[llvm] r298282 - [Hexagon] Recognize polynomial-modulo loop idiom again

Vitaly Buka via llvm-commits llvm-commits at lists.llvm.org
Mon Mar 20 17:27:51 PDT 2017


Should we just revert this?

On Mon, Mar 20, 2017 at 3:05 PM Krzysztof Parzyszek <kparzysz at codeaurora.org>
wrote:

> Sure. Checking...
>
> -Krzysztof
>
> On 3/20/2017 4:58 PM, Vitaly Buka wrote:
> > Could you please take a look?
> >
> http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/3574/steps/check-llvm%20asan/logs/stdio
> >
> > Direct leak of 136 byte(s) in 1 object(s) allocated from: #0 0x98a100 in
> > operator new(unsigned long)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:82
> > #1 0x3d355e5 in allocateFixedOperandUser
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/User.cpp:128:7
> > #2 0x3d355e5 in llvm::User::operator new(unsigned long, unsigned int)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/User.cpp:146
> > #3 0x3c3422a in Create
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/include/llvm/IR/Instructions.h:1962:23
> > #4 0x3c3422a in llvm::SelectInst::cloneImpl() const
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/Instructions.cpp:3929
> > #5 0x3c01f42 in llvm::Instruction::clone() const
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/include/llvm/IR/Instruction.def:187:1
> > #6 0x1921b77 in initialize
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp:239:28
> > #7 0x1921b77 in Context
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp:154
> > #8 0x1921b77 in (anonymous
> > namespace)::PolynomialMultiplyRecognize::recognize()
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp:1678
> > #9 0x191e5b0 in runOnCountableLoop
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp:2234:11
> > #10 0x191e5b0 in (anonymous
> > namespace)::HexagonLoopIdiomRecognize::runOnLoop(llvm::Loop*,
> > llvm::LPPassManager&)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp:2291
> > #11 0x2dcf8bc in llvm::LPPassManager::runOnFunction(llvm::Function&)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/Analysis/LoopPass.cpp:203:23
> > #12 0x3c7b90d in llvm::FPPassManager::runOnFunction(llvm::Function&)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/LegacyPassManager.cpp:1513:27
> > #13 0x3c7beb2 in llvm::FPPassManager::runOnModule(llvm::Module&)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/LegacyPassManager.cpp:1534:16
> > #14 0x3c7cd4a in runOnModule
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/LegacyPassManager.cpp:1590:27
> > #15 0x3c7cd4a in llvm::legacy::PassManagerImpl::run(llvm::Module&)
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/lib/IR/LegacyPassManager.cpp:1693
> > #16 0x9b4feb in main
> >
> /mnt/b/sanitizer-buildbot3/sanitizer-x86_64-linux-fast/build/llvm/tools/opt/opt.cpp:722:10
> > #17 0x7f9b7820482f in __libc_start_main
> > (/lib/x86_64-linux-gnu/libc.so.6+0x2082f)
> >
> >
> > On Mon, Mar 20, 2017 at 11:25 AM Krzysztof Parzyszek via llvm-commits
> > <llvm-commits at lists.llvm.org <mailto:llvm-commits at lists.llvm.org>>
> wrote:
> >
> >     Author: kparzysz
> >     Date: Mon Mar 20 13:12:58 2017
> >     New Revision: 298282
> >
> >     URL: http://llvm.org/viewvc/llvm-project?rev=298282&view=rev
> >     Log:
> >     [Hexagon] Recognize polynomial-modulo loop idiom again
> >
> >     Regain the ability to recognize loops calculating polynomial modulo
> >     operation. This ability has been lost due to some changes in the
> >     preceding optimizations. Add code to preprocess the IR to a form
> >     that the pattern matching code can recognize.
> >
> >     Added:
> >         llvm/trunk/test/CodeGen/Hexagon/loop-idiom/pmpy-mod.ll
> >     Modified:
> >         llvm/trunk/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
> >
> >     Modified:
> llvm/trunk/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
> >     URL:
> >
> http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp?rev=298282&r1=298281&r2=298282&view=diff
> >
>  ==============================================================================
> >     --- llvm/trunk/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
> >     (original)
> >     +++ llvm/trunk/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
> >     Mon Mar 20 13:12:58 2017
> >     @@ -129,6 +129,342 @@ INITIALIZE_PASS_END(HexagonLoopIdiomReco
> >          "Recognize Hexagon-specific loop idioms", false, false)
> >
> >
> >     +namespace {
> >     +  struct Simplifier {
> >     +    typedef std::function<Value* (Instruction*, LLVMContext&)> Rule;
> >     +
> >     +    void addRule(const Rule &R) { Rules.push_back(R); }
> >     +
> >     +  private:
> >     +    typedef std::deque<Value*> WorkListType;
> >     +    typedef std::set<Value*> ValueSetType;
> >     +    std::vector<Rule> Rules;
> >     +
> >     +  public:
> >     +    struct Context {
> >     +      typedef DenseMap<Value*,Value*> ValueMapType;
> >     +
> >     +      Value *Root;
> >     +      ValueSetType Used;
> >     +      ValueMapType Clones, Orig;
> >     +      LLVMContext &Ctx;
> >     +
> >     +      Context(Instruction *Exp)
> >     +        : Ctx(Exp->getParent()->getParent()->getContext()) {
> >     +        initialize(Exp);
> >     +        reset();
> >     +      }
> >     +      ~Context() { cleanup(); }
> >     +      void print(raw_ostream &OS, const Value *V) const;
> >     +
> >     +      Value *materialize(BasicBlock *B, BasicBlock::iterator At);
> >     +
> >     +    private:
> >     +      void initialize(Instruction *Exp);
> >     +      void reset();
> >     +      void cleanup();
> >     +      void cleanup(Value *V);
> >     +
> >     +      bool equal(const Instruction *I, const Instruction *J) const;
> >     +      Value *find(Value *Tree, Value *Sub) const;
> >     +      Value *subst(Value *Tree, Value *OldV, Value *NewV);
> >     +      void replace(Value *OldV, Value *NewV);
> >     +      void link(Instruction *I, BasicBlock *B, BasicBlock::iterator
> >     At);
> >     +
> >     +      friend struct Simplifier;
> >     +    };
> >     +
> >     +    Value *simplify(Context &C);
> >     +  };
> >     +
> >     +  struct PE {
> >     +    PE(const Simplifier::Context &c, Value *v = nullptr) : C(c),
> >     V(v) {}
> >     +    const Simplifier::Context &C;
> >     +    const Value *V;
> >     +  };
> >     +
> >     +  raw_ostream &operator<< (raw_ostream &OS, const PE &P)
> >     LLVM_ATTRIBUTE_USED;
> >     +  raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
> >     +    P.C.print(OS, P.V ? P.V : P.C.Root);
> >     +    return OS;
> >     +  }
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::print(raw_ostream &OS, const Value *V)
> >     const {
> >     +  const auto *U = dyn_cast<const Instruction>(V);
> >     +  if (!U) {
> >     +    OS << V << '(' << *V << ')';
> >     +    return;
> >     +  }
> >     +
> >     +  if (U->getParent()) {
> >     +    OS << U << '(';
> >     +    U->printAsOperand(OS, true);
> >     +    OS << ')';
> >     +    return;
> >     +  }
> >     +
> >     +  unsigned N = U->getNumOperands();
> >     +  if (N != 0)
> >     +    OS << U << '(';
> >     +  OS << U->getOpcodeName();
> >     +  for (const Value *Op : U->operands()) {
> >     +    OS << ' ';
> >     +    print(OS, Op);
> >     +  }
> >     +  if (N != 0)
> >     +    OS << ')';
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::initialize(Instruction *Exp) {
> >     +  // Perform a deep clone of the expression, set Root to the root
> >     +  // of the clone, and build a map from the cloned values to the
> >     +  // original ones.
> >     +  BasicBlock *Block = Exp->getParent();
> >     +  WorkListType Q;
> >     +  Q.push_back(Exp);
> >     +
> >     +  while (!Q.empty()) {
> >     +    Value *V = Q.front();
> >     +    Q.pop_front();
> >     +    if (Clones.find(V) != Clones.end())
> >     +      continue;
> >     +    if (Instruction *U = dyn_cast<Instruction>(V)) {
> >     +      if (isa<PHINode>(U) || U->getParent() != Block)
> >     +        continue;
> >     +      for (Value *Op : U->operands())
> >     +        Q.push_back(Op);
> >     +      Clones.insert({U, U->clone()});
> >     +    }
> >     +  }
> >     +
> >     +  for (std::pair<Value*,Value*> P : Clones) {
> >     +    Instruction *U = cast<Instruction>(P.second);
> >     +    for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
> >     +      auto F = Clones.find(U->getOperand(i));
> >     +      if (F != Clones.end())
> >     +        U->setOperand(i, F->second);
> >     +    }
> >     +    Orig.insert({P.second, P.first});
> >     +  }
> >     +
> >     +  auto R = Clones.find(Exp);
> >     +  assert(R != Clones.end());
> >     +  Root = R->second;
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::reset() {
> >     +  ValueSetType NewUsed;
> >     +  WorkListType Q;
> >     +  Q.push_back(Root);
> >     +
> >     +  while (!Q.empty()) {
> >     +    Instruction *U = dyn_cast<Instruction>(Q.front());
> >     +    Q.pop_front();
> >     +    if (!U || U->getParent())
> >     +      continue;
> >     +    NewUsed.insert(U);
> >     +    for (Value *Op : U->operands())
> >     +      Q.push_back(Op);
> >     +  }
> >     +  for (Value *V : Used)
> >     +    if (!NewUsed.count(V))
> >     +      cast<Instruction>(V)->dropAllReferences();
> >     +  Used = NewUsed;
> >     +}
> >     +
> >     +
> >     +Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value
> >     *NewV) {
> >     +  if (Tree == OldV) {
> >     +    cleanup(OldV);
> >     +    return NewV;
> >     +  }
> >     +
> >     +  WorkListType Q;
> >     +  Q.push_back(Tree);
> >     +  while (!Q.empty()) {
> >     +    Instruction *U = dyn_cast<Instruction>(Q.front());
> >     +    Q.pop_front();
> >     +    // If U is not an instruction, or it's not a clone, skip it.
> >     +    if (!U || U->getParent())
> >     +      continue;
> >     +    for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
> >     +      Value *Op = U->getOperand(i);
> >     +      if (Op == OldV) {
> >     +        cleanup(OldV);
> >     +        U->setOperand(i, NewV);
> >     +      } else {
> >     +        Q.push_back(Op);
> >     +      }
> >     +    }
> >     +  }
> >     +  return Tree;
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::replace(Value *OldV, Value *NewV) {
> >     +  if (Root == OldV) {
> >     +    Root = NewV;
> >     +    reset();
> >     +    return;
> >     +  }
> >     +
> >     +  // NewV may be a complex tree that has just been created by one
> >     of the
> >     +  // transformation rules. We need to make sure that it is commoned
> >     with
> >     +  // the existing Root to the maximum extent possible.
> >     +  // Identify all subtrees of NewV (including NewV itself) that have
> >     +  // equivalent counterparts in Root, and replace those subtrees
> with
> >     +  // these counterparts.
> >     +  WorkListType Q;
> >     +  Q.push_back(NewV);
> >     +  while (!Q.empty()) {
> >     +    Value *V = Q.front();
> >     +    Q.pop_front();
> >     +    Instruction *U = dyn_cast<Instruction>(V);
> >     +    if (!U || U->getParent())
> >     +      continue;
> >     +    if (Value *DupV = find(Root, V)) {
> >     +      if (DupV != V)
> >     +        NewV = subst(NewV, V, DupV);
> >     +    } else {
> >     +      for (Value *Op : U->operands())
> >     +        Q.push_back(Op);
> >     +    }
> >     +  }
> >     +
> >     +  // Now, simply replace OldV with NewV in Root.
> >     +  Root = subst(Root, OldV, NewV);
> >     +  reset();
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::cleanup() {
> >     +  for (Value *V : Used) {
> >     +    Instruction *U = cast<Instruction>(V);
> >     +    if (!U->getParent())
> >     +      U->dropAllReferences();
> >     +  }
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::cleanup(Value *V) {
> >     +  if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() !=
> >     nullptr)
> >     +    return;
> >     +  WorkListType Q;
> >     +  Q.push_back(V);
> >     +  while (!Q.empty()) {
> >     +    Instruction *U = dyn_cast<Instruction>(Q.front());
> >     +    Q.pop_front();
> >     +    if (!U || U->getParent() || Used.count(U))
> >     +      continue;
> >     +    for (Value *Op : U->operands())
> >     +      Q.push_back(Op);
> >     +    U->dropAllReferences();
> >     +  }
> >     +}
> >     +
> >     +
> >     +bool Simplifier::Context::equal(const Instruction *I,
> >     +                                const Instruction *J) const {
> >     +  if (I == J)
> >     +    return true;
> >     +  if (!I->isSameOperationAs(J))
> >     +    return false;
> >     +  if (isa<PHINode>(I))
> >     +    return I->isIdenticalTo(J);
> >     +
> >     +  for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
> >     +    Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
> >     +    if (OpI == OpJ)
> >     +      continue;
> >     +    auto *InI = dyn_cast<const Instruction>(OpI);
> >     +    auto *InJ = dyn_cast<const Instruction>(OpJ);
> >     +    if (InI && InJ) {
> >     +      if (!equal(InI, InJ))
> >     +        return false;
> >     +    } else if (InI != InJ || !InI)
> >     +      return false;
> >     +  }
> >     +  return true;
> >     +}
> >     +
> >     +
> >     +Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
> >     +  Instruction *SubI = dyn_cast<Instruction>(Sub);
> >     +  WorkListType Q;
> >     +  Q.push_back(Tree);
> >     +
> >     +  while (!Q.empty()) {
> >     +    Value *V = Q.front();
> >     +    Q.pop_front();
> >     +    if (V == Sub)
> >     +      return V;
> >     +    Instruction *U = dyn_cast<Instruction>(V);
> >     +    if (!U || U->getParent())
> >     +      continue;
> >     +    if (SubI && equal(SubI, U))
> >     +      return U;
> >     +    assert(!isa<PHINode>(U));
> >     +    for (Value *Op : U->operands())
> >     +      Q.push_back(Op);
> >     +  }
> >     +  return nullptr;
> >     +}
> >     +
> >     +
> >     +void Simplifier::Context::link(Instruction *I, BasicBlock *B,
> >     +      BasicBlock::iterator At) {
> >     +  if (I->getParent())
> >     +    return;
> >     +
> >     +  for (Value *Op : I->operands()) {
> >     +    if (Instruction *OpI = dyn_cast<Instruction>(Op))
> >     +      link(OpI, B, At);
> >     +  }
> >     +
> >     +  B->getInstList().insert(At, I);
> >     +}
> >     +
> >     +
> >     +Value *Simplifier::Context::materialize(BasicBlock *B,
> >     +      BasicBlock::iterator At) {
> >     +  if (Instruction *RootI = dyn_cast<Instruction>(Root))
> >     +    link(RootI, B, At);
> >     +  return Root;
> >     +}
> >     +
> >     +
> >     +Value *Simplifier::simplify(Context &C) {
> >     +  WorkListType Q;
> >     +  Q.push_back(C.Root);
> >     +
> >     +  while (!Q.empty()) {
> >     +    Instruction *U = dyn_cast<Instruction>(Q.front());
> >     +    Q.pop_front();
> >     +    if (!U || U->getParent() || !C.Used.count(U))
> >     +      continue;
> >     +    bool Changed = false;
> >     +    for (Rule &R : Rules) {
> >     +      Value *W = R(U, C.Ctx);
> >     +      if (!W)
> >     +        continue;
> >     +      Changed = true;
> >     +      C.replace(U, W);
> >     +      Q.push_back(C.Root);
> >     +      break;
> >     +    }
> >     +    if (!Changed) {
> >     +      for (Value *Op : U->operands())
> >     +        Q.push_back(Op);
> >     +    }
> >     +  }
> >     +  return C.Root;
> >     +}
> >     +
> >     +
> >
> //===----------------------------------------------------------------------===//
> >      //
> >      //          Implementation of PolynomialMultiplyRecognize
> >     @@ -147,6 +483,14 @@ namespace {
> >        private:
> >          typedef SetVector<Value*> ValueSeq;
> >
> >     +    IntegerType *getPmpyType() const {
> >     +      LLVMContext &Ctx =
> >     CurLoop->getHeader()->getParent()->getContext();
> >     +      return IntegerType::get(Ctx, 32);
> >     +    }
> >     +    bool isPromotableTo(Value *V, IntegerType *Ty);
> >     +    void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock
> >     *LoopB);
> >     +    bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
> >     +
> >          Value *getCountIV(BasicBlock *BB);
> >          bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
> >          void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq
> >     &Early,
> >     @@ -176,6 +520,9 @@ namespace {
> >          unsigned getInverseMxN(unsigned QP);
> >          Value *generate(BasicBlock::iterator At, ParsedValues &PV);
> >
> >     +    void setupSimplifier();
> >     +
> >     +    Simplifier Simp;
> >          Loop *CurLoop;
> >          const DataLayout &DL;
> >          const DominatorTree &DT;
> >     @@ -425,7 +772,6 @@ bool PolynomialMultiplyRecognize::scanSe
> >            BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV,
> >     ParsedValues &PV,
> >            bool PreScan) {
> >        using namespace PatternMatch;
> >     -
> >        // The basic pattern for R = P.Q is:
> >        // for i = 0..31
> >        //   R = phi (0, R')
> >     @@ -529,6 +875,150 @@ bool PolynomialMultiplyRecognize::scanSe
> >      }
> >
> >
> >     +bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
> >     +      IntegerType *DestTy) {
> >     +  IntegerType *T = dyn_cast<IntegerType>(Val->getType());
> >     +  if (!T || T->getBitWidth() > DestTy->getBitWidth())
> >     +    return false;
> >     +  if (T->getBitWidth() == DestTy->getBitWidth())
> >     +    return true;
> >     +  // Non-instructions are promotable. The reason why an instruction
> >     may not
> >     +  // be promotable is that it may produce a different result if its
> >     operands
> >     +  // and the result are promoted, for example, it may produce more
> >     non-zero
> >     +  // bits. While it would still be possible to represent the proper
> >     result
> >     +  // in a wider type, it may require adding additional instructions
> >     (which
> >     +  // we don't want to do).
> >     +  Instruction *In = dyn_cast<Instruction>(Val);
> >     +  if (!In)
> >     +    return true;
> >     +  // The bitwidth of the source type is smaller than the
> destination.
> >     +  // Check if the individual operation can be promoted.
> >     +  switch (In->getOpcode()) {
> >     +    case Instruction::PHI:
> >     +    case Instruction::ZExt:
> >     +    case Instruction::And:
> >     +    case Instruction::Or:
> >     +    case Instruction::Xor:
> >     +    case Instruction::LShr: // Shift right is ok.
> >     +    case Instruction::Select:
> >     +      return true;
> >     +    case Instruction::ICmp:
> >     +      if (CmpInst *CI = cast<CmpInst>(In))
> >     +        return CI->isEquality() || CI->isUnsigned();
> >     +      llvm_unreachable("Cast failed unexpectedly");
> >     +    case Instruction::Add:
> >     +      return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
> >     +  }
> >     +  return false;
> >     +}
> >     +
> >     +
> >     +void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
> >     +      IntegerType *DestTy, BasicBlock *LoopB) {
> >     +  // Leave boolean values alone.
> >     +  if (!In->getType()->isIntegerTy(1))
> >     +    In->mutateType(DestTy);
> >     +  unsigned DestBW = DestTy->getBitWidth();
> >     +
> >     +  // Handle PHIs.
> >     +  if (PHINode *P = dyn_cast<PHINode>(In)) {
> >     +    unsigned N = P->getNumIncomingValues();
> >     +    for (unsigned i = 0; i != N; ++i) {
> >     +      BasicBlock *InB = P->getIncomingBlock(i);
> >     +      if (InB == LoopB)
> >     +        continue;
> >     +      Value *InV = P->getIncomingValue(i);
> >     +      IntegerType *Ty = cast<IntegerType>(InV->getType());
> >     +      // Do not promote values in PHI nodes of type i1.
> >     +      if (Ty != P->getType()) {
> >     +        // If the value type does not match the PHI type, the PHI
> type
> >     +        // must have been promoted.
> >     +        assert(Ty->getBitWidth() < DestBW);
> >     +        InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV,
> >     DestTy);
> >     +        P->setIncomingValue(i, InV);
> >     +      }
> >     +    }
> >     +  } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
> >     +    Value *Op = Z->getOperand(0);
> >     +    if (Op->getType() == Z->getType())
> >     +      Z->replaceAllUsesWith(Op);
> >     +    Z->eraseFromParent();
> >     +    return;
> >     +  }
> >     +
> >     +  // Promote immediates.
> >     +  for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
> >     +    if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
> >     +      if (CI->getType()->getBitWidth() < DestBW)
> >     +        In->setOperand(i, ConstantInt::get(DestTy,
> >     CI->getZExtValue()));
> >     +  }
> >     +}
> >     +
> >     +
> >     +bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
> >     +      BasicBlock *ExitB) {
> >     +  assert(LoopB);
> >     +  // Skip loops where the exit block has more than one predecessor.
> >     The values
> >     +  // coming from the loop block will be promoted to another type,
> >     and so the
> >     +  // values coming into the exit block from other predecessors
> >     would also have
> >     +  // to be promoted.
> >     +  if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
> >     +    return false;
> >     +  IntegerType *DestTy = getPmpyType();
> >     +  // Check if the exit values have types that are no wider than the
> >     type
> >     +  // that we want to promote to.
> >     +  unsigned DestBW = DestTy->getBitWidth();
> >     +  for (Instruction &In : *ExitB) {
> >     +    PHINode *P = dyn_cast<PHINode>(&In);
> >     +    if (!P)
> >     +      break;
> >     +    if (P->getNumIncomingValues() != 1)
> >     +      return false;
> >     +    assert(P->getIncomingBlock(0) == LoopB);
> >     +    IntegerType *T = dyn_cast<IntegerType>(P->getType());
> >     +    if (!T || T->getBitWidth() > DestBW)
> >     +      return false;
> >     +  }
> >     +
> >     +  // Check all instructions in the loop.
> >     +  for (Instruction &In : *LoopB)
> >     +    if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
> >     +      return false;
> >     +
> >     +  // Perform the promotion.
> >     +  std::vector<Instruction*> LoopIns;
> >     +  std::transform(LoopB->begin(), LoopB->end(),
> >     std::back_inserter(LoopIns),
> >     +                 [](Instruction &In) { return &In; });
> >     +  for (Instruction *In : LoopIns)
> >     +    promoteTo(In, DestTy, LoopB);
> >     +
> >     +  // Fix up the PHI nodes in the exit block.
> >     +  Instruction *EndI = ExitB->getFirstNonPHI();
> >     +  BasicBlock::iterator End = EndI ? EndI->getIterator() :
> ExitB->end();
> >     +  for (auto I = ExitB->begin(); I != End; ++I) {
> >     +    PHINode *P = dyn_cast<PHINode>(I);
> >     +    if (!P)
> >     +      break;
> >     +    Type *Ty0 = P->getIncomingValue(0)->getType();
> >     +    Type *PTy = P->getType();
> >     +    if (PTy != Ty0) {
> >     +      assert(Ty0 == DestTy);
> >     +      // In order to create the trunc, P must have the promoted
> type.
> >     +      P->mutateType(Ty0);
> >     +      Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
> >     +      // In order for the RAUW to work, the types of P and T must
> >     match.
> >     +      P->mutateType(PTy);
> >     +      P->replaceAllUsesWith(T);
> >     +      // Final update of the P's type.
> >     +      P->mutateType(Ty0);
> >     +      cast<Instruction>(T)->setOperand(0, P);
> >     +    }
> >     +  }
> >     +
> >     +  return true;
> >     +}
> >     +
> >     +
> >      bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
> >            ValueSeq &Cycle) {
> >        // Out = ..., In, ...
> >     @@ -699,6 +1189,7 @@ bool PolynomialMultiplyRecognize::keepsH
> >            case Instruction::Select:
> >            case Instruction::ICmp:
> >            case Instruction::PHI:
> >     +      case Instruction::ZExt:
> >              return true;
> >          }
> >        }
> >     @@ -985,13 +1476,170 @@ Value *PolynomialMultiplyRecognize::gene
> >      }
> >
> >
> >     +void PolynomialMultiplyRecognize::setupSimplifier() {
> >     +  Simp.addRule(
> >     +    // Sink zext past bitwise operations.
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      if (I->getOpcode() != Instruction::ZExt)
> >     +        return nullptr;
> >     +      Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
> >     +      if (!T)
> >     +        return nullptr;
> >     +      switch (T->getOpcode()) {
> >     +        case Instruction::And:
> >     +        case Instruction::Or:
> >     +        case Instruction::Xor:
> >     +          break;
> >     +        default:
> >     +          return nullptr;
> >     +      }
> >     +      IRBuilder<> B(Ctx);
> >     +      return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
> >     +                           B.CreateZExt(T->getOperand(0),
> >     I->getType()),
> >     +                           B.CreateZExt(T->getOperand(1),
> >     I->getType()));
> >     +    });
> >     +  Simp.addRule(
> >     +    // (xor (and x a) (and y a)) -> (and (xor x y) a)
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      if (I->getOpcode() != Instruction::Xor)
> >     +        return nullptr;
> >     +      Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
> >     +      Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
> >     +      if (!And0 || !And1)
> >     +        return nullptr;
> >     +      if (And0->getOpcode() != Instruction::And ||
> >     +          And1->getOpcode() != Instruction::And)
> >     +        return nullptr;
> >     +      if (And0->getOperand(1) != And1->getOperand(1))
> >     +        return nullptr;
> >     +      IRBuilder<> B(Ctx);
> >     +      return B.CreateAnd(B.CreateXor(And0->getOperand(0),
> >     And1->getOperand(0)),
> >     +                         And0->getOperand(1));
> >     +    });
> >     +  Simp.addRule(
> >     +    // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
> >     +    // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
> >     +      if (!BO)
> >     +        return nullptr;
> >     +      Instruction::BinaryOps Op = BO->getOpcode();
> >     +      if (SelectInst *Sel =
> dyn_cast<SelectInst>(BO->getOperand(0))) {
> >     +        IRBuilder<> B(Ctx);
> >     +        Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
> >     +        Value *Z = BO->getOperand(1);
> >     +        return B.CreateSelect(Sel->getCondition(),
> >     +                              B.CreateBinOp(Op, X, Z),
> >     +                              B.CreateBinOp(Op, Y, Z));
> >     +      }
> >     +      if (SelectInst *Sel =
> dyn_cast<SelectInst>(BO->getOperand(1))) {
> >     +        IRBuilder<> B(Ctx);
> >     +        Value *X = BO->getOperand(0);
> >     +        Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
> >     +        return B.CreateSelect(Sel->getCondition(),
> >     +                              B.CreateBinOp(Op, X, Y),
> >     +                              B.CreateBinOp(Op, X, Z));
> >     +      }
> >     +      return nullptr;
> >     +    });
> >     +  Simp.addRule(
> >     +    // (select c (select c x y) z) -> (select c x z)
> >     +    // (select c x (select c y z)) -> (select c x z)
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      SelectInst *Sel = dyn_cast<SelectInst>(I);
> >     +      if (!Sel)
> >     +        return nullptr;
> >     +      IRBuilder<> B(Ctx);
> >     +      Value *C = Sel->getCondition();
> >     +      if (SelectInst *Sel0 =
> >     dyn_cast<SelectInst>(Sel->getTrueValue())) {
> >     +        if (Sel0->getCondition() == C)
> >     +          return B.CreateSelect(C, Sel0->getTrueValue(),
> >     Sel->getFalseValue());
> >     +      }
> >     +      if (SelectInst *Sel1 =
> >     dyn_cast<SelectInst>(Sel->getFalseValue())) {
> >     +        if (Sel1->getCondition() == C)
> >     +          return B.CreateSelect(C, Sel->getTrueValue(),
> >     Sel1->getFalseValue());
> >     +      }
> >     +      return nullptr;
> >     +    });
> >     +  Simp.addRule(
> >     +    // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      if (I->getOpcode() != Instruction::Or)
> >     +        return nullptr;
> >     +      Instruction *LShr = dyn_cast<Instruction>(I->getOperand(0));
> >     +      if (!LShr || LShr->getOpcode() != Instruction::LShr)
> >     +        return nullptr;
> >     +      ConstantInt *One = dyn_cast<ConstantInt>(LShr->getOperand(1));
> >     +      if (!One || One->getZExtValue() != 1)
> >     +        return nullptr;
> >     +      ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
> >     +      if (!Msb || Msb->getZExtValue() !=
> Msb->getType()->getSignBit())
> >     +        return nullptr;
> >     +      return IRBuilder<>(Ctx).CreateXor(LShr, Msb);
> >     +    });
> >     +  Simp.addRule(
> >     +    // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      if (I->getOpcode() != Instruction::LShr)
> >     +        return nullptr;
> >     +      BinaryOperator *BitOp =
> >     dyn_cast<BinaryOperator>(I->getOperand(0));
> >     +      if (!BitOp)
> >     +        return nullptr;
> >     +      switch (BitOp->getOpcode()) {
> >     +        case Instruction::And:
> >     +        case Instruction::Or:
> >     +        case Instruction::Xor:
> >     +          break;
> >     +        default:
> >     +          return nullptr;
> >     +      }
> >     +      IRBuilder<> B(Ctx);
> >     +      Value *S = I->getOperand(1);
> >     +      return B.CreateBinOp(BitOp->getOpcode(),
> >     +                B.CreateLShr(BitOp->getOperand(0), S),
> >     +                B.CreateLShr(BitOp->getOperand(1), S));
> >     +    });
> >     +  Simp.addRule(
> >     +    // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
> >     +    [](Instruction *I, LLVMContext &Ctx) -> Value* {
> >     +      auto IsBitOp = [](unsigned Op) -> bool {
> >     +        switch (Op) {
> >     +          case Instruction::And:
> >     +          case Instruction::Or:
> >     +          case Instruction::Xor:
> >     +            return true;
> >     +        }
> >     +        return false;
> >     +      };
> >     +      BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
> >     +      if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
> >     +        return nullptr;
> >     +      BinaryOperator *BitOp2 =
> >     dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
> >     +      if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
> >     +        return nullptr;
> >     +      ConstantInt *CA =
> dyn_cast<ConstantInt>(BitOp2->getOperand(1));
> >     +      ConstantInt *CB =
> dyn_cast<ConstantInt>(BitOp1->getOperand(1));
> >     +      if (!CA || !CB)
> >     +        return nullptr;
> >     +      IRBuilder<> B(Ctx);
> >     +      Value *X = BitOp2->getOperand(0);
> >     +      return B.CreateBinOp(BitOp2->getOpcode(), X,
> >     +                B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
> >     +    });
> >     +}
> >     +
> >     +
> >      bool PolynomialMultiplyRecognize::recognize() {
> >     +  DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
> >     +               << *CurLoop << '\n');
> >        // Restrictions:
> >        // - The loop must consist of a single block.
> >        // - The iteration count must be known at compile-time.
> >        // - The loop must have an induction variable starting from 0, and
> >        //   incremented in each iteration of the loop.
> >        BasicBlock *LoopB = CurLoop->getHeader();
> >     +  DEBUG(dbgs() << "Loop header:\n" << *LoopB);
> >     +
> >        if (LoopB != CurLoop->getLoopLatch())
> >          return false;
> >        BasicBlock *ExitB = CurLoop->getExitBlock();
> >     @@ -1011,30 +1659,65 @@ bool PolynomialMultiplyRecognize::recogn
> >        Value *CIV = getCountIV(LoopB);
> >        ParsedValues PV;
> >        PV.IterCount = IterCount;
> >     +  DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " <<
> >     IterCount << '\n');
> >
> >     -  // Test function to see if a given select instruction is a part
> >     of the
> >     -  // pmpy pattern. The argument PreScan set to "true" indicates
> >     that only
> >     -  // a preliminary scan is needed, "false" indicated an exact match.
> >     -  auto CouldBePmpy = [this, LoopB, EntryB, CIV, &PV] (bool PreScan)
> >     -      -> std::function<bool (Instruction &I)> {
> >     -    return [this, LoopB, EntryB, CIV, &PV, PreScan] (Instruction
> >     &I) -> bool {
> >     -      if (auto *SelI = dyn_cast<SelectInst>(&I))
> >     -        return scanSelect(SelI, LoopB, EntryB, CIV, PV, PreScan);
> >     -      return false;
> >     -    };
> >     -  };
> >     -  auto PreF = std::find_if(LoopB->begin(), LoopB->end(),
> >     CouldBePmpy(true));
> >     -  if (PreF == LoopB->end())
> >     +  setupSimplifier();
> >     +
> >     +  // Perform a preliminary scan of select instructions to see if
> >     any of them
> >     +  // looks like a generator of the polynomial multiply steps.
> >     Assume that a
> >     +  // loop can only contain a single transformable operation, so
> >     stop the
> >     +  // traversal after the first reasonable candidate was found.
> >     +  // XXX: Currently this approach can modify the loop before being
> >     100% sure
> >     +  // that the transformation can be carried out.
> >     +  bool FoundPreScan = false;
> >     +  for (Instruction &In : *LoopB) {
> >     +    SelectInst *SI = dyn_cast<SelectInst>(&In);
> >     +    if (!SI)
> >     +      continue;
> >     +
> >     +    Simplifier::Context C(SI);
> >     +    Value *T = Simp.simplify(C);
> >     +    SelectInst *SelI = (T && isa<SelectInst>(T)) ?
> >     cast<SelectInst>(T) : SI;
> >     +    DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) <<
> '\n');
> >     +    if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
> >     +      FoundPreScan = true;
> >     +      if (SelI != SI) {
> >     +        Value *NewSel = C.materialize(LoopB, SI->getIterator());
> >     +        SI->replaceAllUsesWith(NewSel);
> >     +        RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
> >     +      }
> >     +      break;
> >     +    }
> >     +  }
> >     +
> >     +  if (!FoundPreScan) {
> >     +    DEBUG(dbgs() << "Have not found candidates for pmpy\n");
> >          return false;
> >     +  }
> >
> >        if (!PV.Left) {
> >     +    // The right shift version actually only returns the higher
> bits of
> >     +    // the result (each iteration discards the LSB). If we want to
> >     convert it
> >     +    // to a left-shifting loop, the working data type must be at
> >     least as
> >     +    // wide as the target's pmpy instruction.
> >     +    if (!promoteTypes(LoopB, ExitB))
> >     +      return false;
> >          convertShiftsToLeft(LoopB, ExitB, IterCount);
> >          cleanupLoopBody(LoopB);
> >        }
> >
> >     -  auto PostF = std::find_if(LoopB->begin(), LoopB->end(),
> >     CouldBePmpy(false));
> >     -  if (PostF == LoopB->end())
> >     -    return false;
> >     +  // Scan the loop again, find the generating select instruction.
> >     +  bool FoundScan = false;
> >     +  for (Instruction &In : *LoopB) {
> >     +    SelectInst *SelI = dyn_cast<SelectInst>(&In);
> >     +    if (!SelI)
> >     +      continue;
> >     +    DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
> >     +    FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
> >     +    if (FoundScan)
> >     +      break;
> >     +  }
> >     +  assert(FoundScan);
> >
> >        DEBUG({
> >          StringRef PP = (PV.M ? "(P+M)" : "P");
> >
> >     Added: llvm/trunk/test/CodeGen/Hexagon/loop-idiom/pmpy-mod.ll
> >     URL:
> >
> http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/loop-idiom/pmpy-mod.ll?rev=298282&view=auto
> >
>  ==============================================================================
> >     --- llvm/trunk/test/CodeGen/Hexagon/loop-idiom/pmpy-mod.ll (added)
> >     +++ llvm/trunk/test/CodeGen/Hexagon/loop-idiom/pmpy-mod.ll Mon Mar
> >     20 13:12:58 2017
> >     @@ -0,0 +1,84 @@
> >     +; Run -O2 to make sure that all the usual optimizations do happen
> >     before
> >     +; the Hexagon loop idiom recognition runs. This is to check that we
> >     still
> >     +; get this opportunity regardless of what happens before.
> >     +
> >     +; RUN: opt -O2 -march=hexagon -S < %s | FileCheck %s
> >     +
> >     +target triple = "hexagon"
> >     +target datalayout =
> >
>  "e-m:e-p:32:32:32-a:0-n16:32-i64:64:64-i32:32:32-i16:16:16-i1:8:8-f32:32:32-f64:64:64-v32:32:32-v64:64:64-v512:512:512-v1024:1024:1024-v2048:2048:2048"
> >     +
> >     +; CHECK-LABEL: define zeroext i16 @pmpy_mod_lsr
> >     +; There need to be two pmpy instructions.
> >     +; CHECK: call i64 @llvm.hexagon.M4.pmpyw
> >     +; CHECK: call i64 @llvm.hexagon.M4.pmpyw
> >     +
> >     +define zeroext i16 @pmpy_mod_lsr(i8 zeroext %a0, i16 zeroext %a1)
> #0 {
> >     +b2:
> >     +  br label %b3
> >     +
> >     +b3:                                               ; preds = %b44,
> %b2
> >     +  %v4 = phi i8 [ %a0, %b2 ], [ %v19, %b44 ]
> >     +  %v5 = phi i16 [ %a1, %b2 ], [ %v43, %b44 ]
> >     +  %v6 = phi i8 [ 0, %b2 ], [ %v45, %b44 ]
> >     +  %v7 = zext i8 %v6 to i32
> >     +  %v8 = icmp slt i32 %v7, 8
> >     +  br i1 %v8, label %b9, label %b46
> >     +
> >     +b9:                                               ; preds = %b3
> >     +  %v10 = zext i8 %v4 to i32
> >     +  %v11 = and i32 %v10, 1
> >     +  %v12 = trunc i16 %v5 to i8
> >     +  %v13 = zext i8 %v12 to i32
> >     +  %v14 = and i32 %v13, 1
> >     +  %v15 = xor i32 %v11, %v14
> >     +  %v16 = trunc i32 %v15 to i8
> >     +  %v17 = zext i8 %v4 to i32
> >     +  %v18 = ashr i32 %v17, 1
> >     +  %v19 = trunc i32 %v18 to i8
> >     +  %v20 = zext i8 %v16 to i32
> >     +  %v21 = icmp eq i32 %v20, 1
> >     +  br i1 %v21, label %b22, label %b26
> >     +
> >     +b22:                                              ; preds = %b9
> >     +  %v23 = zext i16 %v5 to i32
> >     +  %v24 = xor i32 %v23, 16386
> >     +  %v25 = trunc i32 %v24 to i16
> >     +  br label %b27
> >     +
> >     +b26:                                              ; preds = %b9
> >     +  br label %b27
> >     +
> >     +b27:                                              ; preds = %b26,
> %b22
> >     +  %v28 = phi i16 [ %v25, %b22 ], [ %v5, %b26 ]
> >     +  %v29 = phi i8 [ 1, %b22 ], [ 0, %b26 ]
> >     +  %v30 = zext i16 %v28 to i32
> >     +  %v31 = ashr i32 %v30, 1
> >     +  %v32 = trunc i32 %v31 to i16
> >     +  %v33 = icmp ne i8 %v29, 0
> >     +  br i1 %v33, label %b34, label %b38
> >     +
> >     +b34:                                              ; preds = %b27
> >     +  %v35 = zext i16 %v32 to i32
> >     +  %v36 = or i32 %v35, 32768
> >     +  %v37 = trunc i32 %v36 to i16
> >     +  br label %b42
> >     +
> >     +b38:                                              ; preds = %b27
> >     +  %v39 = zext i16 %v32 to i32
> >     +  %v40 = and i32 %v39, 32767
> >     +  %v41 = trunc i32 %v40 to i16
> >     +  br label %b42
> >     +
> >     +b42:                                              ; preds = %b38,
> %b34
> >     +  %v43 = phi i16 [ %v37, %b34 ], [ %v41, %b38 ]
> >     +  br label %b44
> >     +
> >     +b44:                                              ; preds = %b42
> >     +  %v45 = add i8 %v6, 1
> >     +  br label %b3
> >     +
> >     +b46:                                              ; preds = %b3
> >     +  ret i16 %v5
> >     +}
> >     +
> >     +attributes #0 = { noinline nounwind "target-cpu"="hexagonv5"
> >     "target-features"="-hvx,-hvx-double,-long-calls" }
> >
> >
> >     _______________________________________________
> >     llvm-commits mailing list
> >     llvm-commits at lists.llvm.org <mailto:llvm-commits at lists.llvm.org>
> >     http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits
> >
>
> --
> Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
> hosted by The Linux Foundation
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20170321/32dadb0d/attachment-0001.html>


More information about the llvm-commits mailing list