[llvm] r306437 - [Dominators] Use Semi-NCA instead of SLT to calculate dominators
Jakub Kuderski via llvm-commits
llvm-commits at lists.llvm.org
Tue Jun 27 11:08:54 PDT 2017
Author: kuhar
Date: Tue Jun 27 11:08:53 2017
New Revision: 306437
URL: http://llvm.org/viewvc/llvm-project?rev=306437&view=rev
Log:
[Dominators] Use Semi-NCA instead of SLT to calculate dominators
Summary:
This patch makes GenericDomTreeConstruction use the Semi-NCA algorithm instead of Simple Lengauer-Tarjan.
As described in `RFC: Dynamic dominators`, Semi-NCA offers slightly better performance than SLT. What's more important, it can be extended to perform incremental updates on already constructed dominator trees.
The patch passes check-all, llvm test suite and is able to boostrap clang. I also wasn't able to observe any compilation time regressions.
Reviewers: sanjoy, dberlin, chandlerc, grosser
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34258
Modified:
llvm/trunk/include/llvm/Support/GenericDomTreeConstruction.h
Modified: llvm/trunk/include/llvm/Support/GenericDomTreeConstruction.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Support/GenericDomTreeConstruction.h?rev=306437&r1=306436&r2=306437&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Support/GenericDomTreeConstruction.h (original)
+++ llvm/trunk/include/llvm/Support/GenericDomTreeConstruction.h Tue Jun 27 11:08:53 2017
@@ -10,10 +10,11 @@
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
-/// algorithm described in this document:
+/// Semi-NCA algorithm described in this dissertation:
///
-/// A Fast Algorithm for Finding Dominators in a Flowgraph
-/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
+/// Linear-Time Algorithms for Dominators and Related Problems
+/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
+/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
@@ -169,39 +170,22 @@ void Calculate(DominatorTreeBaseByGraphT
N = DFSPass<GraphT>(DT, DT.Roots[0], N);
}
- // it might be that some blocks did not get a DFS number (e.g., blocks of
+ // It might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
- // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
- // bucket for each vertex. However, this is unnecessary, because each vertex
- // is only placed into a single bucket (that of its semidominator), and each
- // vertex's bucket is processed before it is added to any bucket itself.
- //
- // Instead of using a bucket per vertex, we use a single array Buckets that
- // has two purposes. Before the vertex V with preorder number i is processed,
- // Buckets[i] stores the index of the first element in V's bucket. After V's
- // bucket is processed, Buckets[i] stores the index of the next element in the
- // bucket containing V, if any.
- SmallVector<unsigned, 32> Buckets;
- Buckets.resize(N + 1);
- for (unsigned i = 1; i <= N; ++i)
- Buckets[i] = i;
+ // Initialize IDoms to spanning tree parents.
+ for (unsigned i = 1; i <= N; ++i) {
+ const NodePtr V = DT.Vertex[i];
+ DT.IDoms[V] = DT.Vertex[DT.Info[V].Parent];
+ }
+ // Step #2: Calculate the semidominators of all vertices.
for (unsigned i = N; i >= 2; --i) {
NodePtr W = DT.Vertex[i];
auto &WInfo = DT.Info[W];
- // Step #2: Implicitly define the immediate dominator of vertices
- for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
- NodePtr V = DT.Vertex[Buckets[j]];
- NodePtr U = Eval<GraphT>(DT, V, i + 1);
- DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
- }
-
- // Step #3: Calculate the semidominators of all vertices
-
- // initialize the semi dominator to point to the parent node
+ // Initialize the semi dominator to point to the parent node.
WInfo.Semi = WInfo.Parent;
for (const auto &N : inverse_children<NodeT>(W))
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
@@ -209,32 +193,22 @@ void Calculate(DominatorTreeBaseByGraphT
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
-
- // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
- // necessarily parent(V). In this case, set idom(V) here and avoid placing
- // V into a bucket.
- if (WInfo.Semi == WInfo.Parent) {
- DT.IDoms[W] = DT.Vertex[WInfo.Parent];
- } else {
- Buckets[i] = Buckets[WInfo.Semi];
- Buckets[WInfo.Semi] = i;
- }
}
- if (N >= 1) {
- NodePtr Root = DT.Vertex[1];
- for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
- NodePtr V = DT.Vertex[Buckets[j]];
- DT.IDoms[V] = Root;
- }
- }
- // Step #4: Explicitly define the immediate dominator of each vertex
+ // Step #3: Explicitly define the immediate dominator of each vertex.
+ // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
+ // Note that the parents were stored in IDoms and later got invalidated during
+ // path compression in Eval.
for (unsigned i = 2; i <= N; ++i) {
- NodePtr W = DT.Vertex[i];
- NodePtr &WIDom = DT.IDoms[W];
- if (WIDom != DT.Vertex[DT.Info[W].Semi])
- WIDom = DT.IDoms[WIDom];
+ const NodePtr W = DT.Vertex[i];
+ const auto &WInfo = DT.Info[W];
+ const unsigned SDomNum = DT.Info[DT.Vertex[WInfo.Semi]].DFSNum;
+ NodePtr WIDomCandidate = DT.IDoms[W];
+ while (DT.Info[WIDomCandidate].DFSNum > SDomNum)
+ WIDomCandidate = DT.IDoms[WIDomCandidate];
+
+ DT.IDoms[W] = WIDomCandidate;
}
if (DT.Roots.empty()) return;
More information about the llvm-commits
mailing list