise, this RefSCC will be dead after this call and no
>> longer
>> > in
>> > +    ///    the graph or the postorder traversal of the call graph. Any
>> > iterator
>> > +    ///    pointing at this RefSCC will become invalid.
>> > +    /// 3) All newly formed RefSCCs will be returned and the order of
>> the
>> > +    ///    RefSCCs returned will be a valid postorder traversal of the
>> new
>> > +    ///    RefSCCs.
>> > +    /// 4) No RefSCC other than this RefSCC has its member set changed
>> > + (this is
>> >      ///    inherent in the definition of removing such an edge).
>> > -    /// 4) All of the parent links of the RefSCC graph will be updated
>> to
>> > -    ///    reflect the new RefSCC structure.
>> > -    /// 5) All RefSCCs formed out of this RefSCC, excluding this
>> RefSCC, will
>> > -    ///    be returned in post-order.
>> > -    /// 6) The order of the RefSCCs in the vector will be a valid
>> postorder
>> > -    ///    traversal of the new RefSCCs.
>> >      ///
>> >      /// These invariants are very important to ensure that we can build
>> >      /// optimization pipelines on top of the CGSCC pass manager which
>> @@ -
>> > 833,11 +832,9 @@ public:
>> >      /// within this RefSCC and edges from this RefSCC to child
>> RefSCCs. Some
>> >      /// effort has been made to minimize the overhead of common cases
>> such as
>> >      /// self-edges and edge removals which result in a spanning tree
>> with no
>> > -    /// more cycles. There are also detailed comments within the
>> > implementation
>> > -    /// on techniques which could substantially improve this routine's
>> > -    /// efficiency.
>> > +    /// more cycles.
>> >      SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
>> > -                                                   Node &TargetN);
>> > +                                                   ArrayRef<Node *>
>> > + TargetNs);
>> >
>> >      /// A convenience wrapper around the above to handle trivial cases
>> of
>> >      /// inserting a new call edge.
>> >
>> > Modified: llvm/trunk/lib/Analysis/CGSCCPassManager.cpp
>> > URL: http://llvm.org/viewvc/llvm-
>> >
>> project/llvm/trunk/lib/Analysis/CGSCCPassManager.cpp?rev=310450&r1=310449&r2=3
>> > 10450&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/lib/Analysis/CGSCCPassManager.cpp (original)
>> > +++ llvm/trunk/lib/Analysis/CGSCCPassManager.cpp Wed Aug  9 02:05:27
>> > +++ 2017
>> > @@ -459,71 +459,78 @@ LazyCallGraph::SCC &llvm::updateCGAndAna
>> >        VisitRef(*F);
>> >
>> >    // First remove all of the edges that are no longer present in this
>> > function.
>> > -  // We have to build a list of dead targets first and then remove
>> them as
>> > the
>> > -  // data structures will all be invalidated by removing them.
>> > -  SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
>> > -  for (Edge &E : *N)
>> > -    if (!RetainedEdges.count(&E.getNode()))
>> > -      DeadTargets.push_back({&E.getNode(), E.getKind()});
>> > -  for (auto DeadTarget : DeadTargets) {
>> > -    Node &TargetN = *DeadTarget.getPointer();
>> > -    bool IsCall = DeadTarget.getInt() == Edge::Call;
>> > -    SCC &TargetC = *G.lookupSCC(TargetN);
>> > -    RefSCC &TargetRC = TargetC.getOuterRefSCC();
>> > -
>> > -    if (&TargetRC != RC) {
>> > -      RC->removeOutgoingEdge(N, TargetN);
>> > -      if (DebugLogging)
>> > -        dbgs() << "Deleting outgoing edge from '" << N << "' to '" <<
>> TargetN
>> > -               << "'\n";
>> > +  // The first step makes these edges uniformly ref edges and
>> > + accumulates them  // into a separate data structure so removal doesn't
>> > invalidate anything.
>> > +  SmallVector<Node *, 4> DeadTargets;
>> > +  for (Edge &E : *N) {
>> > +    if (RetainedEdges.count(&E.getNode()))
>> >        continue;
>> > -    }
>> > -    if (DebugLogging)
>> > -      dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
>> > -             << " edge from '" << N << "' to '" << TargetN << "'\n";
>> >
>> > -    if (IsCall) {
>> > +    SCC &TargetC = *G.lookupSCC(E.getNode());
>> > +    RefSCC &TargetRC = TargetC.getOuterRefSCC();
>> > +    if (&TargetRC == RC && E.isCall()) {
>> >        if (C != &TargetC) {
>> >          // For separate SCCs this is trivial.
>> > -        RC->switchTrivialInternalEdgeToRef(N, TargetN);
>> > +        RC->switchTrivialInternalEdgeToRef(N, E.getNode());
>> >        } else {
>> >          // Now update the call graph.
>> > -        C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N,
>> TargetN),
>> > G,
>> > -                                   N, C, AM, UR, DebugLogging);
>> > +        C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N,
>> > E.getNode()),
>> > +                                   G, N, C, AM, UR, DebugLogging);
>> >        }
>> >      }
>> >
>> > -    auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
>> > -    if (!NewRefSCCs.empty()) {
>> > -      // Note that we don't bother to invalidate analyses as ref-edge
>> > -      // connectivity is not really observable in any way and is
>> intended
>> > -      // exclusively to be used for ordering of transforms rather than
>> for
>> > -      // analysis conclusions.
>> > -
>> > -      // The RC worklist is in reverse postorder, so we first enqueue
>> the
>> > -      // current RefSCC as it will remain the parent of all split
>> RefSCCs,
>> > then
>> > -      // we enqueue the new ones in RPO except for the one which
>> contains the
>> > -      // source node as that is the "bottom" we will continue
>> processing in
>> > the
>> > -      // bottom-up walk.
>> > -      UR.RCWorklist.insert(RC);
>> > +    // Now that this is ready for actual removal, put it into our list.
>> > +    DeadTargets.push_back(&E.getNode());
>> > +  }
>> > +  // Remove the easy cases quickly and actually pull them out of our
>> list.
>> > +  DeadTargets.erase(
>> > +      llvm::remove_if(DeadTargets,
>> > +                      [&](Node *TargetN) {
>> > +                        SCC &TargetC = *G.lookupSCC(*TargetN);
>> > +                        RefSCC &TargetRC = TargetC.getOuterRefSCC();
>> > +
>> > +                        // We can't trivially remove internal targets,
>> so
>> > skip
>> > +                        // those.
>> > +                        if (&TargetRC == RC)
>> > +                          return false;
>> > +
>> > +                        RC->removeOutgoingEdge(N, *TargetN);
>> > +                        if (DebugLogging)
>> > +                          dbgs() << "Deleting outgoing edge from '" <<
>> N
>> > +                                 << "' to '" << TargetN << "'\n";
>> > +                        return true;
>> > +                      }),
>> > +      DeadTargets.end());
>> > +
>> > +  // Now do a batch removal of the internal ref edges left.
>> > +  auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);  if
>> > + (!NewRefSCCs.empty()) {
>> > +    // The old RefSCC is dead, mark it as such.
>> > +    UR.InvalidatedRefSCCs.insert(RC);
>> > +
>> > +    // Note that we don't bother to invalidate analyses as ref-edge
>> > +    // connectivity is not really observable in any way and is intended
>> > +    // exclusively to be used for ordering of transforms rather than
>> for
>> > +    // analysis conclusions.
>> > +
>> > +    // Update RC to the "bottom".
>> > +    assert(G.lookupSCC(N) == C && "Changed the SCC when splitting
>> RefSCCs!");
>> > +    RC = &C->getOuterRefSCC();
>> > +    assert(G.lookupRefSCC(N) == RC && "Failed to update current
>> > + RefSCC!");
>> > +
>> > +    // The RC worklist is in reverse postorder, so we enqueue the new
>> ones in
>> > +    // RPO except for the one which contains the source node as that
>> is the
>> > +    // "bottom" we will continue processing in the bottom-up walk.
>> > +    assert(NewRefSCCs.front() == RC &&
>> > +           "New current RefSCC not first in the returned list!");
>> > +    for (RefSCC *NewRC :
>> > +         reverse(make_range(std::next(NewRefSCCs.begin()),
>> > NewRefSCCs.end()))) {
>> > +      assert(NewRC != RC && "Should not encounter the current RefSCC
>> further
>> > "
>> > +                            "in the postorder list of new RefSCCs.");
>> > +      UR.RCWorklist.insert(NewRC);
>> >        if (DebugLogging)
>> > -        dbgs() << "Enqueuing the existing RefSCC in the update
>> worklist: "
>> > -               << *RC << "\n";
>> > -      // Update the RC to the "bottom".
>> > -      assert(G.lookupSCC(N) == C && "Changed the SCC when splitting
>> > RefSCCs!");
>> > -      RC = &C->getOuterRefSCC();
>> > -      assert(G.lookupRefSCC(N) == RC && "Failed to update current
>> RefSCC!");
>> > -      assert(NewRefSCCs.front() == RC &&
>> > -             "New current RefSCC not first in the returned list!");
>> > -      for (RefSCC *NewRC : reverse(
>> > -               make_range(std::next(NewRefSCCs.begin()),
>> NewRefSCCs.end())))
>> > {
>> > -        assert(NewRC != RC && "Should not encounter the current RefSCC
>> > further "
>> > -                              "in the postorder list of new RefSCCs.");
>> > -        UR.RCWorklist.insert(NewRC);
>> > -        if (DebugLogging)
>> > -          dbgs() << "Enqueuing a new RefSCC in the update worklist: "
>> <<
>> > *NewRC
>> > -                 << "\n";
>> > -      }
>> > +        dbgs() << "Enqueuing a new RefSCC in the update worklist: " <<
>> *NewRC
>> > +               << "\n";
>> >      }
>> >    }
>> >
>> >
>> > Modified: llvm/trunk/lib/Analysis/LazyCallGraph.cpp
>> > URL: http://llvm.org/viewvc/llvm-
>> >
>> project/llvm/trunk/lib/Analysis/LazyCallGraph.cpp?rev=310450&r1=310449&r2=3104
>> > 50&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/lib/Analysis/LazyCallGraph.cpp (original)
>> > +++ llvm/trunk/lib/Analysis/LazyCallGraph.cpp Wed Aug  9 02:05:27 2017
>> > @@ -1094,34 +1094,49 @@ void LazyCallGraph::RefSCC::removeOutgoi
>> >  }
>> >
>> >  SmallVector<LazyCallGraph::RefSCC *, 1> -
>> > LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node
>> &TargetN) {
>> > -  assert(!(*SourceN)[TargetN].isCall() &&
>> > -         "Cannot remove a call edge, it must first be made a ref
>> edge");
>> > +LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
>> > +                                             ArrayRef<Node *> TargetNs)
>> > +{
>> > +  // We return a list of the resulting *new* RefSCCs in post-order.
>> > +  SmallVector<RefSCC *, 1> Result;
>> >
>> >  #ifndef NDEBUG
>> > -  // In a debug build, verify the RefSCC is valid to start with and
>> when this
>> > -  // routine finishes.
>> > +  // In a debug build, verify the RefSCC is valid to start with and
>> > + that either  // we return an empty list of result RefSCCs and this
>> > + RefSCC remains valid,  // or we return new RefSCCs and this RefSCC is
>> dead.
>> >    verify();
>> > -  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
>> > +  auto VerifyOnExit = make_scope_exit([&]() {
>> > +    if (Result.empty()) {
>> > +      verify();
>> > +    } else {
>> > +      assert(!G && "A dead RefSCC should have its graph pointer
>> nulled.");
>> > +      assert(SCCs.empty() && "A dead RefSCC should have no SCCs in
>> it.");
>> > +      for (RefSCC *RC : Result)
>> > +        RC->verify();
>> > +    }
>> > +  });
>> >  #endif
>> >
>> > -  // First remove the actual edge.
>> > -  bool Removed = SourceN->removeEdgeInternal(TargetN);
>> > -  (void)Removed;
>> > -  assert(Removed && "Target not in the edge set for this caller?");
>> > -
>> > -  // We return a list of the resulting *new* RefSCCs in post-order.
>> > -  SmallVector<RefSCC *, 1> Result;
>> > +  // First remove the actual edges.
>> > +  for (Node *TargetN : TargetNs) {
>> > +    assert(!(*SourceN)[*TargetN].isCall() &&
>> > +           "Cannot remove a call edge, it must first be made a ref
>> > + edge");
>> > +
>> > +    bool Removed = SourceN->removeEdgeInternal(*TargetN);
>> > +    (void)Removed;
>> > +    assert(Removed && "Target not in the edge set for this caller?");
>> > + }
>> >
>> > -  // Direct recursion doesn't impact the SCC graph at all.
>> > -  if (&SourceN == &TargetN)
>> > +  // Direct self references don't impact the ref graph at all.
>> > +  if (llvm::all_of(TargetNs,
>> > +                   [&](Node *TargetN) { return &SourceN == TargetN; }))
>> >      return Result;
>> >
>> > -  // If this ref edge is within an SCC then there are sufficient other
>> edges
>> > to
>> > -  // form a cycle without this edge so removing it is a no-op.
>> > +  // If all targets are in the same SCC as the source, because no call
>> > + edges  // were removed there is no RefSCC structure change.
>> >    SCC &SourceC = *G->lookupSCC(SourceN);
>> > -  SCC &TargetC = *G->lookupSCC(TargetN);
>> > -  if (&SourceC == &TargetC)
>> > +  if (llvm::all_of(TargetNs, [&](Node *TargetN) {
>> > +        return G->lookupSCC(*TargetN) == &SourceC;
>> > +      }))
>> >      return Result;
>> >
>> >    // We build somewhat synthetic new RefSCCs by providing a postorder
>> mapping
>> > @@ -1129,33 +1144,13 @@ LazyCallGraph::RefSCC::removeInternalRef
>> >    // than SCCs because this saves a round-trip through the node->SCC
>> map and
>> > in
>> >    // the common case, SCCs are small. We will verify that we always
>> give the
>> >    // same number to every node in the SCC such that these are
>> equivalent.
>> > -  const int RootPostOrderNumber = 0;
>> > -  int PostOrderNumber = RootPostOrderNumber + 1;
>> > +  int PostOrderNumber = 0;
>> >    SmallDenseMap<Node *, int> PostOrderMapping;
>> >
>> > -  // Every node in the target SCC can already reach every node in this
>> RefSCC
>> > -  // (by definition). It is the only node we know will stay inside this
>> > RefSCC.
>> > -  // Everything which transitively reaches Target will also remain in
>> the
>> > -  // RefSCC. We handle this by pre-marking that the nodes in the
>> target SCC
>> > map
>> > -  // back to the root post order number.
>> > -  //
>> > -  // This also enables us to take a very significant short-cut in the
>> > standard
>> > -  // Tarjan walk to re-form RefSCCs below: whenever we build an edge
>> that
>> > -  // references the target node, we know that the target node
>> eventually
>> > -  // references all other nodes in our walk. As a consequence, we can
>> detect
>> > -  // and handle participants in that cycle without walking all the
>> edges that
>> > -  // form the connections, and instead by relying on the fundamental
>> > guarantee
>> > -  // coming into this operation.
>> > -  for (Node &N : TargetC)
>> > -    PostOrderMapping[&N] = RootPostOrderNumber;
>> > -
>> >    // Reset all the other nodes to prepare for a DFS over them, and add
>> them
>> > to
>> >    // our worklist.
>> >    SmallVector<Node *, 8> Worklist;
>> >    for (SCC *C : SCCs) {
>> > -    if (C == &TargetC)
>> > -      continue;
>> > -
>> >      for (Node &N : *C)
>> >        N.DFSNumber = N.LowLink = 0;
>> >
>> > @@ -1212,26 +1207,6 @@ LazyCallGraph::RefSCC::removeInternalRef
>> >            continue;
>> >          }
>> >          if (ChildN.DFSNumber == -1) {
>> > -          // Check if this edge's target node connects to the deleted
>> edge's
>> > -          // target node. If so, we know that every node connected
>> will end
>> > up
>> > -          // in this RefSCC, so collapse the entire current stack into
>> the
>> > root
>> > -          // slot in our SCC numbering. See above for the motivation of
>> > -          // optimizing the target connected nodes in this way.
>> > -          auto PostOrderI = PostOrderMapping.find(&ChildN);
>> > -          if (PostOrderI != PostOrderMapping.end() &&
>> > -              PostOrderI->second == RootPostOrderNumber) {
>> > -            MarkNodeForSCCNumber(*N, RootPostOrderNumber);
>> > -            while (!PendingRefSCCStack.empty())
>> > -              MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
>> > -                                   RootPostOrderNumber);
>> > -            while (!DFSStack.empty())
>> > -              MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
>> > -                                   RootPostOrderNumber);
>> > -            // Ensure we break all the way out of the enclosing loop.
>> > -            N = nullptr;
>> > -            break;
>> > -          }
>> > -
>> >            // If this child isn't currently in this RefSCC, no need to
>> process
>> >            // it.
>> >            ++I;
>> > @@ -1246,9 +1221,6 @@ LazyCallGraph::RefSCC::removeInternalRef
>> >            N->LowLink = ChildN.LowLink;
>> >          ++I;
>> >        }
>> > -      if (!N)
>> > -        // We short-circuited this node.
>> > -        break;
>> >
>> >        // We've finished processing N and its descendents, put it on our
>> > pending
>> >        // stack to eventually get merged into a RefSCC.
>> > @@ -1287,32 +1259,31 @@ LazyCallGraph::RefSCC::removeInternalRef
>> >      assert(PendingRefSCCStack.empty() && "Didn't flush all pending
>> nodes!");
>> >    } while (!Worklist.empty());
>> >
>> > -  // We now have a post-order numbering for RefSCCs and a mapping from
>> each
>> > -  // node in this RefSCC to its final RefSCC. We create each new
>> RefSCC node
>> > -  // (re-using this RefSCC node for the root) and build a radix-sort
>> style
>> > map
>> > -  // from postorder number to the RefSCC. We then append SCCs to each
>> of
>> > these
>> > -  // RefSCCs in the order they occured in the original SCCs container.
>> > -  for (int i = 1; i < PostOrderNumber; ++i)
>> > +  // If we only ever needed one post-order number, we reformed a
>> > + ref-cycle for  // every node so the RefSCC remains unchanged.
>> > +  if (PostOrderNumber == 1)
>> > +    return Result;
>> > +
>> > +  // Otherwise we create a collection of new RefSCC nodes and build  //
>> > + a radix-sort style map from postorder number to these new RefSCCs. We
>> > + then  // append SCCs to each of these RefSCCs in the order they
>> > + occured in the  // original SCCs container.
>> > +  for (int i = 0; i < PostOrderNumber; ++i)
>> >      Result.push_back(G->createRefSCC(*G));
>> >
>> >    // Insert the resulting postorder sequence into the global graph
>> postorder
>> > -  // sequence before the current RefSCC in that sequence. The idea
>> being that
>> > -  // this RefSCC is the target of the reference edge removed, and thus
>> has
>> > -  // a direct or indirect edge to every other RefSCC formed and so
>> must be at
>> > -  // the end of any postorder traversal.
>> > +  // sequence before the current RefSCC in that sequence, and then
>> > + remove the  // current one.
>> >    //
>> >    // FIXME: It'd be nice to change the APIs so that we returned an
>> iterator
>> >    // range over the global postorder sequence and generally use that
>> sequence
>> >    // rather than building a separate result vector here.
>> > -  if (!Result.empty()) {
>> > -    int Idx = G->getRefSCCIndex(*this);
>> > -    G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
>> > -                               Result.begin(), Result.end());
>> > -    for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
>> > -      G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
>> > -    assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
>> > -           "Failed to update this RefSCC's index after insertion!");
>> > -  }
>> > +  int Idx = G->getRefSCCIndex(*this);
>> > +  G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
>> > +  G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
>> > Result.begin(),
>> > +                             Result.end());  for (int i : seq<int>(Idx,
>> > + G->PostOrderRefSCCs.size()))
>> > +    G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
>> >
>> >    for (SCC *C : SCCs) {
>> >      auto PostOrderI = PostOrderMapping.find(&*C->begin());
>> > @@ -1324,33 +1295,19 @@ LazyCallGraph::RefSCC::removeInternalRef
>> >        assert(PostOrderMapping.find(&N)->second == SCCNumber &&
>> >               "Cannot have different numbers for nodes in the same
>> SCC!");
>> > #endif
>> > -    if (SCCNumber == 0)
>> > -      // The root node is handled separately by removing the SCCs.
>> > -      continue;
>> >
>> > -    RefSCC &RC = *Result[SCCNumber - 1];
>> > +    RefSCC &RC = *Result[SCCNumber];
>> >      int SCCIndex = RC.SCCs.size();
>> >      RC.SCCs.push_back(C);
>> >      RC.SCCIndices[C] = SCCIndex;
>> >      C->OuterRefSCC = &RC;
>> >    }
>> >
>> > -  // Now erase all but the root's SCCs.
>> > -  SCCs.erase(remove_if(SCCs,
>> > -                       [&](SCC *C) {
>> > -                         return PostOrderMapping.lookup(&*C->begin())
>> !=
>> > -                                RootPostOrderNumber;
>> > -                       }),
>> > -             SCCs.end());
>> > +  // Now that we've moved things into the new RefSCCs, clear out our
>> > + current  // one.
>> > +  G = nullptr;
>> > +  SCCs.clear();
>> >    SCCIndices.clear();
>> > -  for (int i = 0, Size = SCCs.size(); i < Size; ++i)
>> > -    SCCIndices[SCCs[i]] = i;
>> > -
>> > -#ifndef NDEBUG
>> > -  // Verify all of the new RefSCCs.
>> > -  for (RefSCC *RC : Result)
>> > -    RC->verify();
>> > -#endif
>> >
>> >    // Return the new list of SCCs.
>> >    return Result;
>> >
>> > Modified: llvm/trunk/unittests/Analysis/LazyCallGraphTest.cpp
>> > URL: http://llvm.org/viewvc/llvm-
>> >
>> project/llvm/trunk/unittests/Analysis/LazyCallGraphTest.cpp?rev=310450&r1=3104
>> > 49&r2=310450&view=diff
>> >
>> ==============================================================================
>> > --- llvm/trunk/unittests/Analysis/LazyCallGraphTest.cpp (original)
>> > +++ llvm/trunk/unittests/Analysis/LazyCallGraphTest.cpp Wed Aug  9
>> > +++ 02:05:27 2017
>> > @@ -1166,20 +1166,21 @@ TEST(LazyCallGraphTest, InlineAndDeleteF
>> >    LazyCallGraph::SCC &NewDC = *NewCs.begin();
>> >    EXPECT_EQ(&NewDC, CG.lookupSCC(D1));
>> >    EXPECT_EQ(&NewDC, CG.lookupSCC(D3));
>> > -  auto NewRCs = DRC.removeInternalRefEdge(D1, D2);
>> > -  EXPECT_EQ(&DRC, CG.lookupRefSCC(D2));
>> > -  EXPECT_EQ(NewRCs.end(), std::next(NewRCs.begin()));
>> > -  LazyCallGraph::RefSCC &NewDRC = **NewRCs.begin();
>> > +  auto NewRCs = DRC.removeInternalRefEdge(D1, {&D2});  ASSERT_EQ(2u,
>> > + NewRCs.size());  LazyCallGraph::RefSCC &NewDRC = *NewRCs[0];
>> >    EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
>> >    EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
>> > -  EXPECT_FALSE(NewDRC.isParentOf(DRC));
>> > -  EXPECT_TRUE(CRC.isParentOf(DRC));
>> > +  LazyCallGraph::RefSCC &D2RC = *NewRCs[1];  EXPECT_EQ(&D2RC,
>> > + CG.lookupRefSCC(D2));  EXPECT_FALSE(NewDRC.isParentOf(D2RC));
>> > +  EXPECT_TRUE(CRC.isParentOf(D2RC));
>> >    EXPECT_TRUE(CRC.isParentOf(NewDRC));
>> > -  EXPECT_TRUE(DRC.isParentOf(NewDRC));
>> > +  EXPECT_TRUE(D2RC.isParentOf(NewDRC));
>> >    CRC.removeOutgoingEdge(C1, D2);
>> > -  EXPECT_FALSE(CRC.isParentOf(DRC));
>> > +  EXPECT_FALSE(CRC.isParentOf(D2RC));
>> >    EXPECT_TRUE(CRC.isParentOf(NewDRC));
>> > -  EXPECT_TRUE(DRC.isParentOf(NewDRC));
>> > +  EXPECT_TRUE(D2RC.isParentOf(NewDRC));
>> >
>> >    // Now that we've updated the call graph, D2 is dead, so remove it.
>> >    CG.removeDeadFunction(D2F);
>> > @@ -1340,7 +1341,7 @@ TEST(LazyCallGraphTest, InternalEdgeRemo
>> >    // Remove the edge from b -> a, which should leave the 3 functions
>> still in
>> >    // a single connected component because of a -> b -> c -> a.
>> >    SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
>> > -      RC.removeInternalRefEdge(B, A);
>> > +      RC.removeInternalRefEdge(B, {&A});
>> >    EXPECT_EQ(0u, NewRCs.size());
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(A));
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(B));
>> > @@ -1350,24 +1351,94 @@ TEST(LazyCallGraphTest, InternalEdgeRemo
>> >    EXPECT_EQ(&RC, &*J);
>> >    EXPECT_EQ(E, std::next(J));
>> >
>> > +  // Increment I before we actually mutate the structure so that it
>> > + remains  // a valid iterator.
>> > +  ++I;
>> > +
>> >    // Remove the edge from c -> a, which should leave 'a' in the
>> original
>> > RefSCC
>> >    // and form a new RefSCC for 'b' and 'c'.
>> > -  NewRCs = RC.removeInternalRefEdge(C, A);
>> > -  EXPECT_EQ(1u, NewRCs.size());
>> > -  EXPECT_EQ(&RC, CG.lookupRefSCC(A));
>> > -  EXPECT_EQ(1, std::distance(RC.begin(), RC.end()));
>> > -  LazyCallGraph::RefSCC &RC2 = *CG.lookupRefSCC(B);
>> > -  EXPECT_EQ(&RC2, CG.lookupRefSCC(C));
>> > -  EXPECT_EQ(&RC2, NewRCs[0]);
>> > +  NewRCs = RC.removeInternalRefEdge(C, {&A});  ASSERT_EQ(2u,
>> > + NewRCs.size());  LazyCallGraph::RefSCC &BCRC = *NewRCs[0];
>> > + LazyCallGraph::RefSCC &ARC = *NewRCs[1];  EXPECT_EQ(&ARC,
>> > + CG.lookupRefSCC(A));  EXPECT_EQ(1, std::distance(ARC.begin(),
>> > + ARC.end()));  EXPECT_EQ(&BCRC, CG.lookupRefSCC(B));  EXPECT_EQ(&BCRC,
>> > + CG.lookupRefSCC(C));
>> >    J = CG.postorder_ref_scc_begin();
>> >    EXPECT_NE(I, J);
>> > -  EXPECT_EQ(&RC2, &*J);
>> > +  EXPECT_EQ(&BCRC, &*J);
>> > +  ++J;
>> > +  EXPECT_NE(I, J);
>> > +  EXPECT_EQ(&ARC, &*J);
>> >    ++J;
>> >    EXPECT_EQ(I, J);
>> > -  EXPECT_EQ(&RC, &*J);
>> > +  EXPECT_EQ(E, J);
>> > +}
>> > +
>> > +TEST(LazyCallGraphTest, InternalMultiEdgeRemoval) {
>> > +  LLVMContext Context;
>> > +  // A nice fully connected (including self-edges) RefSCC.
>> > +  std::unique_ptr<Module> M = parseAssembly(
>> > +      Context, "define void @a(i8** %ptr) {\n"
>> > +               "entry:\n"
>> > +               "  store i8* bitcast (void(i8**)* @a to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @b to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @c to i8*), i8**
>> %ptr\n"
>> > +               "  ret void\n"
>> > +               "}\n"
>> > +               "define void @b(i8** %ptr) {\n"
>> > +               "entry:\n"
>> > +               "  store i8* bitcast (void(i8**)* @a to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @b to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @c to i8*), i8**
>> %ptr\n"
>> > +               "  ret void\n"
>> > +               "}\n"
>> > +               "define void @c(i8** %ptr) {\n"
>> > +               "entry:\n"
>> > +               "  store i8* bitcast (void(i8**)* @a to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @b to i8*), i8**
>> %ptr\n"
>> > +               "  store i8* bitcast (void(i8**)* @c to i8*), i8**
>> %ptr\n"
>> > +               "  ret void\n"
>> > +               "}\n");
>> > +  LazyCallGraph CG = buildCG(*M);
>> > +
>> > +  // Force the graph to be fully expanded.
>> > +  CG.buildRefSCCs();
>> > +  auto I = CG.postorder_ref_scc_begin(), E =
>> > + CG.postorder_ref_scc_end();  LazyCallGraph::RefSCC &RC = *I;
>> > + EXPECT_EQ(E, std::next(I));
>> > +
>> > +  LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
>> > + LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
>> > + LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
>> > + EXPECT_EQ(&RC, CG.lookupRefSCC(A));  EXPECT_EQ(&RC,
>> > + CG.lookupRefSCC(B));  EXPECT_EQ(&RC, CG.lookupRefSCC(C));
>> > +
>> > +  // Increment I before we actually mutate the structure so that it
>> > + remains  // a valid iterator.
>> >    ++I;
>> > -  EXPECT_EQ(E, I);
>> > +
>> > +  // Remove the edges from b -> a and b -> c, leaving b in its own
>> RefSCC.
>> > +  SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
>> > +      RC.removeInternalRefEdge(B, {&A, &C});
>> > +
>> > +  ASSERT_EQ(2u, NewRCs.size());
>> > +  LazyCallGraph::RefSCC &BRC = *NewRCs[0];  LazyCallGraph::RefSCC &ACRC
>> > + = *NewRCs[1];  EXPECT_EQ(&BRC, CG.lookupRefSCC(B));  EXPECT_EQ(1,
>> > + std::distance(BRC.begin(), BRC.end()));  EXPECT_EQ(&ACRC,
>> > + CG.lookupRefSCC(A));  EXPECT_EQ(&ACRC, CG.lookupRefSCC(C));  auto J =
>> > + CG.postorder_ref_scc_begin();  EXPECT_NE(I, J);  EXPECT_EQ(&BRC, &*J);
>> >    ++J;
>> > +  EXPECT_NE(I, J);
>> > +  EXPECT_EQ(&ACRC, &*J);
>> > +  ++J;
>> > +  EXPECT_EQ(I, J);
>> >    EXPECT_EQ(E, J);
>> >  }
>> >
>> > @@ -1420,7 +1491,7 @@ TEST(LazyCallGraphTest, InternalNoOpEdge
>> >
>> >    // Remove the edge from a -> c which doesn't change anything.
>> >    SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
>> > -      RC.removeInternalRefEdge(AN, CN);
>> > +      RC.removeInternalRefEdge(AN, {&CN});
>> >    EXPECT_EQ(0u, NewRCs.size());
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
>> > @@ -1435,8 +1506,8 @@ TEST(LazyCallGraphTest, InternalNoOpEdge
>> >
>> >    // Remove the edge from b -> a and c -> b; again this doesn't change
>> >    // anything.
>> > -  NewRCs = RC.removeInternalRefEdge(BN, AN);
>> > -  NewRCs = RC.removeInternalRefEdge(CN, BN);
>> > +  NewRCs = RC.removeInternalRefEdge(BN, {&AN});  NewRCs =
>> > + RC.removeInternalRefEdge(CN, {&BN});
>> >    EXPECT_EQ(0u, NewRCs.size());
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
>> >    EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
>> >
>> >
>> > _______________________________________________
>> > llvm-commits mailing list
>> > llvm-commits at lists.llvm.org
>> > http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
>>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20170810/832d3420/attachment.html>


More information about the llvm-commits mailing list