[llvm] r297081 - [Outliner] Fixed Asan bot failure in r296418

Evgenii Stepanov via llvm-commits llvm-commits at lists.llvm.org
Tue Mar 7 11:22:58 PST 2017


Hi,

there are still memory leaks in the outliner tests:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/3273/steps/check-llvm%20asan/logs/stdio

On Mon, Mar 6, 2017 at 1:31 PM, Jessica Paquette via llvm-commits
<llvm-commits at lists.llvm.org> wrote:
> Author: paquette
> Date: Mon Mar  6 15:31:18 2017
> New Revision: 297081
>
> URL: http://llvm.org/viewvc/llvm-project?rev=297081&view=rev
> Log:
> [Outliner] Fixed Asan bot failure in r296418
>
> Fixed the asan bot failure which led to the last commit of the outliner being reverted.
> The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
> is no longer initialized using reserve but just a standard constructor.
>
>
> Added:
>     llvm/trunk/lib/CodeGen/MachineOutliner.cpp
>     llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
>     llvm/trunk/test/CodeGen/X86/machine-outliner.ll
> Modified:
>     llvm/trunk/include/llvm/CodeGen/Passes.h
>     llvm/trunk/include/llvm/InitializePasses.h
>     llvm/trunk/include/llvm/Target/TargetInstrInfo.h
>     llvm/trunk/lib/CodeGen/CMakeLists.txt
>     llvm/trunk/lib/CodeGen/CodeGen.cpp
>     llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
>     llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
>     llvm/trunk/lib/Target/X86/X86InstrInfo.h
>
> Modified: llvm/trunk/include/llvm/CodeGen/Passes.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/Passes.h?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/CodeGen/Passes.h (original)
> +++ llvm/trunk/include/llvm/CodeGen/Passes.h Mon Mar  6 15:31:18 2017
> @@ -405,6 +405,11 @@ namespace llvm {
>
>    /// This pass combine basic blocks guarded by the same branch.
>    extern char &BranchCoalescingID;
> +
> +  /// This pass performs outlining on machine instructions directly before
> +  /// printing assembly.
> +  ModulePass *createMachineOutlinerPass();
> +
>  } // End llvm namespace
>
>  /// Target machine pass initializer for passes with dependencies. Use with
>
> Modified: llvm/trunk/include/llvm/InitializePasses.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/InitializePasses.h (original)
> +++ llvm/trunk/include/llvm/InitializePasses.h Mon Mar  6 15:31:18 2017
> @@ -237,6 +237,7 @@ void initializeMachineLICMPass(PassRegis
>  void initializeMachineLoopInfoPass(PassRegistry&);
>  void initializeMachineModuleInfoPass(PassRegistry&);
>  void initializeMachineOptimizationRemarkEmitterPassPass(PassRegistry&);
> +void initializeMachineOutlinerPass(PassRegistry&);
>  void initializeMachinePipelinerPass(PassRegistry&);
>  void initializeMachinePostDominatorTreePass(PassRegistry&);
>  void initializeMachineRegionInfoPassPass(PassRegistry&);
>
> Modified: llvm/trunk/include/llvm/Target/TargetInstrInfo.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Target/TargetInstrInfo.h?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/include/llvm/Target/TargetInstrInfo.h (original)
> +++ llvm/trunk/include/llvm/Target/TargetInstrInfo.h Mon Mar  6 15:31:18 2017
> @@ -1508,6 +1508,63 @@ public:
>      return false;
>    }
>
> +  /// \brief Return how many instructions would be saved by outlining a
> +  /// sequence containing \p SequenceSize instructions that appears
> +  /// \p Occurrences times in a module.
> +  virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences)
> +  const {
> +    llvm_unreachable(
> +        "Target didn't implement TargetInstrInfo::getOutliningBenefit!");
> +  }
> +
> +  /// Represents how an instruction should be mapped by the outliner.
> +  /// \p Legal instructions are those which are safe to outline.
> +  /// \p Illegal instructions are those which cannot be outlined.
> +  /// \p Invisible instructions are instructions which can be outlined, but
> +  /// shouldn't actually impact the outlining result.
> +  enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
> +
> +  /// Return true if the instruction is legal to outline.
> +  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
> +    llvm_unreachable(
> +        "Target didn't implement TargetInstrInfo::getOutliningType!");
> +  }
> +
> +  /// Insert a custom epilogue for outlined functions.
> +  /// This may be empty, in which case no epilogue or return statement will be
> +  /// emitted.
> +  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
> +                                      MachineFunction &MF) const {
> +    llvm_unreachable(
> +        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
> +  }
> +
> +  /// Insert a call to an outlined function into the program.
> +  /// Returns an iterator to the spot where we inserted the call. This must be
> +  /// implemented by the target.
> +  virtual MachineBasicBlock::iterator
> +  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
> +                     MachineBasicBlock::iterator &It, MachineFunction &MF)
> +  const {
> +    llvm_unreachable(
> +        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
> +  }
> +
> +  /// Insert a custom prologue for outlined functions.
> +  /// This may be empty, in which case no prologue will be emitted.
> +  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
> +                                      MachineFunction &MF) const {
> +    llvm_unreachable(
> +        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
> +  }
> +
> +  /// Return true if the function can safely be outlined from.
> +  /// By default, this means that the function has no red zone.
> +  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &F) const {
> +    llvm_unreachable("Target didn't implement "
> +                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
> +  }
> +
>  private:
>    unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
>    unsigned CatchRetOpcode;
>
> Modified: llvm/trunk/lib/CodeGen/CMakeLists.txt
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CMakeLists.txt?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/CMakeLists.txt (original)
> +++ llvm/trunk/lib/CodeGen/CMakeLists.txt Mon Mar  6 15:31:18 2017
> @@ -75,6 +75,7 @@ add_llvm_library(LLVMCodeGen
>    MachineModuleInfo.cpp
>    MachineModuleInfoImpls.cpp
>    MachineOptimizationRemarkEmitter.cpp
> +  MachineOutliner.cpp
>    MachinePassRegistry.cpp
>    MachinePipeliner.cpp
>    MachinePostDominators.cpp
>
> Modified: llvm/trunk/lib/CodeGen/CodeGen.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CodeGen.cpp?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/CodeGen.cpp (original)
> +++ llvm/trunk/lib/CodeGen/CodeGen.cpp Mon Mar  6 15:31:18 2017
> @@ -58,6 +58,7 @@ void llvm::initializeCodeGen(PassRegistr
>    initializeMachineLoopInfoPass(Registry);
>    initializeMachineModuleInfoPass(Registry);
>    initializeMachineOptimizationRemarkEmitterPassPass(Registry);
> +  initializeMachineOutlinerPass(Registry);
>    initializeMachinePipelinerPass(Registry);
>    initializeMachinePostDominatorTreePass(Registry);
>    initializeMachineRegionInfoPassPass(Registry);
>
> Added: llvm/trunk/lib/CodeGen/MachineOutliner.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/MachineOutliner.cpp?rev=297081&view=auto
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/MachineOutliner.cpp (added)
> +++ llvm/trunk/lib/CodeGen/MachineOutliner.cpp Mon Mar  6 15:31:18 2017
> @@ -0,0 +1,1399 @@
> +//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
> +//
> +//                     The LLVM Compiler Infrastructure
> +//
> +// This file is distributed under the University of Illinois Open Source
> +// License. See LICENSE.TXT for details.
> +//
> +//===----------------------------------------------------------------------===//
> +///
> +/// \file
> +/// Replaces repeated sequences of instructions with function calls.
> +///
> +/// This works by placing every instruction from every basic block in a
> +/// suffix tree, and repeatedly querying that tree for repeated sequences of
> +/// instructions. If a sequence of instructions appears often, then it ought
> +/// to be beneficial to pull out into a function.
> +///
> +/// This was originally presented at the 2016 LLVM Developers' Meeting in the
> +/// talk "Reducing Code Size Using Outlining". For a high-level overview of
> +/// how this pass works, the talk is available on YouTube at
> +///
> +/// https://www.youtube.com/watch?v=yorld-WSOeU
> +///
> +/// The slides for the talk are available at
> +///
> +/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
> +///
> +/// The talk provides an overview of how the outliner finds candidates and
> +/// ultimately outlines them. It describes how the main data structure for this
> +/// pass, the suffix tree, is queried and purged for candidates. It also gives
> +/// a simplified suffix tree construction algorithm for suffix trees based off
> +/// of the algorithm actually used here, Ukkonen's algorithm.
> +///
> +/// For the original RFC for this pass, please see
> +///
> +/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
> +///
> +/// For more information on the suffix tree data structure, please see
> +/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
> +///
> +//===----------------------------------------------------------------------===//
> +#include "llvm/ADT/DenseMap.h"
> +#include "llvm/ADT/Statistic.h"
> +#include "llvm/ADT/Twine.h"
> +#include "llvm/CodeGen/MachineFrameInfo.h"
> +#include "llvm/CodeGen/MachineFunction.h"
> +#include "llvm/CodeGen/MachineInstrBuilder.h"
> +#include "llvm/CodeGen/MachineModuleInfo.h"
> +#include "llvm/CodeGen/Passes.h"
> +#include "llvm/IR/IRBuilder.h"
> +#include "llvm/Support/Allocator.h"
> +#include "llvm/Support/Debug.h"
> +#include "llvm/Support/raw_ostream.h"
> +#include "llvm/Target/TargetInstrInfo.h"
> +#include "llvm/Target/TargetMachine.h"
> +#include "llvm/Target/TargetRegisterInfo.h"
> +#include "llvm/Target/TargetSubtargetInfo.h"
> +#include <functional>
> +#include <map>
> +#include <sstream>
> +#include <tuple>
> +#include <vector>
> +
> +#define DEBUG_TYPE "machine-outliner"
> +
> +using namespace llvm;
> +
> +STATISTIC(NumOutlined, "Number of candidates outlined");
> +STATISTIC(FunctionsCreated, "Number of functions created");
> +
> +namespace {
> +
> +/// Represents an undefined index in the suffix tree.
> +const size_t EmptyIdx = -1;
> +
> +/// A node in a suffix tree which represents a substring or suffix.
> +///
> +/// Each node has either no children or at least two children, with the root
> +/// being a exception in the empty tree.
> +///
> +/// Children are represented as a map between unsigned integers and nodes. If
> +/// a node N has a child M on unsigned integer k, then the mapping represented
> +/// by N is a proper prefix of the mapping represented by M. Note that this,
> +/// although similar to a trie is somewhat different: each node stores a full
> +/// substring of the full mapping rather than a single character state.
> +///
> +/// Each internal node contains a pointer to the internal node representing
> +/// the same string, but with the first character chopped off. This is stored
> +/// in \p Link. Each leaf node stores the start index of its respective
> +/// suffix in \p SuffixIdx.
> +struct SuffixTreeNode {
> +
> +  /// The children of this node.
> +  ///
> +  /// A child existing on an unsigned integer implies that from the mapping
> +  /// represented by the current node, there is a way to reach another
> +  /// mapping by tacking that character on the end of the current string.
> +  DenseMap<unsigned, SuffixTreeNode *> Children;
> +
> +  /// A flag set to false if the node has been pruned from the tree.
> +  bool IsInTree = true;
> +
> +  /// The start index of this node's substring in the main string.
> +  size_t StartIdx = EmptyIdx;
> +
> +  /// The end index of this node's substring in the main string.
> +  ///
> +  /// Every leaf node must have its \p EndIdx incremented at the end of every
> +  /// step in the construction algorithm. To avoid having to update O(N)
> +  /// nodes individually at the end of every step, the end index is stored
> +  /// as a pointer.
> +  size_t *EndIdx = nullptr;
> +
> +  /// For leaves, the start index of the suffix represented by this node.
> +  ///
> +  /// For all other nodes, this is ignored.
> +  size_t SuffixIdx = EmptyIdx;
> +
> +  /// \brief For internal nodes, a pointer to the internal node representing
> +  /// the same sequence with the first character chopped off.
> +  ///
> +  /// This has two major purposes in the suffix tree. The first is as a
> +  /// shortcut in Ukkonen's construction algorithm. One of the things that
> +  /// Ukkonen's algorithm does to achieve linear-time construction is
> +  /// keep track of which node the next insert should be at. This makes each
> +  /// insert O(1), and there are a total of O(N) inserts. The suffix link
> +  /// helps with inserting children of internal nodes.
> +  ///
> +  /// Say we add a child to an internal node with associated mapping S. The
> +  /// next insertion must be at the node representing S - its first character.
> +  /// This is given by the way that we iteratively build the tree in Ukkonen's
> +  /// algorithm. The main idea is to look at the suffixes of each prefix in the
> +  /// string, starting with the longest suffix of the prefix, and ending with
> +  /// the shortest. Therefore, if we keep pointers between such nodes, we can
> +  /// move to the next insertion point in O(1) time. If we don't, then we'd
> +  /// have to query from the root, which takes O(N) time. This would make the
> +  /// construction algorithm O(N^2) rather than O(N).
> +  ///
> +  /// The suffix link is also used during the tree pruning process to let us
> +  /// quickly throw out a bunch of potential overlaps. Say we have a sequence
> +  /// S we want to outline. Then each of its suffixes contribute to at least
> +  /// one overlapping case. Therefore, we can follow the suffix links
> +  /// starting at the node associated with S to the root and "delete" those
> +  /// nodes, save for the root. For each candidate, this removes
> +  /// O(|candidate|) overlaps from the search space. We don't actually
> +  /// completely invalidate these nodes though; doing that is far too
> +  /// aggressive. Consider the following pathological string:
> +  ///
> +  /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
> +  ///
> +  /// If we, for the sake of example, outlined 1 2 3, then we would throw
> +  /// out all instances of 2 3. This isn't desirable. To get around this,
> +  /// when we visit a link node, we decrement its occurrence count by the
> +  /// number of sequences we outlined in the current step. In the pathological
> +  /// example, the 2 3 node would have an occurrence count of 8, while the
> +  /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
> +  /// would survive to the next round allowing us to outline the extra
> +  /// instances of 2 3.
> +  SuffixTreeNode *Link = nullptr;
> +
> +  /// The parent of this node. Every node except for the root has a parent.
> +  SuffixTreeNode *Parent = nullptr;
> +
> +  /// The number of times this node's string appears in the tree.
> +  ///
> +  /// This is equal to the number of leaf children of the string. It represents
> +  /// the number of suffixes that the node's string is a prefix of.
> +  size_t OccurrenceCount = 0;
> +
> +  /// Returns true if this node is a leaf.
> +  bool isLeaf() const { return SuffixIdx != EmptyIdx; }
> +
> +  /// Returns true if this node is the root of its owning \p SuffixTree.
> +  bool isRoot() const { return StartIdx == EmptyIdx; }
> +
> +  /// Return the number of elements in the substring associated with this node.
> +  size_t size() const {
> +
> +    // Is it the root? If so, it's the empty string so return 0.
> +    if (isRoot())
> +      return 0;
> +
> +    assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
> +
> +    // Size = the number of elements in the string.
> +    // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
> +    return *EndIdx - StartIdx + 1;
> +  }
> +
> +  SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
> +                 SuffixTreeNode *Parent)
> +      : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
> +
> +  SuffixTreeNode() {}
> +};
> +
> +/// A data structure for fast substring queries.
> +///
> +/// Suffix trees represent the suffixes of their input strings in their leaves.
> +/// A suffix tree is a type of compressed trie structure where each node
> +/// represents an entire substring rather than a single character. Each leaf
> +/// of the tree is a suffix.
> +///
> +/// A suffix tree can be seen as a type of state machine where each state is a
> +/// substring of the full string. The tree is structured so that, for a string
> +/// of length N, there are exactly N leaves in the tree. This structure allows
> +/// us to quickly find repeated substrings of the input string.
> +///
> +/// In this implementation, a "string" is a vector of unsigned integers.
> +/// These integers may result from hashing some data type. A suffix tree can
> +/// contain 1 or many strings, which can then be queried as one large string.
> +///
> +/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
> +/// suffix tree construction. Ukkonen's algorithm is explained in more detail
> +/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
> +/// paper is available at
> +///
> +/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
> +class SuffixTree {
> +private:
> +  /// Each element is an integer representing an instruction in the module.
> +  ArrayRef<unsigned> Str;
> +
> +  /// Maintains each node in the tree.
> +  BumpPtrAllocator NodeAllocator;
> +
> +  /// The root of the suffix tree.
> +  ///
> +  /// The root represents the empty string. It is maintained by the
> +  /// \p NodeAllocator like every other node in the tree.
> +  SuffixTreeNode *Root = nullptr;
> +
> +  /// Stores each leaf in the tree for better pruning.
> +  std::vector<SuffixTreeNode *> LeafVector;
> +
> +  /// Maintains the end indices of the internal nodes in the tree.
> +  ///
> +  /// Each internal node is guaranteed to never have its end index change
> +  /// during the construction algorithm; however, leaves must be updated at
> +  /// every step. Therefore, we need to store leaf end indices by reference
> +  /// to avoid updating O(N) leaves at every step of construction. Thus,
> +  /// every internal node must be allocated its own end index.
> +  BumpPtrAllocator InternalEndIdxAllocator;
> +
> +  /// The end index of each leaf in the tree.
> +  size_t LeafEndIdx = -1;
> +
> +  /// \brief Helper struct which keeps track of the next insertion point in
> +  /// Ukkonen's algorithm.
> +  struct ActiveState {
> +    /// The next node to insert at.
> +    SuffixTreeNode *Node;
> +
> +    /// The index of the first character in the substring currently being added.
> +    size_t Idx = EmptyIdx;
> +
> +    /// The length of the substring we have to add at the current step.
> +    size_t Len = 0;
> +  };
> +
> +  /// \brief The point the next insertion will take place at in the
> +  /// construction algorithm.
> +  ActiveState Active;
> +
> +  /// Allocate a leaf node and add it to the tree.
> +  ///
> +  /// \param Parent The parent of this node.
> +  /// \param StartIdx The start index of this node's associated string.
> +  /// \param Edge The label on the edge leaving \p Parent to this node.
> +  ///
> +  /// \returns A pointer to the allocated leaf node.
> +  SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
> +                             unsigned Edge) {
> +
> +    assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
> +
> +    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
> +                                                           &LeafEndIdx,
> +                                                           nullptr,
> +                                                           &Parent);
> +    Parent.Children[Edge] = N;
> +
> +    return N;
> +  }
> +
> +  /// Allocate an internal node and add it to the tree.
> +  ///
> +  /// \param Parent The parent of this node. Only null when allocating the root.
> +  /// \param StartIdx The start index of this node's associated string.
> +  /// \param EndIdx The end index of this node's associated string.
> +  /// \param Edge The label on the edge leaving \p Parent to this node.
> +  ///
> +  /// \returns A pointer to the allocated internal node.
> +  SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
> +                                     size_t EndIdx, unsigned Edge) {
> +
> +    assert(StartIdx <= EndIdx && "String can't start after it ends!");
> +    assert(!(!Parent && StartIdx != EmptyIdx) &&
> +    "Non-root internal nodes must have parents!");
> +
> +    size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
> +    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
> +                                                           E,
> +                                                           Root,
> +                                                           Parent);
> +    if (Parent)
> +      Parent->Children[Edge] = N;
> +
> +    return N;
> +  }
> +
> +  /// \brief Set the suffix indices of the leaves to the start indices of their
> +  /// respective suffixes. Also stores each leaf in \p LeafVector at its
> +  /// respective suffix index.
> +  ///
> +  /// \param[in] CurrNode The node currently being visited.
> +  /// \param CurrIdx The current index of the string being visited.
> +  void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
> +
> +    bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
> +
> +    // Traverse the tree depth-first.
> +    for (auto &ChildPair : CurrNode.Children) {
> +      assert(ChildPair.second && "Node had a null child!");
> +      setSuffixIndices(*ChildPair.second,
> +                       CurrIdx + ChildPair.second->size());
> +    }
> +
> +    // Is this node a leaf?
> +    if (IsLeaf) {
> +      // If yes, give it a suffix index and bump its parent's occurrence count.
> +      CurrNode.SuffixIdx = Str.size() - CurrIdx;
> +      assert(CurrNode.Parent && "CurrNode had no parent!");
> +      CurrNode.Parent->OccurrenceCount++;
> +
> +      // Store the leaf in the leaf vector for pruning later.
> +      LeafVector[CurrNode.SuffixIdx] = &CurrNode;
> +    }
> +  }
> +
> +  /// \brief Construct the suffix tree for the prefix of the input ending at
> +  /// \p EndIdx.
> +  ///
> +  /// Used to construct the full suffix tree iteratively. At the end of each
> +  /// step, the constructed suffix tree is either a valid suffix tree, or a
> +  /// suffix tree with implicit suffixes. At the end of the final step, the
> +  /// suffix tree is a valid tree.
> +  ///
> +  /// \param EndIdx The end index of the current prefix in the main string.
> +  /// \param SuffixesToAdd The number of suffixes that must be added
> +  /// to complete the suffix tree at the current phase.
> +  ///
> +  /// \returns The number of suffixes that have not been added at the end of
> +  /// this step.
> +  unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
> +    SuffixTreeNode *NeedsLink = nullptr;
> +
> +    while (SuffixesToAdd > 0) {
> +
> +      // Are we waiting to add anything other than just the last character?
> +      if (Active.Len == 0) {
> +        // If not, then say the active index is the end index.
> +        Active.Idx = EndIdx;
> +      }
> +
> +      assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
> +
> +      // The first character in the current substring we're looking at.
> +      unsigned FirstChar = Str[Active.Idx];
> +
> +      // Have we inserted anything starting with FirstChar at the current node?
> +      if (Active.Node->Children.count(FirstChar) == 0) {
> +        // If not, then we can just insert a leaf and move too the next step.
> +        insertLeaf(*Active.Node, EndIdx, FirstChar);
> +
> +        // The active node is an internal node, and we visited it, so it must
> +        // need a link if it doesn't have one.
> +        if (NeedsLink) {
> +          NeedsLink->Link = Active.Node;
> +          NeedsLink = nullptr;
> +        }
> +      } else {
> +        // There's a match with FirstChar, so look for the point in the tree to
> +        // insert a new node.
> +        SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
> +
> +        size_t SubstringLen = NextNode->size();
> +
> +        // Is the current suffix we're trying to insert longer than the size of
> +        // the child we want to move to?
> +        if (Active.Len >= SubstringLen) {
> +          // If yes, then consume the characters we've seen and move to the next
> +          // node.
> +          Active.Idx += SubstringLen;
> +          Active.Len -= SubstringLen;
> +          Active.Node = NextNode;
> +          continue;
> +        }
> +
> +        // Otherwise, the suffix we're trying to insert must be contained in the
> +        // next node we want to move to.
> +        unsigned LastChar = Str[EndIdx];
> +
> +        // Is the string we're trying to insert a substring of the next node?
> +        if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
> +          // If yes, then we're done for this step. Remember our insertion point
> +          // and move to the next end index. At this point, we have an implicit
> +          // suffix tree.
> +          if (NeedsLink && !Active.Node->isRoot()) {
> +            NeedsLink->Link = Active.Node;
> +            NeedsLink = nullptr;
> +          }
> +
> +          Active.Len++;
> +          break;
> +        }
> +
> +        // The string we're trying to insert isn't a substring of the next node,
> +        // but matches up to a point. Split the node.
> +        //
> +        // For example, say we ended our search at a node n and we're trying to
> +        // insert ABD. Then we'll create a new node s for AB, reduce n to just
> +        // representing C, and insert a new leaf node l to represent d. This
> +        // allows us to ensure that if n was a leaf, it remains a leaf.
> +        //
> +        //   | ABC  ---split--->  | AB
> +        //   n                    s
> +        //                     C / \ D
> +        //                      n   l
> +
> +        // The node s from the diagram
> +        SuffixTreeNode *SplitNode =
> +            insertInternalNode(Active.Node,
> +                               NextNode->StartIdx,
> +                               NextNode->StartIdx + Active.Len - 1,
> +                               FirstChar);
> +
> +        // Insert the new node representing the new substring into the tree as
> +        // a child of the split node. This is the node l from the diagram.
> +        insertLeaf(*SplitNode, EndIdx, LastChar);
> +
> +        // Make the old node a child of the split node and update its start
> +        // index. This is the node n from the diagram.
> +        NextNode->StartIdx += Active.Len;
> +        NextNode->Parent = SplitNode;
> +        SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
> +
> +        // SplitNode is an internal node, update the suffix link.
> +        if (NeedsLink)
> +          NeedsLink->Link = SplitNode;
> +
> +        NeedsLink = SplitNode;
> +      }
> +
> +      // We've added something new to the tree, so there's one less suffix to
> +      // add.
> +      SuffixesToAdd--;
> +
> +      if (Active.Node->isRoot()) {
> +        if (Active.Len > 0) {
> +          Active.Len--;
> +          Active.Idx = EndIdx - SuffixesToAdd + 1;
> +        }
> +      } else {
> +        // Start the next phase at the next smallest suffix.
> +        Active.Node = Active.Node->Link;
> +      }
> +    }
> +
> +    return SuffixesToAdd;
> +  }
> +
> +  /// \brief Return the start index and length of a string which maximizes a
> +  /// benefit function by traversing the tree depth-first.
> +  ///
> +  /// Helper function for \p bestRepeatedSubstring.
> +  ///
> +  /// \param CurrNode The node currently being visited.
> +  /// \param CurrLen Length of the current string.
> +  /// \param[out] BestLen Length of the most beneficial substring.
> +  /// \param[out] MaxBenefit Benefit of the most beneficial substring.
> +  /// \param[out] BestStartIdx Start index of the most beneficial substring.
> +  /// \param BenefitFn The function the query should return a maximum string
> +  /// for.
> +  void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
> +                size_t &MaxBenefit, size_t &BestStartIdx,
> +                const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
> +                &BenefitFn) {
> +
> +    if (!CurrNode.IsInTree)
> +      return;
> +
> +    // Can we traverse further down the tree?
> +    if (!CurrNode.isLeaf()) {
> +      // If yes, continue the traversal.
> +      for (auto &ChildPair : CurrNode.Children) {
> +        if (ChildPair.second && ChildPair.second->IsInTree)
> +          findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
> +                   BestLen, MaxBenefit, BestStartIdx, BenefitFn);
> +      }
> +    } else {
> +      // We hit a leaf.
> +      size_t StringLen = CurrLen - CurrNode.size();
> +      unsigned Benefit = BenefitFn(CurrNode, StringLen);
> +
> +      // Did we do better than in the last step?
> +      if (Benefit <= MaxBenefit)
> +        return;
> +
> +      // We did better, so update the best string.
> +      MaxBenefit = Benefit;
> +      BestStartIdx = CurrNode.SuffixIdx;
> +      BestLen = StringLen;
> +    }
> +  }
> +
> +public:
> +
> +  /// \brief Return a substring of the tree with maximum benefit if such a
> +  /// substring exists.
> +  ///
> +  /// Clears the input vector and fills it with a maximum substring or empty.
> +  ///
> +  /// \param[in,out] Best The most beneficial substring in the tree. Empty
> +  /// if it does not exist.
> +  /// \param BenefitFn The function the query should return a maximum string
> +  /// for.
> +  void bestRepeatedSubstring(std::vector<unsigned> &Best,
> +                 const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
> +                 &BenefitFn) {
> +    Best.clear();
> +    size_t Length = 0;   // Becomes the length of the best substring.
> +    size_t Benefit = 0;  // Becomes the benefit of the best substring.
> +    size_t StartIdx = 0; // Becomes the start index of the best substring.
> +    findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
> +
> +    for (size_t Idx = 0; Idx < Length; Idx++)
> +      Best.push_back(Str[Idx + StartIdx]);
> +  }
> +
> +  /// Perform a depth-first search for \p QueryString on the suffix tree.
> +  ///
> +  /// \param QueryString The string to search for.
> +  /// \param CurrIdx The current index in \p QueryString that is being matched
> +  /// against.
> +  /// \param CurrNode The suffix tree node being searched in.
> +  ///
> +  /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
> +  /// node exists, and \p nullptr otherwise.
> +  SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
> +                             size_t &CurrIdx, SuffixTreeNode *CurrNode) {
> +
> +    // The search ended at a nonexistent or pruned node. Quit.
> +    if (!CurrNode || !CurrNode->IsInTree)
> +      return nullptr;
> +
> +    unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
> +    SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
> +
> +    if (CurrNode->isRoot()) {
> +      // If we're at the root we have to check if there's a child, and move to
> +      // that child. Don't consume the character since \p Root represents the
> +      // empty string.
> +      if (NextNode && NextNode->IsInTree)
> +        return findString(QueryString, CurrIdx, NextNode);
> +      return nullptr;
> +    }
> +
> +    size_t StrIdx = CurrNode->StartIdx;
> +    size_t MaxIdx = QueryString.size();
> +    bool ContinueSearching = false;
> +
> +    // Match as far as possible into the string. If there's a mismatch, quit.
> +    for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
> +      Edge = QueryString[CurrIdx];
> +
> +      // We matched perfectly, but still have a remainder to search.
> +      if (StrIdx > *(CurrNode->EndIdx)) {
> +        ContinueSearching = true;
> +        break;
> +      }
> +
> +      if (Edge != Str[StrIdx])
> +        return nullptr;
> +    }
> +
> +    NextNode = CurrNode->Children[Edge];
> +
> +    // Move to the node which matches what we're looking for and continue
> +    // searching.
> +    if (ContinueSearching)
> +      return findString(QueryString, CurrIdx, NextNode);
> +
> +    // We matched perfectly so we're done.
> +    return CurrNode;
> +  }
> +
> +  /// \brief Remove a node from a tree and all nodes representing proper
> +  /// suffixes of that node's string.
> +  ///
> +  /// This is used in the outlining algorithm to reduce the number of
> +  /// overlapping candidates
> +  ///
> +  /// \param N The suffix tree node to start pruning from.
> +  /// \param Len The length of the string to be pruned.
> +  ///
> +  /// \returns True if this candidate didn't overlap with a previously chosen
> +  /// candidate.
> +  bool prune(SuffixTreeNode *N, size_t Len) {
> +
> +    bool NoOverlap = true;
> +    std::vector<unsigned> IndicesToPrune;
> +
> +    // Look at each of N's children.
> +    for (auto &ChildPair : N->Children) {
> +      SuffixTreeNode *M = ChildPair.second;
> +
> +      // Is this a leaf child?
> +      if (M && M->IsInTree && M->isLeaf()) {
> +        // Save each leaf child's suffix indices and remove them from the tree.
> +        IndicesToPrune.push_back(M->SuffixIdx);
> +        M->IsInTree = false;
> +      }
> +    }
> +
> +    // Remove each suffix we have to prune from the tree. Each of these will be
> +    // I + some offset for I in IndicesToPrune and some offset < Len.
> +    unsigned Offset = 1;
> +    for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
> +      for (unsigned I : IndicesToPrune) {
> +
> +        unsigned PruneIdx = I + Offset;
> +
> +        // Is this index actually in the string?
> +        if (PruneIdx < LeafVector.size()) {
> +          // If yes, we have to try and prune it.
> +          // Was the current leaf already pruned by another candidate?
> +          if (LeafVector[PruneIdx]->IsInTree) {
> +            // If not, prune it.
> +            LeafVector[PruneIdx]->IsInTree = false;
> +          } else {
> +            // If yes, signify that we've found an overlap, but keep pruning.
> +            NoOverlap = false;
> +          }
> +
> +          // Update the parent of the current leaf's occurrence count.
> +          SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
> +
> +          // Is the parent still in the tree?
> +          if (Parent->OccurrenceCount > 0) {
> +            Parent->OccurrenceCount--;
> +            Parent->IsInTree = (Parent->OccurrenceCount > 1);
> +          }
> +        }
> +      }
> +
> +      // Move to the next character in the string.
> +      Offset++;
> +    }
> +
> +    // We know we can never outline anything which starts one index back from
> +    // the indices we want to outline. This is because our minimum outlining
> +    // length is always 2.
> +    for (unsigned I : IndicesToPrune) {
> +      if (I > 0) {
> +
> +        unsigned PruneIdx = I-1;
> +        SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
> +
> +        // Was the leaf one index back from I already pruned?
> +        if (LeafVector[PruneIdx]->IsInTree) {
> +          // If not, prune it.
> +          LeafVector[PruneIdx]->IsInTree = false;
> +        } else {
> +          // If yes, signify that we've found an overlap, but keep pruning.
> +          NoOverlap = false;
> +        }
> +
> +        // Update the parent of the current leaf's occurrence count.
> +        if (Parent->OccurrenceCount > 0) {
> +          Parent->OccurrenceCount--;
> +          Parent->IsInTree = (Parent->OccurrenceCount > 1);
> +        }
> +      }
> +    }
> +
> +    // Finally, remove N from the tree and set its occurrence count to 0.
> +    N->IsInTree = false;
> +    N->OccurrenceCount = 0;
> +
> +    return NoOverlap;
> +  }
> +
> +  /// \brief Find each occurrence of of a string in \p QueryString and prune
> +  /// their nodes.
> +  ///
> +  /// \param QueryString The string to search for.
> +  /// \param[out] Occurrences The start indices of each occurrence.
> +  ///
> +  /// \returns Whether or not the occurrence overlaps with a previous candidate.
> +  bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
> +                               std::vector<size_t> &Occurrences) {
> +    size_t Dummy = 0;
> +    SuffixTreeNode *N = findString(QueryString, Dummy, Root);
> +
> +    if (!N || !N->IsInTree)
> +      return false;
> +
> +    // If this is an internal node, occurrences are the number of leaf children
> +    // of the node.
> +    for (auto &ChildPair : N->Children) {
> +      SuffixTreeNode *M = ChildPair.second;
> +
> +      // Is it a leaf? If so, we have an occurrence.
> +      if (M && M->IsInTree && M->isLeaf())
> +        Occurrences.push_back(M->SuffixIdx);
> +    }
> +
> +    // If we're in a leaf, then this node is the only occurrence.
> +    if (N->isLeaf())
> +      Occurrences.push_back(N->SuffixIdx);
> +
> +    return prune(N, QueryString.size());
> +  }
> +
> +  /// Construct a suffix tree from a sequence of unsigned integers.
> +  ///
> +  /// \param Str The string to construct the suffix tree for.
> +  SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
> +    Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
> +    Root->IsInTree = true;
> +    Active.Node = Root;
> +    LeafVector = std::vector<SuffixTreeNode*>(Str.size());
> +
> +    // Keep track of the number of suffixes we have to add of the current
> +    // prefix.
> +    size_t SuffixesToAdd = 0;
> +    Active.Node = Root;
> +
> +    // Construct the suffix tree iteratively on each prefix of the string.
> +    // PfxEndIdx is the end index of the current prefix.
> +    // End is one past the last element in the string.
> +    for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
> +      SuffixesToAdd++;
> +      LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
> +      SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
> +    }
> +
> +    // Set the suffix indices of each leaf.
> +    assert(Root && "Root node can't be nullptr!");
> +    setSuffixIndices(*Root, 0);
> +  }
> +};
> +
> +/// \brief An individual sequence of instructions to be replaced with a call to
> +/// an outlined function.
> +struct Candidate {
> +
> +  /// Set to false if the candidate overlapped with another candidate.
> +  bool InCandidateList = true;
> +
> +  /// The start index of this \p Candidate.
> +  size_t StartIdx;
> +
> +  /// The number of instructions in this \p Candidate.
> +  size_t Len;
> +
> +  /// The index of this \p Candidate's \p OutlinedFunction in the list of
> +  /// \p OutlinedFunctions.
> +  size_t FunctionIdx;
> +
> +  Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
> +      : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
> +
> +  Candidate() {}
> +
> +  /// \brief Used to ensure that \p Candidates are outlined in an order that
> +  /// preserves the start and end indices of other \p Candidates.
> +  bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
> +};
> +
> +/// \brief The information necessary to create an outlined function for some
> +/// class of candidate.
> +struct OutlinedFunction {
> +
> +  /// The actual outlined function created.
> +  /// This is initialized after we go through and create the actual function.
> +  MachineFunction *MF = nullptr;
> +
> +  /// A number assigned to this function which appears at the end of its name.
> +  size_t Name;
> +
> +  /// The number of times that this function has appeared.
> +  size_t OccurrenceCount = 0;
> +
> +  /// \brief The sequence of integers corresponding to the instructions in this
> +  /// function.
> +  std::vector<unsigned> Sequence;
> +
> +  /// The number of instructions this function would save.
> +  unsigned Benefit = 0;
> +
> +  OutlinedFunction(size_t Name, size_t OccurrenceCount,
> +                   const std::vector<unsigned> &Sequence,
> +                   unsigned Benefit)
> +      : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
> +        Benefit(Benefit)
> +        {}
> +};
> +
> +/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
> +struct InstructionMapper {
> +
> +  /// \brief The next available integer to assign to a \p MachineInstr that
> +  /// cannot be outlined.
> +  ///
> +  /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
> +  unsigned IllegalInstrNumber = -3;
> +
> +  /// \brief The next available integer to assign to a \p MachineInstr that can
> +  /// be outlined.
> +  unsigned LegalInstrNumber = 0;
> +
> +  /// Correspondence from \p MachineInstrs to unsigned integers.
> +  DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
> +      InstructionIntegerMap;
> +
> +  /// Corresponcence from unsigned integers to \p MachineInstrs.
> +  /// Inverse of \p InstructionIntegerMap.
> +  DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
> +
> +  /// The vector of unsigned integers that the module is mapped to.
> +  std::vector<unsigned> UnsignedVec;
> +
> +  /// \brief Stores the location of the instruction associated with the integer
> +  /// at index i in \p UnsignedVec for each index i.
> +  std::vector<MachineBasicBlock::iterator> InstrList;
> +
> +  /// \brief Maps \p *It to a legal integer.
> +  ///
> +  /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
> +  /// \p IntegerInstructionMap, and \p LegalInstrNumber.
> +  ///
> +  /// \returns The integer that \p *It was mapped to.
> +  unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
> +
> +    // Get the integer for this instruction or give it the current
> +    // LegalInstrNumber.
> +    InstrList.push_back(It);
> +    MachineInstr &MI = *It;
> +    bool WasInserted;
> +    DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
> +    ResultIt;
> +    std::tie(ResultIt, WasInserted) =
> +    InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
> +    unsigned MINumber = ResultIt->second;
> +
> +    // There was an insertion.
> +    if (WasInserted) {
> +      LegalInstrNumber++;
> +      IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
> +    }
> +
> +    UnsignedVec.push_back(MINumber);
> +
> +    // Make sure we don't overflow or use any integers reserved by the DenseMap.
> +    if (LegalInstrNumber >= IllegalInstrNumber)
> +      report_fatal_error("Instruction mapping overflow!");
> +
> +    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
> +          && "Tried to assign DenseMap tombstone or empty key to instruction.");
> +    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
> +          && "Tried to assign DenseMap tombstone or empty key to instruction.");
> +
> +    return MINumber;
> +  }
> +
> +  /// Maps \p *It to an illegal integer.
> +  ///
> +  /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
> +  ///
> +  /// \returns The integer that \p *It was mapped to.
> +  unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
> +    unsigned MINumber = IllegalInstrNumber;
> +
> +    InstrList.push_back(It);
> +    UnsignedVec.push_back(IllegalInstrNumber);
> +    IllegalInstrNumber--;
> +
> +    assert(LegalInstrNumber < IllegalInstrNumber &&
> +           "Instruction mapping overflow!");
> +
> +    assert(IllegalInstrNumber !=
> +      DenseMapInfo<unsigned>::getEmptyKey() &&
> +      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
> +
> +    assert(IllegalInstrNumber !=
> +      DenseMapInfo<unsigned>::getTombstoneKey() &&
> +      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
> +
> +    return MINumber;
> +  }
> +
> +  /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
> +  /// and appends it to \p UnsignedVec and \p InstrList.
> +  ///
> +  /// Two instructions are assigned the same integer if they are identical.
> +  /// If an instruction is deemed unsafe to outline, then it will be assigned an
> +  /// unique integer. The resulting mapping is placed into a suffix tree and
> +  /// queried for candidates.
> +  ///
> +  /// \param MBB The \p MachineBasicBlock to be translated into integers.
> +  /// \param TRI \p TargetRegisterInfo for the module.
> +  /// \param TII \p TargetInstrInfo for the module.
> +  void convertToUnsignedVec(MachineBasicBlock &MBB,
> +                            const TargetRegisterInfo &TRI,
> +                            const TargetInstrInfo &TII) {
> +    for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
> +         It++) {
> +
> +      // Keep track of where this instruction is in the module.
> +      switch(TII.getOutliningType(*It)) {
> +        case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
> +          mapToIllegalUnsigned(It);
> +          break;
> +
> +        case TargetInstrInfo::MachineOutlinerInstrType::Legal:
> +          mapToLegalUnsigned(It);
> +          break;
> +
> +        case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
> +          break;
> +      }
> +    }
> +
> +    // After we're done every insertion, uniquely terminate this part of the
> +    // "string". This makes sure we won't match across basic block or function
> +    // boundaries since the "end" is encoded uniquely and thus appears in no
> +    // repeated substring.
> +    InstrList.push_back(MBB.end());
> +    UnsignedVec.push_back(IllegalInstrNumber);
> +    IllegalInstrNumber--;
> +  }
> +
> +  InstructionMapper() {
> +    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
> +    // changed.
> +    assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
> +                "DenseMapInfo<unsigned>'s empty key isn't -1!");
> +    assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
> +                "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
> +  }
> +};
> +
> +/// \brief An interprocedural pass which finds repeated sequences of
> +/// instructions and replaces them with calls to functions.
> +///
> +/// Each instruction is mapped to an unsigned integer and placed in a string.
> +/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
> +/// is then repeatedly queried for repeated sequences of instructions. Each
> +/// non-overlapping repeated sequence is then placed in its own
> +/// \p MachineFunction and each instance is then replaced with a call to that
> +/// function.
> +struct MachineOutliner : public ModulePass {
> +
> +  static char ID;
> +
> +  StringRef getPassName() const override { return "Machine Outliner"; }
> +
> +  void getAnalysisUsage(AnalysisUsage &AU) const override {
> +    AU.addRequired<MachineModuleInfo>();
> +    AU.addPreserved<MachineModuleInfo>();
> +    AU.setPreservesAll();
> +    ModulePass::getAnalysisUsage(AU);
> +  }
> +
> +  MachineOutliner() : ModulePass(ID) {
> +    initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
> +  }
> +
> +  /// \brief Replace the sequences of instructions represented by the
> +  /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
> +  /// described in \p FunctionList.
> +  ///
> +  /// \param M The module we are outlining from.
> +  /// \param CandidateList A list of candidates to be outlined.
> +  /// \param FunctionList A list of functions to be inserted into the module.
> +  /// \param Mapper Contains the instruction mappings for the module.
> +  bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
> +               std::vector<OutlinedFunction> &FunctionList,
> +               InstructionMapper &Mapper);
> +
> +  /// Creates a function for \p OF and inserts it into the module.
> +  MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
> +                                          InstructionMapper &Mapper);
> +
> +  /// Find potential outlining candidates and store them in \p CandidateList.
> +  ///
> +  /// For each type of potential candidate, also build an \p OutlinedFunction
> +  /// struct containing the information to build the function for that
> +  /// candidate.
> +  ///
> +  /// \param[out] CandidateList Filled with outlining candidates for the module.
> +  /// \param[out] FunctionList Filled with functions corresponding to each type
> +  /// of \p Candidate.
> +  /// \param ST The suffix tree for the module.
> +  /// \param TII TargetInstrInfo for the module.
> +  ///
> +  /// \returns The length of the longest candidate found. 0 if there are none.
> +  unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
> +                              std::vector<OutlinedFunction> &FunctionList,
> +                              SuffixTree &ST, const TargetInstrInfo &TII);
> +
> +  /// \brief Remove any overlapping candidates that weren't handled by the
> +  /// suffix tree's pruning method.
> +  ///
> +  /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
> +  /// If a short candidate is chosen for outlining, then a longer candidate
> +  /// which has that short candidate as a suffix is chosen, the tree's pruning
> +  /// method will not find it. Thus, we need to prune before outlining as well.
> +  ///
> +  /// \param[in,out] CandidateList A list of outlining candidates.
> +  /// \param[in,out] FunctionList A list of functions to be outlined.
> +  /// \param MaxCandidateLen The length of the longest candidate.
> +  /// \param TII TargetInstrInfo for the module.
> +  void pruneOverlaps(std::vector<Candidate> &CandidateList,
> +                     std::vector<OutlinedFunction> &FunctionList,
> +                     unsigned MaxCandidateLen,
> +                     const TargetInstrInfo &TII);
> +
> +  /// Construct a suffix tree on the instructions in \p M and outline repeated
> +  /// strings from that tree.
> +  bool runOnModule(Module &M) override;
> +};
> +
> +} // Anonymous namespace.
> +
> +char MachineOutliner::ID = 0;
> +
> +namespace llvm {
> +ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
> +}
> +
> +INITIALIZE_PASS(MachineOutliner, "machine-outliner",
> +                "Machine Function Outliner", false, false)
> +
> +void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
> +                                    std::vector<OutlinedFunction> &FunctionList,
> +                                    unsigned MaxCandidateLen,
> +                                    const TargetInstrInfo &TII) {
> +
> +  // Check for overlaps in the range. This is O(n^2) worst case, but we can
> +  // alleviate that somewhat by bounding our search space using the start
> +  // index of our first candidate and the maximum distance an overlapping
> +  // candidate could have from the first candidate.
> +  for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
> +       It++) {
> +    Candidate &C1 = *It;
> +    OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
> +
> +    // If we removed this candidate, skip it.
> +    if (!C1.InCandidateList)
> +      continue;
> +
> +    // If the candidate's function isn't good to outline anymore, then
> +    // remove the candidate and skip it.
> +    if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
> +      C1.InCandidateList = false;
> +      continue;
> +    }
> +
> +    // The minimum start index of any candidate that could overlap with this
> +    // one.
> +    unsigned FarthestPossibleIdx = 0;
> +
> +    // Either the index is 0, or it's at most MaxCandidateLen indices away.
> +    if (C1.StartIdx > MaxCandidateLen)
> +      FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
> +
> +    // Compare against the other candidates in the list.
> +    // This is at most MaxCandidateLen/2 other candidates.
> +    // This is because each candidate has to be at least 2 indices away.
> +    // = O(n * MaxCandidateLen/2) comparisons
> +    //
> +    // On average, the maximum length of a candidate is quite small; a fraction
> +    // of the total module length in terms of instructions. If the maximum
> +    // candidate length is large, then there are fewer possible candidates to
> +    // compare against in the first place.
> +    for (auto Sit = It + 1; Sit != Et; Sit++) {
> +      Candidate &C2 = *Sit;
> +      OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
> +
> +      // Is this candidate too far away to overlap?
> +      // NOTE: This will be true in
> +      //    O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
> +      // for every candidate.
> +      if (C2.StartIdx < FarthestPossibleIdx)
> +        break;
> +
> +      // Did we already remove this candidate in a previous step?
> +      if (!C2.InCandidateList)
> +        continue;
> +
> +      // Is the function beneficial to outline?
> +      if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
> +        // If not, remove this candidate and move to the next one.
> +        C2.InCandidateList = false;
> +        continue;
> +      }
> +
> +      size_t C2End = C2.StartIdx + C2.Len - 1;
> +
> +      // Do C1 and C2 overlap?
> +      //
> +      // Not overlapping:
> +      // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
> +      //
> +      // We sorted our candidate list so C2Start <= C1Start. We know that
> +      // C2End > C2Start since each candidate has length >= 2. Therefore, all we
> +      // have to check is C2End < C2Start to see if we overlap.
> +      if (C2End < C1.StartIdx)
> +        continue;
> +
> +      // C2 overlaps with C1. Because we pruned the tree already, the only way
> +      // this can happen is if C1 is a proper suffix of C2. Thus, we must have
> +      // found C1 first during our query, so it must have benefit greater or
> +      // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
> +      DEBUG (
> +            size_t C1End = C1.StartIdx + C1.Len - 1;
> +            dbgs() << "- Found an overlap to purge.\n";
> +            dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
> +            dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
> +            );
> +
> +      // Update the function's occurrence count and benefit to reflec that C2
> +      // is being removed.
> +      F2.OccurrenceCount--;
> +      F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
> +                                           F2.OccurrenceCount
> +                                           );
> +
> +      // Mark C2 as not in the list.
> +      C2.InCandidateList = false;
> +
> +      DEBUG (
> +            dbgs() << "- Removed C2. \n";
> +            dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
> +            dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
> +            );
> +    }
> +  }
> +}
> +
> +unsigned
> +MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
> +                                    std::vector<OutlinedFunction> &FunctionList,
> +                                    SuffixTree &ST,
> +                                    const TargetInstrInfo &TII) {
> +
> +  std::vector<unsigned> CandidateSequence; // Current outlining candidate.
> +  unsigned MaxCandidateLen = 0; // Length of the longest candidate.
> +
> +  // Function for maximizing query in the suffix tree.
> +  // This allows us to define more fine-grained types of things to outline in
> +  // the target without putting target-specific info in the suffix tree.
> +  auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
> +
> +    // Any leaf whose parent is the root only has one occurrence.
> +    if (Curr.Parent->isRoot())
> +      return 0u;
> +
> +    // Anything with length < 2 will never be beneficial on any target.
> +    if (StringLen < 2)
> +      return 0u;
> +
> +    size_t Occurrences = Curr.Parent->OccurrenceCount;
> +
> +    // Anything with fewer than 2 occurrences will never be beneficial on any
> +    // target.
> +    if (Occurrences < 2)
> +      return 0u;
> +
> +    return TII.getOutliningBenefit(StringLen, Occurrences);
> +  };
> +
> +  // Repeatedly query the suffix tree for the substring that maximizes
> +  // BenefitFn. Find the occurrences of that string, prune the tree, and store
> +  // each occurrence as a candidate.
> +  for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
> +       CandidateSequence.size() > 1;
> +       ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
> +
> +    std::vector<size_t> Occurrences;
> +
> +    bool GotNonOverlappingCandidate =
> +        ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
> +
> +    // Is the candidate we found known to overlap with something we already
> +    // outlined?
> +    if (!GotNonOverlappingCandidate)
> +      continue;
> +
> +    // Is this candidate the longest so far?
> +    if (CandidateSequence.size() > MaxCandidateLen)
> +      MaxCandidateLen = CandidateSequence.size();
> +
> +    // Keep track of the benefit of outlining this candidate in its
> +    // OutlinedFunction.
> +    unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
> +                                                 Occurrences.size()
> +                                                 );
> +
> +    assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
> +
> +    // Save an OutlinedFunction for this candidate.
> +    FunctionList.emplace_back(
> +        FunctionList.size(), // Number of this function.
> +        Occurrences.size(),  // Number of occurrences.
> +        CandidateSequence,   // Sequence to outline.
> +        FnBenefit            // Instructions saved by outlining this function.
> +        );
> +
> +    // Save each of the occurrences of the candidate so we can outline them.
> +    for (size_t &Occ : Occurrences)
> +      CandidateList.emplace_back(
> +          Occ,                      // Starting idx in that MBB.
> +          CandidateSequence.size(), // Candidate length.
> +          FunctionList.size() - 1   // Idx of the corresponding function.
> +          );
> +
> +    FunctionsCreated++;
> +  }
> +
> +  // Sort the candidates in decending order. This will simplify the outlining
> +  // process when we have to remove the candidates from the mapping by
> +  // allowing us to cut them out without keeping track of an offset.
> +  std::stable_sort(CandidateList.begin(), CandidateList.end());
> +
> +  return MaxCandidateLen;
> +}
> +
> +MachineFunction *
> +MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
> +  InstructionMapper &Mapper) {
> +
> +  // Create the function name. This should be unique. For now, just hash the
> +  // module name and include it in the function name plus the number of this
> +  // function.
> +  std::ostringstream NameStream;
> +  NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
> +
> +  // Create the function using an IR-level function.
> +  LLVMContext &C = M.getContext();
> +  Function *F = dyn_cast<Function>(
> +      M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL));
> +  assert(F && "Function was null!");
> +
> +  // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
> +  // which gives us better results when we outline from linkonceodr functions.
> +  F->setLinkage(GlobalValue::PrivateLinkage);
> +  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
> +
> +  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
> +  IRBuilder<> Builder(EntryBB);
> +  Builder.CreateRetVoid();
> +
> +  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
> +  MachineFunction &MF = MMI.getMachineFunction(*F);
> +  MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
> +  const TargetSubtargetInfo &STI = MF.getSubtarget();
> +  const TargetInstrInfo &TII = *STI.getInstrInfo();
> +
> +  // Insert the new function into the module.
> +  MF.insert(MF.begin(), &MBB);
> +
> +  TII.insertOutlinerPrologue(MBB, MF);
> +
> +  // Copy over the instructions for the function using the integer mappings in
> +  // its sequence.
> +  for (unsigned Str : OF.Sequence) {
> +    MachineInstr *NewMI =
> +        MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
> +    NewMI->dropMemRefs();
> +
> +    // Don't keep debug information for outlined instructions.
> +    // FIXME: This means outlined functions are currently undebuggable.
> +    NewMI->setDebugLoc(DebugLoc());
> +    MBB.insert(MBB.end(), NewMI);
> +  }
> +
> +  TII.insertOutlinerEpilogue(MBB, MF);
> +
> +  return &MF;
> +}
> +
> +bool MachineOutliner::outline(Module &M,
> +                              const ArrayRef<Candidate> &CandidateList,
> +                              std::vector<OutlinedFunction> &FunctionList,
> +                              InstructionMapper &Mapper) {
> +
> +  bool OutlinedSomething = false;
> +
> +  // Replace the candidates with calls to their respective outlined functions.
> +  for (const Candidate &C : CandidateList) {
> +
> +    // Was the candidate removed during pruneOverlaps?
> +    if (!C.InCandidateList)
> +      continue;
> +
> +    // If not, then look at its OutlinedFunction.
> +    OutlinedFunction &OF = FunctionList[C.FunctionIdx];
> +
> +    // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
> +    if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
> +      continue;
> +
> +    // If not, then outline it.
> +    assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
> +    MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
> +    MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
> +    unsigned EndIdx = C.StartIdx + C.Len - 1;
> +
> +    assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
> +    MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
> +    assert(EndIt != MBB->end() && "EndIt out of bounds!");
> +
> +    EndIt++; // Erase needs one past the end index.
> +
> +    // Does this candidate have a function yet?
> +    if (!OF.MF)
> +      OF.MF = createOutlinedFunction(M, OF, Mapper);
> +
> +    MachineFunction *MF = OF.MF;
> +    const TargetSubtargetInfo &STI = MF->getSubtarget();
> +    const TargetInstrInfo &TII = *STI.getInstrInfo();
> +
> +    // Insert a call to the new function and erase the old sequence.
> +    TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
> +    StartIt = Mapper.InstrList[C.StartIdx];
> +    MBB->erase(StartIt, EndIt);
> +
> +    OutlinedSomething = true;
> +
> +    // Statistics.
> +    NumOutlined++;
> +  }
> +
> +  DEBUG (
> +    dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
> +  );
> +
> +  return OutlinedSomething;
> +}
> +
> +bool MachineOutliner::runOnModule(Module &M) {
> +
> +  // Is there anything in the module at all?
> +  if (M.empty())
> +    return false;
> +
> +  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
> +  const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
> +                                      .getSubtarget();
> +  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
> +  const TargetInstrInfo *TII = STI.getInstrInfo();
> +
> +  InstructionMapper Mapper;
> +
> +  // Build instruction mappings for each function in the module.
> +  for (Function &F : M) {
> +    MachineFunction &MF = MMI.getMachineFunction(F);
> +
> +    // Is the function empty? Safe to outline from?
> +    if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
> +      continue;
> +
> +    // If it is, look at each MachineBasicBlock in the function.
> +    for (MachineBasicBlock &MBB : MF) {
> +
> +      // Is there anything in MBB?
> +      if (MBB.empty())
> +        continue;
> +
> +      // If yes, map it.
> +      Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
> +    }
> +  }
> +
> +  // Construct a suffix tree, use it to find candidates, and then outline them.
> +  SuffixTree ST(Mapper.UnsignedVec);
> +  std::vector<Candidate> CandidateList;
> +  std::vector<OutlinedFunction> FunctionList;
> +
> +  unsigned MaxCandidateLen =
> +      buildCandidateList(CandidateList, FunctionList, ST, *TII);
> +
> +  pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
> +  return outline(M, CandidateList, FunctionList, Mapper);
> +}
>
> Modified: llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/TargetPassConfig.cpp?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/TargetPassConfig.cpp (original)
> +++ llvm/trunk/lib/CodeGen/TargetPassConfig.cpp Mon Mar  6 15:31:18 2017
> @@ -92,6 +92,9 @@ static cl::opt<bool> VerifyMachineCode("
>      cl::desc("Verify generated machine code"),
>      cl::init(false),
>      cl::ZeroOrMore);
> +static cl::opt<bool> EnableMachineOutliner("enable-machine-outliner",
> +    cl::Hidden,
> +    cl::desc("Enable machine outliner"));
>
>  static cl::opt<std::string>
>  PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
> @@ -674,6 +677,9 @@ void TargetPassConfig::addMachinePasses(
>    addPass(&XRayInstrumentationID, false);
>    addPass(&PatchableFunctionID, false);
>
> +  if (EnableMachineOutliner)
> +    PM->add(createMachineOutlinerPass());
> +
>    AddingMachinePasses = false;
>  }
>
>
> Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.cpp?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/X86/X86InstrInfo.cpp (original)
> +++ llvm/trunk/lib/Target/X86/X86InstrInfo.cpp Mon Mar  6 15:31:18 2017
> @@ -10383,3 +10383,83 @@ namespace {
>  char LDTLSCleanup::ID = 0;
>  FunctionPass*
>  llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
> +
> +unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize,
> +                                           size_t Occurrences) const {
> +  unsigned NotOutlinedSize = SequenceSize * Occurrences;
> +
> +  // Sequence appears once in outlined function (Sequence.size())
> +  // One return instruction (+1)
> +  // One call per occurrence (Occurrences)
> +  unsigned OutlinedSize = (SequenceSize + 1) + Occurrences;
> +
> +  // Return the number of instructions saved by outlining this sequence.
> +  return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
> +}
> +
> +bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
> +  return MF.getFunction()->hasFnAttribute(Attribute::NoRedZone);
> +}
> +
> +X86GenInstrInfo::MachineOutlinerInstrType
> +X86InstrInfo::getOutliningType(MachineInstr &MI) const {
> +
> +  // Don't outline returns or basic block terminators.
> +  if (MI.isReturn() || MI.isTerminator())
> +    return MachineOutlinerInstrType::Illegal;
> +
> +  // Don't outline anything that modifies or reads from the stack pointer.
> +  //
> +  // FIXME: There are instructions which are being manually built without
> +  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
> +  // able to remove the extra checks once those are fixed up. For example,
> +  // sometimes we might get something like %RAX<def> = POP64r 1. This won't be
> +  // caught by modifiesRegister or readsRegister even though the instruction
> +  // really ought to be formed so that modifiesRegister/readsRegister would
> +  // catch it.
> +  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
> +      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
> +      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
> +    return MachineOutlinerInstrType::Illegal;
> +
> +  if (MI.readsRegister(X86::RIP, &RI) ||
> +      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
> +      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
> +    return MachineOutlinerInstrType::Illegal;
> +
> +  if (MI.isPosition())
> +    return MachineOutlinerInstrType::Illegal;
> +
> +  for (const MachineOperand &MOP : MI.operands())
> +    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
> +        MOP.isTargetIndex())
> +      return MachineOutlinerInstrType::Illegal;
> +
> +  // Don't allow debug values to impact outlining type.
> +  if (MI.isDebugValue() || MI.isIndirectDebugValue())
> +    return MachineOutlinerInstrType::Invisible;
> +
> +  return MachineOutlinerInstrType::Legal;
> +}
> +
> +void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB,
> +                                          MachineFunction &MF) const {
> +
> +  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
> +  MBB.insert(MBB.end(), retq);
> +}
> +
> +void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB,
> +                                          MachineFunction &MF) const {
> +  return;
> +}
> +
> +MachineBasicBlock::iterator
> +X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
> +                                 MachineBasicBlock::iterator &It,
> +                                 MachineFunction &MF) const {
> +  It = MBB.insert(It,
> +                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
> +                      .addGlobalAddress(M.getNamedValue(MF.getName())));
> +  return It;
> +}
>
> Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.h?rev=297081&r1=297080&r2=297081&view=diff
> ==============================================================================
> --- llvm/trunk/lib/Target/X86/X86InstrInfo.h (original)
> +++ llvm/trunk/lib/Target/X86/X86InstrInfo.h Mon Mar  6 15:31:18 2017
> @@ -545,6 +545,25 @@ public:
>
>    bool isTailCall(const MachineInstr &Inst) const override;
>
> +  unsigned getOutliningBenefit(size_t SequenceSize,
> +                               size_t Occurrences) const override;
> +
> +  bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
> +
> +  llvm::X86GenInstrInfo::MachineOutlinerInstrType
> +  getOutliningType(MachineInstr &MI) const override;
> +
> +  void insertOutlinerEpilogue(MachineBasicBlock &MBB,
> +                              MachineFunction &MF) const override;
> +
> +  void insertOutlinerPrologue(MachineBasicBlock &MBB,
> +                              MachineFunction &MF) const override;
> +
> +  MachineBasicBlock::iterator
> +  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
> +                     MachineBasicBlock::iterator &It,
> +                     MachineFunction &MF) const override;
> +
>  protected:
>    /// Commutes the operands in the given instruction by changing the operands
>    /// order and/or changing the instruction's opcode and/or the immediate value
>
> Added: llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll?rev=297081&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll (added)
> +++ llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll Mon Mar  6 15:31:18 2017
> @@ -0,0 +1,75 @@
> +; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
> +
> + at x = global i32 0, align 4, !dbg !0
> +
> +define i32 @main() #0 !dbg !11 {
> +  ; CHECK-LABEL: _main:
> +  %1 = alloca i32, align 4
> +  %2 = alloca i32, align 4
> +  %3 = alloca i32, align 4
> +  %4 = alloca i32, align 4
> +  %5 = alloca i32, align 4
> +  ; There is a debug value in the middle of this section, make sure debug values are ignored.
> +  ; CHECK: callq l_OUTLINED_FUNCTION_0
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  call void @llvm.dbg.value(metadata i32 10, i64 0, metadata !15, metadata !16), !dbg !17
> +  store i32 4, i32* %5, align 4
> +  store i32 0, i32* @x, align 4, !dbg !24
> +  ; This is the same sequence of instructions without a debug value. It should be outlined
> +  ; in the same way.
> +  ; CHECK: callq l_OUTLINED_FUNCTION_0
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  store i32 4, i32* %5, align 4
> +  store i32 1, i32* @x, align 4, !dbg !14
> +  ret i32 0, !dbg !25
> +}
> +
> +; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
> +; CHECK-NOT:  .loc  {{[0-9]+}} {{[0-9]+}} {{[0-9]+}} {{^(is_stmt)}}
> +; CHECK-NOT:  ##DEBUG_VALUE: main:{{[a-z]}} <- {{[0-9]+}}
> +; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: retq
> +
> +declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
> +
> +declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #1
> +
> +attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
> +
> +!llvm.dbg.cu = !{!2}
> +!llvm.module.flags = !{!7, !8, !9}
> +!llvm.ident = !{!10}
> +
> +!0 = !DIGlobalVariableExpression(var: !1)
> +!1 = distinct !DIGlobalVariable(name: "x", scope: !2, file: !3, line: 2, type: !6, isLocal: false, isDefinition: true)
> +!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3, producer: "clang version 5.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !4, globals: !5)
> +!3 = !DIFile(filename: "debug-test.c", directory: "dir")
> +!4 = !{}
> +!5 = !{!0}
> +!6 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
> +!7 = !{i32 2, !"Dwarf Version", i32 4}
> +!8 = !{i32 2, !"Debug Info Version", i32 3}
> +!9 = !{i32 1, !"PIC Level", i32 2}
> +!10 = !{!"clang version 5.0.0"}
> +!11 = distinct !DISubprogram(name: "main", scope: !3, file: !3, line: 4, type: !12, isLocal: false, isDefinition: true, scopeLine: 4, flags: DIFlagPrototyped, isOptimized: false, unit: !2, variables: !4)
> +!12 = !DISubroutineType(types: !13)
> +!13 = !{!6}
> +!14 = !DILocation(line: 7, column: 4, scope: !11)
> +!15 = !DILocalVariable(name: "a", scope: !11, file: !3, line: 5, type: !6)
> +!16 = !DIExpression()
> +!17 = !DILocation(line: 5, column: 6, scope: !11)
> +!18 = !DILocalVariable(name: "b", scope: !11, file: !3, line: 5, type: !6)
> +!19 = !DILocation(line: 5, column: 9, scope: !11)
> +!20 = !DILocalVariable(name: "c", scope: !11, file: !3, line: 5, type: !6)
> +!21 = !DILocation(line: 5, column: 12, scope: !11)
> +!22 = !DILocalVariable(name: "d", scope: !11, file: !3, line: 5, type: !6)
> +!23 = !DILocation(line: 5, column: 15, scope: !11)
> +!24 = !DILocation(line: 14, column: 4, scope: !11)
> +!25 = !DILocation(line: 21, column: 2, scope: !11)
>
> Added: llvm/trunk/test/CodeGen/X86/machine-outliner.ll
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner.ll?rev=297081&view=auto
> ==============================================================================
> --- llvm/trunk/test/CodeGen/X86/machine-outliner.ll (added)
> +++ llvm/trunk/test/CodeGen/X86/machine-outliner.ll Mon Mar  6 15:31:18 2017
> @@ -0,0 +1,110 @@
> +; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
> +
> + at x = global i32 0, align 4
> +
> +define i32 @check_boundaries() #0 {
> +  ; CHECK-LABEL: _check_boundaries:
> +  %1 = alloca i32, align 4
> +  %2 = alloca i32, align 4
> +  %3 = alloca i32, align 4
> +  %4 = alloca i32, align 4
> +  %5 = alloca i32, align 4
> +  store i32 0, i32* %1, align 4
> +  store i32 0, i32* %2, align 4
> +  %6 = load i32, i32* %2, align 4
> +  %7 = icmp ne i32 %6, 0
> +  br i1 %7, label %9, label %8
> +
> +  ; CHECK: callq l_OUTLINED_FUNCTION_1
> +  ; CHECK: cmpl  $0, -{{[0-9]+}}(%rbp)
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  store i32 4, i32* %5, align 4
> +  br label %10
> +
> +  store i32 1, i32* %4, align 4
> +  br label %10
> +
> +  %11 = load i32, i32* %2, align 4
> +  %12 = icmp ne i32 %11, 0
> +  br i1 %12, label %14, label %13
> +
> +  ; CHECK: callq l_OUTLINED_FUNCTION_1
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  store i32 4, i32* %5, align 4
> +  br label %15
> +
> +  store i32 1, i32* %4, align 4
> +  br label %15
> +
> +  ret i32 0
> +}
> +
> +define i32 @empty_1() #0 {
> +  ; CHECK-LABEL: _empty_1:
> +  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
> +  ret i32 1
> +}
> +
> +define i32 @empty_2() #0 {
> +  ; CHECK-LABEL: _empty_2
> +  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
> +  ret i32 1
> +}
> +
> +define i32 @no_empty_outlining() #0 {
> +  ; CHECK-LABEL: _no_empty_outlining:
> +  %1 = alloca i32, align 4
> +  store i32 0, i32* %1, align 4
> +  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
> +  %2 = call i32 @empty_1() #1
> +  %3 = call i32 @empty_2() #1
> +  %4 = call i32 @empty_1() #1
> +  %5 = call i32 @empty_2() #1
> +  %6 = call i32 @empty_1() #1
> +  %7 = call i32 @empty_2() #1
> +  ret i32 0
> +}
> +
> +define i32 @main() #0 {
> +  ; CHECK-LABEL: _main:
> +  %1 = alloca i32, align 4
> +  %2 = alloca i32, align 4
> +  %3 = alloca i32, align 4
> +  %4 = alloca i32, align 4
> +  %5 = alloca i32, align 4
> +
> +  store i32 0, i32* %1, align 4
> +  store i32 0, i32* @x, align 4
> +  ; CHECK: callq l_OUTLINED_FUNCTION_0
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  store i32 4, i32* %5, align 4
> +  store i32 1, i32* @x, align 4
> +  ; CHECK: callq l_OUTLINED_FUNCTION_0
> +  store i32 1, i32* %2, align 4
> +  store i32 2, i32* %3, align 4
> +  store i32 3, i32* %4, align 4
> +  store i32 4, i32* %5, align 4
> +  ret i32 0
> +}
> +
> +attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
> +
> +; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
> +; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: retq
> +
> +; CHECK-LABEL: l_OUTLINED_FUNCTION_1:
> +; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
> +; CHECK-NEXT: retq
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-commits


More information about the llvm-commits mailing list