[llvm] r296426 - Revert "Add MIR-level outlining pass"
Matthias Braun via llvm-commits
llvm-commits at lists.llvm.org
Mon Feb 27 18:24:30 PST 2017
Author: matze
Date: Mon Feb 27 20:24:30 2017
New Revision: 296426
URL: http://llvm.org/viewvc/llvm-project?rev=296426&view=rev
Log:
Revert "Add MIR-level outlining pass"
Revert Machine Outliner for now, as it breaks the asan bot.
This reverts commit r296418.
Removed:
llvm/trunk/lib/CodeGen/MachineOutliner.cpp
llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
llvm/trunk/test/CodeGen/X86/machine-outliner.ll
Modified:
llvm/trunk/include/llvm/CodeGen/Passes.h
llvm/trunk/include/llvm/InitializePasses.h
llvm/trunk/include/llvm/Target/TargetInstrInfo.h
llvm/trunk/lib/CodeGen/CMakeLists.txt
llvm/trunk/lib/CodeGen/CodeGen.cpp
llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
llvm/trunk/lib/Target/X86/X86InstrInfo.h
Modified: llvm/trunk/include/llvm/CodeGen/Passes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/Passes.h?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/Passes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/Passes.h Mon Feb 27 20:24:30 2017
@@ -402,10 +402,6 @@ namespace llvm {
/// This pass frees the memory occupied by the MachineFunction.
FunctionPass *createFreeMachineFunctionPass();
-
- /// This pass performs outlining on machine instructions directly before
- /// printing assembly.
- ModulePass *createMachineOutlinerPass();
} // End llvm namespace
/// Target machine pass initializer for passes with dependencies. Use with
Modified: llvm/trunk/include/llvm/InitializePasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/include/llvm/InitializePasses.h (original)
+++ llvm/trunk/include/llvm/InitializePasses.h Mon Feb 27 20:24:30 2017
@@ -236,7 +236,6 @@ void initializeMachineLICMPass(PassRegis
void initializeMachineLoopInfoPass(PassRegistry&);
void initializeMachineModuleInfoPass(PassRegistry&);
void initializeMachineOptimizationRemarkEmitterPassPass(PassRegistry&);
-void initializeMachineOutlinerPass(PassRegistry&);
void initializeMachinePipelinerPass(PassRegistry&);
void initializeMachinePostDominatorTreePass(PassRegistry&);
void initializeMachineRegionInfoPassPass(PassRegistry&);
Modified: llvm/trunk/include/llvm/Target/TargetInstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Target/TargetInstrInfo.h?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Target/TargetInstrInfo.h (original)
+++ llvm/trunk/include/llvm/Target/TargetInstrInfo.h Mon Feb 27 20:24:30 2017
@@ -1508,63 +1508,6 @@ public:
return false;
}
- /// \brief Return how many instructions would be saved by outlining a
- /// sequence containing \p SequenceSize instructions that appears
- /// \p Occurrences times in a module.
- virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences)
- const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningBenefit!");
- }
-
- /// Represents how an instruction should be mapped by the outliner.
- /// \p Legal instructions are those which are safe to outline.
- /// \p Illegal instructions are those which cannot be outlined.
- /// \p Invisible instructions are instructions which can be outlined, but
- /// shouldn't actually impact the outlining result.
- enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
-
- /// Return true if the instruction is legal to outline.
- virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningType!");
- }
-
- /// Insert a custom epilogue for outlined functions.
- /// This may be empty, in which case no epilogue or return statement will be
- /// emitted.
- virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
- MachineFunction &MF) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
- }
-
- /// Insert a call to an outlined function into the program.
- /// Returns an iterator to the spot where we inserted the call. This must be
- /// implemented by the target.
- virtual MachineBasicBlock::iterator
- insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It, MachineFunction &MF)
- const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
- }
-
- /// Insert a custom prologue for outlined functions.
- /// This may be empty, in which case no prologue will be emitted.
- virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
- MachineFunction &MF) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
- }
-
- /// Return true if the function can safely be outlined from.
- /// By default, this means that the function has no red zone.
- virtual bool isFunctionSafeToOutlineFrom(MachineFunction &F) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
- }
-
private:
unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
unsigned CatchRetOpcode;
Modified: llvm/trunk/lib/CodeGen/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CMakeLists.txt?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/CMakeLists.txt (original)
+++ llvm/trunk/lib/CodeGen/CMakeLists.txt Mon Feb 27 20:24:30 2017
@@ -74,7 +74,6 @@ add_llvm_library(LLVMCodeGen
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachineOptimizationRemarkEmitter.cpp
- MachineOutliner.cpp
MachinePassRegistry.cpp
MachinePipeliner.cpp
MachinePostDominators.cpp
Modified: llvm/trunk/lib/CodeGen/CodeGen.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CodeGen.cpp?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/CodeGen.cpp (original)
+++ llvm/trunk/lib/CodeGen/CodeGen.cpp Mon Feb 27 20:24:30 2017
@@ -57,7 +57,6 @@ void llvm::initializeCodeGen(PassRegistr
initializeMachineLoopInfoPass(Registry);
initializeMachineModuleInfoPass(Registry);
initializeMachineOptimizationRemarkEmitterPassPass(Registry);
- initializeMachineOutlinerPass(Registry);
initializeMachinePipelinerPass(Registry);
initializeMachinePostDominatorTreePass(Registry);
initializeMachineRegionInfoPassPass(Registry);
Removed: llvm/trunk/lib/CodeGen/MachineOutliner.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/MachineOutliner.cpp?rev=296425&view=auto
==============================================================================
--- llvm/trunk/lib/CodeGen/MachineOutliner.cpp (original)
+++ llvm/trunk/lib/CodeGen/MachineOutliner.cpp (removed)
@@ -1,1399 +0,0 @@
-//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// Replaces repeated sequences of instructions with function calls.
-///
-/// This works by placing every instruction from every basic block in a
-/// suffix tree, and repeatedly querying that tree for repeated sequences of
-/// instructions. If a sequence of instructions appears often, then it ought
-/// to be beneficial to pull out into a function.
-///
-/// This was originally presented at the 2016 LLVM Developers' Meeting in the
-/// talk "Reducing Code Size Using Outlining". For a high-level overview of
-/// how this pass works, the talk is available on YouTube at
-///
-/// https://www.youtube.com/watch?v=yorld-WSOeU
-///
-/// The slides for the talk are available at
-///
-/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
-///
-/// The talk provides an overview of how the outliner finds candidates and
-/// ultimately outlines them. It describes how the main data structure for this
-/// pass, the suffix tree, is queried and purged for candidates. It also gives
-/// a simplified suffix tree construction algorithm for suffix trees based off
-/// of the algorithm actually used here, Ukkonen's algorithm.
-///
-/// For the original RFC for this pass, please see
-///
-/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
-///
-/// For more information on the suffix tree data structure, please see
-/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
-///
-//===----------------------------------------------------------------------===//
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetSubtargetInfo.h"
-#include <functional>
-#include <map>
-#include <sstream>
-#include <tuple>
-#include <vector>
-
-#define DEBUG_TYPE "machine-outliner"
-
-using namespace llvm;
-
-STATISTIC(NumOutlined, "Number of candidates outlined");
-STATISTIC(FunctionsCreated, "Number of functions created");
-
-namespace {
-
-/// Represents an undefined index in the suffix tree.
-const size_t EmptyIdx = -1;
-
-/// A node in a suffix tree which represents a substring or suffix.
-///
-/// Each node has either no children or at least two children, with the root
-/// being a exception in the empty tree.
-///
-/// Children are represented as a map between unsigned integers and nodes. If
-/// a node N has a child M on unsigned integer k, then the mapping represented
-/// by N is a proper prefix of the mapping represented by M. Note that this,
-/// although similar to a trie is somewhat different: each node stores a full
-/// substring of the full mapping rather than a single character state.
-///
-/// Each internal node contains a pointer to the internal node representing
-/// the same string, but with the first character chopped off. This is stored
-/// in \p Link. Each leaf node stores the start index of its respective
-/// suffix in \p SuffixIdx.
-struct SuffixTreeNode {
-
- /// The children of this node.
- ///
- /// A child existing on an unsigned integer implies that from the mapping
- /// represented by the current node, there is a way to reach another
- /// mapping by tacking that character on the end of the current string.
- DenseMap<unsigned, SuffixTreeNode *> Children;
-
- /// A flag set to false if the node has been pruned from the tree.
- bool IsInTree = true;
-
- /// The start index of this node's substring in the main string.
- size_t StartIdx = EmptyIdx;
-
- /// The end index of this node's substring in the main string.
- ///
- /// Every leaf node must have its \p EndIdx incremented at the end of every
- /// step in the construction algorithm. To avoid having to update O(N)
- /// nodes individually at the end of every step, the end index is stored
- /// as a pointer.
- size_t *EndIdx = nullptr;
-
- /// For leaves, the start index of the suffix represented by this node.
- ///
- /// For all other nodes, this is ignored.
- size_t SuffixIdx = EmptyIdx;
-
- /// \brief For internal nodes, a pointer to the internal node representing
- /// the same sequence with the first character chopped off.
- ///
- /// This has two major purposes in the suffix tree. The first is as a
- /// shortcut in Ukkonen's construction algorithm. One of the things that
- /// Ukkonen's algorithm does to achieve linear-time construction is
- /// keep track of which node the next insert should be at. This makes each
- /// insert O(1), and there are a total of O(N) inserts. The suffix link
- /// helps with inserting children of internal nodes.
- ///
- /// Say we add a child to an internal node with associated mapping S. The
- /// next insertion must be at the node representing S - its first character.
- /// This is given by the way that we iteratively build the tree in Ukkonen's
- /// algorithm. The main idea is to look at the suffixes of each prefix in the
- /// string, starting with the longest suffix of the prefix, and ending with
- /// the shortest. Therefore, if we keep pointers between such nodes, we can
- /// move to the next insertion point in O(1) time. If we don't, then we'd
- /// have to query from the root, which takes O(N) time. This would make the
- /// construction algorithm O(N^2) rather than O(N).
- ///
- /// The suffix link is also used during the tree pruning process to let us
- /// quickly throw out a bunch of potential overlaps. Say we have a sequence
- /// S we want to outline. Then each of its suffixes contribute to at least
- /// one overlapping case. Therefore, we can follow the suffix links
- /// starting at the node associated with S to the root and "delete" those
- /// nodes, save for the root. For each candidate, this removes
- /// O(|candidate|) overlaps from the search space. We don't actually
- /// completely invalidate these nodes though; doing that is far too
- /// aggressive. Consider the following pathological string:
- ///
- /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
- ///
- /// If we, for the sake of example, outlined 1 2 3, then we would throw
- /// out all instances of 2 3. This isn't desirable. To get around this,
- /// when we visit a link node, we decrement its occurrence count by the
- /// number of sequences we outlined in the current step. In the pathological
- /// example, the 2 3 node would have an occurrence count of 8, while the
- /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
- /// would survive to the next round allowing us to outline the extra
- /// instances of 2 3.
- SuffixTreeNode *Link = nullptr;
-
- /// The parent of this node. Every node except for the root has a parent.
- SuffixTreeNode *Parent = nullptr;
-
- /// The number of times this node's string appears in the tree.
- ///
- /// This is equal to the number of leaf children of the string. It represents
- /// the number of suffixes that the node's string is a prefix of.
- size_t OccurrenceCount = 0;
-
- /// Returns true if this node is a leaf.
- bool isLeaf() const { return SuffixIdx != EmptyIdx; }
-
- /// Returns true if this node is the root of its owning \p SuffixTree.
- bool isRoot() const { return StartIdx == EmptyIdx; }
-
- /// Return the number of elements in the substring associated with this node.
- size_t size() const {
-
- // Is it the root? If so, it's the empty string so return 0.
- if (isRoot())
- return 0;
-
- assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
-
- // Size = the number of elements in the string.
- // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
- return *EndIdx - StartIdx + 1;
- }
-
- SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
- SuffixTreeNode *Parent)
- : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
-
- SuffixTreeNode() {}
-};
-
-/// A data structure for fast substring queries.
-///
-/// Suffix trees represent the suffixes of their input strings in their leaves.
-/// A suffix tree is a type of compressed trie structure where each node
-/// represents an entire substring rather than a single character. Each leaf
-/// of the tree is a suffix.
-///
-/// A suffix tree can be seen as a type of state machine where each state is a
-/// substring of the full string. The tree is structured so that, for a string
-/// of length N, there are exactly N leaves in the tree. This structure allows
-/// us to quickly find repeated substrings of the input string.
-///
-/// In this implementation, a "string" is a vector of unsigned integers.
-/// These integers may result from hashing some data type. A suffix tree can
-/// contain 1 or many strings, which can then be queried as one large string.
-///
-/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
-/// suffix tree construction. Ukkonen's algorithm is explained in more detail
-/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
-/// paper is available at
-///
-/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
-class SuffixTree {
-private:
- /// Each element is an integer representing an instruction in the module.
- ArrayRef<unsigned> Str;
-
- /// Maintains each node in the tree.
- BumpPtrAllocator NodeAllocator;
-
- /// The root of the suffix tree.
- ///
- /// The root represents the empty string. It is maintained by the
- /// \p NodeAllocator like every other node in the tree.
- SuffixTreeNode *Root = nullptr;
-
- /// Stores each leaf in the tree for better pruning.
- std::vector<SuffixTreeNode *> LeafVector;
-
- /// Maintains the end indices of the internal nodes in the tree.
- ///
- /// Each internal node is guaranteed to never have its end index change
- /// during the construction algorithm; however, leaves must be updated at
- /// every step. Therefore, we need to store leaf end indices by reference
- /// to avoid updating O(N) leaves at every step of construction. Thus,
- /// every internal node must be allocated its own end index.
- BumpPtrAllocator InternalEndIdxAllocator;
-
- /// The end index of each leaf in the tree.
- size_t LeafEndIdx = -1;
-
- /// \brief Helper struct which keeps track of the next insertion point in
- /// Ukkonen's algorithm.
- struct ActiveState {
- /// The next node to insert at.
- SuffixTreeNode *Node;
-
- /// The index of the first character in the substring currently being added.
- size_t Idx = EmptyIdx;
-
- /// The length of the substring we have to add at the current step.
- size_t Len = 0;
- };
-
- /// \brief The point the next insertion will take place at in the
- /// construction algorithm.
- ActiveState Active;
-
- /// Allocate a leaf node and add it to the tree.
- ///
- /// \param Parent The parent of this node.
- /// \param StartIdx The start index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated leaf node.
- SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
- unsigned Edge) {
-
- assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
-
- SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
- &LeafEndIdx,
- nullptr,
- &Parent);
- Parent.Children[Edge] = N;
-
- return N;
- }
-
- /// Allocate an internal node and add it to the tree.
- ///
- /// \param Parent The parent of this node. Only null when allocating the root.
- /// \param StartIdx The start index of this node's associated string.
- /// \param EndIdx The end index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated internal node.
- SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
- size_t EndIdx, unsigned Edge) {
-
- assert(StartIdx <= EndIdx && "String can't start after it ends!");
- assert(!(!Parent && StartIdx != EmptyIdx) &&
- "Non-root internal nodes must have parents!");
-
- size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
- SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
- E,
- Root,
- Parent);
- if (Parent)
- Parent->Children[Edge] = N;
-
- return N;
- }
-
- /// \brief Set the suffix indices of the leaves to the start indices of their
- /// respective suffixes. Also stores each leaf in \p LeafVector at its
- /// respective suffix index.
- ///
- /// \param[in] CurrNode The node currently being visited.
- /// \param CurrIdx The current index of the string being visited.
- void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
-
- bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
-
- // Traverse the tree depth-first.
- for (auto &ChildPair : CurrNode.Children) {
- assert(ChildPair.second && "Node had a null child!");
- setSuffixIndices(*ChildPair.second,
- CurrIdx + ChildPair.second->size());
- }
-
- // Is this node a leaf?
- if (IsLeaf) {
- // If yes, give it a suffix index and bump its parent's occurrence count.
- CurrNode.SuffixIdx = Str.size() - CurrIdx;
- assert(CurrNode.Parent && "CurrNode had no parent!");
- CurrNode.Parent->OccurrenceCount++;
-
- // Store the leaf in the leaf vector for pruning later.
- LeafVector[CurrNode.SuffixIdx] = &CurrNode;
- }
- }
-
- /// \brief Construct the suffix tree for the prefix of the input ending at
- /// \p EndIdx.
- ///
- /// Used to construct the full suffix tree iteratively. At the end of each
- /// step, the constructed suffix tree is either a valid suffix tree, or a
- /// suffix tree with implicit suffixes. At the end of the final step, the
- /// suffix tree is a valid tree.
- ///
- /// \param EndIdx The end index of the current prefix in the main string.
- /// \param SuffixesToAdd The number of suffixes that must be added
- /// to complete the suffix tree at the current phase.
- ///
- /// \returns The number of suffixes that have not been added at the end of
- /// this step.
- unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
- SuffixTreeNode *NeedsLink = nullptr;
-
- while (SuffixesToAdd > 0) {
-
- // Are we waiting to add anything other than just the last character?
- if (Active.Len == 0) {
- // If not, then say the active index is the end index.
- Active.Idx = EndIdx;
- }
-
- assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
-
- // The first character in the current substring we're looking at.
- unsigned FirstChar = Str[Active.Idx];
-
- // Have we inserted anything starting with FirstChar at the current node?
- if (Active.Node->Children.count(FirstChar) == 0) {
- // If not, then we can just insert a leaf and move too the next step.
- insertLeaf(*Active.Node, EndIdx, FirstChar);
-
- // The active node is an internal node, and we visited it, so it must
- // need a link if it doesn't have one.
- if (NeedsLink) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- } else {
- // There's a match with FirstChar, so look for the point in the tree to
- // insert a new node.
- SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
-
- size_t SubstringLen = NextNode->size();
-
- // Is the current suffix we're trying to insert longer than the size of
- // the child we want to move to?
- if (Active.Len >= SubstringLen) {
- // If yes, then consume the characters we've seen and move to the next
- // node.
- Active.Idx += SubstringLen;
- Active.Len -= SubstringLen;
- Active.Node = NextNode;
- continue;
- }
-
- // Otherwise, the suffix we're trying to insert must be contained in the
- // next node we want to move to.
- unsigned LastChar = Str[EndIdx];
-
- // Is the string we're trying to insert a substring of the next node?
- if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
- // If yes, then we're done for this step. Remember our insertion point
- // and move to the next end index. At this point, we have an implicit
- // suffix tree.
- if (NeedsLink && !Active.Node->isRoot()) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
-
- Active.Len++;
- break;
- }
-
- // The string we're trying to insert isn't a substring of the next node,
- // but matches up to a point. Split the node.
- //
- // For example, say we ended our search at a node n and we're trying to
- // insert ABD. Then we'll create a new node s for AB, reduce n to just
- // representing C, and insert a new leaf node l to represent d. This
- // allows us to ensure that if n was a leaf, it remains a leaf.
- //
- // | ABC ---split---> | AB
- // n s
- // C / \ D
- // n l
-
- // The node s from the diagram
- SuffixTreeNode *SplitNode =
- insertInternalNode(Active.Node,
- NextNode->StartIdx,
- NextNode->StartIdx + Active.Len - 1,
- FirstChar);
-
- // Insert the new node representing the new substring into the tree as
- // a child of the split node. This is the node l from the diagram.
- insertLeaf(*SplitNode, EndIdx, LastChar);
-
- // Make the old node a child of the split node and update its start
- // index. This is the node n from the diagram.
- NextNode->StartIdx += Active.Len;
- NextNode->Parent = SplitNode;
- SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
-
- // SplitNode is an internal node, update the suffix link.
- if (NeedsLink)
- NeedsLink->Link = SplitNode;
-
- NeedsLink = SplitNode;
- }
-
- // We've added something new to the tree, so there's one less suffix to
- // add.
- SuffixesToAdd--;
-
- if (Active.Node->isRoot()) {
- if (Active.Len > 0) {
- Active.Len--;
- Active.Idx = EndIdx - SuffixesToAdd + 1;
- }
- } else {
- // Start the next phase at the next smallest suffix.
- Active.Node = Active.Node->Link;
- }
- }
-
- return SuffixesToAdd;
- }
-
- /// \brief Return the start index and length of a string which maximizes a
- /// benefit function by traversing the tree depth-first.
- ///
- /// Helper function for \p bestRepeatedSubstring.
- ///
- /// \param CurrNode The node currently being visited.
- /// \param CurrLen Length of the current string.
- /// \param[out] BestLen Length of the most beneficial substring.
- /// \param[out] MaxBenefit Benefit of the most beneficial substring.
- /// \param[out] BestStartIdx Start index of the most beneficial substring.
- /// \param BenefitFn The function the query should return a maximum string
- /// for.
- void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
- size_t &MaxBenefit, size_t &BestStartIdx,
- const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
- &BenefitFn) {
-
- if (!CurrNode.IsInTree)
- return;
-
- // Can we traverse further down the tree?
- if (!CurrNode.isLeaf()) {
- // If yes, continue the traversal.
- for (auto &ChildPair : CurrNode.Children) {
- if (ChildPair.second && ChildPair.second->IsInTree)
- findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
- BestLen, MaxBenefit, BestStartIdx, BenefitFn);
- }
- } else {
- // We hit a leaf.
- size_t StringLen = CurrLen - CurrNode.size();
- unsigned Benefit = BenefitFn(CurrNode, StringLen);
-
- // Did we do better than in the last step?
- if (Benefit <= MaxBenefit)
- return;
-
- // We did better, so update the best string.
- MaxBenefit = Benefit;
- BestStartIdx = CurrNode.SuffixIdx;
- BestLen = StringLen;
- }
- }
-
-public:
-
- /// \brief Return a substring of the tree with maximum benefit if such a
- /// substring exists.
- ///
- /// Clears the input vector and fills it with a maximum substring or empty.
- ///
- /// \param[in,out] Best The most beneficial substring in the tree. Empty
- /// if it does not exist.
- /// \param BenefitFn The function the query should return a maximum string
- /// for.
- void bestRepeatedSubstring(std::vector<unsigned> &Best,
- const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
- &BenefitFn) {
- Best.clear();
- size_t Length = 0; // Becomes the length of the best substring.
- size_t Benefit = 0; // Becomes the benefit of the best substring.
- size_t StartIdx = 0; // Becomes the start index of the best substring.
- findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
-
- for (size_t Idx = 0; Idx < Length; Idx++)
- Best.push_back(Str[Idx + StartIdx]);
- }
-
- /// Perform a depth-first search for \p QueryString on the suffix tree.
- ///
- /// \param QueryString The string to search for.
- /// \param CurrIdx The current index in \p QueryString that is being matched
- /// against.
- /// \param CurrNode The suffix tree node being searched in.
- ///
- /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
- /// node exists, and \p nullptr otherwise.
- SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
- size_t &CurrIdx, SuffixTreeNode *CurrNode) {
-
- // The search ended at a nonexistent or pruned node. Quit.
- if (!CurrNode || !CurrNode->IsInTree)
- return nullptr;
-
- unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
- SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
-
- if (CurrNode->isRoot()) {
- // If we're at the root we have to check if there's a child, and move to
- // that child. Don't consume the character since \p Root represents the
- // empty string.
- if (NextNode && NextNode->IsInTree)
- return findString(QueryString, CurrIdx, NextNode);
- return nullptr;
- }
-
- size_t StrIdx = CurrNode->StartIdx;
- size_t MaxIdx = QueryString.size();
- bool ContinueSearching = false;
-
- // Match as far as possible into the string. If there's a mismatch, quit.
- for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
- Edge = QueryString[CurrIdx];
-
- // We matched perfectly, but still have a remainder to search.
- if (StrIdx > *(CurrNode->EndIdx)) {
- ContinueSearching = true;
- break;
- }
-
- if (Edge != Str[StrIdx])
- return nullptr;
- }
-
- NextNode = CurrNode->Children[Edge];
-
- // Move to the node which matches what we're looking for and continue
- // searching.
- if (ContinueSearching)
- return findString(QueryString, CurrIdx, NextNode);
-
- // We matched perfectly so we're done.
- return CurrNode;
- }
-
- /// \brief Remove a node from a tree and all nodes representing proper
- /// suffixes of that node's string.
- ///
- /// This is used in the outlining algorithm to reduce the number of
- /// overlapping candidates
- ///
- /// \param N The suffix tree node to start pruning from.
- /// \param Len The length of the string to be pruned.
- ///
- /// \returns True if this candidate didn't overlap with a previously chosen
- /// candidate.
- bool prune(SuffixTreeNode *N, size_t Len) {
-
- bool NoOverlap = true;
- std::vector<unsigned> IndicesToPrune;
-
- // Look at each of N's children.
- for (auto &ChildPair : N->Children) {
- SuffixTreeNode *M = ChildPair.second;
-
- // Is this a leaf child?
- if (M && M->IsInTree && M->isLeaf()) {
- // Save each leaf child's suffix indices and remove them from the tree.
- IndicesToPrune.push_back(M->SuffixIdx);
- M->IsInTree = false;
- }
- }
-
- // Remove each suffix we have to prune from the tree. Each of these will be
- // I + some offset for I in IndicesToPrune and some offset < Len.
- unsigned Offset = 1;
- for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
- for (unsigned I : IndicesToPrune) {
-
- unsigned PruneIdx = I + Offset;
-
- // Is this index actually in the string?
- if (PruneIdx < LeafVector.size()) {
- // If yes, we have to try and prune it.
- // Was the current leaf already pruned by another candidate?
- if (LeafVector[PruneIdx]->IsInTree) {
- // If not, prune it.
- LeafVector[PruneIdx]->IsInTree = false;
- } else {
- // If yes, signify that we've found an overlap, but keep pruning.
- NoOverlap = false;
- }
-
- // Update the parent of the current leaf's occurrence count.
- SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
-
- // Is the parent still in the tree?
- if (Parent->OccurrenceCount > 0) {
- Parent->OccurrenceCount--;
- Parent->IsInTree = (Parent->OccurrenceCount > 1);
- }
- }
- }
-
- // Move to the next character in the string.
- Offset++;
- }
-
- // We know we can never outline anything which starts one index back from
- // the indices we want to outline. This is because our minimum outlining
- // length is always 2.
- for (unsigned I : IndicesToPrune) {
- if (I > 0) {
-
- unsigned PruneIdx = I-1;
- SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
-
- // Was the leaf one index back from I already pruned?
- if (LeafVector[PruneIdx]->IsInTree) {
- // If not, prune it.
- LeafVector[PruneIdx]->IsInTree = false;
- } else {
- // If yes, signify that we've found an overlap, but keep pruning.
- NoOverlap = false;
- }
-
- // Update the parent of the current leaf's occurrence count.
- if (Parent->OccurrenceCount > 0) {
- Parent->OccurrenceCount--;
- Parent->IsInTree = (Parent->OccurrenceCount > 1);
- }
- }
- }
-
- // Finally, remove N from the tree and set its occurrence count to 0.
- N->IsInTree = false;
- N->OccurrenceCount = 0;
-
- return NoOverlap;
- }
-
- /// \brief Find each occurrence of of a string in \p QueryString and prune
- /// their nodes.
- ///
- /// \param QueryString The string to search for.
- /// \param[out] Occurrences The start indices of each occurrence.
- ///
- /// \returns Whether or not the occurrence overlaps with a previous candidate.
- bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
- std::vector<size_t> &Occurrences) {
- size_t Dummy = 0;
- SuffixTreeNode *N = findString(QueryString, Dummy, Root);
-
- if (!N || !N->IsInTree)
- return false;
-
- // If this is an internal node, occurrences are the number of leaf children
- // of the node.
- for (auto &ChildPair : N->Children) {
- SuffixTreeNode *M = ChildPair.second;
-
- // Is it a leaf? If so, we have an occurrence.
- if (M && M->IsInTree && M->isLeaf())
- Occurrences.push_back(M->SuffixIdx);
- }
-
- // If we're in a leaf, then this node is the only occurrence.
- if (N->isLeaf())
- Occurrences.push_back(N->SuffixIdx);
-
- return prune(N, QueryString.size());
- }
-
- /// Construct a suffix tree from a sequence of unsigned integers.
- ///
- /// \param Str The string to construct the suffix tree for.
- SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
- Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
- Root->IsInTree = true;
- Active.Node = Root;
- LeafVector.reserve(Str.size());
-
- // Keep track of the number of suffixes we have to add of the current
- // prefix.
- size_t SuffixesToAdd = 0;
- Active.Node = Root;
-
- // Construct the suffix tree iteratively on each prefix of the string.
- // PfxEndIdx is the end index of the current prefix.
- // End is one past the last element in the string.
- for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
- SuffixesToAdd++;
- LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
- SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
- }
-
- // Set the suffix indices of each leaf.
- assert(Root && "Root node can't be nullptr!");
- setSuffixIndices(*Root, 0);
- }
-};
-
-/// \brief An individual sequence of instructions to be replaced with a call to
-/// an outlined function.
-struct Candidate {
-
- /// Set to false if the candidate overlapped with another candidate.
- bool InCandidateList = true;
-
- /// The start index of this \p Candidate.
- size_t StartIdx;
-
- /// The number of instructions in this \p Candidate.
- size_t Len;
-
- /// The index of this \p Candidate's \p OutlinedFunction in the list of
- /// \p OutlinedFunctions.
- size_t FunctionIdx;
-
- Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
- : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
-
- Candidate() {}
-
- /// \brief Used to ensure that \p Candidates are outlined in an order that
- /// preserves the start and end indices of other \p Candidates.
- bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
-};
-
-/// \brief The information necessary to create an outlined function for some
-/// class of candidate.
-struct OutlinedFunction {
-
- /// The actual outlined function created.
- /// This is initialized after we go through and create the actual function.
- MachineFunction *MF = nullptr;
-
- /// A number assigned to this function which appears at the end of its name.
- size_t Name;
-
- /// The number of times that this function has appeared.
- size_t OccurrenceCount = 0;
-
- /// \brief The sequence of integers corresponding to the instructions in this
- /// function.
- std::vector<unsigned> Sequence;
-
- /// The number of instructions this function would save.
- unsigned Benefit = 0;
-
- OutlinedFunction(size_t Name, size_t OccurrenceCount,
- const std::vector<unsigned> &Sequence,
- unsigned Benefit)
- : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
- Benefit(Benefit)
- {}
-};
-
-/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
-struct InstructionMapper {
-
- /// \brief The next available integer to assign to a \p MachineInstr that
- /// cannot be outlined.
- ///
- /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
- unsigned IllegalInstrNumber = -3;
-
- /// \brief The next available integer to assign to a \p MachineInstr that can
- /// be outlined.
- unsigned LegalInstrNumber = 0;
-
- /// Correspondence from \p MachineInstrs to unsigned integers.
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
- InstructionIntegerMap;
-
- /// Corresponcence from unsigned integers to \p MachineInstrs.
- /// Inverse of \p InstructionIntegerMap.
- DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
-
- /// The vector of unsigned integers that the module is mapped to.
- std::vector<unsigned> UnsignedVec;
-
- /// \brief Stores the location of the instruction associated with the integer
- /// at index i in \p UnsignedVec for each index i.
- std::vector<MachineBasicBlock::iterator> InstrList;
-
- /// \brief Maps \p *It to a legal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
- /// \p IntegerInstructionMap, and \p LegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
-
- // Get the integer for this instruction or give it the current
- // LegalInstrNumber.
- InstrList.push_back(It);
- MachineInstr &MI = *It;
- bool WasInserted;
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
- ResultIt;
- std::tie(ResultIt, WasInserted) =
- InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
- unsigned MINumber = ResultIt->second;
-
- // There was an insertion.
- if (WasInserted) {
- LegalInstrNumber++;
- IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
- }
-
- UnsignedVec.push_back(MINumber);
-
- // Make sure we don't overflow or use any integers reserved by the DenseMap.
- if (LegalInstrNumber >= IllegalInstrNumber)
- report_fatal_error("Instruction mapping overflow!");
-
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
- && "Tried to assign DenseMap tombstone or empty key to instruction.");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
- && "Tried to assign DenseMap tombstone or empty key to instruction.");
-
- return MINumber;
- }
-
- /// Maps \p *It to an illegal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
- unsigned MINumber = IllegalInstrNumber;
-
- InstrList.push_back(It);
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
-
- assert(LegalInstrNumber < IllegalInstrNumber &&
- "Instruction mapping overflow!");
-
- assert(IllegalInstrNumber !=
- DenseMapInfo<unsigned>::getEmptyKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
-
- assert(IllegalInstrNumber !=
- DenseMapInfo<unsigned>::getTombstoneKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
-
- return MINumber;
- }
-
- /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
- /// and appends it to \p UnsignedVec and \p InstrList.
- ///
- /// Two instructions are assigned the same integer if they are identical.
- /// If an instruction is deemed unsafe to outline, then it will be assigned an
- /// unique integer. The resulting mapping is placed into a suffix tree and
- /// queried for candidates.
- ///
- /// \param MBB The \p MachineBasicBlock to be translated into integers.
- /// \param TRI \p TargetRegisterInfo for the module.
- /// \param TII \p TargetInstrInfo for the module.
- void convertToUnsignedVec(MachineBasicBlock &MBB,
- const TargetRegisterInfo &TRI,
- const TargetInstrInfo &TII) {
- for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
- It++) {
-
- // Keep track of where this instruction is in the module.
- switch(TII.getOutliningType(*It)) {
- case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
- mapToIllegalUnsigned(It);
- break;
-
- case TargetInstrInfo::MachineOutlinerInstrType::Legal:
- mapToLegalUnsigned(It);
- break;
-
- case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
- break;
- }
- }
-
- // After we're done every insertion, uniquely terminate this part of the
- // "string". This makes sure we won't match across basic block or function
- // boundaries since the "end" is encoded uniquely and thus appears in no
- // repeated substring.
- InstrList.push_back(MBB.end());
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- }
-
- InstructionMapper() {
- // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
- // changed.
- assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
- "DenseMapInfo<unsigned>'s empty key isn't -1!");
- assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
- "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
- }
-};
-
-/// \brief An interprocedural pass which finds repeated sequences of
-/// instructions and replaces them with calls to functions.
-///
-/// Each instruction is mapped to an unsigned integer and placed in a string.
-/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
-/// is then repeatedly queried for repeated sequences of instructions. Each
-/// non-overlapping repeated sequence is then placed in its own
-/// \p MachineFunction and each instance is then replaced with a call to that
-/// function.
-struct MachineOutliner : public ModulePass {
-
- static char ID;
-
- StringRef getPassName() const override { return "Machine Outliner"; }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- AU.addPreserved<MachineModuleInfo>();
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
-
- MachineOutliner() : ModulePass(ID) {
- initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
- }
-
- /// \brief Replace the sequences of instructions represented by the
- /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
- /// described in \p FunctionList.
- ///
- /// \param M The module we are outlining from.
- /// \param CandidateList A list of candidates to be outlined.
- /// \param FunctionList A list of functions to be inserted into the module.
- /// \param Mapper Contains the instruction mappings for the module.
- bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
-
- /// Creates a function for \p OF and inserts it into the module.
- MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper);
-
- /// Find potential outlining candidates and store them in \p CandidateList.
- ///
- /// For each type of potential candidate, also build an \p OutlinedFunction
- /// struct containing the information to build the function for that
- /// candidate.
- ///
- /// \param[out] CandidateList Filled with outlining candidates for the module.
- /// \param[out] FunctionList Filled with functions corresponding to each type
- /// of \p Candidate.
- /// \param ST The suffix tree for the module.
- /// \param TII TargetInstrInfo for the module.
- ///
- /// \returns The length of the longest candidate found. 0 if there are none.
- unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST, const TargetInstrInfo &TII);
-
- /// \brief Remove any overlapping candidates that weren't handled by the
- /// suffix tree's pruning method.
- ///
- /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
- /// If a short candidate is chosen for outlining, then a longer candidate
- /// which has that short candidate as a suffix is chosen, the tree's pruning
- /// method will not find it. Thus, we need to prune before outlining as well.
- ///
- /// \param[in,out] CandidateList A list of outlining candidates.
- /// \param[in,out] FunctionList A list of functions to be outlined.
- /// \param MaxCandidateLen The length of the longest candidate.
- /// \param TII TargetInstrInfo for the module.
- void pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- unsigned MaxCandidateLen,
- const TargetInstrInfo &TII);
-
- /// Construct a suffix tree on the instructions in \p M and outline repeated
- /// strings from that tree.
- bool runOnModule(Module &M) override;
-};
-
-} // Anonymous namespace.
-
-char MachineOutliner::ID = 0;
-
-namespace llvm {
-ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
-}
-
-INITIALIZE_PASS(MachineOutliner, "machine-outliner",
- "Machine Function Outliner", false, false)
-
-void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- unsigned MaxCandidateLen,
- const TargetInstrInfo &TII) {
-
- // Check for overlaps in the range. This is O(n^2) worst case, but we can
- // alleviate that somewhat by bounding our search space using the start
- // index of our first candidate and the maximum distance an overlapping
- // candidate could have from the first candidate.
- for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
- It++) {
- Candidate &C1 = *It;
- OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
-
- // If we removed this candidate, skip it.
- if (!C1.InCandidateList)
- continue;
-
- // If the candidate's function isn't good to outline anymore, then
- // remove the candidate and skip it.
- if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
- C1.InCandidateList = false;
- continue;
- }
-
- // The minimum start index of any candidate that could overlap with this
- // one.
- unsigned FarthestPossibleIdx = 0;
-
- // Either the index is 0, or it's at most MaxCandidateLen indices away.
- if (C1.StartIdx > MaxCandidateLen)
- FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
-
- // Compare against the other candidates in the list.
- // This is at most MaxCandidateLen/2 other candidates.
- // This is because each candidate has to be at least 2 indices away.
- // = O(n * MaxCandidateLen/2) comparisons
- //
- // On average, the maximum length of a candidate is quite small; a fraction
- // of the total module length in terms of instructions. If the maximum
- // candidate length is large, then there are fewer possible candidates to
- // compare against in the first place.
- for (auto Sit = It + 1; Sit != Et; Sit++) {
- Candidate &C2 = *Sit;
- OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
-
- // Is this candidate too far away to overlap?
- // NOTE: This will be true in
- // O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
- // for every candidate.
- if (C2.StartIdx < FarthestPossibleIdx)
- break;
-
- // Did we already remove this candidate in a previous step?
- if (!C2.InCandidateList)
- continue;
-
- // Is the function beneficial to outline?
- if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
- // If not, remove this candidate and move to the next one.
- C2.InCandidateList = false;
- continue;
- }
-
- size_t C2End = C2.StartIdx + C2.Len - 1;
-
- // Do C1 and C2 overlap?
- //
- // Not overlapping:
- // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
- //
- // We sorted our candidate list so C2Start <= C1Start. We know that
- // C2End > C2Start since each candidate has length >= 2. Therefore, all we
- // have to check is C2End < C2Start to see if we overlap.
- if (C2End < C1.StartIdx)
- continue;
-
- // C2 overlaps with C1. Because we pruned the tree already, the only way
- // this can happen is if C1 is a proper suffix of C2. Thus, we must have
- // found C1 first during our query, so it must have benefit greater or
- // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
- DEBUG (
- size_t C1End = C1.StartIdx + C1.Len - 1;
- dbgs() << "- Found an overlap to purge.\n";
- dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
- dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
- );
-
- // Update the function's occurrence count and benefit to reflec that C2
- // is being removed.
- F2.OccurrenceCount--;
- F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
- F2.OccurrenceCount
- );
-
- // Mark C2 as not in the list.
- C2.InCandidateList = false;
-
- DEBUG (
- dbgs() << "- Removed C2. \n";
- dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
- dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
- );
- }
- }
-}
-
-unsigned
-MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST,
- const TargetInstrInfo &TII) {
-
- std::vector<unsigned> CandidateSequence; // Current outlining candidate.
- unsigned MaxCandidateLen = 0; // Length of the longest candidate.
-
- // Function for maximizing query in the suffix tree.
- // This allows us to define more fine-grained types of things to outline in
- // the target without putting target-specific info in the suffix tree.
- auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
-
- // Any leaf whose parent is the root only has one occurrence.
- if (Curr.Parent->isRoot())
- return 0u;
-
- // Anything with length < 2 will never be beneficial on any target.
- if (StringLen < 2)
- return 0u;
-
- size_t Occurrences = Curr.Parent->OccurrenceCount;
-
- // Anything with fewer than 2 occurrences will never be beneficial on any
- // target.
- if (Occurrences < 2)
- return 0u;
-
- return TII.getOutliningBenefit(StringLen, Occurrences);
- };
-
- // Repeatedly query the suffix tree for the substring that maximizes
- // BenefitFn. Find the occurrences of that string, prune the tree, and store
- // each occurrence as a candidate.
- for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
- CandidateSequence.size() > 1;
- ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
-
- std::vector<size_t> Occurrences;
-
- bool GotNonOverlappingCandidate =
- ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
-
- // Is the candidate we found known to overlap with something we already
- // outlined?
- if (!GotNonOverlappingCandidate)
- continue;
-
- // Is this candidate the longest so far?
- if (CandidateSequence.size() > MaxCandidateLen)
- MaxCandidateLen = CandidateSequence.size();
-
- // Keep track of the benefit of outlining this candidate in its
- // OutlinedFunction.
- unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
- Occurrences.size()
- );
-
- assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
-
- // Save an OutlinedFunction for this candidate.
- FunctionList.emplace_back(
- FunctionList.size(), // Number of this function.
- Occurrences.size(), // Number of occurrences.
- CandidateSequence, // Sequence to outline.
- FnBenefit // Instructions saved by outlining this function.
- );
-
- // Save each of the occurrences of the candidate so we can outline them.
- for (size_t &Occ : Occurrences)
- CandidateList.emplace_back(
- Occ, // Starting idx in that MBB.
- CandidateSequence.size(), // Candidate length.
- FunctionList.size() - 1 // Idx of the corresponding function.
- );
-
- FunctionsCreated++;
- }
-
- // Sort the candidates in decending order. This will simplify the outlining
- // process when we have to remove the candidates from the mapping by
- // allowing us to cut them out without keeping track of an offset.
- std::stable_sort(CandidateList.begin(), CandidateList.end());
-
- return MaxCandidateLen;
-}
-
-MachineFunction *
-MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper) {
-
- // Create the function name. This should be unique. For now, just hash the
- // module name and include it in the function name plus the number of this
- // function.
- std::ostringstream NameStream;
- NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
-
- // Create the function using an IR-level function.
- LLVMContext &C = M.getContext();
- Function *F = dyn_cast<Function>(
- M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL));
- assert(F && "Function was null!");
-
- // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
- // which gives us better results when we outline from linkonceodr functions.
- F->setLinkage(GlobalValue::PrivateLinkage);
- F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
-
- BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
- IRBuilder<> Builder(EntryBB);
- Builder.CreateRetVoid();
-
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- MachineFunction &MF = MMI.getMachineFunction(*F);
- MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
-
- // Insert the new function into the module.
- MF.insert(MF.begin(), &MBB);
-
- TII.insertOutlinerPrologue(MBB, MF);
-
- // Copy over the instructions for the function using the integer mappings in
- // its sequence.
- for (unsigned Str : OF.Sequence) {
- MachineInstr *NewMI =
- MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
- NewMI->dropMemRefs();
-
- // Don't keep debug information for outlined instructions.
- // FIXME: This means outlined functions are currently undebuggable.
- NewMI->setDebugLoc(DebugLoc());
- MBB.insert(MBB.end(), NewMI);
- }
-
- TII.insertOutlinerEpilogue(MBB, MF);
-
- return &MF;
-}
-
-bool MachineOutliner::outline(Module &M,
- const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper) {
-
- bool OutlinedSomething = false;
-
- // Replace the candidates with calls to their respective outlined functions.
- for (const Candidate &C : CandidateList) {
-
- // Was the candidate removed during pruneOverlaps?
- if (!C.InCandidateList)
- continue;
-
- // If not, then look at its OutlinedFunction.
- OutlinedFunction &OF = FunctionList[C.FunctionIdx];
-
- // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
- if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
- continue;
-
- // If not, then outline it.
- assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
- unsigned EndIdx = C.StartIdx + C.Len - 1;
-
- assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
- assert(EndIt != MBB->end() && "EndIt out of bounds!");
-
- EndIt++; // Erase needs one past the end index.
-
- // Does this candidate have a function yet?
- if (!OF.MF)
- OF.MF = createOutlinedFunction(M, OF, Mapper);
-
- MachineFunction *MF = OF.MF;
- const TargetSubtargetInfo &STI = MF->getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
-
- // Insert a call to the new function and erase the old sequence.
- TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
- StartIt = Mapper.InstrList[C.StartIdx];
- MBB->erase(StartIt, EndIt);
-
- OutlinedSomething = true;
-
- // Statistics.
- NumOutlined++;
- }
-
- DEBUG (
- dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
- );
-
- return OutlinedSomething;
-}
-
-bool MachineOutliner::runOnModule(Module &M) {
-
- // Is there anything in the module at all?
- if (M.empty())
- return false;
-
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
- .getSubtarget();
- const TargetRegisterInfo *TRI = STI.getRegisterInfo();
- const TargetInstrInfo *TII = STI.getInstrInfo();
-
- InstructionMapper Mapper;
-
- // Build instruction mappings for each function in the module.
- for (Function &F : M) {
- MachineFunction &MF = MMI.getMachineFunction(F);
-
- // Is the function empty? Safe to outline from?
- if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
- continue;
-
- // If it is, look at each MachineBasicBlock in the function.
- for (MachineBasicBlock &MBB : MF) {
-
- // Is there anything in MBB?
- if (MBB.empty())
- continue;
-
- // If yes, map it.
- Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
- }
- }
-
- // Construct a suffix tree, use it to find candidates, and then outline them.
- SuffixTree ST(Mapper.UnsignedVec);
- std::vector<Candidate> CandidateList;
- std::vector<OutlinedFunction> FunctionList;
-
- unsigned MaxCandidateLen =
- buildCandidateList(CandidateList, FunctionList, ST, *TII);
-
- pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
- return outline(M, CandidateList, FunctionList, Mapper);
-}
Modified: llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/TargetPassConfig.cpp?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/TargetPassConfig.cpp (original)
+++ llvm/trunk/lib/CodeGen/TargetPassConfig.cpp Mon Feb 27 20:24:30 2017
@@ -92,9 +92,6 @@ static cl::opt<bool> VerifyMachineCode("
cl::desc("Verify generated machine code"),
cl::init(false),
cl::ZeroOrMore);
-static cl::opt<bool> EnableMachineOutliner("enable-machine-outliner",
- cl::Hidden,
- cl::desc("Enable machine outliner"));
static cl::opt<std::string>
PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
@@ -677,9 +674,6 @@ void TargetPassConfig::addMachinePasses(
addPass(&XRayInstrumentationID, false);
addPass(&PatchableFunctionID, false);
- if (EnableMachineOutliner)
- PM->add(createMachineOutlinerPass());
-
AddingMachinePasses = false;
}
Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.cpp?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86InstrInfo.cpp (original)
+++ llvm/trunk/lib/Target/X86/X86InstrInfo.cpp Mon Feb 27 20:24:30 2017
@@ -10383,83 +10383,3 @@ namespace {
char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
-
-unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize,
- size_t Occurrences) const {
- unsigned NotOutlinedSize = SequenceSize * Occurrences;
-
- // Sequence appears once in outlined function (Sequence.size())
- // One return instruction (+1)
- // One call per occurrence (Occurrences)
- unsigned OutlinedSize = (SequenceSize + 1) + Occurrences;
-
- // Return the number of instructions saved by outlining this sequence.
- return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
-}
-
-bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
- return MF.getFunction()->hasFnAttribute(Attribute::NoRedZone);
-}
-
-X86GenInstrInfo::MachineOutlinerInstrType
-X86InstrInfo::getOutliningType(MachineInstr &MI) const {
-
- // Don't outline returns or basic block terminators.
- if (MI.isReturn() || MI.isTerminator())
- return MachineOutlinerInstrType::Illegal;
-
- // Don't outline anything that modifies or reads from the stack pointer.
- //
- // FIXME: There are instructions which are being manually built without
- // explicit uses/defs so we also have to check the MCInstrDesc. We should be
- // able to remove the extra checks once those are fixed up. For example,
- // sometimes we might get something like %RAX<def> = POP64r 1. This won't be
- // caught by modifiesRegister or readsRegister even though the instruction
- // really ought to be formed so that modifiesRegister/readsRegister would
- // catch it.
- if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
- MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
- MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
- return MachineOutlinerInstrType::Illegal;
-
- if (MI.readsRegister(X86::RIP, &RI) ||
- MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
- MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
- return MachineOutlinerInstrType::Illegal;
-
- if (MI.isPosition())
- return MachineOutlinerInstrType::Illegal;
-
- for (const MachineOperand &MOP : MI.operands())
- if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
- MOP.isTargetIndex())
- return MachineOutlinerInstrType::Illegal;
-
- // Don't allow debug values to impact outlining type.
- if (MI.isDebugValue() || MI.isIndirectDebugValue())
- return MachineOutlinerInstrType::Invisible;
-
- return MachineOutlinerInstrType::Legal;
-}
-
-void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB,
- MachineFunction &MF) const {
-
- MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
- MBB.insert(MBB.end(), retq);
-}
-
-void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB,
- MachineFunction &MF) const {
- return;
-}
-
-MachineBasicBlock::iterator
-X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It,
- MachineFunction &MF) const {
- It = MBB.insert(It,
- BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
- .addGlobalAddress(M.getNamedValue(MF.getName())));
- return It;
-}
Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.h?rev=296426&r1=296425&r2=296426&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86InstrInfo.h (original)
+++ llvm/trunk/lib/Target/X86/X86InstrInfo.h Mon Feb 27 20:24:30 2017
@@ -545,27 +545,6 @@ public:
bool isTailCall(const MachineInstr &Inst) const override;
- unsigned getOutliningBenefit(size_t SequenceSize,
- size_t Occurrences) const override;
-
- bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
-
- llvm::X86GenInstrInfo::MachineOutlinerInstrType
- getOutliningType(MachineInstr &MI) const override;
-
- bool isFixablePostOutline(MachineInstr &MI) const;
-
- void insertOutlinerEpilogue(MachineBasicBlock &MBB,
- MachineFunction &MF) const override;
-
- void insertOutlinerPrologue(MachineBasicBlock &MBB,
- MachineFunction &MF) const override;
-
- MachineBasicBlock::iterator
- insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It,
- MachineFunction &MF) const override;
-
protected:
/// Commutes the operands in the given instruction by changing the operands
/// order and/or changing the instruction's opcode and/or the immediate value
Removed: llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll?rev=296425&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll (original)
+++ llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll (removed)
@@ -1,75 +0,0 @@
-; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
-
- at x = global i32 0, align 4, !dbg !0
-
-define i32 @main() #0 !dbg !11 {
- ; CHECK-LABEL: _main:
- %1 = alloca i32, align 4
- %2 = alloca i32, align 4
- %3 = alloca i32, align 4
- %4 = alloca i32, align 4
- %5 = alloca i32, align 4
- ; There is a debug value in the middle of this section, make sure debug values are ignored.
- ; CHECK: callq l_OUTLINED_FUNCTION_0
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- call void @llvm.dbg.value(metadata i32 10, i64 0, metadata !15, metadata !16), !dbg !17
- store i32 4, i32* %5, align 4
- store i32 0, i32* @x, align 4, !dbg !24
- ; This is the same sequence of instructions without a debug value. It should be outlined
- ; in the same way.
- ; CHECK: callq l_OUTLINED_FUNCTION_0
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- store i32 4, i32* %5, align 4
- store i32 1, i32* @x, align 4, !dbg !14
- ret i32 0, !dbg !25
-}
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
-; CHECK-NOT: .loc {{[0-9]+}} {{[0-9]+}} {{[0-9]+}} {{^(is_stmt)}}
-; CHECK-NOT: ##DEBUG_VALUE: main:{{[a-z]}} <- {{[0-9]+}}
-; CHECK: movl $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq
-
-declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
-
-declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #1
-
-attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
-
-!llvm.dbg.cu = !{!2}
-!llvm.module.flags = !{!7, !8, !9}
-!llvm.ident = !{!10}
-
-!0 = !DIGlobalVariableExpression(var: !1)
-!1 = distinct !DIGlobalVariable(name: "x", scope: !2, file: !3, line: 2, type: !6, isLocal: false, isDefinition: true)
-!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3, producer: "clang version 5.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !4, globals: !5)
-!3 = !DIFile(filename: "debug-test.c", directory: "dir")
-!4 = !{}
-!5 = !{!0}
-!6 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
-!7 = !{i32 2, !"Dwarf Version", i32 4}
-!8 = !{i32 2, !"Debug Info Version", i32 3}
-!9 = !{i32 1, !"PIC Level", i32 2}
-!10 = !{!"clang version 5.0.0"}
-!11 = distinct !DISubprogram(name: "main", scope: !3, file: !3, line: 4, type: !12, isLocal: false, isDefinition: true, scopeLine: 4, flags: DIFlagPrototyped, isOptimized: false, unit: !2, variables: !4)
-!12 = !DISubroutineType(types: !13)
-!13 = !{!6}
-!14 = !DILocation(line: 7, column: 4, scope: !11)
-!15 = !DILocalVariable(name: "a", scope: !11, file: !3, line: 5, type: !6)
-!16 = !DIExpression()
-!17 = !DILocation(line: 5, column: 6, scope: !11)
-!18 = !DILocalVariable(name: "b", scope: !11, file: !3, line: 5, type: !6)
-!19 = !DILocation(line: 5, column: 9, scope: !11)
-!20 = !DILocalVariable(name: "c", scope: !11, file: !3, line: 5, type: !6)
-!21 = !DILocation(line: 5, column: 12, scope: !11)
-!22 = !DILocalVariable(name: "d", scope: !11, file: !3, line: 5, type: !6)
-!23 = !DILocation(line: 5, column: 15, scope: !11)
-!24 = !DILocation(line: 14, column: 4, scope: !11)
-!25 = !DILocation(line: 21, column: 2, scope: !11)
Removed: llvm/trunk/test/CodeGen/X86/machine-outliner.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner.ll?rev=296425&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/X86/machine-outliner.ll (original)
+++ llvm/trunk/test/CodeGen/X86/machine-outliner.ll (removed)
@@ -1,110 +0,0 @@
-; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
-
- at x = global i32 0, align 4
-
-define i32 @check_boundaries() #0 {
- ; CHECK-LABEL: _check_boundaries:
- %1 = alloca i32, align 4
- %2 = alloca i32, align 4
- %3 = alloca i32, align 4
- %4 = alloca i32, align 4
- %5 = alloca i32, align 4
- store i32 0, i32* %1, align 4
- store i32 0, i32* %2, align 4
- %6 = load i32, i32* %2, align 4
- %7 = icmp ne i32 %6, 0
- br i1 %7, label %9, label %8
-
- ; CHECK: callq l_OUTLINED_FUNCTION_1
- ; CHECK: cmpl $0, -{{[0-9]+}}(%rbp)
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- store i32 4, i32* %5, align 4
- br label %10
-
- store i32 1, i32* %4, align 4
- br label %10
-
- %11 = load i32, i32* %2, align 4
- %12 = icmp ne i32 %11, 0
- br i1 %12, label %14, label %13
-
- ; CHECK: callq l_OUTLINED_FUNCTION_1
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- store i32 4, i32* %5, align 4
- br label %15
-
- store i32 1, i32* %4, align 4
- br label %15
-
- ret i32 0
-}
-
-define i32 @empty_1() #0 {
- ; CHECK-LABEL: _empty_1:
- ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
- ret i32 1
-}
-
-define i32 @empty_2() #0 {
- ; CHECK-LABEL: _empty_2
- ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
- ret i32 1
-}
-
-define i32 @no_empty_outlining() #0 {
- ; CHECK-LABEL: _no_empty_outlining:
- %1 = alloca i32, align 4
- store i32 0, i32* %1, align 4
- ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
- %2 = call i32 @empty_1() #1
- %3 = call i32 @empty_2() #1
- %4 = call i32 @empty_1() #1
- %5 = call i32 @empty_2() #1
- %6 = call i32 @empty_1() #1
- %7 = call i32 @empty_2() #1
- ret i32 0
-}
-
-define i32 @main() #0 {
- ; CHECK-LABEL: _main:
- %1 = alloca i32, align 4
- %2 = alloca i32, align 4
- %3 = alloca i32, align 4
- %4 = alloca i32, align 4
- %5 = alloca i32, align 4
-
- store i32 0, i32* %1, align 4
- store i32 0, i32* @x, align 4
- ; CHECK: callq l_OUTLINED_FUNCTION_0
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- store i32 4, i32* %5, align 4
- store i32 1, i32* @x, align 4
- ; CHECK: callq l_OUTLINED_FUNCTION_0
- store i32 1, i32* %2, align 4
- store i32 2, i32* %3, align 4
- store i32 3, i32* %4, align 4
- store i32 4, i32* %5, align 4
- ret i32 0
-}
-
-attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
-; CHECK: movl $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_1:
-; CHECK: movl $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq
More information about the llvm-commits
mailing list